

Shenzhen Toby Technology Co., Ltd.

Report No.: TB-FCC181205

Page: 1 of 44

FCC Radio Test Report FCC ID: 2APRB-WNVR-BTWN8

Original Grant

Report No. : TB-FCC181205

Applicant: Guangzhou Juan Intelligent Tech Joint Stock Co., Ltd

Equipment Under Test (EUT)

EUT Name : Wireless Network Video Recorder

Model No. : WNVR-BTWN8

Series Model No. : Please see Page 5

Brand Name : NIGHT OWL

Sample ID : 20210416-03-1#& 20210416-03-2#

Receipt Date : 2021-04-28

Test Date : 2021-04-29 to 2021-06-18

Issue Date : 2021-06-18

Standards : FCC Part 15, Subpart C 15.247

ANSI C63.10: 2013

Test Method : KDB 558074 D01 15.247 Meas Guidance v05r02

KDB 662911 D01 Multiple Transmitter Output v02r01

Conclusions : PASS

In the configuration tested, the EUT complied with the standards specified above,

Test/Witness Engineer :

Engineer Supervisor : JWW SV

Wade Ly

Lyan SuOBY

Ray Lair *

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1.0

Report No.: TB-FCC181205 Page: 2 of 44

Contents

COR	NIENIS	2
1.	GENERAL INFORMATION ABOUT EUT	5
	1.1 Client Information	5
	1.2 General Description of EUT (Equipment Under Test)	
	1.3 Block Diagram Showing the Configuration of System Tested	6
	1.4 Description of Support Units	7
	1.6 Description of Test Software Setting	8
	1.7 Measurement Uncertainty	8
	1.8 Test Facility	9
2.	TEST SUMMARY	10
3.	TEST SOFTWARE	10
4.	TEST EQUIPMENT	11
5.	CONDUCTED EMISSION TEST	
110	5.1 Test Standard and Limit	
	5.2 Test Setup	
	5.3 Test Procedure	
	5.4 Deviation From Test Standard	
	5.5 EUT Operating Mode	
	5.6 Test Data	
6.	RADIATED EMISSION TEST	14
	6.1 Test Standard and Limit	
	6.2 Test Setup	
	6.3 Test Procedure	
	6.4 Deviation From Test Standard	17
	6.5 EUT Operating Condition	17
	6.6 Test Data	17
7.	RESTRICTED BANDS REQUIREMENT	18
	7.1 Test Standard and Limit	18
	7.2 Test Setup	
	7.3 Test Procedure	
	7.4 Deviation From Test Standard	19
	7.5 EUT Operating Condition	19
	7.6 Test Data	19
8.	BANDWIDTH TEST	20
	8.1 Test Standard and Limit	20
	8.2 Test Setup	20
	8.3 Test Procedure	20
	8.4 Deviation From Test Standard	20
	8.5 EUT Operating Condition	20

Report No.: TB-FCC181205 Page: 3 of 44

	8.6 Test Data	20
9.	PEAK OUTPUT POWER TEST	21
	9.1 Test Standard and Limit	21
	9.2 Test Setup	
	9.3 Test Procedure	
	9.4 Deviation From Test Standard	21
	9.5 EUT Operating Condition	21
	9.6 Test Data	21
10.	POWER SPECTRAL DENSITY TEST	22
	10.1 Test Standard and Limit	22
	10.2 Test Setup	22
	10.3 Test Procedure	
	10.4 Deviation From Test Standard	22
	10.5 EUT Operating Condition	22
	10.6 Test Data	
11.	ANTENNA REQUIREMENT	23
	11.1 Standard Requirement	23
	11.2 Deviation From Test Standard	23
	11.3 Antenna Connected Construction	23
	11.4 Result	23
ATT	ACHMENT A CONDUCTED EMISSION TEST DATA	24
ATT	ACHMENT B UNWANTED EMISSION TEST DATA	26
	ACHMENT C RESTRICTED BANDS REQUIREMENT AND BAND EDG	
	ACHMENT D BANDWIDTH TEST DATA	
	ACHMENT E PEAK OUTPUT POWER TEST DATA	
		43

Report No.: TB-FCC181205 Page: 4 of 44

Revision History

Report No.	Version	Description	Issued Date
TB-FCC181205	Rev.01	Initial issue of report	2021-06-18
LOST .	3 11		W 1000
	1000		
	TOTAL PORT		
2003	400		COLUMN TO THE REAL PROPERTY OF THE PERTY OF
33 400	003	TOOL TOOL	100
MORE	a min	THE PARTY OF THE P	(1033
0	3	WOOD TO	D 0
THE WALL	3 0	Dis Cons	3 July Coll
	(408)	The state of the s	
4081		Tenna Tenna	408

Page: 5 of 44

1. General Information about EUT

1.1 Client Information

Applicant : Guangzhou Juan Intelligent Tech Joint Stock Co., Ltd		Guangzhou Juan Intelligent Tech Joint Stock Co., Ltd
Address : No.2 Plant, West of Shanxi country, Dashi street, Panyu Dis Guangzhou City, China		No.2 Plant, West of Shanxi country, Dashi street, Panyu District, Guangzhou City, China
Manufacturer		Guangzhou Juan Intelligent Tech Joint Stock Co., Ltd
Address		No.2 Plant, West of Shanxi country, Dashi street, Panyu District, Guangzhou City, China

1.2 General Description of EUT (Equipment Under Test)

EUT Name		Wireless Network Video Recorder			
Model(s) No. WNVR-BTWN8, WNVR-BTWN8-1, WNVR-BTWN8-1-CN4, WNVR-BTWN8-2-CN4, BTWN8-4L1, BTWN8-8L1, WNVR-BTWN8-1-WA-CN4, CL-BT8WN-14L, CL-BT8WN-18					
Model Different	All these models are identical in the same PCB, layout and el				
The same		Operation Frequency:	Bluetooth 4.2(BLE): 2402MHz~2480MHz		
		Number of Channel:	Bluetooth 4.2(BLE): 40 channels see note(3)		
Product		RF Output Power:	3.801 dBm (Max)		
Description		Antenna Gain:	2.0 dBi PCB Antenna		
		Modulation Type:	GFSK		
		Bit Rate of Transmitter:	1Mbps		
Power Rating	1	DC 12V from adapter: Input: AC 100-240V 50/6	0Hz 1.5A Max, Output: DC 12V2A		
Software Version		WNVR-BTWN8-10_20210430			
Hardware Version		MC6630_V140_NVR0408			
Connecting I/O Port(S)	-	Please refer to the User's Manual			

Note:

This Test Report is FCC Part 15.247 for Bluetooth, the test procedure follows the FCC KDB 558074 D01 15.247 Meas Guidance v05r02

For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

(1) Antenna information provided by the applicant.

Report No.: TB-FCC181205 Page: 6 of 44

(2) Channel List:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	14	2430	28	2458
01	2404	15	2432	29	2460
02	2406	16	2434	30	2462
03	2408	17	2436	31	2464
04	2410	18	2438	32	2466
05	2412	19	2440	33	2468
06	2414	20	2442	34	2470
07	2416	21	2444	35	2472
08	2418	22	2446	36	2474
09	2420	23	2448	37	2476
10	2422	24	2450	38	2478
11	2424	25	2452	39	2480
12	2426	26	2454		
13	2428	27	2456		

1.3 Block Diagram Showing the Configuration of System Tested

EUT	ADAPTER	

Page: 7 of 44

1.4 Description of Support Units

	Equipment Information								
Name Model FCC ID/SDOC Manufacturer Used "√"									
		4000	(1)						
Cable Information									
Number	Shielded Type	Ferrite Core	Length	Note					
			- L	10 B 3					

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

	For Conducted Test					
Final Test Mode Description						
Mode 1	TX Mode					
	For Radiated Test					
Final Test Mode	Description					
Mode 2	TX Mode					
Mode 3	TX 1Mbps Mode (Channel 00/20/39)					
Note: The antenna gain provious conduction test and adapter	rided by the applicant, the verified for the RF					

Note:

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate.

According to ANSI C63.10 standards, the measurements are performed at the highest, middle, lowest available channels, and the worst case data rate as follows:

BLE Mode: GFSK Modulation Transmitting mode.

- (2) During the testing procedure, the continuously transmitting with the maximum power mode was programmed by the customer.
- (3) The EUT is considered a portable unit; in normal use it was positioned on X-plane. The worst case was found positioned on X-plane. Therefore only the test data of this X-plane was used for radiated emission measurement test.

Page: 8 of 44

1.6 Description of Test Software Setting

During testing channel& Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of RF setting.

Test Software Version	Million	SSCOM5.13.1	
Frequency	2402 MHz	2442MHz	2480 MHz
BLE GFSK	DEF	DEF	DEF

1.7 Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty (U _{Lab})
Conducted Emission	Level Accuracy: 9kHz~150kHz	±3.50 dB
Conducted Emission	150kHz to 30MHz	$\pm 3.10~\mathrm{dB}$
Radiated Emission	Level Accuracy: 9kHz to 30 MHz	\pm 4.60 dB
Radiated Emission	Level Accuracy: 30MHz to 1000 MHz	±4.50 dB
Radiated Emission	Level Accuracy: Above 1000MHz	±4.20 dB

Page: 9 of 44

1.8 Test Facility

The testing was performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at: 1/F.,Building 6, Rundongsheng Industrial Zone, Longzhu, Xixiang, Bao'an, Shenzhen, Guangdong, China.

At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01. FCC Accredited Test Site Number: 854351.

IC Registration No.: (11950A)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A.

Report No.: TB-FCC181205 Page: 10 of 44

2. Test Summary

	FCC Part 15 Subpart C	(15.247) Issue 2		
Standard Section FCC	Test Item	Test Sample(s)	Judgment	Remark
15.203	Antenna Requirement	20210416-03-1#	PASS	N/A
15.207(a)	Conducted Emission	20210416-03-1#	PASS	N/A
15.205&15.247(d)	Band-Edge & Unwanted Emissions into Restricted Frequency	20210416-03-2#	PASS	N/A
15.247(a)(2)	6dB Bandwidth	20210416-03-2#	PASS	N/A
15.247(b)(3)	Conducted Max Output Power	20210416-03-2#	PASS	N/A
15.247(e)	Power Spectral Density	20210416-03-2#	PASS	N/A
15.205, 15.209&15.247(d)	Transmitter Radiated Spurious &Unwanted Emissions into Restricted Frequency	20210416-03-1# 20210416-03-2#	PASS	N/A

Note: N/A is an abbreviation for Not Applicable.

3. Test Software

Test Item	Test Software	Manufacturer	Version No.
Conducted Emission	EZ-EMC	EZ	CDI-03A2
Radiation Emission	EZ-EMC	EZ	FA-03A2RE
RF Conducted Measurement	MTS-8310	MWRFtest	V2.0.0.0

Report No.: TB-FCC181205 Page: 11 of 44

4. Test Equipment

Conducted Emission	Test				1	
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date	
EMI Test Receiver	Rohde & Schwarz	ESCI	100321	Jul. 06, 2020	Jul. 05, 2021	
	Compliance			ARTH		
RF Switching Unit	Direction Systems	RSU-A4	34403	Jul. 06, 2020	Jul. 05, 2021	
	Inc	DATE:	1300			
AMN	SCHWARZBECK	NNBL 8226-2	8226-2/164	Jul. 06, 2020	Jul. 05, 2021	
LISN	Rohde & Schwarz	ENV216	101131	Jul. 06, 2020	Jul. 05, 2021	
Radiation Emission 1	Test					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date	
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 06, 2020	Jul. 05, 2021	
EMI Test Receiver	Rohde & Schwarz	ESPI	100010/007	Jul. 06, 2020	Jul. 05, 2021	
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jul. 06, 2020	Jul. 05, 2021	
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Mar.01, 2020	Feb. 28, 2022	
Horn Antenna	ETS-LINDGREN	3117	00143207	Mar.01, 2020	Feb. 28, 2022	
Horn Antenna	ETS-LINDGREN	BBHA 9170	BBHA9170582	Mar.01, 2020	Feb. 28, 2022	
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Jul. 07, 2020	Jul. 06, 2021	
Pre-amplifier	Sonoma	310N	185903	Feb.25, 2021	Feb. 24, 2022	
Pre-amplifier	HP	8449B	3008A00849	Feb.25, 2021	Feb. 24, 2022	
Pre-amplifier	SKET	LNPA_1840G-50	SK201904032	Feb.25, 2021	Feb. 24, 2022	
Cable	HUBER+SUHNER	100	SUCOFLEX	Feb.25, 2021	Feb. 24, 2022	
Positioning Controller	ETS-LINDGREN	2090	N/A	N/A	N/A	
Antenna Conducted	Emission					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date	
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 06, 2020	Jul. 05, 2021	
Spectrum Analyzer	Rohde & Schwarz	ESPI	100010/007	Jul. 06, 2020	Jul. 05, 2021	
MXA Signal Analyzer	Agilent	N9020A	MY49100060	Sep. 11, 2020	Sep. 10, 2021	
Vector Signal Generator	Agilent	N5182A	MY50141294	Sep. 11, 2020	Sep. 10, 2021	
Analog Signal Generator	Agilent	N5181A	MY50141953	Sep. 11, 2020	Sep. 10, 2021	
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO26	Sep. 11, 2020	Sep. 10, 2021	
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO29	Sep. 11, 2020	Sep. 10, 2021	
RF Power Sensor	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO31	Sep. 11, 2020	Sep. 10, 2021	
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO33	Sep. 11, 2020	Sep. 10, 2021	

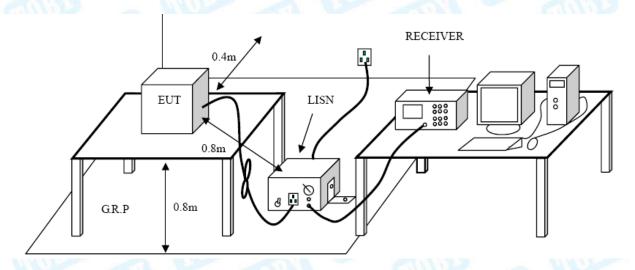
Page: 12 of 44

5. Conducted Emission Test

5.1 Test Standard and Limit

5.1.1Test Standard FCC Part 15.207

5.1.2 Test Limit


Conducted Emission Test Limit

Eraguanav	Maximum RF Line Voltage (dBμV)			
Frequency	Quasi-peak Level	Average Level		
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *		
500kHz~5MHz	56	46		
5MHz~30MHz	60	50		

Notes:

- (1) *Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

5.2 Test Setup

Page: 13 of 44

5.3 Test Procedure

The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/50uH of coupling impedance for the measuring instrument.

Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

LISN at least 80 cm from nearest part of EUT chassis.

The bandwidth of EMI test receiver is set at 9 kHz, and the test frequency band is from 0.15MHz to 30MHz.

5.4 Deviation From Test Standard

No deviation

5.5 EUT Operating Mode

Please refer to the description of test mode.

5.6 Test Data

Please refer to the Attachment A.

Page: 14 of 44

6. Radiated Emission Test

6.1 Test Standard and Limit

6.1.1 Test Standard FCC Part 15.247(d)

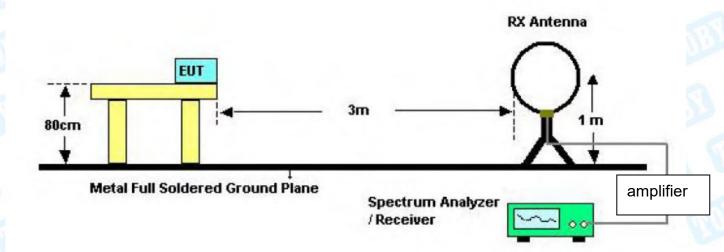
6.1.2 Test Limit

Radiated Emission Limits (9kHz~1000MHz)

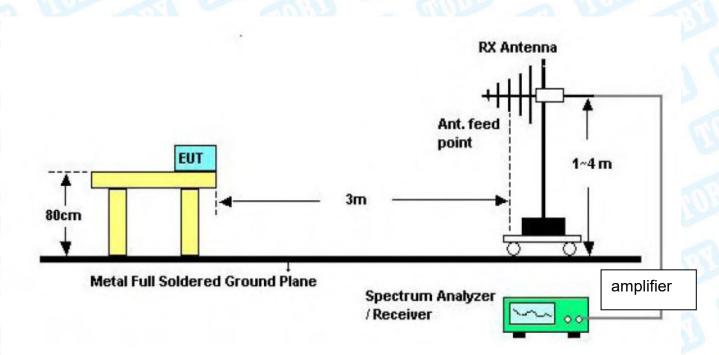
Frequency (MHz	Field Strength (microvolt/meter)	Measurement Distance (meters)		
0.009~0.490	2400/F(KHz)	300		
0.490~1.705	24000/F(KHz)	30		
1.705~30.0	30	30		
30~88	100	3		
88~216	150	3 7 3		
216~960	200	3		
Above 960	500	3		

Radiated Emission Limit (Above 1000MHz)

Frequency (MHz)	Distance Met	ers(at 3m)
	Peak (dBuV/m)	Average (dBuV/m)
Above 1000	74	54

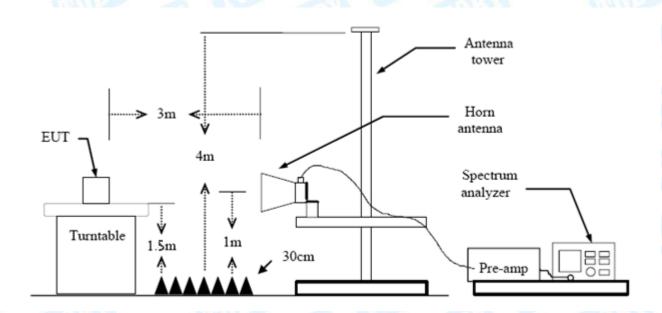

Note:

- (1) The tighter limit applies at the band edges.
- (2) Emission Level (dBuV/m)=20log Emission Level (uV/m)



Page: 15 of 44

6.2 Test Setup


Below 30MHz Test Setup

Below 1000MHz Test Setup

Page: 16 of 44

Above 1GHz Test Setup

6.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

Page: 17 of 44

6.4 Deviation From Test Standard

No deviation

6.5 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

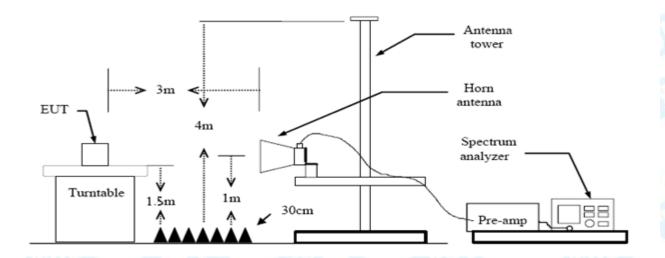
6.6 Test Data

Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.

Please refer to the Attachment B.

Page: 18 of 44

7. Restricted Bands Requirement


7.1 Test Standard and Limit

7.1.1 Test Standard FCC Part 15.247(d) FCC Part 15.205

7.1.2 Test Limit

Restricted Frequency	Distance Meters(at 3m)		
Band (MHz)	Peak (dBuV/m)	Average (dBuV/m)	
2310 ~2390	74	54	
2483.5 ~2500	74	54	

7.2 Test Setup

7.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.

Report No.: TB-FCC181205 Page: 19 of 44

(4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.

- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

7.4 Deviation From Test Standard

No deviation

7.5 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

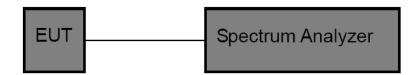
7.6 Test Data

Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.

Please refer to the Attachment C.

Page: 20 of 44

8. Bandwidth Test


8.1 Test Standard and Limit

8.1.1 Test Standard FCC Part 15.247 (a)(2)

8.1.2 Test Limit

FCC Part 15 Subpart C(15.247)/RSS-247						
Test Item	Test Item Limit Frequency Range(MI					
Bandwidth	>=500 KHz (6dB bandwidth)	2400~2483.5				

8.2 Test Setup

8.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) The bandwidth is measured at an amplitude level reduced 6dB from the reference level. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency. Once the reference level is established, the equipment is conditioned with typical modulating signal to produce the worst –case (i.e the widest) bandwidth.
- (3)Measure the channel separation the spectrum analyzer was set to Resolution Bandwidth:100 kHz, and Video Bandwidth:300 kHz, Detector: Peak, Sweep Time set auto.

8.4 Deviation From Test Standard

No deviation

8.5 EUT Operating Condition

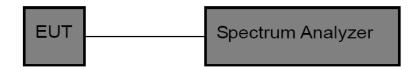
The EUT was set to continuously transmitting in each mode and low, middle and high channel for the test.

8.6 Test Data

Please refer to the Attachment D.

Page: 21 of 44

9. Peak Output Power Test


9.1 Test Standard and Limit

9.1.1 Test Standard FCC Part 15.247 (b)(3)

9.1.2 Test Limit

FCC Part 15 Subpart C(15.247)/RSS-247					
Test Item Limit Frequency Range(MHz					
Peak Output Power	1 Watt or 30 dBm	2400~2483.5			

9.2 Test Setup

9.3 Test Procedure

The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement is according to section 9.1.1 of KDB 558074 D01 DTS Meas Guidance v05r02.

- (1) Set the RBW≥DTS Bandwidth
- (2) Set VBW≥2*RBW
- (3) Set Span≥3*RBW
- (4) Sweep time=auto
- (5) Detector= peak
- (6) Trace mode= maxhold.
- (7) Allow trace to fully stabilize, and then use peak marker function to determine the peak amplitude level.

9.4 Deviation From Test Standard

No deviation

9.5 EUT Operating Condition

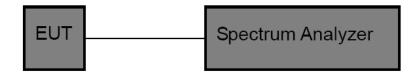
The EUT was set to continuously transmitting in the max power during the test.

9.6 Test Data

Please refer to the Attachment E.

Page: 22 of 44

10. Power Spectral Density Test


10.1 Test Standard and Limit

10.1.1 Test Standard FCC Part 15.247 (e)

10.1.2 Test Limit

FCC Part 15 Subpart C(15.247)					
Test Item Limit Frequency Range(N					
Power Spectral Density	8dBm(in any 3 kHz)	2400~2483.5			

10.2 Test Setup

10.3 Test Procedure

The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement according to section 10.2 of KDB 558074 D01 DTS Meas Guidance v05r02.

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Set analyser centre frequency to DTS channel centre frequency.
- (3) Set the span to 1.5 times the DTS bandwidth.
- (4) Set the RBW to: 3 kHz(5) Set the VBW to: 10 kHz
- (6) Detector: peak(7) Sweep time: auto
- (8) Allow trace to fully stabilize. Then use the peak marker function to determine the maximum amplitude level.

10.4 Deviation From Test Standard

No deviation

10.5 EUT Operating Condition

The EUT was set to continuously transmitting in each mode and low, Middle and high channel for the test.

10.6 Test Data

Please refer to the Attachment F.

Page: 23 of 44

11. Antenna Requirement

11.1 Standard Requirement

10.1.1 Standard

FCC Part 15.203

10.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

11.2 Deviation From Test Standard

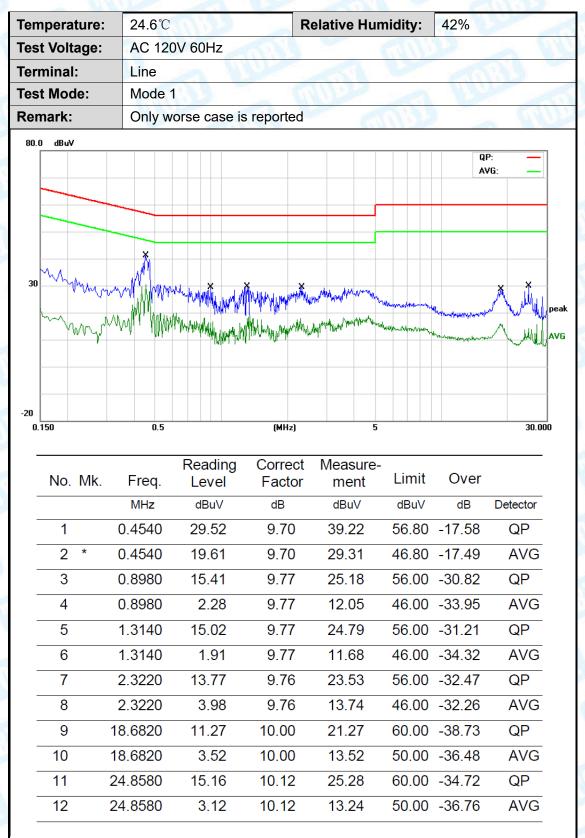
No deviation

11.3 Antenna Connected Construction

The gains of the antenna used for transmitting is 1.62 dBi, and the antenna de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

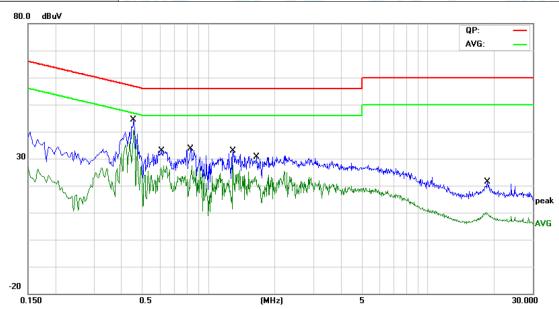
11.4 Result

The EUT antenna is a Wire Antenna. It complies with the standard requirement.


Antenna Type				
ATT WITH	⊠Permanent attached antenna			
	☐Unique connector antenna	lin.		
7 W	☐Professional installation antenna			

Page: 24 of 44

Attachment A-- Conducted Emission Test Data



- 1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)

Ì	Temperature:	24.6℃	Relative Humidity:	42%			
	Test Voltage:	AC 120V 60Hz	WU -	The same of			
	Terminal:	Neutral	Neutral Neutral				
	Test Mode:	Mode 1	Mode 1				
ø	Remark:	Only worse case is reported	Only worse case is reported				

			Reading	Correct	Measure-			
No.	Mk.	Freq.	Level	Factor	ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1		0.4540	33.55	9.80	43.35	56.80	-13.45	QP
2	*	0.4540	30.44	9.80	40.24	46.80	-6.56	AVG
3		0.6100	19.40	9.80	29.20	56.00	-26.80	QP
4		0.6100	13.57	9.80	23.37	46.00	-22.63	AVG
5		0.8300	20.66	9.80	30.46	56.00	-25.54	QP
6		0.8300	13.11	9.80	22.91	46.00	-23.09	AVG
7		1.2940	19.12	9.80	28.92	56.00	-27.08	QP
8		1.2940	8.02	9.80	17.82	46.00	-28.18	AVG
9		1.6540	15.93	9.80	25.73	56.00	-30.27	QP
10		1.6540	10.48	9.80	20.28	46.00	-25.72	AVG
11		18.6420	3.98	10.00	13.98	60.00	-46.02	QP
12		18.6420	-1.50	10.00	8.50	50.00	-41.50	AVG

- Remark:
 1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)

Page: 26 of 44

Attachment B-- Unwanted Emission Test Data

--- Radiated Unwanted Emissions

9 KHz~30 MHz

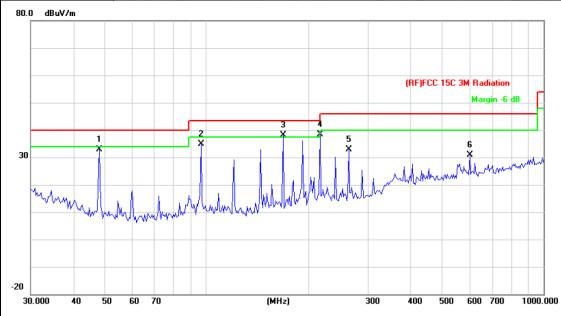
From 9 KHz to 30 MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB

Below the permissible value has no need to be reported.

30MHz~1GHz

Tempe	ratur	е:	23	.9°	\mathbb{C}				100	F	Relat	ive l	Hum	idit	y:	4	14%		
Test Vo	oltage	e:	AC	2 12	20V	/60	Hz								118				00
Ant. Po	ol.		Но	oriz	ont	al	W			Á	i A	13				K	1	16	
Test M	ode:		TX	(24	102	MH	Z			W	91			K					
Remar	k:		Or	ıly '	now	se o	case	is r	eporte	d.				ı			Ġ.	M	9 2
80.0 dE	uV/m																		
								ı X	3 3	4 *		- - 6		(F	RF)FC(C 15C :		diation rgin -6 d	В
	Mum	~	nadala		lw	<u>_</u>	w		2 *	M.						with M	MM	hmm	w.put/~
	M.W.M.	50		70	0 8		hulw		(MHz	M.			300	4	00	500	600	700	1000.00
-20	40		D 60	· · · · · · · · · · · · · · · · · · ·		Re	eadin evel	19		ct	Meas		-	4 imit		500 OV6		700	1000.00
-20	40	50	0 60 . F		۱.	Re		19	(MHz	ct		nt	- Li				er	700	_
-20	40	50	0 60 . F	rec	1.	Re	evel	lg	(MHz Corre Facto	ct	me	ent V/m	- Li	imit	'm	Ove	er		or
-20	40 No.	50 Mk	D 60	rec	վ. 66	Re L	_evel dBuV	g	(MHz) Corre Facto	ct	me dBu	ent V/m .59	Li	imit BuV/	'm 0	Ove	er 91	Detect	or <
-20	No.	50 Mk	. F	rec MHz .27	1. 66 48	Re L	evel dBuV 60.76	ng .	(MHz Corre Factor dB/m	ct pr	dBu	v/m .59 .68	Li	mit BuV/	m 0	Ove	er 91	Detect peal	or <
-20	No.	Mk !	. F	rec MHz .27 .33	1. 66 48 38	Re L	_evel dBu∨ 60.76 57.61	ig .	Corre Facto dB/m -22.11	cct 7	38.	ent V/m .59 .68	Li dl 4	mit BuV/ 3.5	m 0 0	Ove dB -4.9	er 91 32	Detector peal	or
-20	No. 1 2 3	Mk !	. F 120 144 168	rec MHz .27 .33 .41	66 48 38 86	Re L 6	evel dBuV 60.76 57.61 59.24	g	(MHz) Corre Facto dB/m -22.17 -21.93	ct 7 3 2	38. 35. 38. 39.	ent V/m .59 .68	- Li dl 4 4 4	3.5 3.5	m 0 0 0	Ove dB -4.9 -7.8	er 91 32 78	Detecti peal peal peal	Or (


- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dB μ V/m)-Limit QPK(dB μ V/m)

Page: 27 of 44

Temperature:	23.9℃	Relative Humidity:	44%
Test Voltage:	AC 120V/60Hz		
Ant. Pol.	Vertical		
Test Mode:	TX 2402MHz		M081
Remark:	Only worse case is reported	ed.	War and
80.0 dBuV/m			

No	o. Mk	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		47.9940	55.40	-22.40	33.00	40.00	-7.00	peak
2		96.0986	56.69	-21.91	34.78	43.50	-8.72	peak
3	*	168.4138	58.63	-20.52	38.11	43.50	-5.39	peak
4		216.7828	57.39	-19.04	38.35	46.00	-7.65	peak
5		263.8190	49.72	-16.96	32.76	46.00	-13.24	peak
6		603.5392	39.06	-8.28	30.78	46.00	-15.22	peak

^{*:}Maximum data x:Over limit !:over margin

- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dB μ V/m)-Limit QPK(dB μ V/m)

Above 1GHz

Temperature:	23.9℃	Relative Humidity:	44%					
Test Voltage:	AC 120V/60Hz							
Ant. Pol.	Horizontal	Horizontal						
Test Mode:	BLE(1Mbps) Mode TX 2402 MHz							

No	. Mk.	Freq.	_	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4803.678	44.26	13.01	57.27	74.00	-16.73	peak
2	*	4803.940	33.82	13.01	46.83	54.00	-7.17	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dBμV/m) = Corr. (dB/m) + Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG (dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.9℃	Relative Humidity:	44%					
Test Voltage:	AC 120V/60Hz							
Ant. Pol.	Vertical	A VILLE						
Test Mode:	BLE(1Mbps) Mode TX 240	BLE(1Mbps) Mode TX 2402 MHz						

No.	Mk.	Freq.		Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4803.822	43.81	13.01	56.82	74.00	-17.18	peak
2	*	4803.948	32.86	13.01	45.87	54.00	-8.13	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

29 of 44 Page:

Temperature:	23.9℃	Relative Humidity:	44%				
Test Voltage:	AC 120V/60Hz	THU TO	100				
Ant. Pol.	Horizontal	THE PROPERTY OF					
Test Mode:	BLE(1Mbps) Mode TX 2442 MHz						

No.	. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4883.306	42.27	13.59	55.86	74.00	-18.14	peak
2	*	4884.816	28.12	13.61	41.73	54.00	-12.27	AVG


Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.9℃	Relative Humidity:	44%				
Test Voltage:	AC 120V/60Hz						
Ant. Pol.	Vertical	400	A MULTINE				
Test Mode:	BLE(1Mbps) Mode TX 2442 MHz						

	No.	Mk.	Freq.	_	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		*	4883.970	28.19	13.60	41.79	54.00	-12.21	AVG
2			4884.302	41.91	13.61	55.52	74.00	-18.48	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 30 of 44

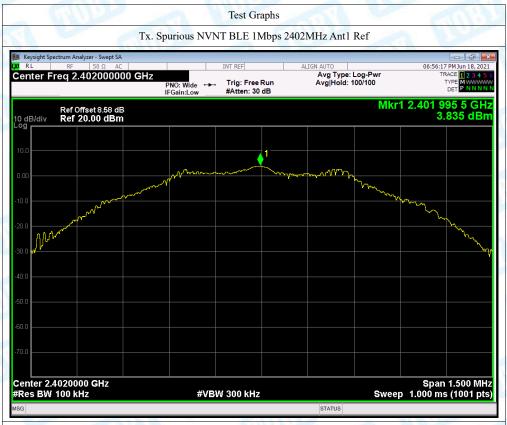
Temperature:	23.9℃	Relative Humidity:	44%
Test Voltage:	AC 120V/60Hz	TUL	Contract of
Ant. Pol.	Horizontal	- MINDS	
Test Mode:	BLE(1Mbps) Mode TX 2480	MHz	ANB V

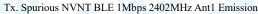
No	. Mk.	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4959.740	44.00	14.15	58.15	74.00	-15.85	peak
2	*	4959.928	32.08	14.15	46.23	54.00	-7.77	AVG

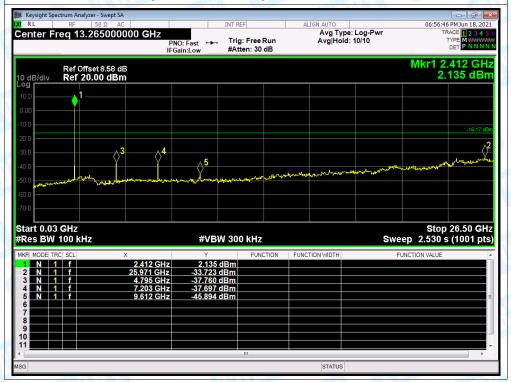
Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

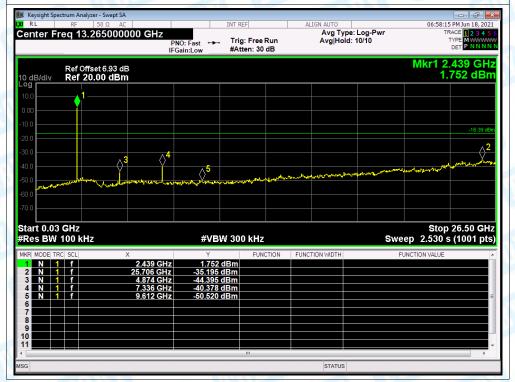
Temperature:	23.9℃	Relative Humidity:	44%				
Test Voltage:	AC 120V/60Hz	AC 120V/60Hz					
Ant. Pol.	Vertical	Vertical					
Test Mode: BLE(1Mbps) Mode TX 2480 MHz							


No. Mk.		c. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4959.846	31.21	14.15	45.36	54.00	-8.64	AVG
2		4960.280	43.19	14.15	57.34	74.00	-16.66	peak

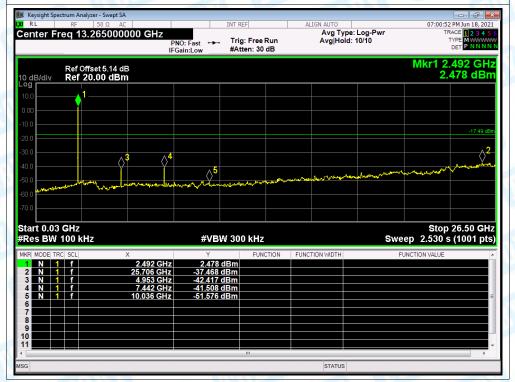

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.



--- Conducted Unwanted Emissions

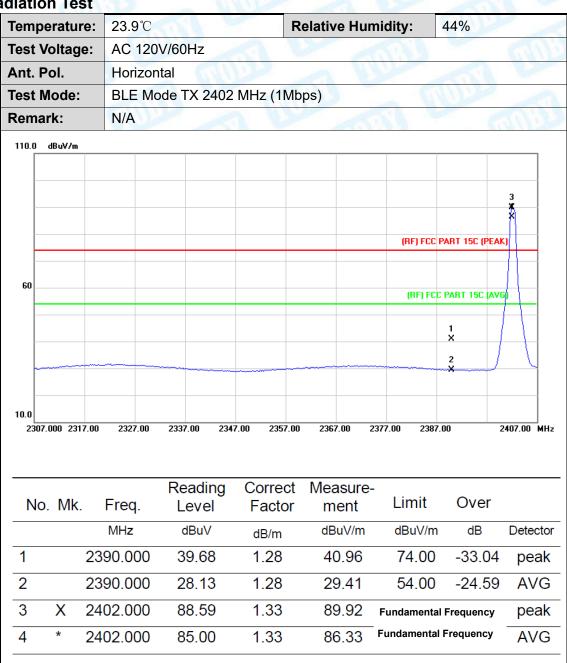


Tx. Spurious NVNT BLE 1Mbps 2442MHz Ant1 Emission



Page: 33 of 44

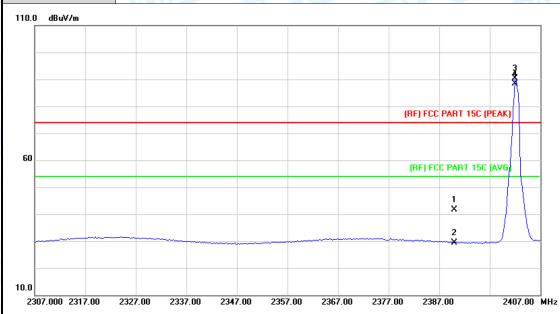
Tx. Spurious NVNT BLE 1Mbps 2480MHz Ant1 Emission



Page: 34 of 44

Attachment C-- Restricted Bands Requirement and Band Edge Test Data

(1) Radiation Test



- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

Report No.: TB-FCC181205 Page: 35 of 44

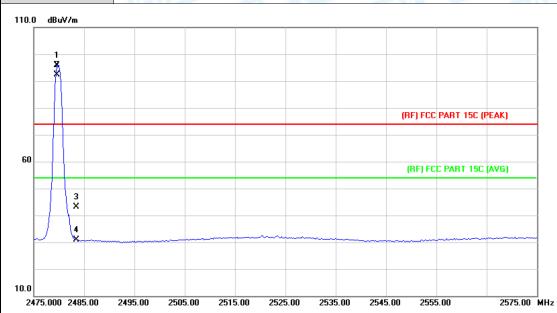
	Temperature:	23.9℃	Relative Humidity:	44%				
	Test Voltage: AC 120V/60Hz							
	Ant. Pol.	Vertical	Vertical					
	Test Mode:	BLE Mode TX 2402 MHz(1	BLE Mode TX 2402 MHz(1Mbps)					
7	Remark:	N/A		The same				

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		2390.000	40.37	1.28	41.65	74.00	-32.35	peak
2		2390.000	28.18	1.28	29.46	54.00	-24.54	AVG
3	Χ	2402.000	88.94	1.33	90.27	Fundamental	Frequency	peak
4	*	2402.000	87.02	1.33	88.35	Fundamental I	Frequency	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

Report No.: TB-FCC181205 Page: 36 of 44

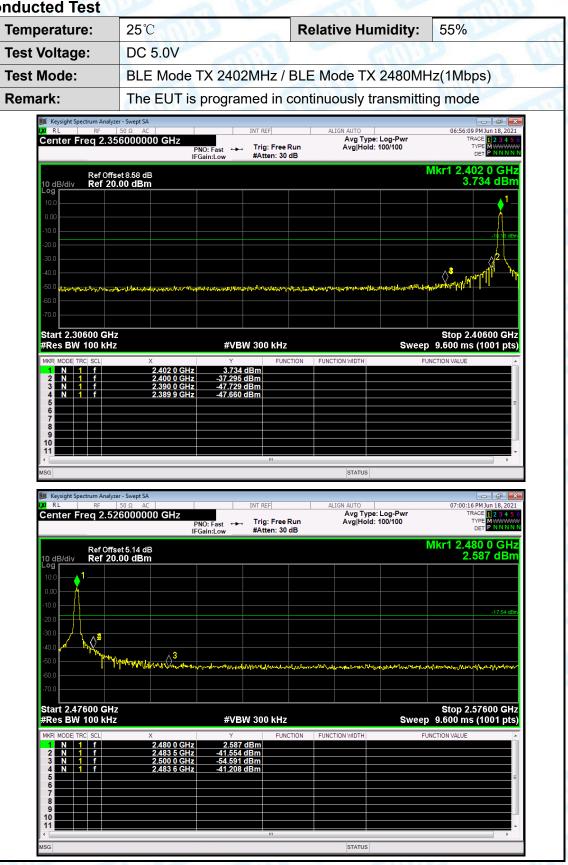
Ì	Temperature:	23.9℃	Relative Humidity:	44%				
	Test Voltage:	C 120V/60Hz						
	Ant. Pol.	Horizontal	Horizontal					
1	Test Mode:	BLE Mode TX 2480 MHz (11	BLE Mode TX 2480 MHz (1Mbps)					
P	Remark:	N/A						


No	o. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	Χ	2479.800	90.31	1.85	92.16	 Fundamenta	l Frequency	peak
2	*	2479.800	87.81	1.85	89.66	Fundamenta	I Frequency	AVG
3		2483.500	52.96	1.88	54.84	74.00	-19.16	peak
4		2483.500	33.01	1.88	34.89	54.00	-19.11	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
 3. Margin (dB) = Peak/AVG (dBμV/m)-Limit PK/AVG(dBμV/m)

Report No.: TB-FCC181205 Page: 37 of 44

Temperature:	23.9℃	Relative Humidity:	44%			
Test Voltage:	AC 120V/60Hz	DVU-	1 Comment			
Ant. Pol.	Vertical					
Test Mode:	BLE Mode TX 2480 MHz (1Mbps)					
Remark:	N/A		A STATE OF THE STA			


No. Mk.		. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	Χ	2479.600	94.06	1.85	95.91	Fundamental F	requency	peak
2	*	2479.600	90.50	1.85	92.35	Fundamental I	Frequency	AVG
3		2483.500	41.30	1.88	43.18	74.00	-30.82	peak
4		2483.500	28.96	1.88	30.84	54.00	-23.16	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

(2) Conducted Test

Page: 39 of 44

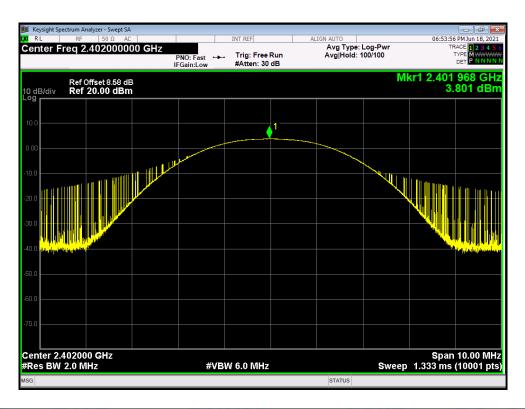
Attachment D-- Bandwidth Test Data

Temperature:	25 ℃	and by	Relative Humidity:	55%			
Test Voltage:	DC 5	.0V					
Test Mode:	BLE	TX Mode (1 Mbps)					
Channel freque	equency 6dB Bandwidth		99% Bandwidth	Limit			
(MHz)		(kHz)	(kHz)	(kHz)			
2402	2402 626.2		1022.6				
2442		2442 642.5		2442 642.5		>=500	
2480		650.1	1048.6				

BLE Mode

2402 MHz

BLE Mode 2442 MHz 06:57:34 PM Jun 18, 2021 Radio Std: None Center Freq 2.442000000 GHz Radio Device: BTS #IFGain:Low Mkr3 2.442322 GHz -2.6968 dBm w_W_M_M_M Center 2.442 GHz #Res BW 100 kHz Span 2 MHz Sweep 1.333 ms #VBW 300 kHz 9.36 dBm **Occupied Bandwidth Total Power** 1.0428 MHz 642 Hz **Transmit Freq Error** % of OBW Power 99.00 % x dB Bandwidth 642.5 kHz x dB -6.00 dB **BLE Mode**



Attachment E-- Peak Output Power Test Data

Temperature: 25°C		Relative Humidity:		55%
Test Voltage:	DC 5.0V		any	
Test Mode:	BLE TX M	lode (1Mbps)		
Channel frequen	cy (MHz)	Test Result (dBm)		Limit (dBm)
2402		3.8	301	
2442		3.6	554	30
2480		2.581		
		RIF	Mode	

BLE Mode

2402 MHz

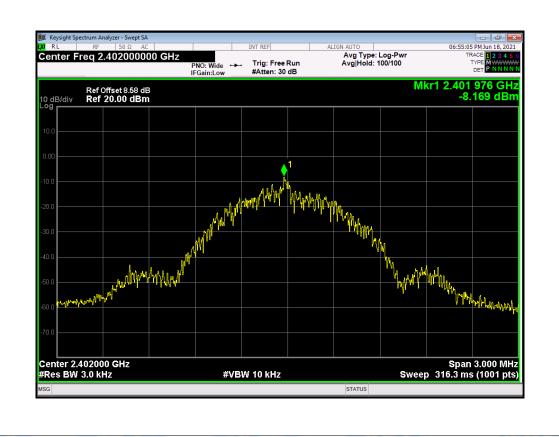
Center 2.480000 GHz #Res BW 2.0 MHz

BLE Mode 2442 MHz Avg Type: Log-Pwr Avg|Hold: 100/100 Center Freq 2.442000000 GHz Trig: Free Run #Atten: 30 dB Mkr1 2.442 000 GHz 3.654 dBm Ref Offset 6.93 dB Ref 20.00 dBm Center 2.442000 GHz #Res BW 2.0 MHz Span 10.00 MHz Sweep 1.333 ms (10001 pts) #VBW 6.0 MHz **BLE Mode** 2480 MHz 📕 Keysight Spectrum Analyzer - Swept SA Center Freq 2.480000000 GHz Avg Type: Log-Pwr Avg|Hold: 100/100 PNO: Fast +-- Trig: Free Run IFGain:Low #Atten: 30 dB Mkr1 2.480 005 GHz 2.581 dBm Ref Offset 5.14 dB Ref 20.00 dBm

#VBW 6.0 MHz

Span 10.00 MHz Sweep 1.333 ms (10001 pts)

STATUS



Attachment F-- Power Spectral Density Test Data


Temperature:	25℃	Relative Hu		lumidity:	55%	
Test Voltage:	DC 5.0V			and the		
Test Mode:	BLE TX M	lode(1Mbps)		10		NB C
Channel Frequency		Power Density		Lim	Limit	
(MHz)		(dBm/3kHz)		(dBm/3	(dBm/3kHz)	
2402		-8.169				
2442 2480		-7.72	-7.729		8	
		-9.326				
		BLE M	lode			

2402 MHz

Report No.: TB-FCC181205
Page: 44 of 44

----END OF REPORT----