RF TEST REPORT

Report No.: 18070575-FCC-R2

Supersede Repor	t No.: N/A			
Applicant	Shenzhen Cudy Technology Co. Ltd.			
Product Name	AC1200 Dual Band Smart Wi-Fi Router			
Model No.	WR1000	WR1000		
Serial No.	N/A			
	FCC Part 15.407, KDB 662911 D01 v02r	01, KDB 789033 D02		
Test Standard	v02r01, ANSI C63.10: 2013			
Test Date	June 05 to 26, 2018			
Issue Date	June 27, 2018			
Test Result	Pass Fail			
Equipment complied with the specification				
Equipment did not comply with the specification				
Aaron L	David Huang			
Aaron Lia	ang David Huang			
Test Engi				
This test report may be reproduced in full only				
Test result presented in this test report is applicable to the tested sample only				

Issued by:

SIEMIC (SHENZHEN-CHINA) LABORATORIES

Zone A, Floor 1, Building 2 Wan Ye Long Technology Park South Side of Zhoushi Road, Bao' an District, Shenzhen, Guangdong China 518108 Phone: +86 0755 2601 4629801 Email: China@siemic.com.cn

 Test Report No.
 18070575-FCC-R2

 Page
 2 of 80

Laboratories Introduction

SIEMIC, headquartered in the heart of Silicon Valley, with superior facilities in US and Asia, is one of the leading independent testing and certification facilities providing customers with one-stop shop services for Compliance Testing and Global Certifications.

In addition to testing and certification, SIEMIC provides initial design reviews and compliance management throughout a project. Our extensive experience with China, Asia Pacific, North America, European, and International compliance requirements, assures the fastest, most cost effective way to attain regulatory compliance for the global markets.

Country/Region	Scope
USA	EMC, RF/Wireless, SAR, Telecom
Canada	EMC, RF/Wireless, SAR, Telecom
Taiwan	EMC, RF, Telecom, SAR, Safety
Hong Kong	RF/Wireless, SAR, Telecom
Australia	EMC, RF, Telecom, SAR, Safety
Korea	EMI, EMS, RF, SAR, Telecom, Safety
Japan	EMI, RF/Wireless, SAR, Telecom
Singapore	EMC, RF, SAR, Telecom
Europe	EMC, RF, SAR, Telecom, Safety

Accreditations for Conformity Assessment

Test Report No.	18070575-FCC-R2
Page	3 of 80

This page has been left blank intentionally.

 Test Report No.
 18070575-FCC-R2

 Page
 4 of 80

CONTENTS

1.	REPORT REVISION HISTORY
2.	CUSTOMER INFORMATION
3.	TEST SITE INFORMATION
4.	EQUIPMENT UNDER TEST (EUT) INFORMATION7
5.	TEST SUMMARY9
6.	MEASUREMENTS, EXAMINATION AND DERIVED RESULTS
6.1	ON TIME, DUTY CYCLE AND MEASUREMENT METHODS11
6.2	§15.407(A)-DTS (99% &26 DB) CHANNEL BANDWIDTH21
6.3	§15.407(A)-DTS (99% &6 DB) CHANNEL BANDWIDTH
6.4 §	§15.407(A)-CONDUCTED MAXIMUM OUTPUT POWER
6.5 <u>(</u>	§15.407(A) - POWER SPECTRAL DENSITY
6.6	§15.407(1) AND B(4) BAND-EDGE
6.7 <u></u>	§15.207 (A) - AC POWER LINE CONDUCTED EMISSIONS
	§15.209, §15.205 & §15.407(B) - RADIATED SPURIOUS EMISSIONS & UNWANTED EMISSIONS O RESTRICTED FREQUENCY BANDS
ANN	IEX A. TEST INSTRUMENT65
ANN	IEX C. TEST SETUP AND SUPPORTING EQUIPMENT73
ANN	IEX D. USER MANUAL / BLOCK DIAGRAM / SCHEMATICS / PARTLIST
ANN	IEX E. DECLARATION OF SIMILARITY80

Test Report No.	18070575-FCC-R2
Page	5 of 80

1. Report Revision History

Report No.	Report Version	Description	Issue Date
18070575-FCC-R2	NONE	Original	June 27, 2018

2. Customer information

Applicant Name	Shenzhen Cudy Technology Co. Ltd.
Applicant Add	Room A606, Gaoxinqi Industrial Park, Liuxianyi Road, Baoan District, Shenzhen
	China 518101
Manufacturer	Shenzhen Cudy Technology Co. Ltd.
Manufacturer Add	Room A606, Gaoxinqi Industrial Park, Liuxianyi Road, Baoan District,Shenzhen
	China 518101

Test Report No.	18070575-FCC-R2
Page	6 of 80

3. Test site information

Test Lab A:

Lab performing tests	SIEMIC (Shenzhen-China) LABORATORIES	
Lab performing tests		
	Zone A, Floor 1, Building 2 Wan Ye Long Technology Park	
Lab Address	South Side of Zhoushi Road, Bao' an District, Shenzhen, Guangdong China	
	518108	
FCC Test Site No.	535293	
IC Test Site No.	4842E-1	
Test Software	Radiated Emission Program-To Shenzhen v2.0	
Test Lab B:		
Lab performing tests	BV 7LAYERS COMMUNICATION TRCHNOLOGY(SHENZHEN)CO.,LTD	
	No. B102, Dazu Cuangxin Mansion, North of Beihuan Avenue, North Area, Hi-	
Lab Address	Tech Industry Park, Nanshan District Shenzhen, Guangdong China	
FCC Test Site No.	525120	

Note: We just perform Radiated Spurious Emission above 18GHz in the test Lab. B.

 Test Report No.
 18070575-FCC-R2

 Page
 7 of 80

4. Equipment under Test (EUT) Information

Description of EUT:	AC1200 Dual Band Smart Wi-Fi Router
Main Model:	WR1000
Serial Model:	N/A
Date EUT received:	June 04, 2018
Test Date(s):	June 05 to 26, 2018
Equipment Category :	NII
Antenna Gain:	WIFI(2.4G): 5dBi WIFI(5150-5250MHz):5dBi
Antenna Type:	Cable Antenna
Type of Modulation:	802.11b: DSSS 802.11g/n20/n40/a/ac20/ac40/ac80: OFDM
Number of Channels:	WIFI :802.11b/g: 11CH WIFI :802.11a/ac20: 24CH WIFI :802.11ac40: 12CH WIFI :802.11ac80: 6CH WIFI :802.11n20: 11CH(2.4GHz); WIFI :802.11n40: 9CH(2.4GHz); 12CH(5GHz)
RF Operating Frequency (ies):	802.11b/g: 2412-2462 MHz (TX/RX) 802.11n20: 2412-2462MHz; 802.11n40: 2422-2452 MHz (TX/RX); 5190-5230 MHz(TX/RX) 802.11 a: 5180-5240 MHz (TX/RX) 802.11ac 20: 5180-5240 MHz; (TX/RX) 802.11ac 40: 5190-5230 MHz; (TX/RX) 802.11ac 80: 5210 MHz; (TX/RX)

 Test Report No.
 18070575-FCC-R2

 Page
 8 of 80

802.11a: 11.83dBm 802.11ac(20M): 11.68dBm 802.11ac(40M): 17.76dBm Max. Output Power: 802.11ac(80M): 19.19dBm 802.11n(40M): 11.44dBm Adapter: Model: S12A12-120A100-CJ Input Power: Input:AC 100-240V~50/60Hz 0.5A Output:DC 12V, 1A Port: Please refer to the user manual Trade Name : N/A FCC ID: 2APRGWR1000V1

Test Report No.	18070575-FCC-R2
Page	9 of 80

5. Test Summary

The product was tested in accordance with the following specifications.

All testing has been performed according to below product classification:

FCC Rules	Description of Test	Result
§15.407 (i), §2.1093	RF Exposure	Compliance
§15.203	Antenna Requirement	Compliance
§15.407 (a)(1)	DTS (99%&26 dB) CHANNEL BANDWIDTH	Compliance
§15.407 (e)	DTS (99%&6 dB) CHANNEL BANDWIDTH	Compliance
§15.407(a/1/2)	Conducted Maximum Output Power	Compliance
§15.407(a/1/2)	Peak Power Spectral Density	Compliance
§15.407(a)(6)	Peak Power Excursion	Compliance
§15.207 (a)	AC Power Line Conducted Emissions	Compliance
§15.205, §15.209,	Radiated Spurious Emissions &	Compliance
§15.247(b/1/2/3/6)	Unwanted Emissions into Restricted Frequency Bands	Compliance

 Test Report No.
 18070575-FCC-R2

 Page
 10 of 80

6. Measurements, Examination And Derived Results

6.1 §15.203 - ANTENNA REQUIREMENT

Applicable Standard

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine compliance with section §15.203 of the rules. §15.203 state that the subject device must meet the following criteria:

a. Antenna must be permanently attached to the unit.

b. Antenna must use a unique type of connector to attach to the EUT.

Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

And according to FCC 47 CFR section 15.247 (b), if the transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Antenna Connector Construction

The EUT has 2 antennas:

A permanently attached cable antenna for 2.4G/5G WIFI, the gain is 5dBi for 2.4G/5G WIFI.

Result: Pass

 Test Report No.
 18070575-FCC-R2

 Page
 11 of 80

6.1 ON TIME, DUTY CYCLE AND MEASUREMENT METHODS

Standard Requirement:

None. For reporting purpose only.

PROCEDURE

KDB 789033 Zero-Span Spectrum Analyzer Method.

Environmental Conditions	Temperature	24°C
	Relative Humidity	55%
	Atmospheric Pressure	1017mbar
Test date: June 13 to 25, 2018	i de la construcción de la constru	
Tested By: Aaron Liang		

Test Result: Pass.

Please refer to the following tables and plots.

Test Report No.	18070575-FCC-R2
Page	12 of 80

Measurement result

ON TIME AND DUTY CYCLE RESULTS

	Ant.0							
Test mode	Freq Band (MHz)	СН	Freq (MH z)	ON Time B(msec)	Period (msec)	Duty Cycle x(linear)	Duty Cycle(%)	Duty Cycle Correction Factor(dB)
		Low	5180	1	1	1	100%	0
820.11a		Middle	5200	1	1	1	100%	0
		High	5240	1	1	1	100%	0
802.11a		Low	5180	1	1	1	100%	0
c (20M)		Middle	5200	1	1	1	100%	0
C (20101)	5150-	High	5240	1	1	1	100%	0
802.11a	5250	Low	5190	1	1	1	100%	0
c (40M)	5250	High	5230	1	1	1	100%	0
802.11a c (80M)	c (80M)	One	5210	1	1	1	100%	0
902 11p		Low	5190	1	1	1	100%	0
802.11n (40M)		Middle	5200	1	1	1	100%	0
(40101)		High	5230	1	1	1	100%	0

Test Report No.	18070575-FCC-R2
Page	13 of 80

Ant.1

Test mode	Freq Band (MHz)	СН	Freq (MH z)	ON Time B(msec)	Period (msec)	Duty Cycle x(linear)	Duty Cycle(%)	Duty Cycle Correction Factor(dB)
		Low	5180	1	1	1	100%	0
820.11a		Middle	5200	1	1	1	100%	0
		High	5240	1	1	1	100%	0
002.11-		Low	5180	1	1	1	100%	0
802.11a		Middle	5200	1	1	1	100%	0
c (20M)	E1E0	High	5240	1	1	1	100%	0
802.11a	5150- 5250	Low	5190	1	1	1	100%	0
c (40M)	5250	High	5230	1	1	1	100%	0
802.11a c (80M)		One	5210	1	1	1	100%	0
000.44.5		Low	5190	1	1	1	100%	0
802.11n		Middle	5200	1	1	1	100%	0
(40M)		High	5230	1	1	1	100%	0

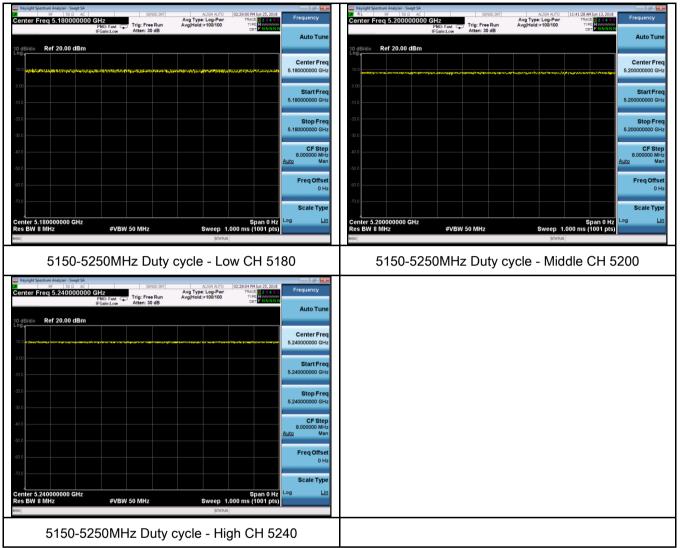
 Test Report No.
 18070575-FCC-R2

 Page
 14 of 80

Test Plots

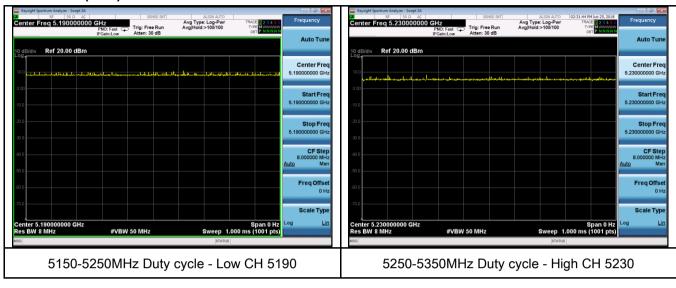
Duty cycle measurement result

Ant.0


802.11a

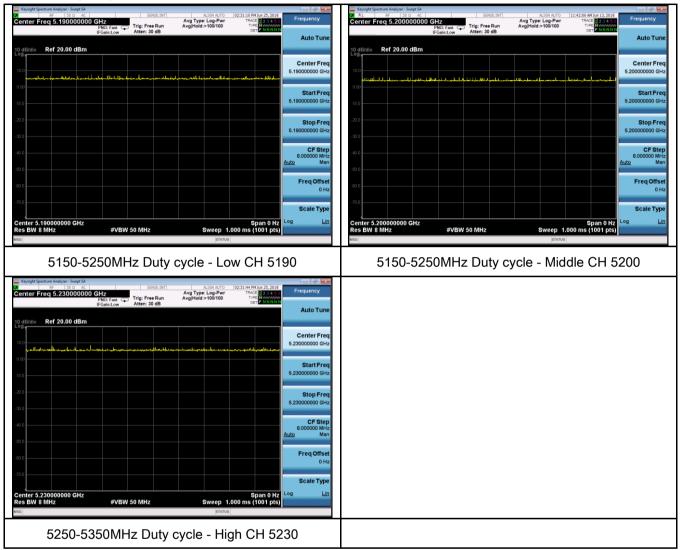
Keysight Spectrum Analyzer - Swept SA Key Sector RF 50 Ω AC SENSE:INT	ALIGN AUTO 02:23:57 PM Jun 25, 2018		Keysight Spectrum Analyzer - Swept SA RL RF 50 Ω AC	SENSE:INT	ALIGN AUTO	11:40:22 AM Jun 13, 2018
Center Freq 5.180000000 GHz	Avg Type: Log-Pwr Avg Hold:>100/100 TYPE Det PNNNNN	Frequency	Center Freq 5.20000000 G	PNO: Fast Trig: Free Run	Avg Type: Log-Pwr Avg Hold:>100/100	TRACE 12 3 4 5 6 TYPE NNNNN
IFGain:Low Atten: 30 dB	Jei Childre	Auto Tune		IFGain:Low Atten: 30 dB		Auto Tune
10 dB/div Ref 20.00 dBm			10 dB/div Ref 20.00 dBm			
10.0	terne de stans en het in het Personen en en en de het en en het en stans en de stans en de stans en de stans en	Center Freq 5.18000000 GHz	10.0			Center Freq 5.20000000 GHz
		0.10000000000112				
0.00		Start Freq	0.00			Start Freq
-10.0		5.18000000 GHz	-10.0			5.20000000 GHz
-20.0		Stop Freq	-20.0			Stop Freq
-30.0		5.18000000 GHz	-30.0			5.20000000 GHz
-40.0		CF Step 8.000000 MHz	-40.0			CF Step 8.000000 MHz
50.0		Auto Man	50.0			Auto Man
		Freq Offset				FreqOffset
-50.0		0 Hz	-60.0			0 Hz
-70.0		Scale Type	-70.0			Scale Type
Center 5.180000000 GHz	Span 0 Hz	Log <u>Lin</u>	Center 5.200000000 GHz			Span 0 Hz Log Lin
Res BW 8 MHz #VBW 50 MHz	Span 0 Hz Sweep 1.000 ms (1001 pts)		Res BW 8 MHz	#VBW 50 MHz	Sweep 1.0	Span 0 Hz 00 ms (1001 pts)
99	0.000					
5150-5250MHz Duty	cycle - Low CH 518	30	5150-525	0MHz Duty	cycle - Mide	dle CH 5200
💶 Keysight Spectrum Analyzer - Swept SA	· · · · · · · · · · · · · · · · · · ·				-	
Center Freg 5.240000000 GHz	ALIGN AUTO 02:32:32 PM Jun 25, 2018 Avg Type: Log-Pwr TRACE 12:34 5 0 Avg Hold:>100/100 TYPE	Frequency				
PNO: Fast Trig: Free Run IFGain:Low Atten: 30 dB	DET PNNNNN	Auto Tune				
10 dB/div Ref 20.00 dBm						
		Center Freq				
		5.24000000 GHz				
0.00		Start Freq				
-10.0		5.24000000 GHz				
-20.0		Stop Freq				
-30.0		5.240000000 GHz				
40.0		CF Step				
		8.000000 MHz Auto Man				
20.0		Freq Offset				
-60.0		0 Hz				
-70.0		Scale Type				
Center 5.240000000 GHz	Span 0 Hz					
Res BW 8 MHz #VBW 50 MHz	Sweep 1.000 ms (1001 pts)					
150	STATUS					
5150-5250MHz Duty	cycle - High CH 52	40				
e loo ozoomi iz Duty	e, e.e. inght eff 02					

Test Report No.	18070575-FCC-R2
Page	15 of 80


802.11ac (20M)

Test Report No.	18070575-FCC-R2
Page	16 of 80

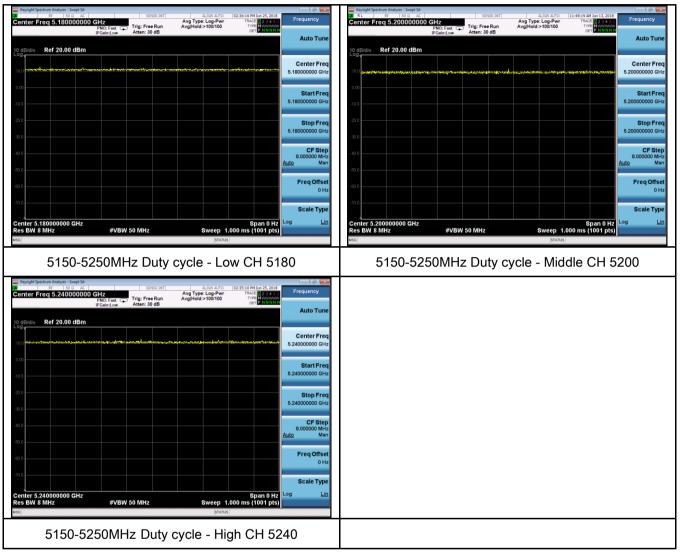
802.11ac (40M)


802.11ac (80M)

Keysight Spectrum Analyzer - Swept SA RF S0 Ω AC Center Freq 5.210000000	CHZ PN0: Fast Trig: Free Run IFGain:Low Atten: 30 dB	ALIGN AUTO Avg Type: Log-Pwr Avg Hold:>100/100 DET P	2 3 4 5 6 Frequency
10 dB/div Ref 20.00 dBm	IFGain:Low Atten: 30 dB		Auto Tune
10.0			Center Freq 5.210000000 GHz
-10.0			Start Freq 5.21000000 GHz
-20.0			Stop Freq 5.210000000 GHz
-40.0			CF Step 8.000000 MHz Auto Man
-60.0			Freq Offset 0 Hz
-70.0 Center 5.210000000 GHz		Spa	Scale Type
Res BW 8 MHz	#VBW 50 MHz	Sweep 1.000 ms (100 status	01 pts)
5150-52	50MHz Duty c	ycle – One Cł	1 5210

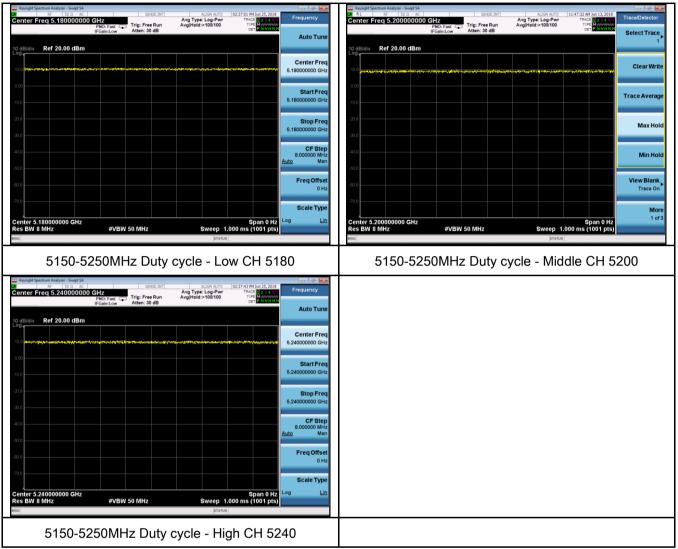
Test Report No.	18070575-FCC-R2
Page	17 of 80

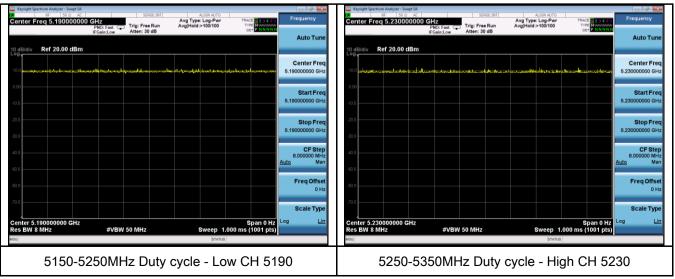
802.11n (40M)



Test Report No.	18070575-FCC-R2
Page	18 of 80

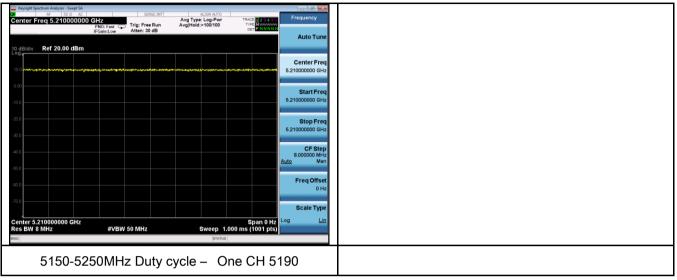
Ant.1

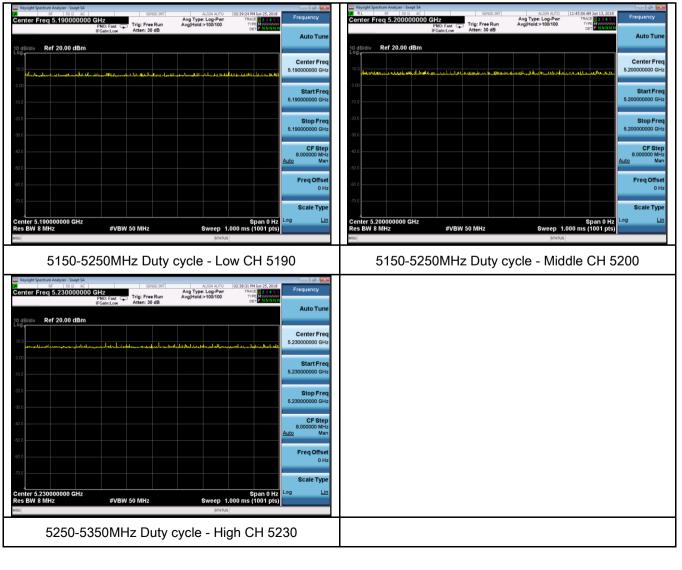

802.11a



Test Report No.	18070575-FCC-R2
Page	19 of 80

802.11ac (20M)


802.11ac (40M)



Test Report No.	18070575-FCC-R2
Page	20 of 80

802.11ac (80M)

802.11n (40M)

 Test Report No.
 18070575-FCC-R2

 Page
 21 of 80

6.2 §15.407(a)-DTS (99% &26 dB) Channel Bandwidth

1.	Conducted Measurement		
	EUT was set for low, mid, hi	igh channel with modulated n	node and highest RF output
	power.		
	The spectrum analyzer was	connected to the antenna te	rminal.
2.	Environmental Conditions	Temperature	24°C
		Relative Humidity	55%
		Atmospheric Pressure	1017mbar
3.	Conducted Emissions Meas	surement Uncertainty	
	All test measurements carrie	ed out are traceable to nation	al standards. The uncertainty of
	the measurement at a confid	dence level of approximately	95% (in the case where
	distributions are normal), wit	th a coverage factor of 2, in the	he range 30MHz – 40GHz is
	±1.5dB.		
4			

4. Test date : June 13, 2018 Tested By : Aaron Liang

Standard Requirement:

None; for reporting purposes only.

Procedures:

99% Bandwidth:

- 1. Set center frequency to the nominal EUT channel center frequency
- 2. Set span = 1.5 times to 5.0 times the OBW.
- 3. Set RBW = 1 % to 5 % of the OBW
- 4. he video bandwidth (VBW) \geq 3 x RBW.
- 5. Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used
- 6. Use the 99 % power bandwidth function of the instrument (if available)
- If the instrument does not have a 99 % power bandwidth function, the trace data points are recovered and directly summed in power units. The recovered amplitude data points, beginning

 Test Report No.
 18070575-FCC-R2

 Page
 22 of 80

at the lowest frequency, are placed in a running sum until 0.5 % of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5 % of the total is reached; that frequency is recorded as the upper frequency. The 99% occupied bandwidth is the

difference between these two frequencies.

Emission Bandwidth (EBW)

1) Set RBW = approximately 1% of the emission bandwidth.

- 2) Set the VBW > RBW.
- 3) Detector = Peak.
- 4) Trace mode = max hold.

5) Measure the maximum width of the emission that is 26 dB down from the maximum of the emission. Compare this with the RBW setting of the analyzer. Readjust

Test Result: Pass.

Please refer to the following tables and plots.

 Test Report No.
 18070575-FCC-R2

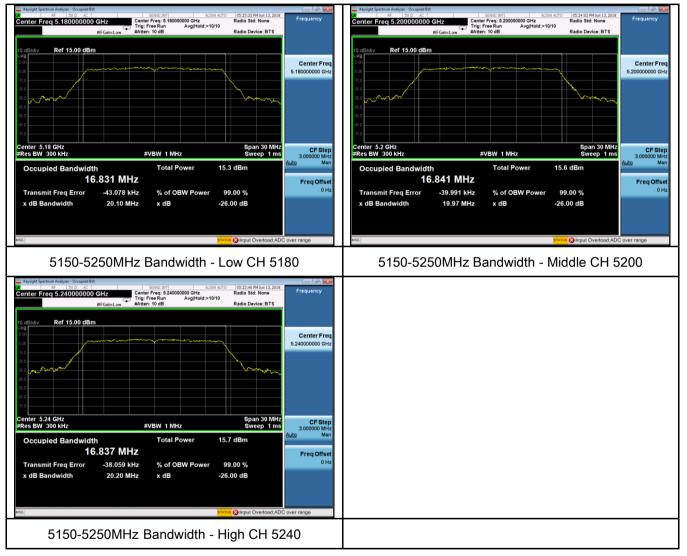
 Page
 23 of 80

Measurement result

Ant.0

Test	Freq Band	СН	Freq	99% Bandwidth (MHz)		26dB Bandwidth (MHz)	
mode	(MHz)		(MHz)	Ant.0	Ant.1	Ant.0	Ant.1
		Low	5180	16.831	16.923	20.10	20.10
820.11a		Middle	5200	16.841	16.921	19.97	20.30
		High	5240	16.837	16.979	20.20	20.47
000 11 00		Low	5180	17.667	17.731	20.29	20.45
802.11ac		Middle	5200	17.681	17.732	20.35	20.36
(20M)		High	5240	17.671	17.726	20.30	20.47
802.11ac	5150-5250	Low	5190	36.031	35.916	39.44	39.85
(40M)		High	5230	35.988	35.916	39.47	39.48
802.11ac (80M)		One	5210	74.901	74.884	80.04	80.07
802.11n		Low	5190	35.918	35.954	39.50	39.76
(40M)		High	5230	35.888	35.918	39.60	39.69

 Test Report No.
 18070575-FCC-R2

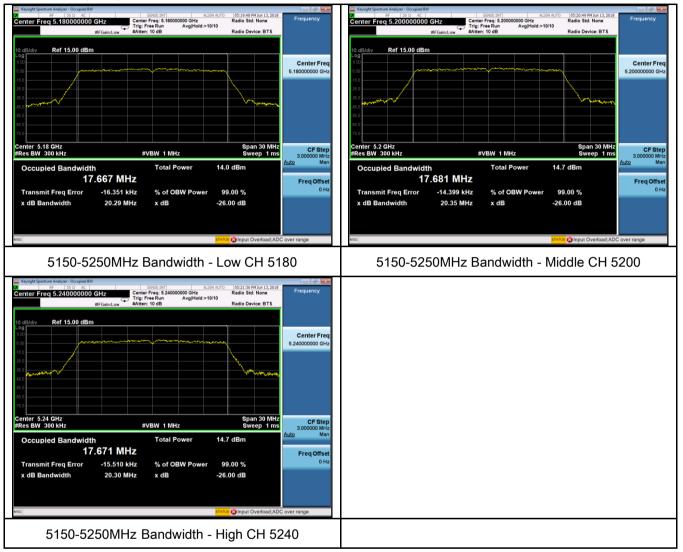

 Page
 24 of 80

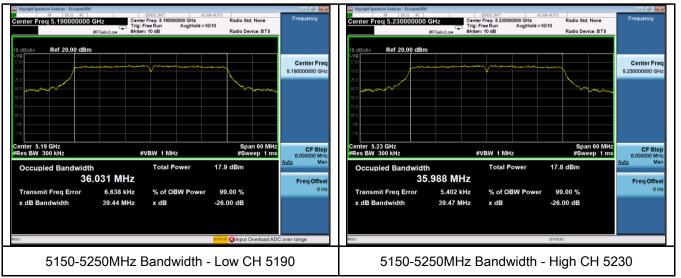
Test Plots

Bandwidth measurement result

Ant.0

802.11a

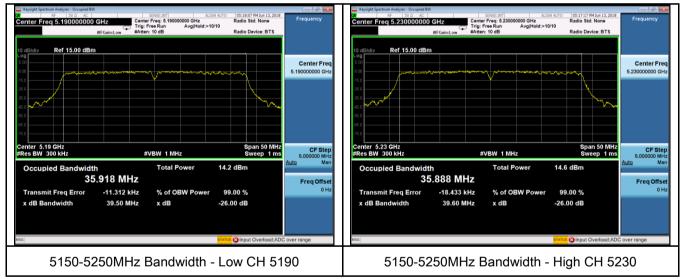



 Test Report No.
 18070575-FCC-R2

 Page
 25 of 80

802.11ac (20M)

802.11ac (40M)

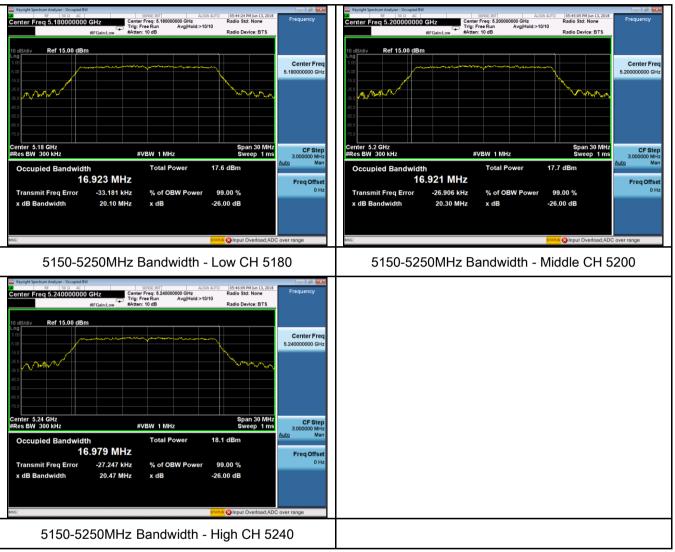


Test Report No.	18070575-FCC-R2
Page	26 of 80

802.11ac (80M)

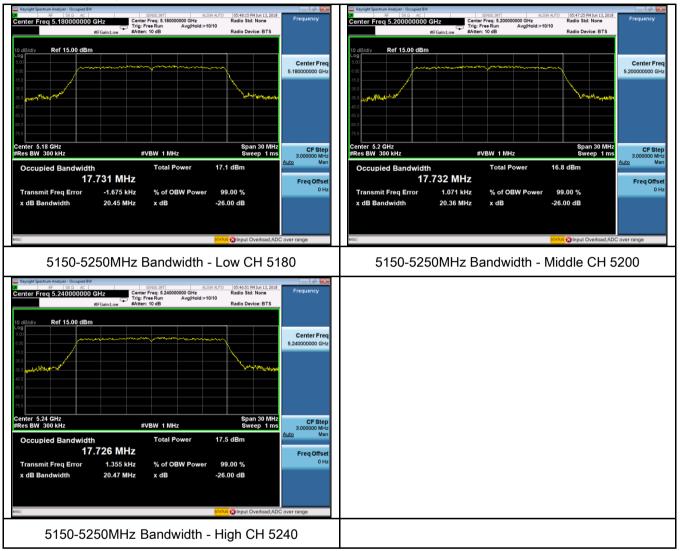
	GHz Cente #IFGain:Low #Atter	SENSE:INT ALIG rr Freq: 5.21000000 GHz Free Run Avg Hold:>10 n: 30 dB	N AUTO Radio Std: None 0/10 Radio Device: BTS	Frequency
10 dB/dlv Ref 10.00 dBm Log 000 100 200 300		~~~~~		Center Freq 5.210000000 GHz
400 400 500 600 700 800				
Center 5.21 GHz #Res BW 300 kHz Occupied Bandwidth	h	₽VBW 1 MHz Total Power	Span 100 MHz #Sweep 1 ms 18.4 dBm	CF Step 10.000000 MHz <u>Auto</u> Man
۲4) Transmit Freq Error x dB Bandwidth	54.135 kHz 80.04 MHz	% of OBW Power x dB	99.00 % -26.00 dB	Freq Offset 0 Hz
			STATUS 4. Meas Uncal	
MSG				

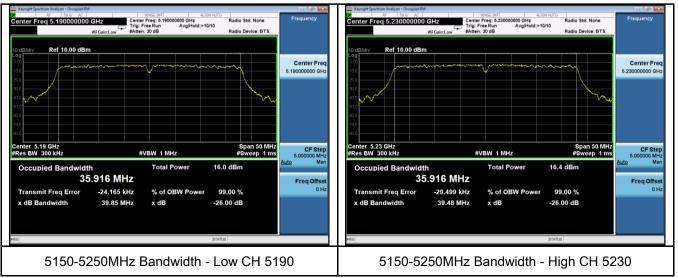
802.11n (40M)



Test Report No.	18070575-FCC-R2
Page	27 of 80

Ant.1

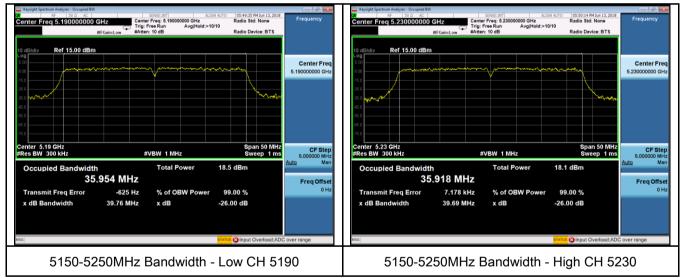



 Test Report No.
 18070575-FCC-R2

 Page
 28 of 80

802.11ac (20M)

802.11ac (40M)



Test Report No.	18070575-FCC-R2
Page	29 of 80

802.11ac (80M)

0 dB/div Ref 10.00 dBm		Freq: 5.210000000 GHz ee Run Avg Hold:>10	AUTO Radio Std: None M10 Radio Device: BTS	Frequency
Leg 000 100 100 100 100 100 100 10				Center Freq 5.21000000 GHz
	84 MHz	BW 1 MHz Total Power	Span 100 MH #Sweep 1 m 19.0 dBm	Auto Man Freq Offset
	50.790 kHz 80.07 MHz	% of OBW Power x dB	99.00 % -26.00 dB	0 Hz

802.11n (40M)

 Test Report No.
 18070575-FCC-R2

 Page
 30 of 80

6.3 §15.407(a)-DTS (99% &6 dB) Channel Bandwidth

1.	Conducted Measurement			
	EUT was set for low, mid, hi	gh channel with modulated	mode and highest RF output	
	power.			
	The spectrum analyzer was	connected to the antenna te	erminal.	
2.	Environmental Conditions	Temperature		
		Relative Humidity		
		Atmospheric Pressure		
3.	Conducted Emissions Meas	urement Uncertainty		
	All test measurements carrie	ed out are traceable to natio	nal standards. The uncertain	ity of
	the measurement at a confid	dence level of approximately	95% (in the case where	
	distributions are normal), wit	h a coverage factor of 2, in	the range 30MHz - 40GHz i	is
	±1.5dB.			
4.	Test date :			
	Tested By :			

Standard Requirement:

Within the 5.725-5.85 GHz band, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.

Procedures:

99% &6 dB Bandwidth:

Test Report No.	18070575-FCC-R2
Page	31 of 80

Section 15.407(e) specifies the minimum 6 dB emission bandwidth of at least 500 KHz for the band 5.715-5.85 GHz. The following procedure shall be used for measuring this bandwidth:

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) $\geq 3 \times RBW$.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Note: The automatic bandwidth measurement capability of a spectrum analyzer or EMI receiver may be employed if it implements the functionality described above.

Emission Bandwidth (EBW)

- 1) Set RBW = approximately 1% of the emission bandwidth.
- 2) Set the VBW > RBW.
- 3) Detector = Peak.
- 4) Trace mode = max hold.

5) Measure the maximum width of the emission that is 26 dB down from the maximum of the

emission. Compare this with the RBW setting of the analyzer. Readjust

Test Result: N/A.

 Test Report No.
 18070575-FCC-R2

 Page
 32 of 80

6.4 §15.407(a)-Conducted Maximum Output Power

- Conducted Measurement
 EUT was set for low, mid, high channel with modulated mode and highest RF output
 power.
 The spectrum analyzer was connected to the antenna terminal.
 Conducted Emissions Measurement Uncertainty
 All test measurements carried out are traceable to national standards. The uncertainty of
 the measurement at a confidence level of approximately 95% (in the case where
 distributions are normal), with a coverage factor of 2, in the range 30MHz 40GHz is
 ±1.5dB.

 Environmental Conditions Temperature 24°C
 Delative Humidity
 - Environmental ConditionsTemperature24°CRelative Humidity55%Atmospheric Pressure1017mbar

4. Test date : June 13, 2018

Tested By : Aaron Liang

Standard Requirement:

For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. f transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).

For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Test Report No.	18070575-FCC-R2
Page	33 of 80

For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W.

If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

Procedures:

Measurement Procedure Maximum conducted output power:

Maximum conducted output power may be measured using a spectrum analyzer/EMI receiver or an RF power meter.

1. Device Configuration

If possible, configure or modify the operation of the EUT so that it transmits continuously at its maximum power control level (see section II.B.).

a) The intent is to test at 100 percent duty cycle; however a small reduction in duty cycle (to no lower than 98 percent) is permitted if required by the EUT for amplitude control purposes. Manufacturers are expected to provide software to the test lab to permit such continuous operation.

b) If continuous transmission (or at least 98 percent duty cycle) cannot be achieved due to hardware limitations (e.g., overheating), the EUT shall be operated at its maximum power control level with the transmit duration as long as possible and the duty cycle as high as possible.

2. Measurement using a Power Meter (PM)

a) Method PM (Measurement using an RF average power meter):

(i) Measurements may be performed using a wideband RF power meter with a thermocouple detector or equivalent if all of the conditions listed below are satisfied.

• The EUT is configured to transmit continuously or to transmit with a constant duty cycle.

• At all times when the EUT is transmitting, it must be transmitting at its maximum power control level.

 Test Report No.
 18070575-FCC-R2

 Page
 34 of 80

• The integration period of the power meter exceeds the repetition period of the transmitted signal by at least a factor of five.

(ii) If the transmitter does not transmit continuously, measure the duty cycle, x, of the transmitter output signal as described in section II.B.

(iii) Measure the average power of the transmitter. This measurement is an average over both the on and off periods of the transmitter.

(iv) Adjust the measurement in dBm by adding $10 \log(1/x)$ where x is the duty cycle (e.g., 10

log(1/0.25) if the duty cycle is 25 percent).

Test Result: Pass.

Please refer to the following tables and plots:

Test Report No.	18070575-FCC-R2
Page	35 of 80

Output Power measurement result

Test	Freq Band	СН	Frequency (MHz)	Conducted Power (dBm)		Limit	Result
mode	(MHz)			Ant. 0	Ant. 1	(dBm)	
820.11a		Low	5180	11.56	11.49	30	Pass
020.11a		Middle	5200	11.44	11.26	30	Pass
		High	5240	11.83	11.55	30	Pass
002 11 00		Low	5180	11.68	10.52	30	Pass
802.11ac		Middle	5200	10.35	11.18	30	Pass
(20M)		High	5240	11.18	10.73	30	Pass
802.11ac	5250	Low	5190	16.97	17.71	30	Pass
(40M)		High	5230	16.84	17.76	30	Pass
802.11ac (80M)		One	5210	17.97	19.19	30	Pass
802.11n		Low	5190	11.44	10.71	30	Pass
(40M)		High	5230	11.40	11.42	30	Pass

 Test Report No.
 18070575-FCC-R2

 Page
 36 of 80

6.5 §15.407(a) - Power Spectral Density

1.	Conducted Measurement						
	EUT was set for low, mid, high channel with modulated mode and highest RF output						
	power.						
	The spectrum analyzer was	connected to the antenna tern	ninal.				
2.	Environmental Conditions	Temperature	24°C				
		Relative Humidity	55%				
		Atmospheric Pressure	1017mbar				
3.	Conducted Emissions Meas	urement Uncertainty					
	All test measurements carrie	ed out are traceable to nationa	I standards. The uncertainty of				
	the measurement at a confid	dence level of approximately 9	5% (in the case where				
	distributions are normal), wit	th a coverage factor of 2, in the	e range 30MHz – 40GHz is				
	±1.5dB.						
4	Test data y 1 y 10 0010						

4. Test date : June 13, 2018

Tested By : Aaron Liang

Standard Requirement:

The maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).

The maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional

 Test Report No.
 18070575-FCC-R2

 Page
 37 of 80

gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII

device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

Procedures:

The rules requires "maximum power spectral density" measurements where the intent is to measure the maximum value of the time average of the power spectral density measured during a period of continuous transmission.

1. Create an average power spectrum for the EUT operating mode being tested by following the instructions in section II.E.2. for measuring maximum conducted output power using a spectrum analyzer or EMI receiver: select the appropriate test method (SA-1, SA-2, SA-3, or alternatives to each) and apply it up to, but not including, the step labeled, " Compute power…" . (This procedure is required even if the maximum conducted output power measurement was performed using a power meter, method PM.)

2. Use the peak search function on the instrument to find the peak of the spectrum and record its value.

3. Make the following adjustments to the peak value of the spectrum, if applicable:

a) If Method SA-2 or SA-2 Alternative was used, add 10 log(1/x), where x is the duty cycle, to the peak of the spectrum.

b) If Method SA-3 Alternative was used and the linear mode was used in step II.E.2.g)(viii), add 1 dB to the final result to compensate for the difference between linear averaging and power averaging.

4. The result is the Maximum PSD over 1 MHz reference bandwidth.

5. For devices operating in the bands 5.15-5.25 GHz, 5.25-5.35 GHz, and 5.47-5.725 GHz, the above procedures make use of 1 MHz RBW to satisfy directly the 1 MHz reference bandwidth specified in § 15.407(a)(5). For devices operating in the band 5.725-5.85 GHz, the rules specify a measurement bandwidth of 500 kHz. Many spectrum analyzers do not have 500 kHz RBW, thus a narrower RBW may need to be used. The rules permit the use of a RBWs less than 1 MHz, or 500 kHz, " provided that the measured power is integrated over the full reference bandwidth" to show the total power over the specified measurement bandwidth (i.e., 1 MHz, or 500 kHz). If measurements are performed using a reduced resolution bandwidth (< 1 MHz, or < 500 kHz) and

 Test Report No.
 18070575-FCC-R2

 Page
 38 of 80

integrated over 1 MHz, or 500 KHz bandwidth, the following adjustments to the procedures apply:

a) Set RBW \geq 1/T, where T is defined in section II.B.I.a).

b) Set VBW ≥ 3 RBW.

c) If measurement bandwidth of Maximum PSD is specified in 500 kHz, add 10log(500kHz/RBW) to the measured result, whereas RBW (< 500 KHz) is the reduced resolution bandwidth of the spectrum analyzer set during measurement.

d) If measurement bandwidth of Maximum PSD is specified in 1 MHz, add 10log(1MHz/RBW) to the measured result, whereas RBW (< 1 MHz) is the reduced resolution bandwidth of spectrum analyzer set during measurement.

e) Care must be taken to ensure that the measurements are performed during a period of continuous transmission or are corrected upward for duty cycle.

Note: As a practical matter, it is recommended to use reduced RBW of 100 KHz for the sections 5.c) and 5.d) above, since RBW=100 KHZ is available on nearly all spectrum analyzers.

Test Result: Pass.

Please refer to the following tables and plots.

Power Spectral Density measurement result

Test Report No.	18070575-FCC-R2
Page	39 of 80

Test	Freq Band	СН	Frequency	PSD (dBm)		Limit (dBm	Result
mode	(MHz)		(MHz)	Ant.0	Ant.1)	
820.11a		Low	5180	-10.424	-10.858	17	Pass
820.11a		Mid	5200	-12.893	-11.914	17	Pass
		High	5240	-12.249	-10.813	17	Pass
902 11 22		Low	5180	-14.263	-13.848	17	Pass
802.11ac		Middle	5200	-11.743	-12.319	17	Pass
(20M)	5150-	High	5240	-13.220	-13.381	17	Pass
802.11ac	5250	Low	5190	-15.855	-15.622	17	Pass
(40M)		High	5230	-15.202	-12.717	17	Pass
802.11ac (80M)		One	5210	-15.582	-15.211	17	Pass
802.11n		Low	5190	-14.219	-14.585	17	Pass
(40M)		High	5230	-15.636	-11.615	17	Pass

Test Report No.	18070575-FCC-R2
Page	40 of 80

Test Plots

Power Spectral Density measurement result Test Plots

Ant.0

802.11a

Knydyck Spectrum Audyner - Swegt M. Streed Bit All on MUTO (24/22/19/2014) (24/22/19/2014) (24/22/19/2014) (24/22/19/2014) (24/2014) <th< th=""><th>Except lysteture August Samp SA (3) SENSE INT AUX BUTO (2) 52 522 PR Int 13,000 Frequency Center Freq 5.2000000000 GHz (10) GHZ Frat (10) Trig Free Run Atten: 10 dB Avg Type: Leg Pwr Avg Type: Leg Pwr Avg Type: Leg Pwr Trig Free Run Atten: 10 dB Trig Free Run Atten: 10 dB Avg Type: Leg Pwr Avg Type: Leg Pwr Trig Free Run Atten: 10 dB Trig Free Run Atten: 10 dB Avg Type: Leg Pwr Avg Type: Leg Pwr Trig Free Run Atten: 10 dB Avg Type: Leg Pwr Trig Free Run Statt Free Statt Free Statt Free Statt Statt Statt Free Statt Statt Free Statt Statt Sta</th></th<>	Except lysteture August Samp SA (3) SENSE INT AUX BUTO (2) 52 522 PR Int 13,000 Frequency Center Freq 5.2000000000 GHz (10) GHZ Frat (10) Trig Free Run Atten: 10 dB Avg Type: Leg Pwr Avg Type: Leg Pwr Avg Type: Leg Pwr Trig Free Run Atten: 10 dB Trig Free Run Atten: 10 dB Avg Type: Leg Pwr Avg Type: Leg Pwr Trig Free Run Atten: 10 dB Trig Free Run Atten: 10 dB Avg Type: Leg Pwr Avg Type: Leg Pwr Trig Free Run Atten: 10 dB Avg Type: Leg Pwr Trig Free Run Statt Free Statt Free Statt Free Statt Statt Statt Free Statt Statt Free Statt Statt Sta
Center 5.18000 GHz #Res BW 3.0 kHz #VBW 10 kHz Sweep 2.636 s (1001 pts) bwo brand S150-5250MHz PSD - Low CH 51800	Center 5.2000 GHz #Res BW 3.0 KHz #Res BW 3.0 KHz #VBW 10 KHZ #VBW
Implementation Impleme	
Center 5.24000 GHz #Res BW 3.0 kHz #VBW 10 kHz 5150-5250MHz PSD - High CH 5240	