

Shenzhen Toby Technology Co., Ltd.

Report No.: TB-FCC180338 1 of 117 Page:

Radio Test Report FCC ID: 2APRB-WNVR-BTWN8

Original Grant

Report No.	: TB-FCC180338				
Applicant	Guangzhou Juan Intelligent Tech Joint Stock Co., Ltd				
Equipment Under Test (EUT)					
EUT Name	: Wireless Network Video Recorder				
Model No.	: WNVR-BTWN8				
Series Model No.	: Please see Page 5				
Brand Name	: NIGHT OWL				
Sample ID	: 20210416-03-1#& 20210416-03-2#				
Receipt Date	: 2021-04-28				
Test Date	: 2021-04-29 to 2021-05-12				
Issue Date	2021-05-13				
Standards	FCC Part 15, Subpart C 15.247				
Test Method	ANSI C63.10: 2013				
	KDB 558074 D01 15.247 Meas Guidance v05r02 KDB 662911 D01 Multiple Transmitter Output v02r01				
Conclusions	: PASS				
	In the configuration tested, the EUT complied with the standards specified above.				
Test/Witness Engineer	: Wade W Wade LV				
Engineer Supervisor	: WAN SU				
Engineer Manager	: Wade Ly Wade Ly Ivan Su OBI : four dai.				

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

Contents

CON	ITENTS	2
1.	GENERAL INFORMATION ABOUT EUT	5
	1.1 Client Information	5
	1.2 General Description of EUT (Equipment Under Test)	5
	1.3 Block Diagram Showing the Configuration of System Tested	6
	1.4 Description of Support Units	6
	1.5 Description of Test Mode	7
	1.6 Description of Test Software Setting	8
	1.7 Measurement Uncertainty	9
	1.8 Test Facility	9
2.	TEST SUMMARY	10
3.	TEST SOFTWARE	10
4.	TEST EQUIPMENT	11
5.	CONDUCTED EMISSION TEST	
	5.1 Test Standard and Limit	
	5.2 Test Setup	
	5.3 Test Procedure	
	5.4 Deviation From Test Standard	
	5.5 EUT Operating Mode	13
	5.6 Test Data	13
6.	RADIATED EMISSION TEST	14
	6.1 Test Standard and Limit	14
	6.2 Test Setup	15
	6.3 Test Procedure	16
	6.4 Deviation From Test Standard	17
	6.5 EUT Operating Condition	17
	6.6 Test Data	17
7.	RESTRICTED BANDS REQUIREMENT	18
	7.1 Test Standard and Limit	18
	7.2 Test Setup	18
	7.3 Test Procedure	19
	7.4 Deviation From Test Standard	19
	7.5 EUT Operating Condition	
	7.6 Test Data	19
8.	BANDWIDTH TEST	20
	8.1 Test Standard and Limit	
	8.2 Test Setup	20
	8.3 Test Procedure	20
	8.4 Deviation From Test Standard	20

Report No.: TB-FCC180338Page:3 of 117

	8.5 EUT Operating Condition	
	8.6 Test Data	20
9.	PEAK OUTPUT POWER	21
	9.1 Test Standard and Limit	21
	9.2 Test Setup	
	9.3 Test Procedure	
	9.4 Deviation From Test Standard	21
	9.5 EUT Operating Condition	21
	9.6 Test Data	21
10.	POWER SPECTRAL DENSITY TEST	
	10.1 Test Standard and Limit	
	10.2 Test Setup	
	10.3 Test Procedure	
	10.4 Deviation From Test Standard	
	10.5 EUT Operating Condition	
	10.6 Test Data	
11.	ANTENNA REQUIREMENT	23
	11.1 Standard Requirement	
	11.2 Deviation From Test Standard	
	11.3 Antenna Connected Construction	
ATTA	ACHMENT A CONDUCTED EMISSION TEST DATA	
	ACHMENT B UNWANTED EMISSION TEST DATA	
	ACHMENT C RESTRICTED BANDS REQUIREMENT AND BA	
	ACHMENT C RESTRICTED BANDS REQUIREMENT AND BA	
	ACHMENT D BANDWIDTH TEST DATA	
AIIA	ACHMENT E PEAK OUTPUT POWER AND E.I.R.P DATA	

Revision History

Report No.	Version	Description	Issued Date
TB-FCC180338	Rev.01	Initial issue of report	2021-05-13
A V		A CODY	a and the
TUDD			
and a	2		1800
	WUD.		
- MOB			
3	mull		
- MA			
	ARI		
		and a com	
The second			

1. General Information about EUT

1.1 Client Information

TOBY

Applicant	:	Guangzhou Juan Intelligent Tech Joint Stock Co., Ltd		
Address : No.2 Plant, West of Shanxi country, Dashi street, Panyu District, Guangzhou City, China				
Manufacturer : Guangzhou Juan Intelligent Tech Joint Stock Co., Ltd		Guangzhou Juan Intelligent Tech Joint Stock Co., Ltd		
Address : No.2 Plant, West of Shanxi country, Da Guangzhou City, China		No.2 Plant, West of Shanxi country, Dashi street, Panyu District, Guangzhou City, China		

1.2 General Description of EUT (Equipment Under Test)

EUT Name	:	Wireless Network V	/ideo Recorder			
Models No.	:	WNVR-BTWN8, WNVR-BTWN8-1, WNVR-BTWN8-1-CN4,				
		WNVR-BTWN8-2-CN4, BTWN8-4L1, BTWN8-8L1,				
		WNVR-BTWN8-1-WA-CN4, CL-BT8WN-14L, CL-BT8WN-18L				
Model Different : All these models are identical in the			e identical in the same PCB, layout and electrical			
Model Different	2	circuit, The only diff	erence is model name.			
	6	Operation	802.11b/g/n(HT20): 2412MHz~2462MHz			
		Frequency:	802.11n(HT40): 2422MHz~2452MHz			
		Number of	802.11b/g/n(HT20):11 channels see note(3)			
		Channel:	802.11n(HT40): 7 channels see note(3)			
Product	:	Antenna Gain:	Please see Note(3)			
Description		Modulation Type:	802.11b: DSSS(CCK, DQPSK, DBPSK)			
			802.11g/n:OFDM(BPSK,QPSK,16QAM,64QAM)			
		Bit Rate of	802.11b:11/5.5/2/1 Mbps			
		Transmitter:	802.11g:54/48/36/24/18/12/9/6 Mbps			
			802.11n: up to 150Mbps			
	1	Adapter: CS-12020	00			
Power Rating		Input:100-240~1.5A	Max. 50/60Hz			
		Output:12V2A				
Software Version		WNVR-BTWN8-10_	_20210430			
Hardware Version		MC6630_V140_NV	R0408			
Remark	:	The antenna gain and adapter provided by the applicant, the verified for the RF conduction test provided by TOBY test lab.				

Note:

(1) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

(2) Channel List:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)		
01	2412	05	2432	09	2452		
02	2417	06	2437	10	2457		
03	2422	07	2442	11	2462		
04	2427	08	2447				
Note: CH 01~CH 11 for 802.11b/g/n(HT20)							
CH 03~CH 0	CH 03~CH 09 for 802.11n(HT40)						

(3) Antenna information

Mode		TX Antenna (s)		Remark
802.11b		2	ANT. A+ ANT. B	
802.11g		2	ANT. A+ ANT. B	
802.11n(HT20)		2	ANT. A+ ANT. B	
802.11n	(HT40)	2	ANT. A+ ANT. B	
Antenna	Brand	Model Name	Туре	Antenna Gain(dBi)
ANT. A	N/A	N/A	Dipole	5
ANT. B	N/A	N/A	Dipole	5

2.4G working with 802.11b/g/n(HT20/HT40) has MIMO mode.

1.3 Block Diagram Showing the Configuration of System Tested

AC/DC Adapter EUT

1.4 Description of Support Units

Name	Model	S/N	Manufacturer	Used "√"
Notebook	161301-CN	15987/00203076	Xiaomi	\checkmark

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

For Conducted Emission Test				
Final Test Mode Description				
Mode 1 Charging with TX B Mode Channel 01				
For Radiated and RF Conducted Test				
Final Test Mode Description				
Mode 2	TX Mode B Mode Channel 01/06/11			
Mode 3	TX Mode G Mode Channel 01/06/11			
Mode 4	TX Mode N(HT20) Mode Channel 01/06/11			
Mode 5 TX Mode N(HT40) Mode Channel 03/06/09				

Note:

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate.

According to ANSI C63.10 standards, the measurements are performed at the highest, Middle, lowest available channels, and the worst case data rate as follows:

- 802.11b Mode: CCK 802.11g Mode: OFDM
- 802.11n (HT20) Mode: MCS 0
- 802.11n (HT40) Mode: MCS 0
- (2) During the testing procedure, the continuously transmitting with the maximum power mode was programmed by the customer.
- (3) The EUT is considered a mobile device; in normal use it was positioned on X-plane. The worst case was found positioned on X-plane. Therefore only the test data of this X-plane was used for radiated emission measurement test.

1.6 Description of Test Software Setting

During testing channel & Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of WLAN.

Test Software: CMD					
55	Test	Mode: Continu	ously transmittin	g	
Mode	Data Rate	Ohannal	Parameters		
Wode	Dala Rale	Channel	Antenna A	Antenna B	
	CCK/ 1Mbps	01	25	25	
802.11b	CCK/ 1Mbps	06	25	25	
	CCK/ 1Mbps	11	24	24	
	OFDM/ 6Mbps	01	32	32	
802.11g	OFDM/ 6Mbps	06	32	32	
	OFDM/ 6Mbps	11	32	32	
2016 22	MCS 0	01	32	32	
802.11n(HT20)	MCS 0	06	32	32	
	MCS 0	11	32	32	
	MCS 0	03	34	34	
802.11n(HT40)	MCS 0	06	34	34	
	MCS 0	09	34	34	

1.7 Measurement Uncertainty

The reported uncertainty of measurement y \pm U, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty (U _{Lab})
Conducted Emission	Level Accuracy: 9kHz~150kHz 150kHz to 30MHz	±3.50 dB ±3.10 dB
Radiated Emission	Level Accuracy: 9kHz to 30 MHz	±4.60 dB
Radiated Emission	Level Accuracy: 30MHz to 1000 MHz	±4.50 dB
Radiated Emission	Level Accuracy: Above 1000MHz	±4.20 dB

1.8 Test Facility

The testing report were performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at 1/F., Building 6, Rundongsheng Industrial Zone, Longzhu, Xixiang, Bao'an District, Shenzhen, Guangdong, China. At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01.FCC Accredited Test Site Number: 854351. Designation Number: CN1223.

IC Registration No.: (11950A)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A.

2. Test Summary

FCC Part 15, Subpart C 15.247				
Standard Section	Test Item	Test Sample(s)	Judgment	Remark
15.203	Antenna Requirement	20210416-03-1#	PASS	N/A
15.207(a)	Conducted Emission	20210416-03-1#	PASS	N/A
15.205&15.247(d)	Band-Edge & Unwanted Emissions into Restricted Frequency	20210416-03-2#	PASS	N/A
15.247(a)(2)	6dB Bandwidth	20210416-03-2#	PASS	N/A
15.247(b)(3)	Conducted Max Output Peak Power	20210416-03-2#	PASS	N/A
15.247(e)	Power Spectral Density	20210416-03-2#	PASS	N/A
15.205, 15.209&15.247(d)	Transmitter Radiated Spurious &Unwanted Emissions into Restricted Frequency	20210416-03-1# 20210416-03-2#	PASS	N/A

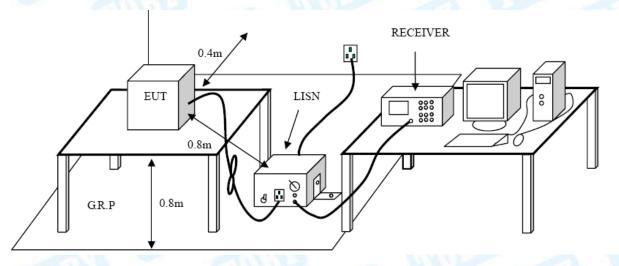
3. Test Software

Test Item	Test Software	Manufacturer	Version No.
Conducted Emission	EZ-EMC	EZ	CDI-03A2
Radiation Emission	EZ-EMC	EZ	FA-03A2RE
RF Conducted Measurement	MTS-8310	MWRFtest	V2.0.0.0

4. Test Equipment

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Dat
EMI Test Receiver	Rohde & Schwarz	ESCI	100321	Jul. 06, 2020	Jul. 05, 2021
RF Switching Unit	Compliance Direction Systems Inc	RSU-A4	34403	Jul. 06, 2020	Jul. 05, 2021
AMN	SCHWARZBECK	NNBL 8226-2	8226-2/164	Jul. 06, 2020	Jul. 05, 2021
LISN	Rohde & Schwarz	ENV216	101131	Jul. 06, 2020	Jul. 05, 2021
Radiation Emission T	est				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Dat
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 06, 2020	Jul. 05, 2021
EMI Test Receiver	Rohde & Schwarz	ESPI	100010/007	Jul. 06, 2020	Jul. 05, 2021
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jul. 06, 2020	Jul. 05, 2021
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Mar.01, 2020	Feb. 28, 2022
Horn Antenna	ETS-LINDGREN	3117	00143207	Mar.01, 2020	Feb. 28, 2022
Horn Antenna	ETS-LINDGREN	BBHA 9170	BBHA9170582	Mar.01, 2020	Feb. 28, 2022
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Jul. 07, 2020	Jul. 06, 2021
Pre-amplifier	Sonoma	310N	185903	Feb. 25, 2021	Feb. 24, 2022
Pre-amplifier	HP	8449B	3008A00849	Feb. 25, 2021	Feb. 24, 2022
Pre-amplifier	SKET	LNPA_1840G-50	SK201904032	Feb. 25, 2021	Feb. 24, 2022
Cable	HUBER+SUHNER	100	SUCOFLEX	Feb. 25, 2021	Feb. 24, 2022
Positioning Controller	ETS-LINDGREN	2090	N/A	N/A	N/A
Antenna Conducted I	Emission				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Dat
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 06, 2020	Jul. 05, 2021
Spectrum Analyzer	Rohde & Schwarz	ESPI	100010/007	Jul. 06, 2020	Jul. 05, 2021
MXA Signal Analyzer	Agilent	N9020A	MY49100060	Sep. 11, 2020	Sep. 10, 2021
Vector Signal Generator	Agilent	N5182A	MY50141294	Sep. 11, 2020	Sep. 10, 2021
Analog Signal Generator	Agilent	N5181A	MY50141953	Sep. 11, 2020	Sep. 10, 2021
	DARE!! Instruments	RadiPowerRPR3006W	17100015SNO26	Sep. 11, 2020	Sep. 10, 2021
	DARE!! Instruments	RadiPowerRPR3006W	17100015SNO29	Sep. 11, 2020	Sep. 10, 2021
RF Power Sensor	DARE!! Instruments	RadiPowerRPR3006W	17100015SNO31	Sep. 11, 2020	Sep. 10, 2021
	DARE!! Instruments	RadiPowerRPR3006W	17100015SNO33	Sep. 11, 2020	Sep. 10, 2021

5. Conducted Emission Test


- 5.1 Test Standard and Limit
 - 5.1.1Test Standard
 - FCC Part 15.207
 - 5.1.2 Test Limit

Conducted Emission Test Limit

Eroquonov	Maximum RF Line Voltage (dBμV)		
Frequency	Quasi-peak Level	Average Level	
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *	
500kHz~5MHz	56	46	
5MHz~30MHz	60	50	

Notes:

- (1) *Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.
- 5.2 Test Setup

5.3 Test Procedure

- (1) The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- (2) Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- (3)I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- (4)LISN at least 80 cm from nearest part of EUT chassis.
- (5)The bandwidth of EMI test receiver is set at 9kHz, and the test frequency band is from 0.15MHz to 30MHz.

5.4 Deviation From Test Standard

No deviation

5.5 EUT Operating Mode

Please refer to the description of test mode.

5.6 Test Data

Please refer to the Attachment A.

6. Radiated Emission Test

- 6.1 Test Standard and Limit
 - 6.1.1 Test Standard
 - FCC Part 15.209
 - 6.1.2 Test Limit

General field strength limits at frequencies above 30 MHz

Frequency (MHz)	Field strength (µV/m at 3 m)	Measurement Distance (meters)
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

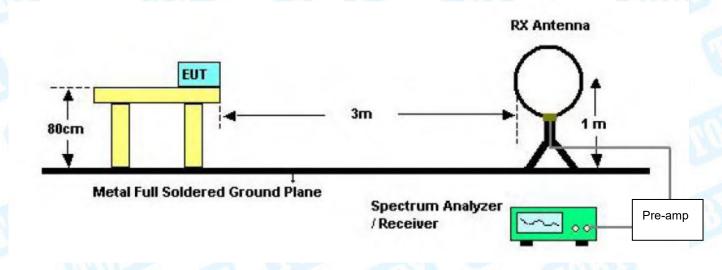
General field strength limits at frequencies Above 1000MHz

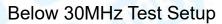
Frequency	Distance of 3m (dBuV/m)		
(MHz)	Peak	Average	
Above 1000	74	54	

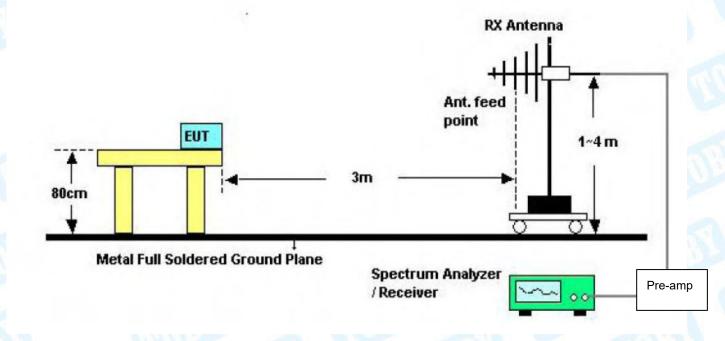
Note:

(1) The tighter limit applies at the band edges.

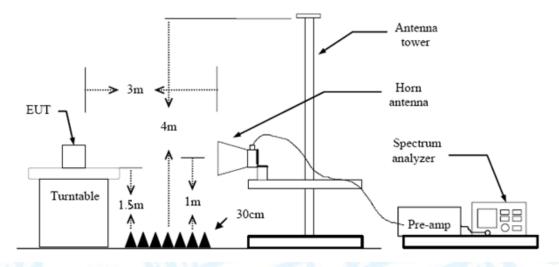
(2) Emission Level(dBuV/m)=20log Emission Level(uV/m)


General field strength limits at frequencies Below 30MHz


Frequency (MHz)	Field Strength (µA/m)	Field Strength (microvolt/meter)	Measurement Distance (meters)
0.009~0.490	6.37/F (F in kHz)	2400/F(KHz)	300
0.490~1.705	63.7/F (F in kHz)	24000/F(KHz)	30
1.705~30.0	0.08	30	30


Note 1: The emission limits for the ranges 9-90 kHz and 110-490 kHz are based on measurements employing a linear average detector.

6.2 Test Setup



Below 1000MHz Test Setup

Above 1GHz Test Setup

6.3 Test Procedure

- (1) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency Below 1GHz. The EUT was placed on a rotating 0.8m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

6.4 Deviation From Test Standard

No deviation

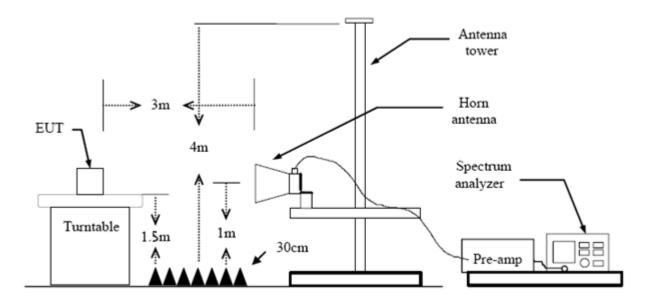
6.5 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

- 6.6 Test Data
 - Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.

Please refer to the Attachment B.

7. Restricted Bands Requirement


- 7.1 Test Standard and Limit
 - 7.1.1 Test Standard

FCC Part 15.247(d) FCC Part 15.209 FCC Part 15.205

7.1.2 Test Limit

Restricted Frequency	Distance of 3m (dBuV/m)		
Band (MHz)	Peak	Average	
2310 ~2390	74	54	
2483.5 ~2500	74	54	

7.2 Test Setup

7.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency Below 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

7.4 Deviation From Test Standard

No deviation

7.5 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

7.6 Test Data

Please refer to the Attachment C.

8. Bandwidth Test

- 8.1 Test Standard and Limit
 - 8.1.1 Test Standard
 - FCC Part 15.247 (a)(2)
 - 8.1.2 Test Limit

Test Item	Limit	Frequency Range(MHz)
Bandwidth	>=500 KHz (6dB bandwidth)	2400~2483.5

8.2 Test Setup

8.3 Test Procedure

- The transmitter shall be operated at its maximum carrier power measured under normal test conditions.
- The span of the spectrum analyzer shall be set large enough to capture all products of the modulation process, including the emission skirts, around the carrier frequency, but small enough to avoid having other emissions (e.g. on adjacent channels) within the span.
- The detector of the spectrum analyzer shall be set to "Sample". However, a peak, or peak hold, may be used in place of the sampling detector since this usually produces a wider bandwidth than the actual bandwidth (worst-case measurement). Use of a peak hold (or "Max Hold") may be necessary to determine the occupied / x dB bandwidth if the device is not transmitting continuously.
- The resolution bandwidth (RBW) shall be in the range of 1% to 5% of the actual occupied / x dB bandwidth and the video bandwidth (VBW) shall not be smaller than three times the RBW value. Video averaging is not permitted.

8.4 Deviation From Test Standard

No deviation

8.5 EUT Operating Condition

The EUT was set to continuously transmitting in each mode and low, Middle and high channel for the test.

8.6 Test Data

Please refer to the Attachment D.

9. Peak Output Power

- 9.1 Test Standard and Limit
 - 9.1.1 Test Standard
 - FCC Part 15.247 (b)
 - 9.1.2 Test Limit

Test Item	Limit	Frequency Range(MHz)
Peak Output Power	not exceed 1 W or 30dBm	2400~2483.5

9.2 Test Setup

EUTPo	wer Sensor	Power Meter
-------	------------	-------------

9.3 Test Procedure

The measurement is according to section 9.1.2 of KDB 558074 D01 v05r02. The EUT was connected to RF power meter via a broadband power sensor as show the block above. The power sensor video bandwidth is greater than or equal to the DTS bandwidth of the equipment.

9.4 Deviation From Test Standard

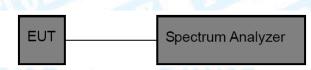
No deviation

9.5 EUT Operating Condition

The EUT was set to continuously transmitting in the max power during the test.

9.6 Test Data

Please refer to the Attachment E.



10. Power Spectral Density Test

- 10.1 Test Standard and Limit
 - 10.1.1 Test Standard
 - FCC Part 15.247 (e)
 - 10.1.2 Test Limit

Test Item	Limit	Frequency Range(MHz)
Power Spectral Density	8dBm(in any 3 kHz)	2400~2483.5

10.2 Test Setup

10.3 Test Procedure

The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement according to section 10.2 of KDB 558074 D01 D01 v05r02.

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Set analyser centre frequency to DTS channel centre frequency.
- (3) Set the span to 1.5 times the DTS bandwidth.
- (4) Set the RBW to: 3 kHz
- (5) Set the VBW to: 10 kHz
- (6) Detector: peak
- (7) Sweep time: auto
- (8) Allow trace to fully stabilize. Then use the peak marker function to determine the maximum amplitude level.

10.4 Deviation From Test Standard

No deviation

10.5 EUT Operating Condition

The EUT was set to continuously transmitting in each mode and low, Middle and high channel for the test.

10.6 Test Data

Please refer to the Attachment F.

11. Antenna Requirement

- 11.1 Standard Requirement
 - 11.1.1 Standard

FCC Part 15.203

11.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

11.2 Deviation From Test Standard

No deviation

11.3 Antenna Connected Construction

The gains of the antenna used for transmitting is 2dBi, and the antenna de-signed with unique connector antenna and no consideration of replacement. Please see the EUT photo for details.

Result

The EUT antenna is a Dipole Antenna. It complies with the standard requirement.

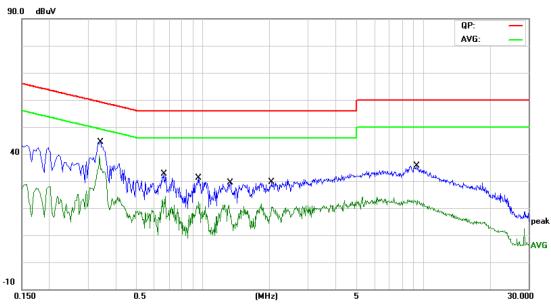
	Antenna Type
	Permanent attached antenna
No.	Unique connector antenna
	Professional installation antenna

Attachment A-- Conducted Emission Test Data

Remark: All channels have been tested and Shows only the worst channels.

Temperature:	24.6 ℃		Relative Hu	imidity:	42%	
est Voltage:	AC 120V/60H	z		Contraction of the second seco	1	aller
erminal:	Line	17	NDE		2.1	
est Mode:	Mode 1 (TX B	Mode Cha	nnel 01)		1.0	
emark:	Only worst ca	se is reporte	ed			
90.0 dBuV						
						QP: — AVG: —
	*					
K I I	<u>A</u>				,	
40 MMM.MAN	ື່ມໄປກີ ບໍ່				Maria I.	
40 MMM/MM	MM MARK AND	MA man	May man produced and and and and and and and and and an	many	march Margan	wahander
	When we have	MAN MAN	Jah Many mar and	manuna /	Some Ale Margare	wangedon marcally
	Mandrey Andrew		Heren and the second	anterna (maria Mandalana	mar we
40 MMMMM	When the		Second and and and and and and and and and a	manna /	non and the Marker	marine man
40 MMMMM MMMMM -10	Winner Marine		to and the second secon	manna	and a second and a s	Andrewson many which a

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1		0.3460	31.71	9.70	41.41	59.06	-17.65	QP
2	*	0.3460	24.04	9.70	33.74	49.06	-15.32	AVG
3		0.6580	20.57	9.70	30.27	56.00	-25.73	QP
4		0.6580	13.38	9.70	23.08	46.00	-22.92	AVG
5		1.0260	19.34	9.80	29.14	56.00	-26.86	QP
6		1.0260	11.89	9.80	21.69	46.00	-24.31	AVG
7		1.3099	18.92	9.77	28.69	56.00	-27.31	QP
8		1.3099	11.38	9.77	21.15	46.00	-24.85	AVG
9		2.0380	18.01	9.71	27.72	56.00	-28.28	QP
10		2.0380	10.15	9.71	19.86	46.00	-26.14	AVG
11		8.6620	22.14	9.80	31.94	60.00	-28.06	QP
12		8.6620	15.99	9.80	25.79	50.00	-24.21	AVG


Remark:

1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)

2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)

Temperature:	24.6 ℃	Relative Humidity:	42%
Test Voltage:	AC 120V/60Hz	Con and a start	3 6
Terminal:	Neutral		
Test Mode:	Mode 1(TX B Mode Chan	nel 01)	CIN UZ
Remark:	Only worst case is reported	ed	

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1		0.3420	32.58	9.80	42.38	59.15	-16.77	QP
2	*	0.3420	25.62	9.80	35.42	49.15	-13.73	AVG
3		0.6620	19.98	9.80	29.78	56.00	-26.22	QP
4		0.6620	12.72	9.80	22.52	46.00	-23.48	AVG
5		0.9580	17.63	9.80	27.43	56.00	-28.57	QP
6		0.9580	10.71	9.80	20.51	46.00	-25.49	AVG
7		1.3300	15.83	9.80	25.63	56.00	-30.37	QP
8		1.3300	6.07	9.80	15.87	46.00	-30.13	AVG
9		2.0540	16.10	9.80	25.90	56.00	-30.10	QP
10		2.0540	8.17	9.80	17.97	46.00	-28.03	AVG
11		9.3380	19.56	9.90	29.46	60.00	-30.54	QP
12		9.3380	10.69	9.90	20.59	50.00	-29.41	AVG

Remark: 1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)

2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)

Attachment B--- Unwanted Emission Test Data

---Radiated Unwanted Emissions

9KHz~30MHz

From 9KHz to 30MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

30MHz~1GHz

/Hz~1GHz							
Temperature	: 22.6 ℃		1	Relative	Humidity:	42%	
Test Voltage:	AC 120	0V/60Hz	and b	3	5	1115	
Ant. Pol.	Horizo	ntal	BAS	-			- CAN
Test Mode:	TXBN	1ode 2412N	ЛНz	CALL!	19		Ning
Remark:	Only w	orst case is	reported.				
80.0 dBuV/m							
					(RF)FCC	C 15C 3M Radi	ation
						Marg	n -6 dB
					4 ×	5	
30 1					3 X	×	6 X
×				x ² ∧	L. A. H	1	Almonth
Δ.,				NW	rvin Minin	W. W. W. W. W.	
Minum	A. A.	Maria	MM	when			
	Marrie -	- V V 400	A				
-20							
30.000 40	50 60 70	80	(MHz)	3	DO 400	500 600 7	00 1000.000
		Reading	Correct	Measure-		-	
No. Mk.	Freq.	Level	Factor	ment	Limit	Over	
	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	39.9942	46.70	-18.99	27.71	40.00	-12.29	peak
2 2	281.0075	40.90	-16.64	24.26	46.00	-21.74	peak
3	321.0608	45.96	-15.60	30.36	46.00	-15.64	peak
4 * ;	377.2591	50.98	-13.35	37.63	46.00	-8.37	peak
5 (642.8613	42.14	-8.02	34.12	46.00	-11.88	peak

-6.60

30.39

46.00

-15.61

peak

*:Maximum data x:Over limit !:over margin

750.1083

Remark:

6

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. QuasiPeak (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

36.99

3. Margin (dB) = QuasiPeak (dB μ V/m)-Limit QPK(dB μ V/m)

				Call In St
Temperature:	22.6℃		Relative Humidity:	42%
Test Voltage:	AC 120V/6	0Hz		13 6
Ant. Pol.	Vertical	1012	2 10	
Test Mode:	TX B Mode	2412MHz	avi -	CIN ID
Remark:	Only worst	case is reporte	d.	
80.0 dBuV/m				
30 1 2 X 4 -20	3 3 2 2 2 3 2 3 2 3 3 3 3 3 3 3 3 3 3 3	n n n n n n n n n n n n n n n n n n n		FJFCC 15C 3M Radiation Margin -6 dB
30.000 40 50) 60 70 80	(MHz)	300 4	00 500 600 700 1000.000
	Freq. Le	ding Correc vel Facto ^{uV} dB/m	r ment Lir	nit Over
1 31.		.12 -14.25).00 -12.13 peak
		.12 -18.99		0.00 -12.81 peak
		.41 -23.67		0.00 -15.26 peak
		.65 -13.35		•
				•
		.36 -10.99		5.00 -15.63 peak
6 * 642	2.8613 42	.55 -8.02	34.53 46	6.00 -11.47 peak

*:Maximum data x:Over limit !:over margin

- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dBµV/m)-Limit QPK(dBµV/m)

Above 1GHz

Temperature:	22.6 ℃	Relative Humidity:	42%
Test Voltage:	AC 120V/60Hz		122
Ant. Pol.	Horizontal		
Test Mode:	TX B Mode 2412MH	z Antenna A+B	S GULLE

Ν	lo. Mk	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4823.928	29.26	13.16	42.42	54.00	-11.58	AVG
2		4823.976	41.89	13.16	55.05	74.00	-18.95	peak

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	22.6 ℃	Relative Humidity:	42%
Test Voltage:	AC 120V/60Hz	- MUP	
Ant. Pol.	Vertical		
Test Mode:	TX B Mode 2412MHz A	ntenna A+B	

N	o. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4823.830	33.64	13.16	46.80	54.00	-7.20	AVG
2		4824.018	43.27	13.16	56.43	74.00	-17.57	peak

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	22.6℃	Relative Humidity:	42%
Test Voltage:	AC 120V/60Hz		
Ant. Pol.	Horizontal		
Test Mode:	TX B Mode 2437MHz An	itenna A+B	20102

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4873.870	43.83	13.53	57.36	74.00	-16.64	peak
2	*	4873.934	33.79	13.53	47.32	54.00	-6.68	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	22.6 °C	Relative Humidity:	42%
Test Voltage:	AC 120V/60Hz	AT LE	081
Ant. Pol.	Vertical		
Test Mode:	TX B Mode 2437MHz A	ntenna A+B	

No	. Mk	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4873.888	44.91	13.53	58.44	74.00	-15.56	peak
2	*	4874.006	36.01	13.53	49.54	54.00	-4.46	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	22.6 ℃	Relative Humidity:	42%
Test Voltage:	AC 120V/60Hz		
Ant. Pol.	Horizontal		
Test Mode:	TX B Mode 2462MHz A	ntenna A+B	50 JUD

N	o. Mk	. Freq.	•	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4923.852	31.41	13.89	45.30	54.00	-8.70	AVG
2		4924.156	43.36	13.89	57.25	74.00	-16.75	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	22.6 ℃	Relative Humidity:	42%
Test Voltage:	AC 120V/60Hz		
Ant. Pol.	Vertical		N.V.
Test Mode:	TX B Mode 2462MHz A	ntenna A+B	

No	. Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4923.874	43.53	13.89	57.42	74.00	-16.58	peak
2	*	4923.964	34.39	13.89	48.28	54.00	-5.72	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	22.6 ℃	Relative Humidity:	42%
Test Voltage:	AC 120V/60Hz	Contraction of the second	
Ant. Pol.	Horizontal		
Test Mode:	TX G Mode 2412MHz A	ntenna A+B	and

N	o. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4824.284	28.50	13.16	41.66	54.00	-12.34	AVG
2		4824.446	42.07	13.16	55.23	74.00	-18.77	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	22.6℃	Relative Humidity:	42%
Test Voltage:	AC 120V/60Hz	NI L	
Ant. Pol.	Vertical		
Test Mode:	TX G Mode 2412MHz Ante	enna A+B	

No	o. Mk	. Freq.	•	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4824.234	30.85	13.16	44.01	54.00	-9.99	AVG
2		4824.260	43.57	13.16	56.73	74.00	-17.27	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	22.6℃	Relative Humidity:	42%			
Test Voltage:	AC 120V/60Hz					
Ant. Pol.	Horizontal					
Test Mode:	TX G Mode 2437M	1Hz Antenna A+B	COND.			

N	o. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4873.718	29.32	13.53	42.85	54.00	-11.15	AVG
2		4873.730	42.04	13.53	55.57	74.00	-18.43	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	22.6 ℃	Relative Humidity:	42%
Test Voltage:	AC 120V/60Hz		032
Ant. Pol.	Vertical		
Test Mode:	TX G Mode 2437MHz A	ntenna A+B	

	No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		*	4873.856	30.19	13.53	43.72	54.00	-10.28	AVG
2			4874.490	43.10	13.53	56.63	74.00	-17.37	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	22.6℃	Relative Humidity:	42%				
Test Voltage:	AC 120V/60Hz	AC 120V/60Hz					
Ant. Pol.	Horizontal						
Test Mode:	TX G Mode 2462MHz Ante	enna A+B	COM D				

No	Mk.	Freq.	•	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4924.010	41.76	13.89	55.65	74.00	-18.35	peak
2	*	4924.310	28.52	13.89	42.41	54.00	-11.59	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V) 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	22.6℃	Relative Humidity:	42%
Test Voltage:	AC 120V/60Hz		
Ant. Pol.	Vertical		
Test Mode:	TX G Mode 2462MH	Hz Antenna A+B	

No	o. Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4924.004	42.22	13.89	56.11	74.00	-17.89	peak
2	*	4924.036	29.20	13.89	43.09	54.00	-10.91	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	22.6 °C	Relative Humidity:	42%
Test Voltage:	AC 120V/60Hz	100	
Ant. Pol.	Horizontal		
Test Mode:	TX n(HT20) Mode 2	412MHz Antenna A+B	COND2

No	b. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4823.758	41.82	13.16	54.98	74.00	-19.02	peak
2	*	4823.880	27.65	13.16	40.81	54.00	-13.19	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	22.6 ℃	Relative Humidity:	42%
Test Voltage:	AC 120V/60Hz		
Ant. Pol.	Vertical		NV-
Test Mode:	TX n(HT20) Mode 2412MI	Hz Antenna A+B	

No	. Mk	. Freq.	•	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4823.900	28.63	13.16	41.79	54.00	-12.21	AVG
2		4824.110	40.83	13.16	53.99	74.00	-20.01	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	22.6℃	Relative Humidity:	42%
Test Voltage:	AC 120V/60Hz		
Ant. Pol.	Horizontal		- CA
Test Mode:	TX n(HT20) Mode 2437	MHz Antenna A+B	COMP.

No	. Mk	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4873.962	41.59	13.53	55.12	74.00	-18.88	peak
2	*	4873.970	28.36	13.53	41.89	54.00	-12.11	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	22.6 ℃	Relative Humidity:	42%	
Test Voltage:	AC 120V/60Hz			
Ant. Pol.	Vertical			
Test Mode:	TX n(HT20) Mode 2437M	Hz Antenna A+B		

No	o. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4873.924	31.52	13.53	45.05	54.00	-8.95	AVG
2		4874.224	45.62	13.53	59.15	74.00	-14.85	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	22.6℃	Relative Humidity:	42%		
Test Voltage:	AC 120V/60Hz				
Ant. Pol.	Horizontal				
Test Mode:	TX n(HT20) Mode 2462MHz Antenna A+B				

No	. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4923.876	42.58	13.89	56.47	74.00	-17.53	peak
2	*	4924.266	28.42	13.89	42.31	54.00	-11.69	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	22.6℃	Relative Humidity:	42%		
Test Voltage:	AC 120V/60Hz				
Ant. Pol.	Vertical				
Test Mode:	TX n(HT20) Mode 2462MHz Antenna A+B				

No	. Mk	Freq.	•	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4923.962	43.76	13.89	57.65	74.00	-16.35	peak
2	*	4924.068	30.71	13.89	44.60	54.00	-9.40	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

TOBY

Temperature:	22.6 ℃	Relative Humidity:	42%			
Test Voltage:	AC 120V/60Hz					
Ant. Pol.	Horizontal	Horizontal				
Test Mode:	TX n(HT40) Mode 2422MHz Antenna A+B					

N	o. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4843.694	28.18	13.30	41.48	54.00	-12.52	AVG
2		4844.038	41.93	13.31	55.24	74.00	-18.76	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	22.6 ℃	Relative Humidity:	42%
Test Voltage:	AC 120V/60Hz		
Ant. Pol.	Vertical		
Test Mode:	TX n(HT40) Mode 2422Mi	Hz Antenna A+B	

No	. Mk	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4844.020	42.12	13.31	55.43	74.00	-18.57	peak
2	*	4844.020	29.27	13.31	42.58	54.00	-11.42	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

TOBY

Temperature:	22.6℃	Relative Humidity:	42%				
Test Voltage:	AC 120V/60Hz						
Ant. Pol.	Horizontal	Horizontal					
Test Mode:	TX n(HT40) Mode 2437MHz Antenna A+B						

No	. Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4873.862	41.57	13.53	55.10	74.00	-18.90	peak
2	*	4874.050	28.25	13.53	41.78	54.00	-12.22	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	22.6 ℃	Relative Humidity:	42%
Test Voltage:	AC 120V/60Hz		
Ant. Pol.	Vertical		
Test Mode:	TX n(HT40) Mode 2437MI	Hz Antenna A+B	

N	lo. N	Иk.	Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*		4873.936	30.57	13.53	44.10	54.00	-9.90	AVG
2			4874.456	43.14	13.53	56.67	74.00	-17.33	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

TOBY

Temperature:	22.6 ℃	Relative Humidity:	42%			
Test Voltage:	AC 120V/60Hz					
Ant. Pol.	Horizontal	Horizontal				
Test Mode:	TX n(HT40) Mode 2452MHz Antenna A+B					

No	. Mk.	Freq.	•	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4903.582	41.98	13.74	55.72	74.00	-18.28	peak
2	*	4904.376	28.55	13.75	42.30	54.00	-11.70	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	22.6℃	Relative Humidity:	42%
Test Voltage:	AC 120V/60Hz		
Ant. Pol.	Vertical		
Test Mode:	TX n(HT40) Mode 2452MH	Iz Antenna A+B	

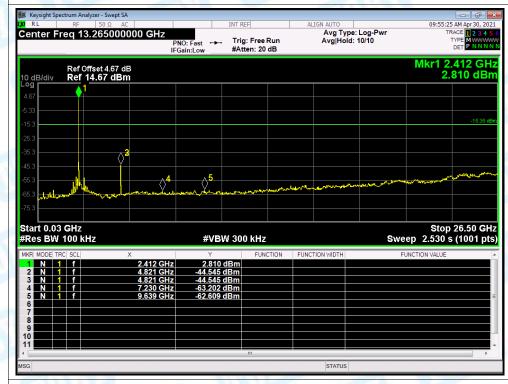
No	. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4903.608	31.87	13.74	45.61	54.00	-8.39	AVG
2		4903.806	44.84	13.74	58.58	74.00	-15.42	peak

Remark:

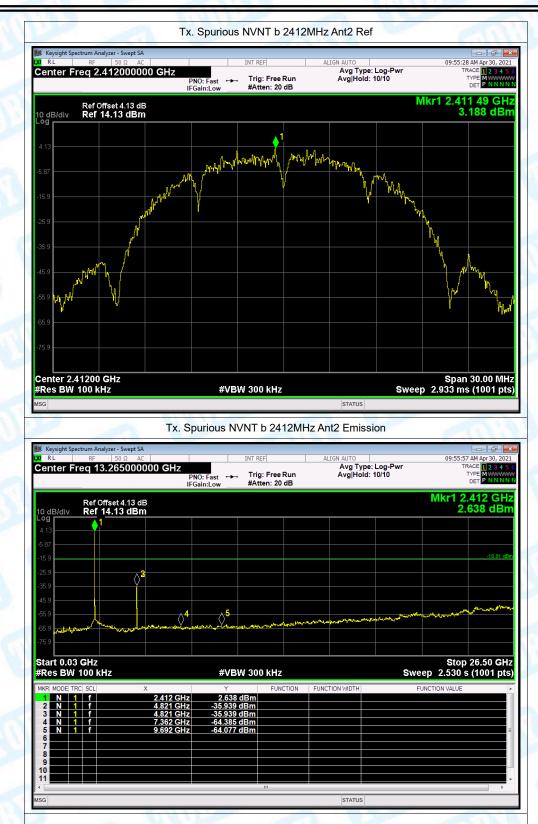
1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)


- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

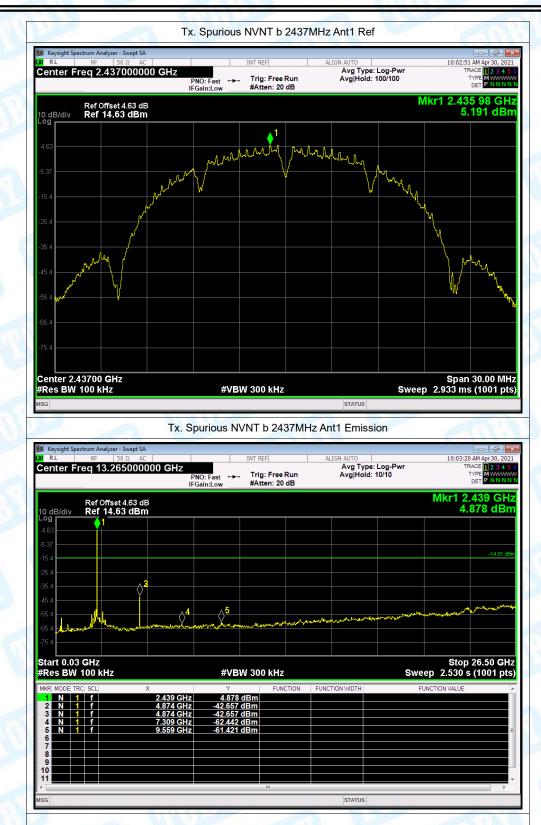
4. The tests evaluated1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.


5. No report for the emission which more than 20dB below the prescribed limit.

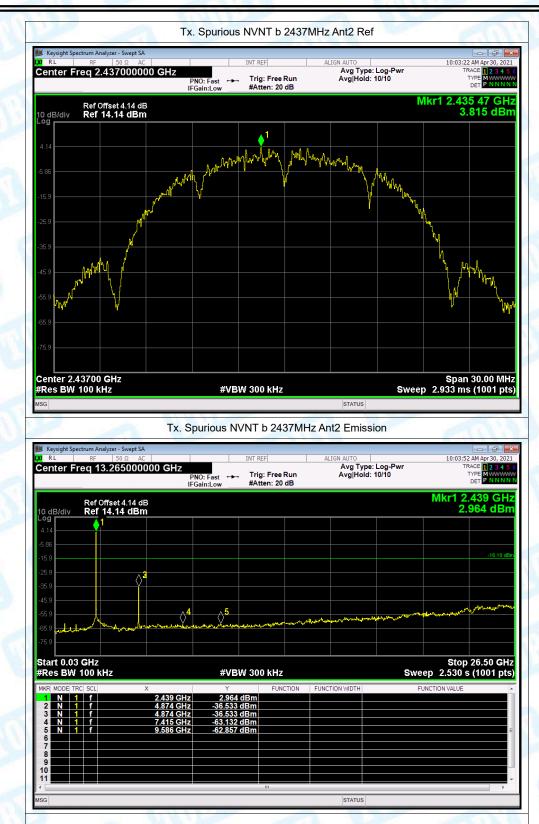
---Conducted Unwanted Emissions



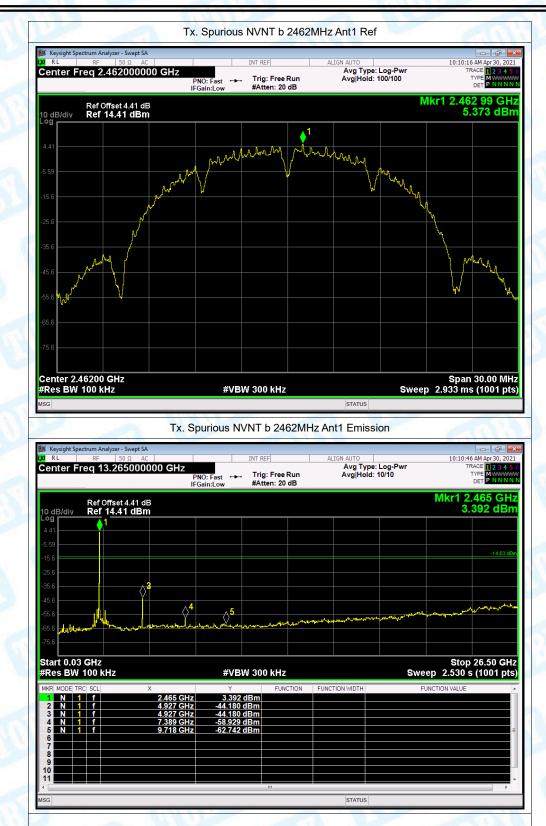
Tx. Spurious NVNT b 2412MHz Ant1 Emission



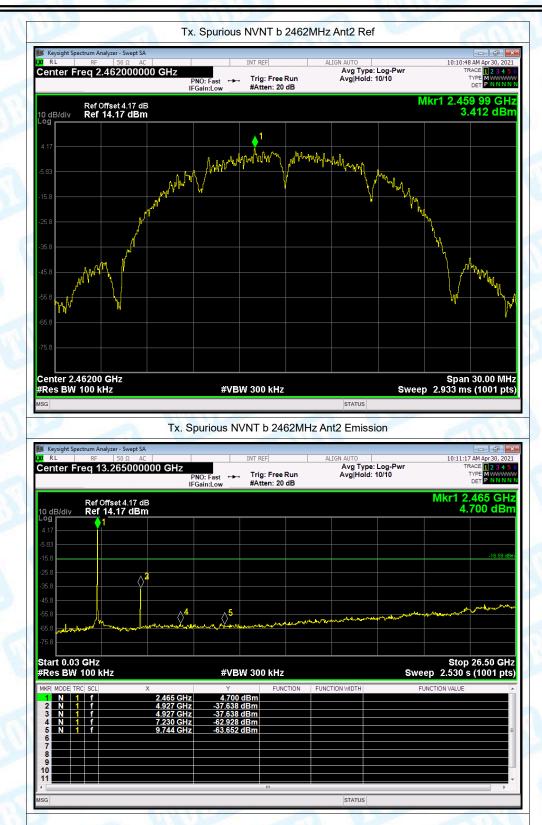
Report No.: TB-FCC180338 Page: 41 of 117



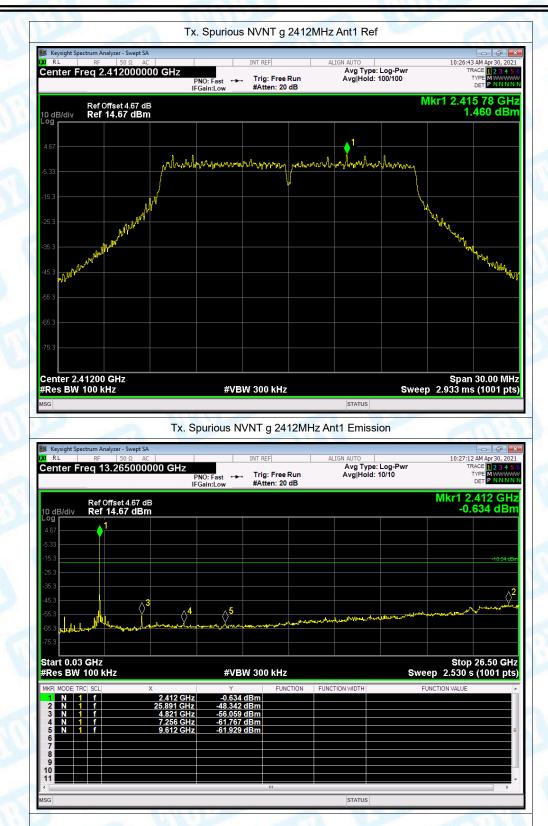
Report No.: TB-FCC180338 Page: 42 of 117



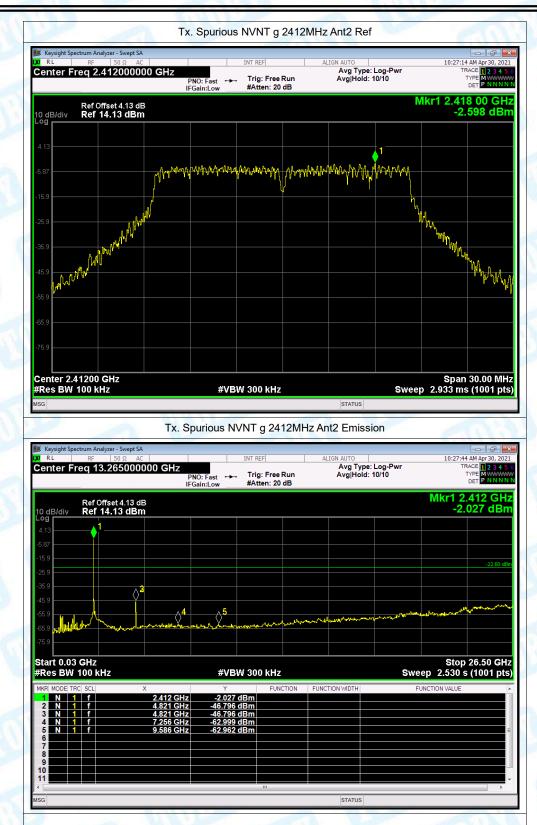
Report No.: TB-FCC180338 Page: 43 of 117



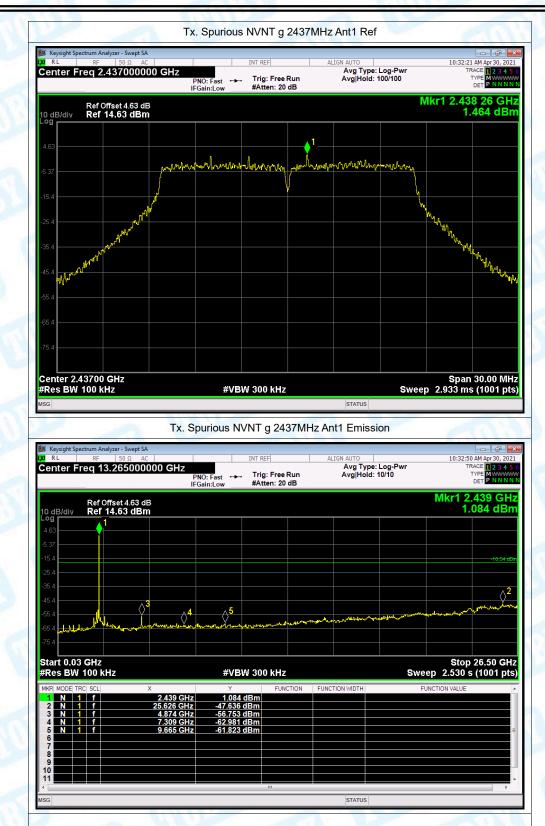
Report No.: TB-FCC180338 Page: 44 of 117



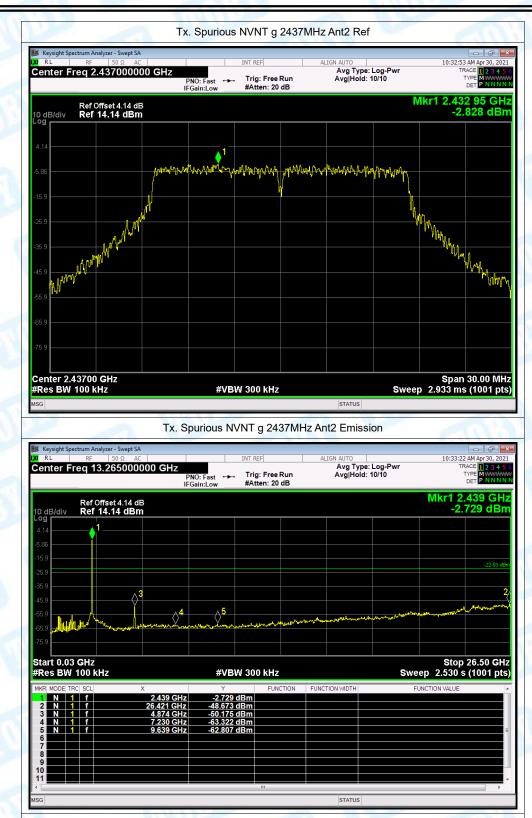
Report No.: TB-FCC180338 Page: 45 of 117



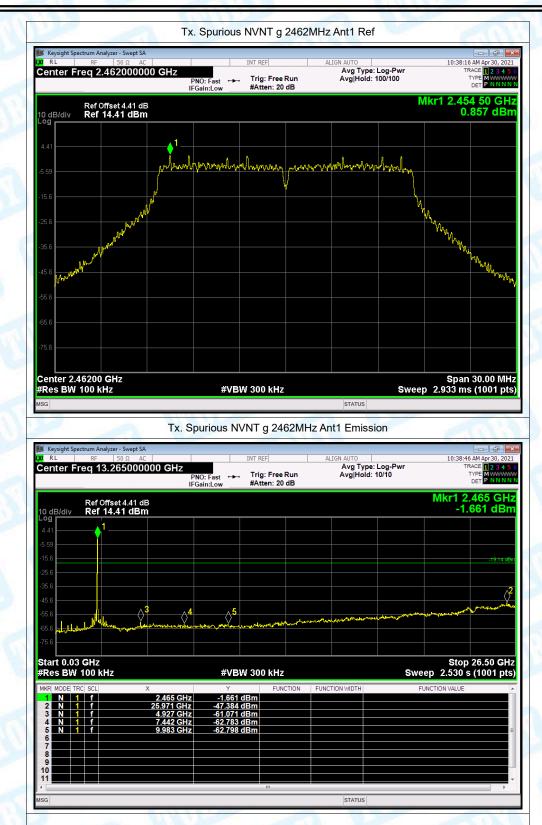
Report No.: TB-FCC180338 Page: 46 of 117



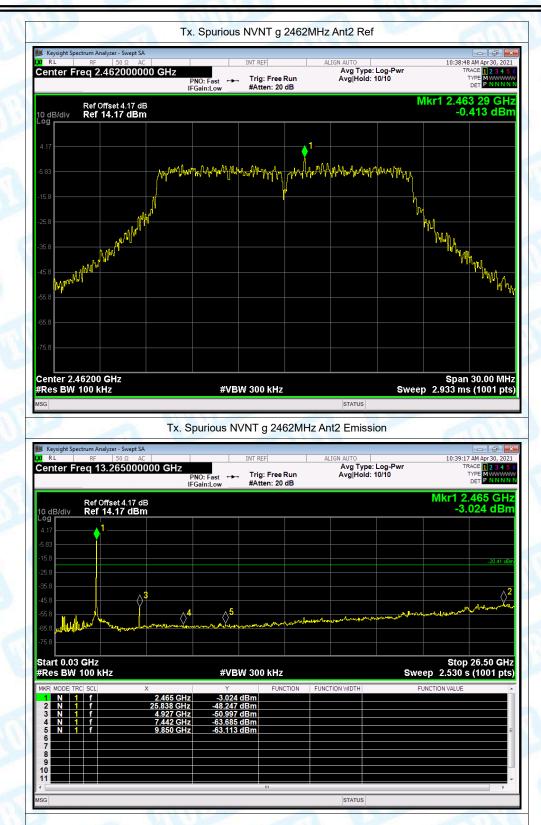
Report No.: TB-FCC180338 Page: 47 of 117



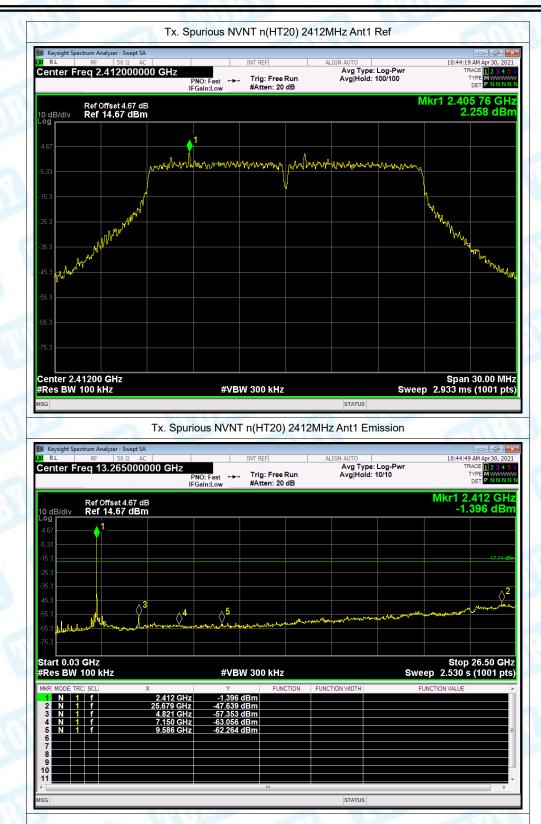
Report No.: TB-FCC180338 Page: 48 of 117



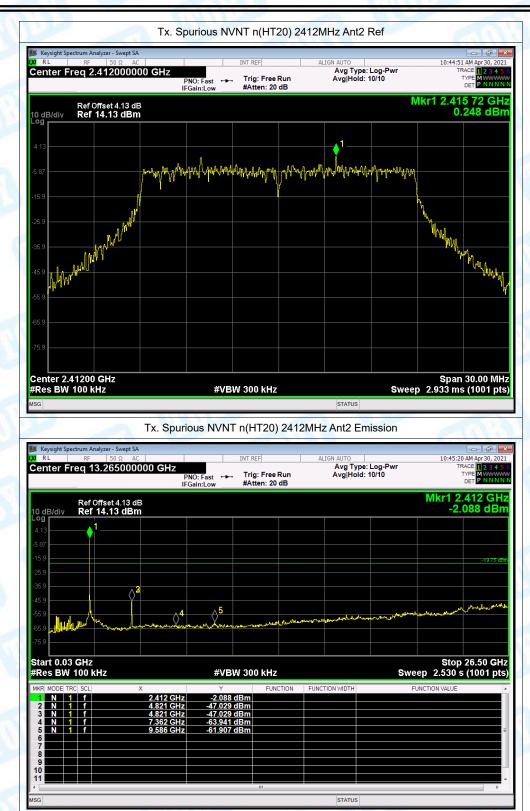
Report No.: TB-FCC180338 Page: 49 of 117



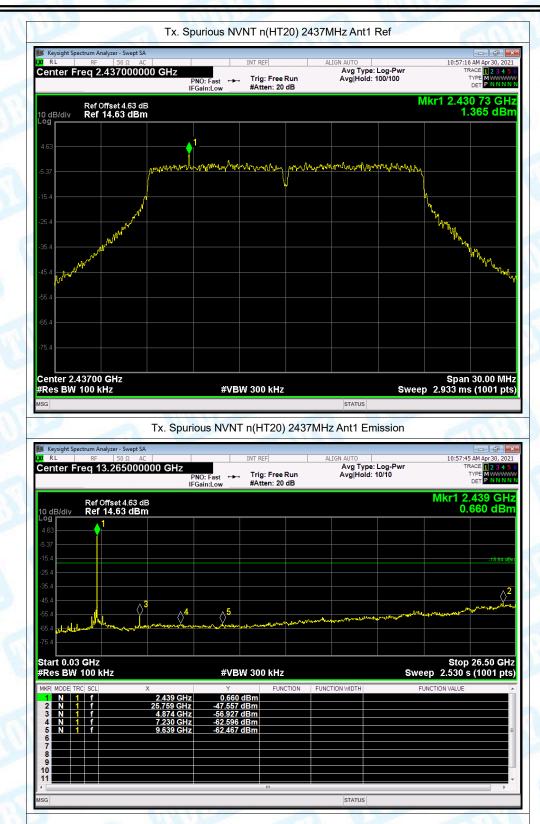
Report No.: TB-FCC180338 Page: 50 of 117



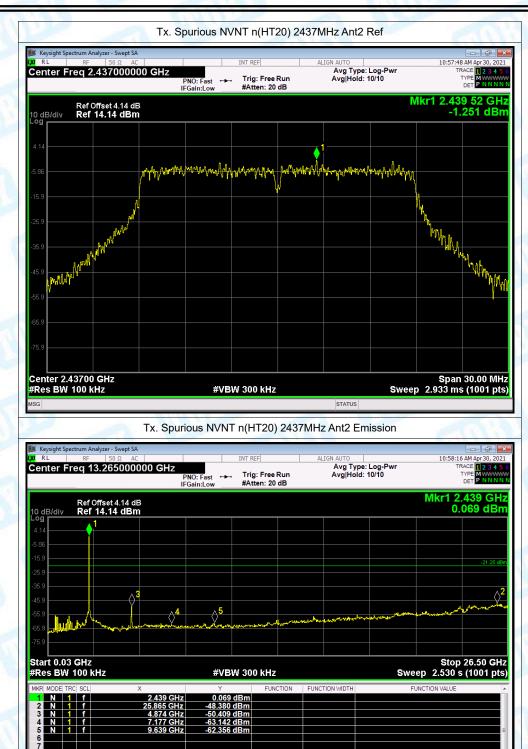
Report No.: TB-FCC180338 Page: 51 of 117



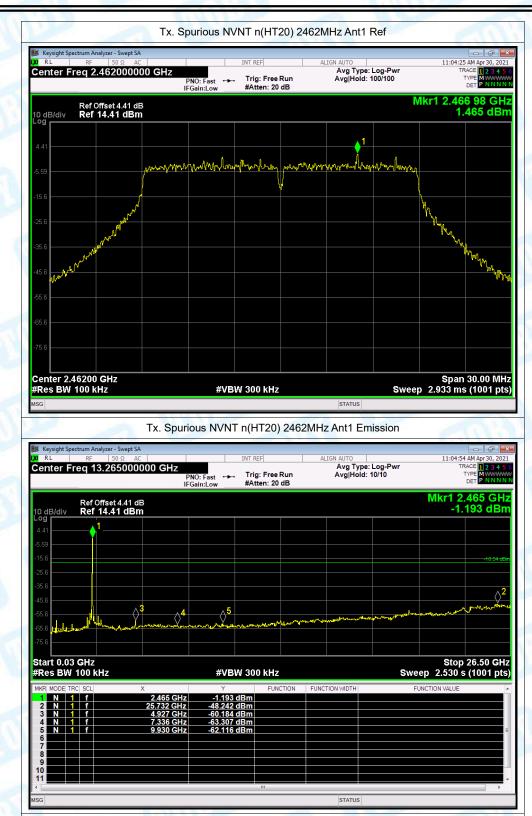
Report No.: TB-FCC180338 Page: 52 of 117



Report No.: TB-FCC180338 Page: 53 of 117



Report No.: TB-FCC180338 Page: 54 of 117


Report No.: TB-FCC180338 Page: 55 of 117

STATUS

Report No.: TB-FCC180338 Page: 56 of 117

Report No.: TB-FCC180338 Page: 57 of 117

 Image: Start 0.03 GHz
 Start 0.03 GHz
 Stop 26.50 GHz

 #Res BW 100 kHz
 #VBW 300 kHz
 Sweep 2.530 s (1001 pts)

 MRR MODE TRC SCL
 X
 Y
 FUNCTION

 1
 1
 f
 2.465 GHz
 0.310 dBm

 2
 N
 1
 f
 2.657 GHz
 -51.464 dBm

 3
 N
 1
 f
 73.09 GHz
 -51.464 dBm

 4
 N
 1
 f
 7.309 GHz
 -63.069 dBm

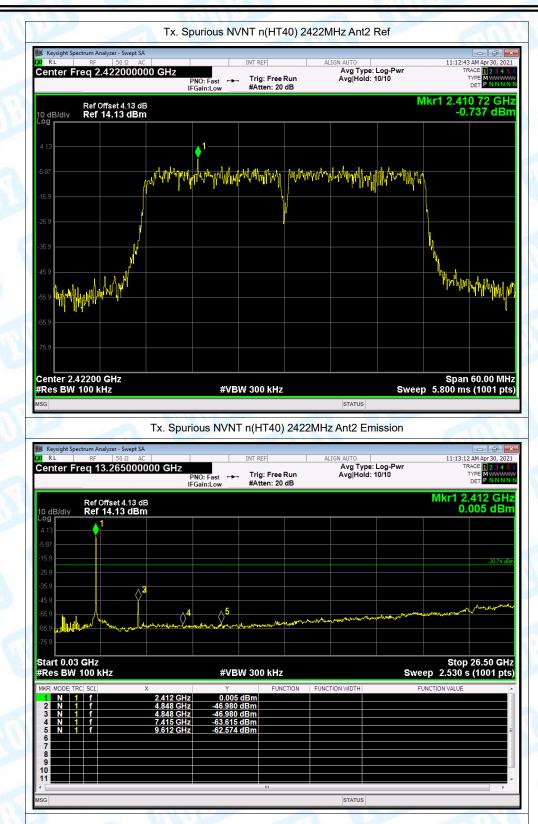
 5
 N
 1
 f
 9.983 GHz
 -63.376 dBm

 6
 1

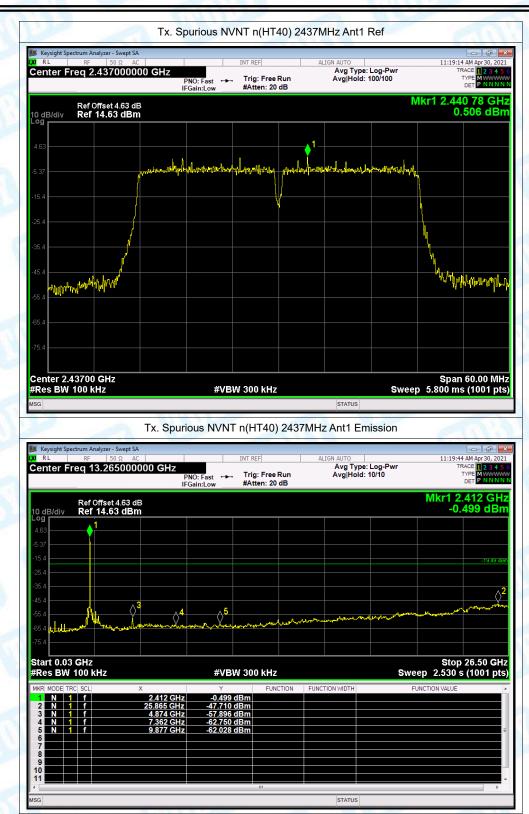

 9

 10

 10



Report No.: TB-FCC180338 Page: 58 of 117



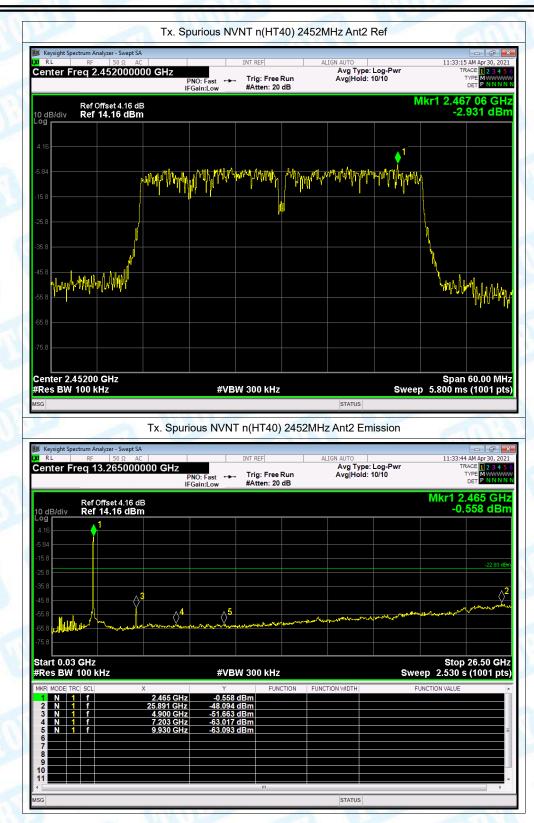
Report No.: TB-FCC180338 Page: 59 of 117

Report No.: TB-FCC180338 Page: 60 of 117

11

Report No.: TB-FCC180338 Page: 61 of 117

STATUS


Report No.: TB-FCC180338 Page: 62 of 117

STATUS

Report No.: TB-FCC180338 Page: 63 of 117

