

SAR Test Report

Report No.: AGC03866180501FH01

FCC ID	: 2APR9-DIAMOND
APPLICATION PURPOSE	: Original Equipment
PRODUCT DESIGNATION	: FEATURE PHONE
BRAND NAME	: DITEC
MODEL NAME	: DIAMOND
CLIENT	: HERMANOS GARCIA ROMERO S.A.S.
DATE OF ISSUE	: May. 24, 2018
STANDARD(S)	IEEE Std. 1528:2013 : FCC 47CFR § 2.1093 IEEE/ANSI C95.1:2005
REPORT VERSION	: V1.0

Attestation of Global Compliance (Shenzhen) Co., Ltd.

complia,

CAUTION:

This report shall not be reproduced except in full without the written permission of the test laboratory and shall not be quoted out of context.

The results shown in this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.ceit.com.

Attestation of Global Compliance

Report No.: AGC03866180501FH01 Page 2 of 74

Report Revise Record

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0	And the second s	May. 24, 2018	Valid	Initial Release

Report No.: AGC03866180501FH01 Page 3 of 74

	Test Report Certification
Applicant Name	HERMANOS GARCIA ROMERO S.A.S.
Applicant Address	Calle 13 No. 19-71 Edificio Sabana Plaza, piso 3 Of. M01 Bogotá -Colombia
Manufacturer Name	HONGKONG RANGEN TRADE CO., LIMITED
Manufacturer Address	FLAT/RM 502 ARION COMM CENTER 2-12 QUEEN'S RD WEST SHEUNG WAN HONGKONG, CHINA
Product Designation	FEATURE PHONE
Brand Name	DITEC
Model Name	DIAMOND
Different Description	N/A
EUT Voltage	DC3.7V by battery
Applicable Standard	IEEE Std. 1528:2013 FCC 47CFR § 2.1093 IEEE/ANSI C95.1:2005
Test Date	May. 07, 2018 to May. 10, 2018
Report Template	AGCRT-US-2.5G/SAR (2018-01-01)

Note: The results of testing in this report apply to the product/system which was tested only.

Front those

Tested By

Eric Zhou(Zhou Yongkang)

May. 10, 2018

Angola li

Checked By

Angela Li(Li Jiao)

May. 24, 2018

wester

Authorized By

Forrest Lei(Lei Yonggang) Authorized Officer May. 24, 2018

GC[®]鑫宇环检测 Attestation of Global Compliance

Report No.: AGC03866180501FH01 Page 4 of 74

TABLE OF CONTENTS

1. SUMMARY OF MAXIMUM SAR VALUE	
2. GENERAL INFORMATION	
2.1. EUT DESCRIPTION	6
3. SAR MEASUREMENT SYSTEM	7
 3.1. THE SATIMO SYSTEM USED FOR PERFORMING COMPLIANCE TESTS CONSISTS OF FOLLOWING ITEMS 3.2. COMOSAR E-FIELD PROBE	
4. SAR MEASUREMENT PROCEDURE	
4.1. Specific Absorption Rate (SAR) 4.2. SAR Measurement Procedure 4.3. RF Exposure Conditions	12 14
5. TISSUE SIMULATING LIQUID	
5.1. THE COMPOSITION OF THE TISSUE SIMULATING LIQUID 5.2. TISSUE DIELECTRIC PARAMETERS FOR HEAD AND BODY PHANTOMS	15 16
6. SAR SYSTEM CHECK PROCEDURE	
6.1. SAR System Check Procedures 6.2. SAR System Check	18
7. EUT TEST POSITION	19
 7.1. DEFINE TWO IMAGINARY LINES ON THE HANDSET. 7.2. CHEEK POSITION 7.3. TILT POSITION 7.4. BODY WORN POSITION 	20 20
8. SAR EXPOSURE LIMITS	22
9. TEST FACILITY	
10. TEST EQUIPMENT LIST	
11. MEASUREMENT UNCERTAINTY	25
12. CONDUCTED POWER MEASUREMENT	28
13. TEST RESULTS	33
13.1. SAR TEST RESULTS SUMMARY	33
APPENDIX A. SAR SYSTEM CHECK DATA	
APPENDIX B. SAR MEASUREMENT DATA	
APPENDIX C. TEST SETUP PHOTOGRAPHS	69
APPENDIX C. TEST SETUP PHOTOGRAPHS APPENDIX D. CALIBRATION DATA	74

The results showing this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.cett.com.

Attestation of Global Compliance

1. SUMMARY OF MAXIMUM SAR VALUE

The maximum results of Specific Absorption Rate (SAR) found during testing for EUT are as follows:

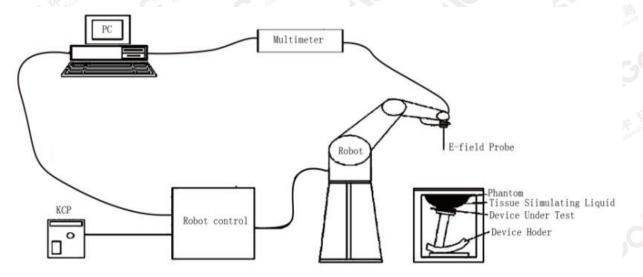
	H	SAR Test Limit	
Frequency Band	Head	Body-worn	(W/Kg)
GSM 850	0.694	0.969	
PCS 1900	0.317	1.175	1.6
Simultaneous Reported SAR		1.280	
SAR Test Result	to compliance	PASS	

This device is compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6W/Kg) specified in IEEE Std. 1528:2013; FCC 47CFR § 2.1093; IEEE/ANSI C95.1:2005 and the following specific FCC Test Procedures:

- KDB 447498 D01 General RF Exposure Guidance v06
- KDB 648474 D04 Handset SAR v01r03
- KDB 865664 D01 SAR Measurement 100MHz to 6GHz v01r04
- KDB 941225 D01 3G SAR Procedures v03r01

2. GENERAL INFORMATION

2.1. EUT Description


General Information	
Product Designation	FEATURE PHONE
Test Model	DIAMOND
Hardware Version	Spreadtrum 6531E
Software Version	E06_SHX_C91_Ditec_V01_20180508.pac
Device Category	Portable
RF Exposure Environment	Uncontrolled
Antenna Type	Internal
GSM and GPRS	
Support Band	☐GSM 850 ☐PCS 1900 ☐GSM 900 ☐DCS 1800
GPRS Type	Class B
GPRS Class	Class 12(1Tx+4Rx, 2Tx+3Rx, 3Tx+2Rx, 4Tx+1Rx)
TX Frequency Range	GSM 850 : 820-850MHz;; PCS 1900: 1850-1910MHz;
RX Frequency Range	GSM 850 : 869~894MHz; PCS 1900: 1930~1990MHz
Release Version	R99
Type of modulation	GMSK for GSM/GPRS
Antenna Gain	GSM850: 0.58dBi; PCS1900:0.74dBi;
Max. Average Power	GSM850: 31.43dBm ;PCS1900: 28.64dBm
Bluetooth	A The Second and Secon
Bluetooth Version	□V2.0 □V2.1 □V2.1+EDR □V3.0 □V3.0+HS □V4.0 □V4.1
Operation Frequency	2402~2480MHz
Type of modulation	
Avg. Burst Power	3.233dBm
Antenna Gain	1.0dBi
Accessories	C The CO CO Free Provide Provi
Battery	Brand name: DITEC Model No. : BL-25Bl Voltage and Capacitance: 3.7 V & 2200mAh
Earphone	Brand name: N/A Model No. : N/A
	asure the average power and Peak power at the same time
	d for testing is end product. Type
Product	Production unit Identical Prototype

GC[®]鑫宇环检测 Attestation of Global Compliance

Report No.: AGC03866180501FH01 Page 7 of 74

3. SAR MEASUREMENT SYSTEM

3.1. The SATIMO system used for performing compliance tests consists of following items

The COMOSAR system for performing compliance tests consists of the following items:

- The PC. It controls most of the bench devices and stores measurement data. A computer running WinXP and the Opensar software.
- The E-Field probe. The probe is a 3-axis system made of 3 distinct dipoles. Each dipole returns a voltage in function of the ambient electric field.
- · The Keithley multimeter measures each probe dipole voltages.
- The SAM phantom simulates a human head. The measurement of the electric field is made inside the phantom.
- The liquids simulate the dielectric properties of the human head tissues.
- The network emulator controls the mobile phone under test.
- The validation dipoles are used to measure a reference SAR. They are used to periodically check the bench to make sure that there is no drift of the system characteristics over time.
- •The phantom, the device holder and other accessories according to the targeted measurement.

3.2. COMOSAR E-Field Probe

The SAR measurement is conducted with the dosimetric probe manufactured by SATIMO. The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. SATIMO conducts the probe calibration in compliance with international and national standards (e.g. IEEE 1528 and relevant KDB files.) The calibration data are in Appendix D.

Isotropic E-Field Probe Specification

Model	SSE2
Manufacture	MVG
Identification No.	SN 08/16 EPGO282
Frequency	0.7GHz-6GHz Linearity:±0.06dB(700MHz-6GHz)
Dynamic Range	0.01W/Kg-100W/Kg Linearity:±0.06dB
Dimensions	Overall length:330mm Length of individual dipoles:2mm Maximum external diameter:8mm Probe Tip external diameter:2.5mm Distance between dipoles/ probe extremity:1mm
Application	High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields). Only probe which enables compliance testing for frequencies up to 6 GHz with precision of better 30%.

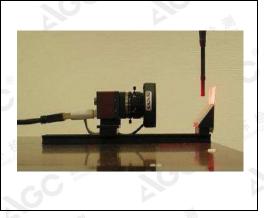
3.3. Robot

The COMOSAR system uses the KUKA robot from SATIMO SA (France).For the 6-axis controller COMOSAR system, the KUKA robot controller version from SATIMO is used.

The XL robot series have many features that are important for our application:

- □ High precision (repeatability 0.02 mm)
- □ High reliability (industrial design)
- □ Jerk-free straight movements
- □ Low ELF interference (the closed metallic

construction shields against motor control fields)

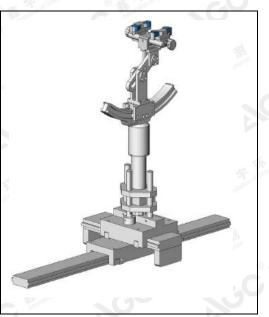

AGC[®]鑫宇环检测 Attestation of Global Compliance

Report No.: AGC03866180501FH01 Page 9 of 74

3.4. Video Positioning System

The video positioning system is used in OpenSAR to check the probe. Which is composed of a camera, LED, mirror and mechanical parts. The camera is piloted by the main computer with firewire link. During the process, the actual position of the probe tip with respect to the robot arm is measured, as well as the probe length and the horizontal probe offset. The software then corrects all movements, such that the robot coordinates are valid for the probe tip.

The repeatability of this process is better than 0.1 mm. If a position has been taught with an aligned probe, the same position will be reached with another aligned probe within 0.1 mm, even if the other probe has different dimensions. During probe rotations, the probe tip will keep its actual position.



3.5. Device Holder

The COMOSAR device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation center for both scales is the ear reference point (EPR).

Thus the device needs no repositioning when changing the angles. The COMOSAR device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity

 $\epsilon r = 3$ and loss tangent $\delta = 0.02$. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

Report No.: AGC03866180501FH01 Page 10 of 74

3.6. SAM Twin Phantom

The SAM twin phantom is a fiberglass shell phantom with	
2mm shell thickness (except the ear region where shell	
thickness increases to 6mm). It has three measurement	
areas:	
Left head	
Right head	
□ Flat phantom	
	R

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

AGC[®]鑫宇环检测 Attestation of Global Compliance

4. SAR MEASUREMENT PROCEDURE

4.1. Specific Absorption Rate (SAR)

SAR is related to the rate at which energy is absorbed per unit mass in object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and occupational/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element(dv) of given mass density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dV} \right)$$

SAR is expressed in units of Watts per kilogram (W/Kg) SAR can be obtained using either of the following equations:

$$SAR = \frac{\sigma E^2}{\rho}$$

$$SAR = c_h \frac{dT}{dt}_{t=0}$$

Where

SAR Ε σ ρ

dt

is the specific absorption rate in watts per kilogram; is the r.m.s. value of the electric field strength in the tissue in volts per meter; is the conductivity of the tissue in siemens per metre; is the density of the tissue in kilograms per cubic metre;

is the heat capacity of the tissue in joules per kilogram and Kelvin;

| t = 0 is the initial time derivative of temperature in the tissue in kelvins per second

4.2. SAR Measurement Procedure

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurement are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface is 2.7mm This distance cannot be smaller than the distance os sensor calibration points to probe tip as `defined in the probe properties,

Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in SATIMO software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in db) is specified in the standards for compliance testing. For example, a 2db range is required in IEEE Standard 1528, whereby 3db is a requirement when compliance is assessed in accordance with the ARIB standard (Japan) If one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximum are detected, the number of Zoom Scan has to be increased accordingly.

Area Scan Parameters extracted from KDB 865664 D01 SAR Measurement 100MHz to 6GHz

\leq 3 GHz	> 3 GHz
$5 \pm 1 \text{ mm}$	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$
30°±1°	20° ± 1°
≤ 2 GHz: ≤ 15 mm 2 – 3 GHz: ≤ 12 mm	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm
measurement plane orientation the measurement resolution r x or y dimension of the test d	on, is smaller than the above, must be \leq the corresponding levice with at least one
	5 ± 1 mm 30° ± 1° ≤ 2 GHz: ≤ 15 mm

Step 3: Zoom Scan

Zoom Scan are used to assess the peak spatial SAR value within a cubic average volume containing 1g abd 10g of simulated tissue. The Zoom Scan measures points(refer to table below) within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1g and 10g and displays these values next to the job's label.

<u>ر</u> مب					
	Maximum zoom scan s	patial reso	lution: Δx _{Zoom} , Δy _{Zoom}	$\leq 2 \text{ GHz}$: $\leq 8 \text{ mm}$ 2 - 3 GHz: $\leq 5 \text{ mm}^*$	$3 - 4 \text{ GHz:} \le 5 \text{ mm}^*$ $4 - 6 \text{ GHz:} \le 4 \text{ mm}^*$
5 (M)		uniform grid: $\Delta z_{Zoom}(n)$		$\leq 5 \text{ mm}$	$3 - 4$ GHz: ≤ 4 mm $4 - 5$ GHz: ≤ 3 mm $5 - 6$ GHz: ≤ 2 mm
The second se	Maximum zoom scan spatial resolution, normal to phantom surface	graded	$\Delta z_{Zoom}(1)$: between 1 st two points closest to phantom surface	\leq 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm
		be	∆z _{Zoom} (n>1): between subsequent points	≤1.5·∆z	Zoom(n-1)
	Minimum zoom scan volume	x, y, z		\geq 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm
	Note: δ is the penetration	on denth of	f a plane-wave at norma	l incidence to the tissue mediu	m: see draft standard IFFF

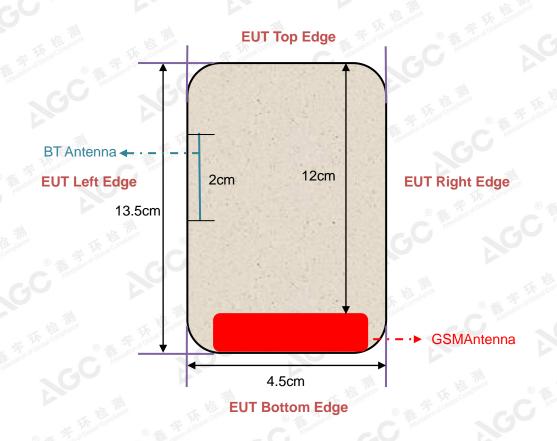
Zoom Scan Parameters extracted from KDB865664 d01 SAR Measurement 100MHz to 6GHz

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

Step 4: Power Drift Measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the same settings. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.


4.3. RF Exposure Conditions

Test Configuration and setting:

The EUT is a model of GSM Portable Mobile Station (MS). It supports GSM/GPRS, BT.

For WWAN SAR testing, the device was controlled by using a base station emulator. Communication between the device and the emulator were established by air link. The distance between the EUT and the antenna is larger than 50cm, and the output power radiated from the emulator antenna is at least 30db smaller than the output power of EUT.

Antenna Location: (the back view)

5. TISSUE SIMULATING LIQUID

For SAR measurement of the field distribution inside the phantom, the phantom must be filled with homogeneous tissue simulating liquid to a depth of at least 15cm. For head SAR testing the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15cm For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15cm. The nominal dielectric values of the tissue simulating liquids in the phantom and the tolerance of 5% are listed in 5.2

5.1. The composition of the tissue simulating liquid

Ingredient (% Weight) Frequency (MHz)	Water	Nacl	Polysorbate 20	DGBE	1,2 Propanediol	Triton X-100
835 Head	50.36	1.25	48.39	0.0	0.0	0.0
835 Body	54.00	14	0.0	15	0.0	30
1900 Head	54.9	0.18	0.0	44.92	0.0	0.0
1900 Body	70	1	0.0	9	0.0	20

5.2. Tissue Dielectric Parameters for Head and Body Phantoms

The head tissue dielectric parameters recommended by the IEEE 1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in IEEE 1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations described in Reference [12] and extrapolated according to the head parameters specified in IEEE 1528.

Target Frequency	he	ad	body		
(MHz)	٤r	σ (S/m)	٤r	σ (S/m)	
300	45.3	0.87	58.2	0.92	
450	43.5	0.87	56.7	0.94	
835	41.5	0.90	55.2	0.97	
900	41.5	0.97	55.0	1.05	
915	41.5	1.01	55.0	1.06	
1450	40.5	1.20	54.0	1.30	
1610	40.3	1.29	53.8	1.40	
1800 – 2000	40.0	1.40	53.3	1.52	

(ϵr = relative permittivity, σ = conductivity and ρ = 1000 kg/m3)

AGC B 基 宇 环 检 测 Attestation of Global Compliance

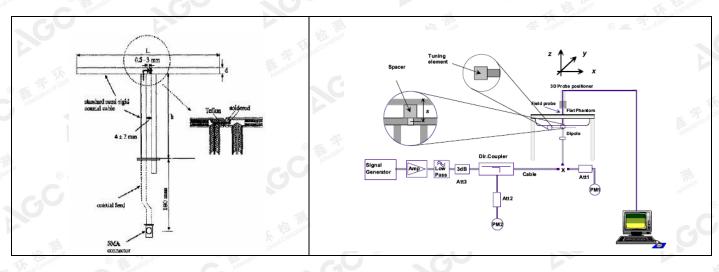
5.3. Tissue Calibration Result

The dielectric parameters of the liquids were verified prior to the SAR evaluation using SATIMO Dielectric Probe Kit and R&S Network Analyzer ZVL6.

	T	Tissue Stimulant N	leasurement for 835MHz	1		
	Fr.	Dielectric Pa	Tissue			
	(MHz)	ɛr 41.5 (39.425-43.575)	δ[s/m] 0.90(0.855-0.945)	Temp [°C]	Test time	
Head	824.2	42.46	0.87		T	
	835	41.34	0.90	21.7	May 10, 2019	
	836.6	40.67	0.92	21.7	May. 10, 2018	
	848.8	39.88	0.94			
C.3	Fr.	Dielectric Pa	Dielectric Parameters (±5%)			
	(MHz)	εr 55.20(52.44-57-96)	δ[s/m]0.97(0.9215-1.0185)	Temp [oC]	Test time	
Body	824.2	56.99	0.93	C Thestation		
1	835	55.81	0.95		May 10, 2010	
	836.6	55.23	0.96	21.8	May. 10, 2018	
	848.8	54.00	0.98	the planes	The Compliance	
60				orGlobalCo	C The nation of Globa	

		Tissue Stimulant Me	easurement for 1900MHz	(4
F F of Global Con	Fr.	Dielectric Par	Tissue	-	
	(MHz)	εr40.00(38.00-42.00)	δ[s/m]1.40(1.33-1.47)	Temp [°C]	Test time
Head	1850.2	41.53	1.34	C anostation of	Attestation
	1880	40.63	1.38	01.1	May 07 2019
	1900	40.11	1.41	21.1	May. 07, 2018
	1909.8	39.00	1.43	100	The Compliance
0	Fr.	Dielectric Par	Tissue	allon of Globa	
	(MHz)	ɛr53.30(50.635-55.965)	δ[s/m]1.52(1.444-1.596)	Temp [oC]	Test time
Body	1850.2	54.75	1.46		
of Global C C C J	1880	53.71	1.50	04.0	May 07 2019
	1900	53.26	1.51	21.3	May. 07, 2018
	1909.8	51.99	1.54	ation of Globa	C Marine

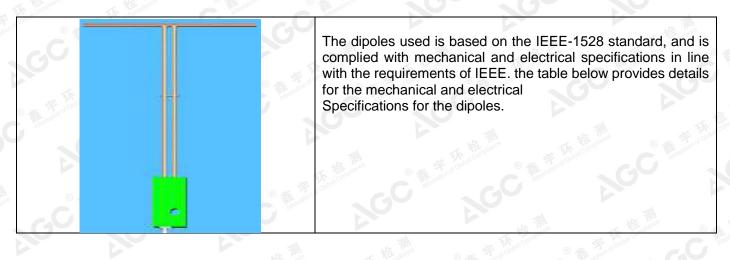
AGC[®]鑫宇环检测 Attestation of Global Compliance


6. SAR SYSTEM CHECK PROCEDURE

6.1. SAR System Check Procedures

SAR system check is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of a test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device. The same SAR probe(s) and tissue-equivalent media combinations used with each specific SAR system for system verification must be used for device testing. When multiple probe calibration points are required to cover substantially large transmission bands, independent system verifications are required for each probe calibration point. A system verification must be performed before each series of SAR measurements using the same probe calibration point and tissue-equivalent medium. Additional system verification should be considered according to the conditions of the tissue-equivalent medium and measured tissue dielectric parameters, typically every three to four days when the liquid parameters are remeasured or sooner when marginal liquid parameters are used at the beginning of a series of measurements.

Each SATIMO system is equipped with one or more system check kits. These units, together with the predefined measurement procedures within the SATIMO software, enable the user to conduct the system check and system validation. System kit includes a dipole, and dipole device holder.


The system check verifies that the system operates within its specifications. It's performed daily or before every SAR measurement. The system check uses normal SAR measurement in the flat section of the phantom with a matched dipole at a specified distance. The system check setup is shown as below.

6.2. SAR System Check 6.2.1. Dipoles

Frequency	L (mm)	h (mm)	d (mm)
835MHz	161.0	89.8	3.6
1900MHz	68	39.5	3.6

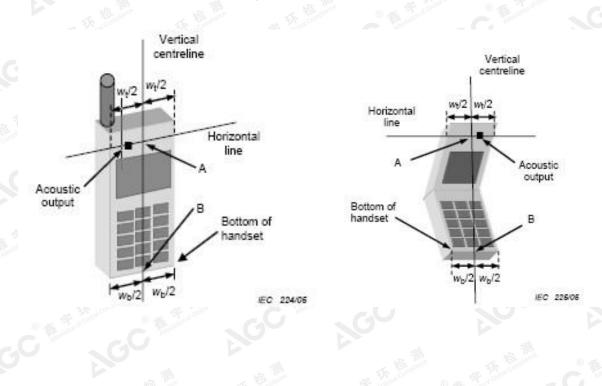
6.2.2. System Check Result

System Per	formance	Check a	t 835MHz&1900	MHz for Head					
Validation K	(it: SN29/	15 DIP 00	3835-383&SN 29	/15 DIP 1G900-3	89				
Frequency		rget (W/Kg)		ce Result 0%)	Tested Value(W/Kg)		Tissue Temp.	Test time	
[MHz]	1g	10g	1g	10g	1g	10g	[°C]	O	
835	10.04	6.43	9.036-11.044	5.787 -7.073	10.00	6.43	21.7	May. 10, 2018	
1900	41.44	21.33	37.296-45.584	19.197-23.463	38.33	20.31	21.1	May. 07, 2018	
System Per	formance	Check a	t 835 MHz &1900	MHz for Body				·	
Frequency	Target Reference Result Tested				equency Value(W/Kg) (+ 10%)		THE PARTY AND A DECIMAL OF A DE	Tissue Temp.	Test time
[MHz]	1g	10g	1g	10g	1g	10g	[°C]		
835	9.85	6.45	8.865-10.835	5.805-7.095	9.76	6.20	21.8	May. 10, 2018	
1900	39.38	20.86	35.442-43.318	18.774-22.946	36.00	19.25	21.3	May. 07, 2018	
					224	6			

Note:

(1) We use a CW signal of 18dBm for system check, and then all SAR values are normalized to 1W forward power. The result must be within $\pm 10\%$ of target value.

ACC B Attestation of Global Compliance


Report No.: AGC03866180501FH01 Page 19 of 74

7. EUT TEST POSITION

This EUT was tested in Right Cheek, Right Tilted, Left Cheek, Left Tilted, Body back, Body front

7.1. Define Two Imaginary Lines on the Handset

- (1)The vertical centerline passes through two points on the front side of the handset the midpoint of the width wt of the handset at the level of the acoustic output, and the midpoint of the width wb of the handset.
- (2)The horizontal line is perpendicular to the vertical centerline and passes through the center of the acoustic output. The horizontal line is also tangential to the face of the handset at point A.
- (3)The two lines intersect at point A. Note that for many handsets, point A coincides with the center of the acoustic output; however, the acoustic output may be located elsewhere on the horizontal line. Also note that the vertical centerline is not necessarily to the front face of the handset, especially for clamshell handsets, handsets with flip covers, and other irregularly shaped handsets.

GC[®]鑫宇环检测 Attestation of Global Compliance

Report No.: AGC03866180501FH01 Page 20 of 74

7.2. Cheek Position

- (1) To position the device with the vertical center line of the body of the device and the horizontal line crossing the center picec in a plane parallel to the sagittal plane of the phantom. While maintaining the device in this plane, align the vertical center line with the reference plane containing the ear and mouth reference point (M: Mouth, RE: Right Ear, and LE: Left Ear) and align the center of the ear piece with the line RE-LE.
- (2) To move the device towards the phantom with the ear piece aligned with the the line LE-RE until the phone touched the ear. While maintaining the device in the reference plane and maintaining the phone contact with ear, move the bottom of the phone until any point on the front side is in contact with the cheek of the phantom or until contact with the ear is lost

7.3. Tilt Position

- (1) To position the device in the "cheek" position described above.
- (2) While maintaining the device in the reference plane described above and pivoting against the ear, moves it outward away from the mouth by an angle of 15 degrees or until with the ear is lost.

AGC[®]鑫宇环检测 Attestation of Global Compliance

Report No.: AGC03866180501FH01 Page 21 of 74

7.4. Body Worn Position

wowney and they

- (1) To position the EUT parallel to the phantom surface.
- (2) To adjust the EUT parallel to the flat phantom.
- (3) To adjust the distance between the EUT surface and the flat phantom to 5mm.

The results shown in this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

THE

8. SAR EXPOSURE LIMITS

SAR assessments have been made in line with the requirements of IEEE-1528, and comply with ANSI/IEEE C95.1-2005 "Uncontrolled Environments" limits. These limits apply to a location which is deemed as "Uncontrolled Environment" which can be described as a situation where the general public may be exposed to an RF source with no prior knowledge or control over their exposure.

Limits for General Population/Uncontrolled Exposure (W/kg)

Type Exposure	Uncontrolled Environment Limit (W/kg)
Spatial Peak SAR (1g cube tissue for brain or body)	1.60
Spatial Average SAR (Whole body)	0.08
Spatial Peak SAR (Limbs)	4.0

R AGC 鑫 宇 环 检 测 Attestation of Global Compliance 测

Report No.: AGC03866180501FH01 Page 23 of 74

9. TEST FACILITY

Test Site	Attestation of Global Compliance (Shenzhen) Co., Ltd
Location	1-2F., Bldg.2, No.1-4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Bao'an District B112-B113, Shenzhen 518012
NVLAP Lab Code	600153-0
Designation Number	CN5028
Test Firm Registration Number	682566
Description	Attestation of Global Compliance(Shenzhen) Co., Ltd is accredited by National Voluntary Laboratory Accreditation program, NVLAP Code 600153-0

Report No.: AGC03866180501FH01 Page 24 of 74

10. TEST EQUIPMENT LIST

Equipment description	Manufacturer/ Model	Identification No.	Current calibration date	Next calibration date	
SAR Probe	MVG	SN 08/16 EPGO282	Aug. 08,2017	Aug. 07,2018	
Phantom	SATIMO	SN_4511_SAM90	Validated. No cal required.	Validated. No cal required.	
Liquid	SATIMO	The Barrier	Validated. No cal required.	Validated. No cal required.	
Comm Tester	Agilent-8960	GB46310822	Mar. 01,2018	Feb. 28,2019	
Multimeter	Keithley 2000	1188656	Mar. 01,2018	Feb. 28,2019	
Dipole	SATIMO SID835	SN29/15 DIP 0G835-383	July 05,2016	July 04,2019	
Dipole	SATIMO SID1900	SN 29/15 DIP 1G900-389	July 05,2016	July 04,2019	
Signal Generator	Agilent-E4438C	US41461365	Mar. 01,2018	Feb. 28,2019	
Vector Analyzer	Agilent / E4440A	US41421290	Mar. 01,2018	Feb. 28,2019	
Network Analyzer	Rhode & Schwarz ZVL6	SN100132	Mar. 01,2018	Feb. 28,2019	
Attenuator	Warison /WATT-6SR1211	N/A	N/A C	N/A	
Attenuator	Mini-circuits / VAT-10+	C N/A	N/A	N/A	
Amplifier	EM30180	SN060552	Mar. 01,2018	Feb. 28,2019	
Directional Couple	Werlatone/ C5571-10	SN99463	June 20,2017	June 19,2018	
Directional Couple	Werlatone/ C6026-10	SN99482	June 20,2017	June 19,2018	
Power Sensor	NRP-Z21	1137.6000.02	Oct. 12,2017	Oct. 11,2018	
Power Sensor	NRP-Z23	US38261498	Mar. 01,2018	Feb. 28,2019	
Power Viewer	R&S	V2.3.1.0	N/A	N/A	

Note: Per KDB 865664 Dipole SAR Validation, AGC Lab has adopted 3 years calibration intervals. On annual basis, every measurement dipole has been evaluated and is in compliance with the following criteria:

1. There is no physical damage on the dipole;

2. System validation with specific dipole is within 10% of calibrated value;

3. Return-loss is within 20% of calibrated measurement;

4. Impedance is within 5Ω of calibrated measurement.

11. MEASUREMENT UNCERTAINTY

INIEdSU					over 1 gram	/ TO grani.	h		
а	b	C	d Prob.	f(d,k)	f	g	h cxf/e	cxg/e	k
Uncertainty Component	Sec.	Tol (± %)	Dist.	Div.	Ci (1g)	Ci (10g)	1g Ui (±%)	10g Ui (±%)	vi
Measurement System		9	107-		- 1115-	-11		The	compliance
Probe calibration	E.2.1	5.831	N	1、也	an 1	15K Kel complian	5.83	5.83	8
Axial Isotropy	E.2.2 @	0.695	R	$\sqrt{3}$	√0.5	√0.5	0.28	0.28	00
Hemispherical Isotropy	E.2.2	1.045	R	$\sqrt{3}$	√0.5	√0.5	0.43	0.43	8
Boundary effect	E.2.3	1.0	R	$\sqrt{3}$	1	1	0.58 📣	0.58	8
Linearity	E.2.4	0.685	R	$\sqrt{3}$	1 the proving	1	0.40	0.40	8
System detection limits	E.2.4	1.0	R	√3	Font Globa	1	0.58	0.58	8
Modulation response	E2.5	3.0	R	$\sqrt{3}$	1	1	1.73	1.73	8
Readout Electronics	E.2.6	0.021	N	1	1	1	0.021	0.021	00
Response Time	E.2.7	0	R	√3	1	1 the plance	0	0	8
Integration Time	E.2.8	1.4	R	$\sqrt{3}$	1. 4	1	0.81	0.81	00
RF ambient conditions-Noise	E.6.1	3.0	R	$\sqrt{3}$	1	1	1.73	1.73	00
RF ambient conditions-reflections	E.6.1	3.0	R	$\sqrt{3}$	1	1	1.73	1.73	00
Probe positioner mechanical tolerance	E.6.2	1.4	R	$\sqrt{3}$	1	1	0.81	0.81	00
Probe positioning with respect to phantom shell	E.6.3	1.4	R	√3	1	1 Allestation of	0.81	0.81	8
Extrapolation, interpolation, and integrations algorithms for max. SAR evaluation	E.5	2.3	R	√3	1	1	1.33	1.33	8
Test sample Related				-mil	251	THE .	The second	Compliance	1
Test sample positioning	E.4.2	2.6	Ν	1	Tobal Con	1	2.6	2.6	8
Device holder uncertainty	E.4.1	3	N	1	Nestation 1	1	3	3	8
Output power variation—SAR drift measurement	E.2.9	65	R	√3	1	1	2.89	2.89	00
SAR scaling	E.6.5	5	R	√3	1	1 1	2.89	2.89	00 ⁰⁰⁰ 00
Phantom and tissue parameters		ATT: SA		秋	mpliance	E Thomas Compil	e G	Attestation	
Phantom shell uncertainty—shape, thickness, and permittivity	E.3.1	4	R	√3	1	tenation of C	2.31	2.31	8
Uncertainty in SAR correction for deviations in permittivity and conductivity	E.3.2	1.9	N	1	1	0.84	1.90	1.60	8
Liquid conductivity measurement	E.3.3	4	Ν	1	0.78	0.71	3.12	2.84	М
Liquid permittivity measurement	E.3.3	5	N	1 5	0.23	0.26	1.15	1.30	Μ
Liquid conductivity—temperature uncertainty	E.3.4	2.5	R	√3	0.78	0.71	1.13	1.02	00
Liquid permittivity—temperature uncertainty	E.3.4	2.5	R	√3	0.23	0.26	0.33	0.38	00
Combined Standard Uncertainty		THE THE	RSS	格 and	(R) III	of Global	9.79	9.59	
Expanded Uncertainty (95% Confidence interval)	The Ford	Coal Complia	K=2	Salo	C Muest	.0	19.58	19.18	

鑫 宇 环 检 测 Attestation of Global Compliance

Report No.: AGC03866180501FH01 Page 26 of 74

	b	c	d	e	f	1 / 10 gram.	h	i	k
a Uncortainty Component	Sec.	Tol	Prob.	f(d,k) Div.		g Ci (10a)	c×f/e 1g Ui	c×g/e 10g Ui	vi
Uncertainty Component	Sec.	(± %)	Dist.	Div.	Ci (1g)	Ci (10g)	(±%)	(±%)	VI
Measurement System		<u> </u>							14
Probe calibration drift	E.2.1.3	0.5	N	1	1	1	0.50	0.50	00
Axial Isotropy	E.2.2	0.695	R	√3	0	0	0.00	0.00	00
Hemispherical Isotropy	E.2.2 💿	1.045	R	√3	0	0	0.00	0.00	00
Boundary effect	E.2.3	1.0	R	√3	0	0	0.00	0.00	8
Linearity	E.2.4	0.685	R	$\sqrt{3}$	0	0	0.00	0.00	00
System detection limits	E.2.4	1.0	R	√3	0	0	0.00	0.00	00
Modulation response	E2.5	3.0	R	√3	0	0	0.00	0.00	00
Readout Electronics	E.2.6	0.021	N	1	0	0	0.00	0.00	00
Response Time	E.2.7	0	R	√3	0	0	0.00	0.00	00
Integration Time	E.2.8	1.4	R	$\sqrt{3}$	0	0	0.00	0.00	00
RF ambient conditions-Noise	E.6.1	3.0	R	$\sqrt{3}$	0	0	0.00	0.00	00
RF ambient conditions-reflections	E.6.1	3.0	R	$\sqrt{3}$	0	0	0.00	0.00	00
Probe positioner mechanical tolerance	E.6.2	1.4	R	$\sqrt{3}$	1	1	0.81	0.81	o
Probe positioning with respect to phantom shell	E.6.3	1.4	R	√3	1	1	0.81	0.81	×
Extrapolation, interpolation, and integrations algorithms for max. SAR evaluation	E.5	2.3	R	√3	0	0	0.00	0.00	00
System check source (dipole)	C.U		G					-70	
Deviation of experimental dipoles	E.6.4	2	N	1	1	1	2	2	8
Input power and SAR drift measurement	8,6.6.4	5	R	√3	Front Toostor	1	2.89	2.89	8
Dipole axis to liquid distance	8,E.6.6	2	R	$\sqrt{3}$	1	1	1.15	1.15	00
Phantom and tissue parameters		69		0					1
Phantom shell uncertainty—shape, thickness, and permittivity	E.3.1	4	R	√3	1	1版1	2.31	2.31	ø
Uncertainty in SAR correction for deviations in permittivity and conductivity	E.3.2	1.9	N	Francis	10	0.84	1.90	1.60	Ø
Liquid conductivity measurement	E.3.3	4	N	1	0.78	0.71	3.12	2.84	N
Liquid permittivity measurement	E.3.3	5	N	1	0.23	0.26	1.15	1.30	N
Liquid conductivity—temperature uncertainty	E.3.4	2.5	R	√3	0.78	0.71	1.13	1.02	x
Liquid permittivity—temperature	E.3.4	2.5	R	√3	0.23	0.26	0.33	0.38	x
Combined Standard Uncertainty		Attest	RSS	9			5.564	5.205	
Expanded Uncertainty (95% Confidence interval)	NO.		K=2	-111		The A Compliance	11.128	10.410	

鑫 宇 环 检 测 Attestation of Global Compliance

Report No.: AGC03866180501FH01 Page 27 of 74

а	b	с	d	e f(d,k)	f	g	h cxf/e	i c×g/e	k
Uncertainty Component	Sec.	Tol (±%)	Prob. Dist.	Div.	Ci (1g)	Ci (10g)	1g Ui (±%)	10g Ui (±%)	vi
Measurement System	Pro	-C *	18 m						lin;
Probe calibration	E.2.1	5.831	N	1	1	1	5.83	5.83	α
Axial Isotropy	E.2.2	0.695	R	√3	plance 1	The Compilar	0.40	0.40	x
Hemispherical Isotropy	E.2.2 💿	1.045	R	√3	0	Lion of Car	0.00	0.00	Co
Boundary effect	E.2.3	1.0	R	√3		1	0.58	0.58	X
Linearity	E.2.4	0.685	R	$\sqrt{3}$	1	1	0.40	0.40	X
System detection limits	E.2.4	1.0	R	$\sqrt{3}$	1	1	0.58	0.58	α
Modulation response	E2.5	3.0	R	√3	0	0	0.00	0.00	x
Readout Electronics	E.2.6	0.021	N	1	1	O 1	0.021	0.021	X
Response Time	E.2.7	0.0	R	$\sqrt{3}$	0	0	0.00	0.00	X
Integration Time	E.2.8	1.4	R	$\sqrt{3}$	0	0	0.00	0.00	X
RF ambient conditions-Noise	E.6.1	3.0	R	√3	o 1. *	not Globar 1	1.73	1.73	X
RF ambient conditions-reflections	E.6.1	3.0	R	√3	C 1	1	1.73	1.73	a
Probe positioner mechanical tolerance	E.6.2	1.4	R	$\sqrt{3}$	1	1	0.81	0.81	X
Probe positioning with respect to phantom shell	E.6.3	1.4	R	√3	1 1	1 5	0.81	0.81	on Court
Extrapolation, interpolation, and integrations algorithms for max. SAR evaluation	E.5	2.3	R®	√3	10	0 1	1.33	1.33	X
System check source (dipole)	3		G						
Deviation of experimental dipole from numerical dipole	E.6.4	5.0	N	1 (1	1 版	ance 1	5.00	5.00	α
Input power and SAR drift measurement	8,6.6.4	5.0	R	√3	The Indiana	1	2.89	2.89	x
Dipole axis to liquid distance	8,E.6.6	2.0	R	$\sqrt{3}$	1	1	1.15	1.15	X
Phantom and tissue parameters		0					Δ.	- 1	EL ollan
Phantom shell uncertainty—shape, thickness, and permittivity	E.3.1	4.0	R	√3	1 nores 1	The P	2.31 💿	2.31	Ø
Uncertainty in SAR correction for deviations in permittivity and conductivity	E.3.2	1.9	N	1		0.84	1.90	1.60	X
Liquid conductivity measurement	E.3.3	4.0	N	1	0.78	0.71	3.12	2.84	Ν
Liquid permittivity measurement	E.3.3	5.0	N	1	0.23	0.26	1.15	1.30	N
Liquid conductivity—temperature uncertainty	E.3.4	2.5	R	√3	0.78	0.71	1.13	1.02	α
Liquid permittivity—temperature uncertainty	E.3.4	2.5	R	√3	0.23	0.26	0.33	0.38	α
Combined Standard Uncertainty		1	RSS			lin:	9.718	9.517	
Expanded Uncertainty (95% Confidence interval)			K=2	TH.	2	E The tel compliance	19.437	19.035	

12. CONDUCTED POWER MEASUREMENT

GSM BAND				
Mode	Frequency(MHz)	Avg. Burst Power(dBm)	Duty cycle Factor(dBm)	Frame Power(dBm)
/laximum Power <	1>	C Martin		
Contraction Contra	824.2	31.25	-9	22.25
GSM 850	836.6	31.07	-9	22.07
the state	848.8	31.43	-9	22.43
GPRS 850	824.2	31.39	-9	22.39
(1 Slot)	836.6	31.28	-9	22.28
	848.8	31.17	-9	22.17
GPRS 850	824.2	28.47	The Second of the School	22.47
(2 Slot)	836.6	28.69	-6	22.69
	848.8	28.48	-6	22.48
	824.2	26.58	-4.26	22.32
GPRS 850 (3 Slot)	836.6	26.45	-4.26	22.19
	848.8	26.67	-4.26	22.41
0000.050	824.2	25.63	-3	22.63
GPRS 850	836.6	25.48	-3	22.48
(4 Slot)	848.8	25.44	-3	22.44
1aximum Power <2	2>	· · · · · · · · · · · · · · · · · · ·	mance (R) # 10 Global Con	C The station of Glow
111	824.2	31.15	-9	22.15
GSM 850	836.6	31.01	-9	22.01
	848.8	31.23	-9	22.23
	824.2	31.19	-9	22.19
GPRS 850 (1 Slot)	836.6	31.14	9 0 m	22.14
	848.8	31.10	-9 - ⁰	22.10
	824.2	28.12	-6	22.12
GPRS 850 (2 Slot)	836.6	28.47	-6	22.47
	848.8	28.31	-6	22.31
	824.2	26.32	-4.26	22.06
GPRS 850 (3 Slot)	836.6	26.24	-4.26	21.98
	848.8	26.41	-4.26	22.15
	824.2	25.39	-3	22.39
GPRS 850 (4 Slot)	836.6	25.31	· · · · 3 · · · · ·	22.31
	848.8	25.29	-3 model	22.29

R 鑫 宇 环 检 测 Attestation of Global Compliance GC

Report No.: AGC03866180501FH01 Page 29 of 74

Mode	Frequency(MHz)	Avg. Burst Power(dBm)	Duty cycle Factor(dBm)	Frame Power(dBm)
Maximum Power <	3>	and the completion	C Mastallon C Alles	ation of the Attest
He was	824.2	31.12	-9	22.12
GSM 850	836.6	31.01	-9	22.01
	848.8	31.21	-9	22.21
	824.2	31.19	-9	22.19
GPRS 850 (1 Slot)	836.6	31.10	-9	22.10
	848.8	31.09	-9	22.09
	824.2	28.12	-6	22.12
GPRS 850 (2 Slot)	836.6	28.14	-6	22.14
	848.8	28.21	-6	22.21
	824.2	26.31	-4.26	22.05
GPRS 850 (3 Slot)	836.6	26.15	-4.26	21.89
(3 500)	848.8	26.26	-4.26	22.00
GPRS 850 (4 Slot)	824.2	25.27	-3	22.27
	836.6	25.19	· -3	22.19
(4 000)	848.8	25.10	-3	22.10

Report No.: AGC03866180501FH01 Page 30 of 74

GSM BAND CONTINUE

Mode	Frequency(MHz)	Avg. Burst Power(dBm)	Duty cycle Factor(dBm)	Frame Power(dBm)	
Maximum Power <1		@ The Fooldabalco		-00	
bal come	1850.2	28.64	-9	19.64	
PCS1900	1880	28.55	-9	19.55	
GO "	1909.8	28.47	-9	19.47	
GPRS1900	1850.2	28.05	-9	19.05	
(1 Slot)	1880	28.11	-9	Power(dBm 19.64 19.55 19.47 19.05 19.11 19.09 19.47 19.09 19.47 19.09 19.47 19.09 19.47 19.09 19.47 19.09 19.47 19.09 19.47 19.66 19.50 20.16 20.20 19.57 19.66 19.57 19.62 19.57 19.62 19.45 19.39 19.25 19.00 19.01 19.02 19.01 19.31 19.41 19.32 19.95 19.96 19.97 19.27	
	1909.8	28.09	-9	19.09	
0000000	1850.2	25.47	-6	19.47	
GPRS1900 (2 Slot)	1880	25.66	-6	19.66	
(2 300)	1909.8	25.50	-6	19.50	
00004000	1850.2	24.31	-4.26	20.05	
GPRS1900 (3 Slot)	1880	24.42	-4.26	20.16 20.20 19.57 19.66	
	1909.8	24.46	-4.26	20.20	
0000	1850.2	22.57	-3	19.57	
GPRS1900 (4 Slot)	1880	22.66	-3	19.66	
(4 5101)	1909.8	1909.8 22.62 -3		19.62	
/laximum Power <2	2>		10	Mance The Count	
GO	1850.2	28.45	-9	19.45	
PCS1900	1880	28.39	-9	19.39	
	1909.8	28.25	-9	19.25	
00004000	1850.2	28.00	-9	19.00	
GPRS1900 (1 Slot)	1880	28.06	-9	19.06	
	1909.8	28.01	-9 0	19.01	
00004000	1850.2	25.31	-6	19.31	
GPRS1900 (2 Slot)	1880	25.41	-6	19.41	
	1909.8	25.32	-6	19.32	
	1850.2	24.21	-4.26	19.95	
GPRS1900 (3 Slot)	1880	24.22	-4.26	19.47 19.05 19.11 19.09 19.47 19.66 19.50 20.05 20.16 20.20 19.57 19.66 19.57 19.66 19.57 19.62 19.45 19.39 19.25 19.00 19.01 19.31 19.41 19.32 19.95 19.96 19.97	
	1909.8	24.23	-4.26	19.97	
Completion C	1850.2	22.27	-3	19.27	
GPRS1900	1880	22.26	-3		
(4 Slot)	1909.8	22.45	-3	19.45	

The results showing this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.cett.com.

Attestation of Global Compliance

ACC 整字环检测 Attestation of Global Compliance

Report No.: AGC03866180501FH01 Page 31 of 74

Mode	Mode Frequency(MHz)		Duty cycle Factor(dBm)	Frame Power(dBm)	
Maximum Power <3	3> 1	and Kinghand	C Mestalion C C Mest	ation of the Atlestation	
the man in the	1850.2	28.34	-9	19.34	
PCS1900	1880	28.25	-9	19.25	
	1909.8	28.19	-9	19.19	
00004000	1850.2	28.00	-9	19.00	
GPRS1900 (1 Slot)	1880	28.02	-9	19.02	
	1909.8	28.01	-9	19.01	
00004000	1850.2	25.12	-6	19.12	
GPRS1900 (2 Slot)	1880	25.14	-6	19.14	
	1909.8	25.36	-6	19.36	
00004000	1850.2	24.05	-4.26	19.79	
GPRS1900 (3 Slot)	1880	24.10	-4.26	19.84	
(3 300)	1909.8	24.11	-4.26	19.25 19.19 19.00 19.02 19.01 19.12 19.14 19.36 19.79 19.84 19.31 19.38	
00000000	1850.2	22.31	-3	19.31	
GPRS1900 (4 Slot)	1880	22.38	-3	19.38	
	1909.8	22.37	-3	19.37	

Note 1:

The Frame Power (Source-based time-averaged Power) is scaled the maximum burst average power based on time slots. The calculated methods are show as following:

Frame Power = Max burst power (1 Up Slot) - 9 dB

Frame Power = Max burst power (2 Up Slot) - 6 dB

Frame Power = Max burst power (3 Up Slot) – 4.26 dB

Frame Power = Max burst power (4 Up Slot) - 3 dB

R GC 测 环 鑫 宇 环 检 测 Attestation of Global Compliance

Report No.: AGC03866180501FH01 Page 32 of 74

Bluetooth_V2.1 + EDR

Modulation	Channel	Frequency(MHz)	Peak Power (dBm)
	0	2402	0.284
GFSK	39	2441	1.377
C Station of Glob	78	2480	2.494
C.C	0	2402	1.013
π /4-DQPSK	39	2441	2.103
The Computance	78	2480	2.652
B A Tono Good	0	2402	1.613
8-DPSK	39	2441	2.684
	78	2480	3.233

GC Attestation of Global Compliance

13. TEST RESULTS

13.1. SAR Test Results Summary 13.1.1. Test position and configuration

Head SAR was performed with the device configured in the positions according to IEEE 1528-2013, Body-worn SAR was performed with the device 5mm from the phantom.

13.1.2. Operation Mode

- 1. Per KDB 447498 D01 v06 ,for each exposure position, if the highest 1-g SAR is \leq 0.8 W/kg, testing for low and high channel is optional.
- Per KDB 865664 D01 v01r04, for each frequency band, if the measured SAR is ≥0.8W/Kg, testing for repeated SAR measurement is required, that the highest measured SAR is only to be tested. When the SAR results are near the limit, the following procedures are required for each device to verify these types of SAR measurement related variation concerns by repeating the highest measured SAR configuration in each frequency band.
 - (1) When the original highest measured SAR is $\ge 0.8W/Kg$, repeat that measurement once.
 - (2) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is >1.20 or when the original or repeated measurement is \ge 1.45 W/Kg.
 - (3) Perform a third repeated measurement only if the original, first and second repeated measurement is ≥ 1.5 W/Kg and ratio of largest to smallest SAR for the original, first and second measurement is ≥ 1.20.
- 3. Body-worn exposure conditions are intended to voice call operations, therefore GSM voice call mode is selected to be test.
- 4. Per KDB 648474 D04 v01r03,when the reported SAR for a body-worn accessory measured without a headset connected to the handset is ≤1.2W/Kg, SAR testing with a headset connected is not required.
- Maximum Scaling SAR in order to calculate the Maximum SAR values to test under the standard Peak Power, Calculation method is as follows: Maximum Scaling SAR =tested SAR (Max.) ×[maximum turn-up power (mw)/ maximum measurement output power(mw)]
- 6. Proximity sensor, just for avoiding the wrong operation in the phone screen when call, and has no influence on output power or SAR result.

13.1.3. Test Result

SAR MEASU	REMENT								
Depth of Liqu	Relative Humidity (%): 51.2								
Product: Mob	ile Phone								
Test Mode: G	SM850 with GM	SK mod	lulation						
Position Mode		Ch.	Fr. (MHz)	Power Drift (<±5%)	SAR (1g) (W/kg)	Max. Tune-up Power (dBm)	Meas. output Power (dBm)	Scaled SAR (W/Kg)	Limit (W/kg)
SIM 1 Card	- FA Compliance		Attestant	C	Attestation	a C Aussi			
Left Cheek	voice	190	836.6	0.04	0.629	31.50	31.07	0.694	1.6
Left Tilt	voice	190	836.6	0.02	0.541	31.50	31.07	0.597	1.6
Right Cheek	voice	190	836.6	0.03	0.562	31.50	31.07	0.620	1.6
Right Tilt	voice	190	836.6	-0.05	0.349	31.50	31.07	0.385	1.6
Body back	voice	128	824.2	0.01	0.861	31.50	31.25	0.912	1.6
Body back	voice	190	836.6	-0.00	0.878	31.50	31.07	0.969	1.6
Body back	voice	251	848.8	0.02	0.943	31.50	31.43	0.958	1.6
Body front	voice	190	836.6	0.04 🧹	0.473	31.50	31.07	0.522	1.6
- III	ALL ALL	14	Global Come	C A Sond	obal	C Atten	6.0		
Left Cheek	GPRS-2 slot	190	836.6	-0.01	0.459	28.70	28.69	0.460	1.6
Left Tilt	GPRS-2 slot	190	836.6	0.04	0.252	28.70	28.69	0.253	1.6
Right Cheek	GPRS-2 slot	190	836.6	-0.03	0.443	28.70	28.69	0.444	1.6
Right Tilt	GPRS-2 slot	190	836.6	-0.02	0.314	28.70	28.69	0.315	1.6
Body back	GPRS-2 slot	190	836.6	0.05	0.694	28.70	28.69	0.696	1.6
Body front	GPRS-2 slot	190	836.6	-0.04	0.469	28.70	28.69	0.470	1.6
Note:	Autor						11	With and	μ

Note:

When the 1-g Reported SAR is ≤ 0.8 W/kg, testing for low and high channel is optional. Refer to KDB 447498.
 The test separation for body back and body front is 5mm of all above table.

SAR MEASU	REMENT								
Depth of Liqu	Relative Humidity (%): 47.5								
Product: Mob	ile Phone			•					
Test Mode: P	CS1900 with GM	ASK m d	dulation						
Position	Mode	Ch.	Fr. (MHz)	Power Drift (<±5%)	SAR (1g) (W/kg)	Max. Tune-up Power (dBm)	Meas. output Power (dBm)	Scaled SAR (W/Kg)	Limit (W/kg)
SIM 1 Card			C. F. F.	Slobal	F Monal Co	© 5	ion of Globs	Alle	
Left Cheek	voice	661	1880.0	-0.05	0.262	28.70	28.55	0.271	1.6
Left Tilt	voice	661	1880.0	0.04	0.084	28.70	28.55	0.087	1.6
Right Cheek	voice	661	1880.0	0.02	0.306	28.70	28.55	0.317	1.6
Right Tilt	voice	661	1880.0	-0.03	0.074	28.70	28.55	0.077	1.6
Body back	voice	512	1850.2	0.00	1.070	28.70	28.64	1.085	1.6
Body back	voice	661	1880.0	-0.01	1.135	28.70	28.55	1.175	1.6
Body back	voice	810	1909.8	0.02	1.008	28.70	28.47	1.063	1.6
Body front	voice	661	1880.0	-0.04	0.727	28.70	28.55	0.753	1.6
			- HEL SHOW	sk	Compliance	C A Jun	Glob	stion of	60
Left Cheek	GPRS-3 slot	661	1880.0	0.01	0.173	24.50	24.42	0.176	1.6
Left Tilt	GPRS-3 slot	661	1880.0	-0.05	0.052	24.50	24.42	0.053	1.6
Right Cheek	GPRS-3 slot	661	1880.0	0.02	0.245	24.50	24.42	0.250	1.6
Right Tilt	GPRS-3 slot	661	1880.0	-0.03	0.064	24.50	24.42	0.065	1.6
Body back	GPRS-3 slot	512	1850.2	0.00	0.824	24.50	24.31	0.861	1.6
Body back	GPRS-3 slot	661	1880.0	-0.04	0.782	24.50	24.42	0.797	1.6
Body back	GPRS-3 slot	810	1909.8	0.02	0.755	24.50	24.46	0.762	1.6
Body front	GPRS-3 slot	661	1880.0	-0.03	0.534	24.50	24.42	0.544	1.6

Note:

• When the 1-g Reported SAR is ≤ 0.8 W/kg, testing for low and high channel is optional. Refer to KDB 447498. •The test separation for body back and body front is 5mm of all above table.

Report No.: AGC03866180501FH01 Page 36 of 74

the allon o'							1	tel nolance	Hel Mance	5
Repeated S	SAR									
Product: FE	ATURE	PHO	NE							
Test Mode:	GSM85	0 with	GMSK mo	dulation						
Position	Mode	Ch.	Fr. (MHz)	Power Drift (<±5%)	Once SAR (1g) (W/kg)	Power Drift (<±5%)	Twice SAR (1g) (W/kg)	Power Drift (<±5%)	Third SAR (1g) (W/kg)	Limit (W/kg)
Body back	voice	251	848.8	0.01	0.922	学	pliance -	obal Compliance	C Attestation of	1.6
Body back	voice	661	1880.0	0.05	1.089	Fration of Globa	C Allestation of	-	2	1.6

GC[®]鑫宇环检测 Attestation of Global Compliance

NO	Simultaneous state	Portable Handset		
NO	Simulaneous state	Head	Body-worn	Hotspot
1	GSM(voice)+Bluetooth(data)	C Attestation o	Yes	- Allestation
2	GSM (Data) + Bluetooth(data)	· ·	Yes	<u> </u>

NOTE:

- 1. Simultaneous with every transmitter must be the same test position.
- 2. KDB 447498 D01, BT SAR is excluded as below table.
- KDB 447498 D01, for handsets the test separation distance is determined by the smallest distance between the outer surface of the device and the user; which is 0mm for head SAR and 5mm for body-worn SAR.
- According to KDB 447498 D01 4.3.1, Standalone SAR test exclusion is as follow: For 100 MHz to 6 GHz and test separation distances ≤ 50 mm, the 1-g and 10-g SAR test exclusion thresholds are determined by the following:

[(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] • [$\sqrt{$

- f(GHz)] \leq 3.0 for 1-g SAR, and \leq 7.5 for 10-g extremity SAR³⁰, where
 - f(GHz) is the RF channel transmit frequency in GHz
 - Power and distance are rounded to the nearest mW and mm before calculation³¹
 - The result is rounded to one decimal place for comparison
 - The values 3.0 and 7.5 are referred to as numeric thresholds in step b) below

The test exclusions are applicable only when the minimum test separation distance is \leq 50 mm, and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is < 5 mm, a distance of 5 mm according to 4.1 f) is applied to determine SAR test exclusion.

- 5. If the test separation distance is <5mm, 5mm is used for excluded SAR calculation.
- 6. According to KDB 447498 D01 4.3.2, simultaneous transmission SAR test exclusion is as follow:
 - (1) Simultaneous transmission SAR test exclusion is determined for each operating configuration and exposure condition according to the reported standalone SAR of each applicable simultaneous transmitting antenna.
 - (2) Any transmitters and antennas should be considered when calculating simultaneous mode.
 - (3) For mobile phone and PC, it's the sum of all transmitters and antennas at the same mode with same position in each applicable exposure condition
 - (4)When the standalone SAR test exclusion of section 4.3.2 is applied to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to the following to det

(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\left[\sqrt{f(GHz)/x}\right]$ W/kg for test separation distances ≤ 50 mm;

where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR.

7. When the sum of SAR is larger than the limit, SAR test exclusion is determined by the SAR to peak location separation ratio. The simultaneous transmitting antennas in each operating mode and exposure condition combination must be considered one pair at a time to determine the SAR to peak location separation ratio to qualify for test exclusion. The ratio is determined by (SAR1 + SAR2)1.5/Ri, rounded to two decimal digits, and must be ≤ 0.04 for all antenna pairs in the configuration to qualify for 1-g SAR test exclusion.

Estimated SAR		Max Power including Tune-up Tolerance		Separation Distance (mm)	Estimated SAR (W/kg)	
		dBm	mW	Distance (mm)	(**/kg)	
DT	Head	4	2.512	0	0.105	
BT	Body	and ^{Color} 4 9 1	2.512	5	0.105	

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

RF Exposure	Test	Simultaneous Transmission Scenario		Σ1-g SAR	SPLSR	
Conditions	Position	GSM 850	Bluetooth	(W/Kg)	(Yes/No)	
Body-worn	Rear	0.969	0.105	1.074	No	
(voice)	Front	0.522	0.105	0.627	No 🔬	
Body-worn	Rear	0.696	0.105	0.801	No	
(Data)	Front	0.470	0.105	0.575	No	

Sum of the SAR for GSM 850 & BT:

Sum of the SAR for PCS 1900 & BT:

RF Exposure	Test	Simultaneous Transmission Scenario		Σ1-g SAR	SPLSR
Conditions	Position	PCS 1900	Bluetooth	(W/Kg)	(Yes/No)
Body-worn	Rear	1.175	0.105	1.280	No
(voice)	Front	0.753	0.105	0.858	No
Body-worn	Rear	0.861	0.105	0.966	No
(Data)	Front	0.544	0.105	.649	No

Note:

•According to KDB 447498 D01 General RF Exposure Guidance, when the simultaneous transmission SAR is less than1.6 W/Kg, SPLSR assessment is not required.

·SPLSR mean is "The SAR to Peak Location Separation Ratio "

The results showing this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by (ACC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attraction.

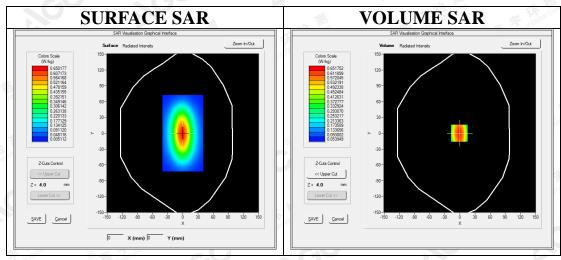
AGC[®]鑫宇环检测 Attestation of Global Compliance

Report No.: AGC03866180501FH01 Page 39 of 74

APPENDIX A. SAR SYSTEM CHECK DATA

Test Laboratory: AGC Lab

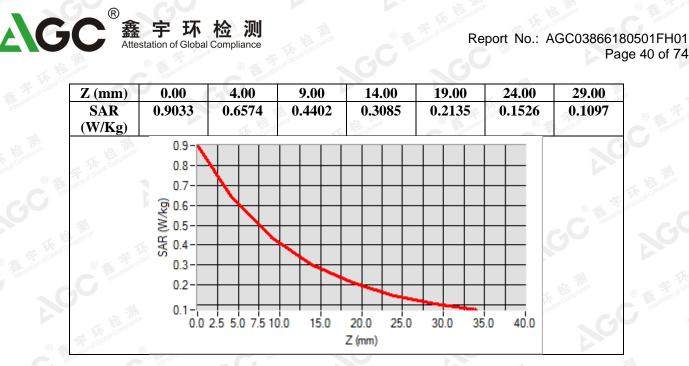
System Check Head 835 MHz DUT: Dipole 835 MHz Type: SID 835 Date: May. 10, 2018

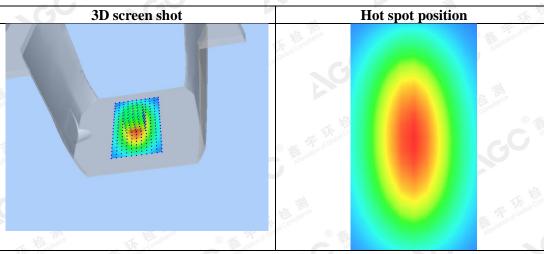

Communication System CW; Communication System Band: D835 (835.0 MHz); Duty Cycle: 1:1; Conv.F=1.74 Frequency: 835 MHz; Medium parameters used: f = 835 MHz; σ =0.90 mho/m; ϵ r =41.34; ρ = 1000 kg/m³; Phantom section: Flat Section; Input Power=18dBm Ambient temperature (°C): 22.1 Liquid temperature (°C): 21.7

Ambient temperature (°C):22.1, Liquid temperature (°C): 21.7

SATIMO Configuration

- Probe: SSE2; Calibrated: Aug. 08,2017; Serial No.: SN 08/16 EPGO282
- · Sensor-Surface: 4mm (Mechanical Surface Detection)
- Phantom: SAM twin phantom
- Measurement SW: OpenSAR V4_02_35


Configuration/System Check 835MHz Head/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/System Check 835MHz Head/Zoom Scan: Measurement grid: dx=8mm,dy=8mm, dz=5mm


Maximum location	: X=-1.00, Y=0.00
SAR Peak:	0.90 W/kg
SAR 10g (W/Kg)	0.405797
SAR 1g (W/Kg)	0.630953

The results shown in this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

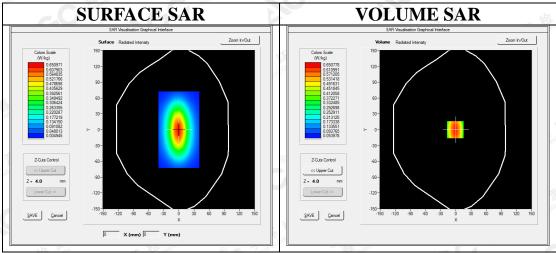
Report No.: AGC03866180501FH01

The results showing this test eport refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-gert.com.

AGC[®]鑫宇环检测 Attestation of Global Compliance

Report No.: AGC03866180501FH01 Page 41 of 74

Test Laboratory: AGC Lab System Check Body 835 MHz DUT: Dipole 835 MHz Type: SID 835

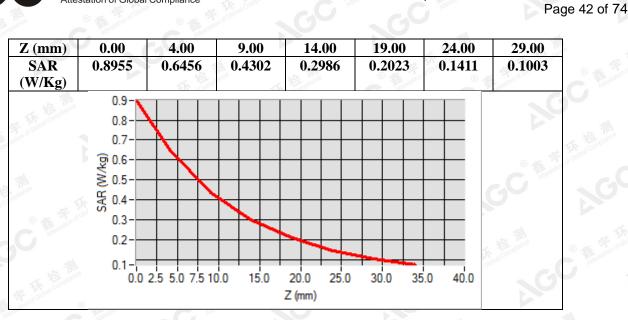

Date: May. 10, 2018

DUT: Dipole 835 MHz Type: SID 835 Communication System CW; Communication System Band: D835 (835.0 MHz); Duty Cycle: 1:1; Conv.F=1.81 Frequency: 835 MHz; Medium parameters used: f = 835 MHz; σ =0.95 mho/m; ϵ r =55.81; ρ = 1000 kg/m³; Phantom section: Flat Section; Input Power=18dBm Ambient temperature (°C):22.1, Liquid temperature (°C): 21.8

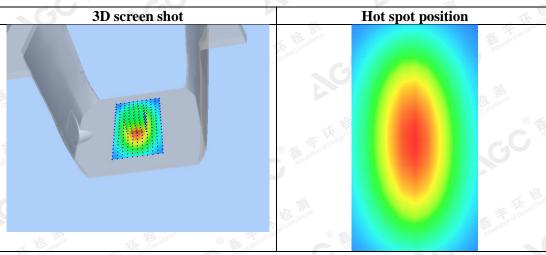
SATIMO Configuration

- Probe: SSE2; Calibrated: Aug. 08,2017; Serial No.: SN 08/16 EPGO282
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Phantom: SAM twin phantom
- Measurement SW: OpenSAR V4_02_35

Configuration/System Check 835MHz Body/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/System Check 835MHz Body/Zoom Scan: Measurement grid: dx=8mm,dy=8mm, dz=5mm



	Maximum location: X=-1.00, Y=1.00		
Attestation	SAR Peak:	0.88 W/kg	
D 1			0.00105


SAR 10g (W/Kg)	0.391052
SAR 1g (W/Kg)	0.615744

The results shown in this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Report No.: AGC03866180501FH01

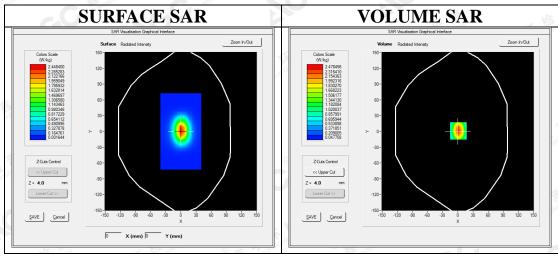
The results show of this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by ACC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attraction.

ACC [®]鑫宇环检测 Attestation of Global Compliance

ACC 鑫 宇 环 检 测 Attestation of Global Compliance

Date: May. 07, 2018

Test Laboratory: AGC Lab System Check Head 1900MHz DUT: Dipole 1900 MHz; Type: SID 1900

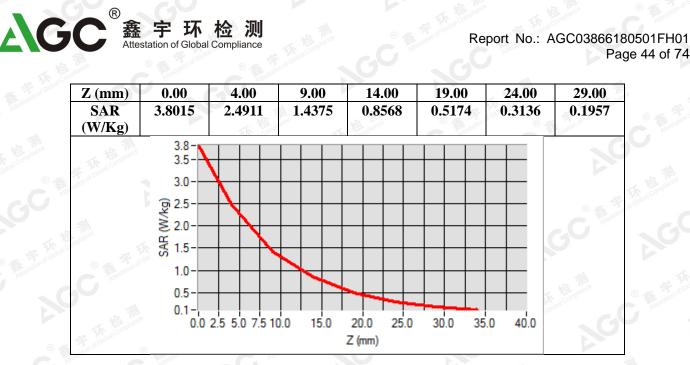

Communication System: CW; Communication System Band: D1900 (1900.0 MHz); Duty Cycle:1:1; Conv.F=2.32 Frequency: 1900 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.41$ mho/m; $\epsilon r = 40.11$; $\rho = 1000$ kg/m³; Phantom section: Flat Section: Input Power=18dBm

Ambient temperature (°C):21.7, Liquid temperature (°C): 21.1

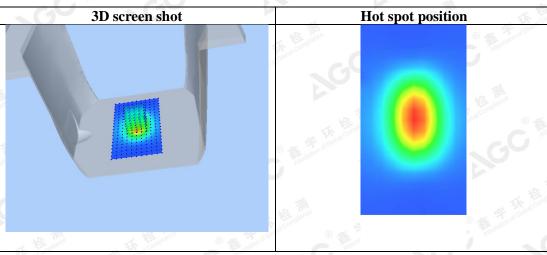
SATIMO Configuration:

- Probe: SSE2; Calibrated: Aug. 08,2017; Serial No.: SN 08/16 EPGO282
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Phantom: SAM twin phantom
- Measurement SW: OpenSAR V4 02 35

Configuration/System Check 1900MHz Head/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/System Check 1900MHz Head/Zoom Scan: Measurement grid: dx=8mm,dy=8mm, dz=5mm



Maximum location: X=1.00, Y=0.00 SAR Peak: 3.80 W/kg


SAR 10g (W/Kg)	1.281443
SAR 1g (W/Kg)	2.418520

The results showing this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 🖉 C, this documents and the authenticity of the reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc-gett.com.

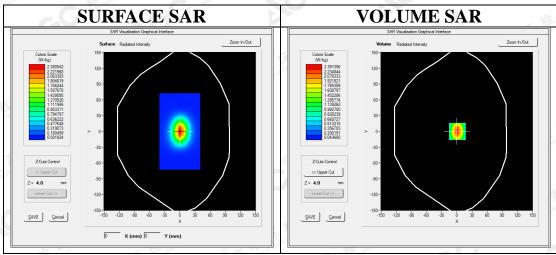
Report No.: AGC03866180501FH01

The results showing this test eport refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-gert.com.

AGC[®]鑫宇环检测 Attestation of Global Compliance

Report No.: AGC03866180501FH01 Page 45 of 74

Test Laboratory: AGC Lab System Check Body 1900MHz DUT: Dipole 1900 MHz; Type: SID 1900


Date: May. 07, 2018

Communication System: CW; Communication System Band: D1900 (1900.0 MHz); Duty Cycle:1:1; Conv.F=2.39 Frequency: 1900 MHz; Medium parameters used: f = 1900 MHz; $\sigma=1.51$ mho/m; $\epsilon r = 53.26$; $\rho = 1000$ kg/m³; Phantom section: Flat Section; Input Power=18dBm Ambient temperature (°C):21.7, Liquid temperature (°C): 21.3

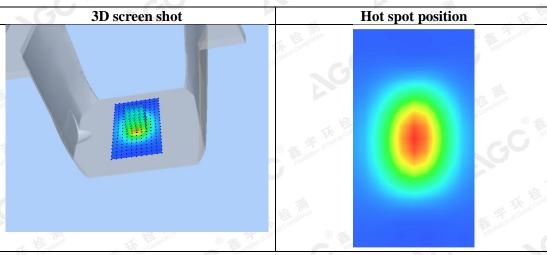
SATIMO Configuration:

- Probe: SSE2; Calibrated: Aug. 08,2017; Serial No.: SN 08/16 EPGO282
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Phantom: SAM twin phantom
- Measurement SW: OpenSAR V4_02_35

Configuration/System Check 1900MHz Body/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/System Check 1900MHz Body/Zoom Scan: Measurement grid: dx=8mm,dy=8mm, dz=5mm



Maximum location: X=0.00, Y=0.00 SAR Peak: 3.70 W/kg


SAR 10g (W/Kg)	1.214479
SAR 1g (W/Kg)	2.271542

The results shown in this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Report No.: AGC03866180501FH01

The results showing this test eport refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-gert.com.

Report No.: AGC03866180501FH01 Page 47 of 74

APPENDIX B. SAR MEASUREMENT DATA

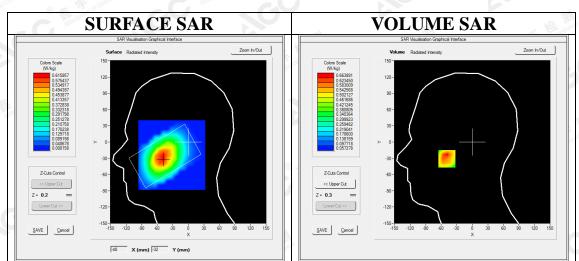
Test Laboratory: AGC Lab GSM 850 Mid-Touch-Left <SIM 1> DUT: FEATURE PHONE; Type: DIAMOND Date: May. 10, 2018

Communication System: Generic GSM; Communication System Band: GSM 850; Duty Cycle: 1:8.3; Conv.F=1.74; Frequency: 836.6 MHz; Medium parameters used: f = 835 MHz; σ =0.92 mho/m; ϵ r =40.67; ρ = 1000 kg/m³; Phantom section: Left Section

Ambient temperature (°C): 22.1, Liquid temperature (°C): 21.7

SATIMO Configuration:

- Probe: SSE2; Calibrated: Aug. 08,2017; Serial No.: SN 08/16 EPGO282
- · Sensor-Surface: 4mm (Mechanical Surface Detection)
- · Phantom: SAM twin phantom


GC

Attestation of Global Compliance

Measurement SW: OpenSAR V4_02_35

Configuration/GSM 850 Mid-Touch-Left/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/GSM 850 Mid-Touch-Left/Zoom Scan : Measurement grid: dx=8mm,dy=8mm, dz=5mm

sam_direct_droit2_surf8mm.txt
5x5x7,dx=8mm dy=8mm dz=5mm,Complete
Left head
Cheek
GSM 850
Middle
TDMA (Crest factor: 8.0)

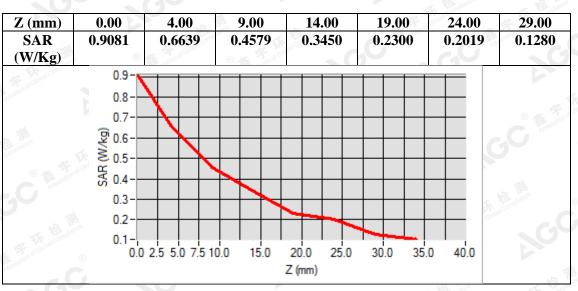
Maximum location: X=-49.00, Y=-31.00 SAR Peak: 0.98 W/kg

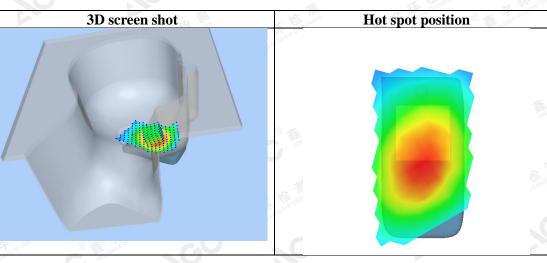
SAR 10g (W/Kg)	0.409411
SAR 1g (W/Kg)	0.629415

The results showing this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Fax: +86-755 2600 8484

Add: 2/F., Building 2, No.1-4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Baoan District, Shenzhen, Guangdong China


E-mail: agc@agc-cert.com


400 089 2118

Tel: +86-755 2908 1955

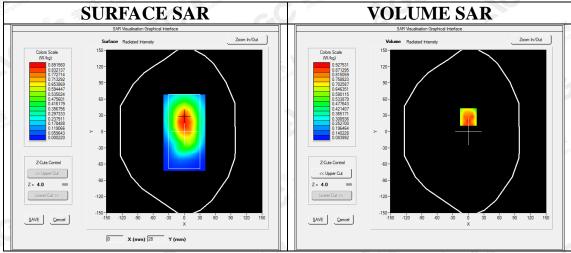
Report No.: AGC03866180501FH01 Page 48 of 74

The results show the first est report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attraction.

Report No.: AGC03866180501FH01 Page 49 of 74

Test Laboratory: AGC Lab GSM 850 Mid- Body- Back (MS)<SIM 1> DUT: FEATURE PHONE; Type: DIAMOND Date: May. 10, 2018

Communication System: Generic GSM; Communication System Band: GSM 850; Duty Cycle: 1:8.3; Conv.F=1.81; Frequency: 836.6 MHz; Medium parameters used: f = 835 MHz; σ = 0.96 mho/m; ϵ r = 55.23; ρ = 1000 kg/m³; Phantom section: Flat Section

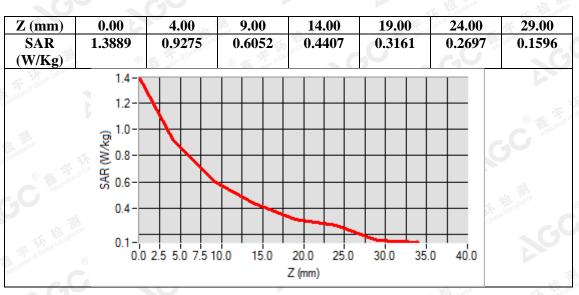

Ambient temperature (°C): 22.1, Liquid temperature (°C): 21.8

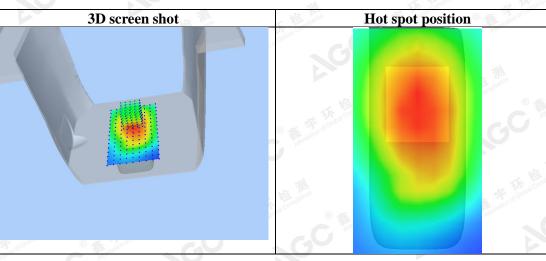
SATIMO Configuration:

- Probe: SSE2; Calibrated: Aug. 08,2017; Serial No.: SN 08/16 EPGO282
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Phantom: SAM twin phantom
- Measurement SW: OpenSAR V4_02_35

Configuration/GSM 850 Mid-Body-Back/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/GSM 850 Mid-Body-Back/Zoom Scan: Measurement grid: dx=8mm,dy=8mm, dz=5mm;

Area Scan	sam_direct_droit2_surf8mm.txt		
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm,Complete		
Phantom	Validation plane		
Device Position	Body Back		
Band	GSM 850		
Channels	Middle		
Signal	TDMA (Crest factor: 8.0)		


Maximum location: X=0.00, Y=27.00 SAR Peak: 1.31 W/kg


Sin i can. 1.51 Wing	
SAR 10g (W/Kg)	0.594158
SAR 1g (W/Kg)	0.877534

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Report No.: AGC03866180501FH01 Page 50 of 74

The results shown in this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attraction.

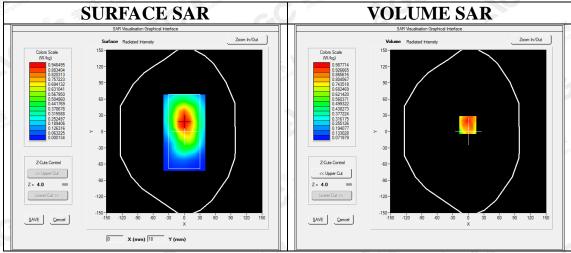
Report No.: AGC03866180501FH01 Page 51 of 74

Test Laboratory: AGC Lab GSM 850 High - Body- Back (MS)<SIM 1> DUT: FEATURE PHONE; Type: DIAMOND Date: May. 10, 2018

Communication System: Generic GSM; Communication System Band: GSM 850; Duty Cycle: 1:8.3; Conv.F=1.81; Frequency: 848.8 MHz; Medium parameters used: f = 835 MHz; σ = 0.98 mho/m; ϵ r = 54.00; ρ = 1000 kg/m³; Phantom section: Flat Section

Ambient temperature (°C): 22.1, Liquid temperature (°C): 21.8

SATIMO Configuration:


- Probe: SSE2; Calibrated: Aug. 08,2017; Serial No.: SN 08/16 EPGO282
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Phantom: SAM twin phantom

Attestation of Global Compliance

Measurement SW: OpenSAR V4_02_35

Configuration/GSM 850 High -Body-Back/Area Scan: Measurement grid: dx=8mm, dy=8mm **Configuration/GSM 850 High -Body-Back/Zoom Scan:** Measurement grid: dx=8mm,dy=8mm, dz=5mm;

Area Scan	sam_direct_droit2_surf8mm.txt
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm,Complete
Phantom	Validation plane
Device Position	Body Back
Band	GSM 850
Channels	High
Signal	TDMA (Crest factor: 8.0)
	and a state

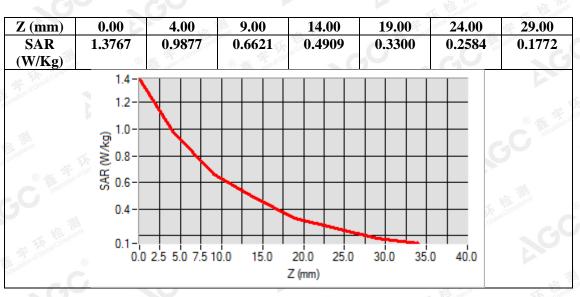
Maximum location: X=-1.00, Y=12.00 SAR Peak: 1.39 W/kg

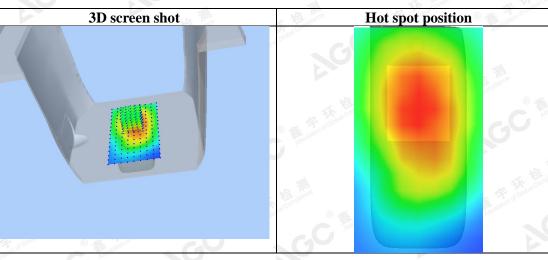
Diff i curi 1.57 Wing	
0.628254	
0.943478	

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Fax: +86-755 2600 8484

Add: 2/F., Building 2, No.1-4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Baoan District, Shenzhen, Guangdong China


E-mail: agc@agc-cert.com


() 400 089 2118

Tel: +86-755 2908 1955

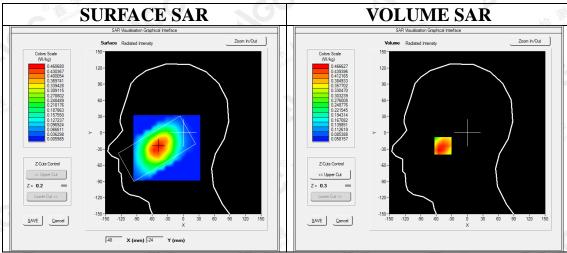
Report No.: AGC03866180501FH01 Page 52 of 74

The results shown in this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attraction.

Report No.: AGC03866180501FH01 Page 53 of 74

Test Laboratory: AGC Lab GPRS 850 Mid-Touch-Left (2up) DUT: FEATURE PHONE; Type: DIAMOND Date: May. 10, 2018

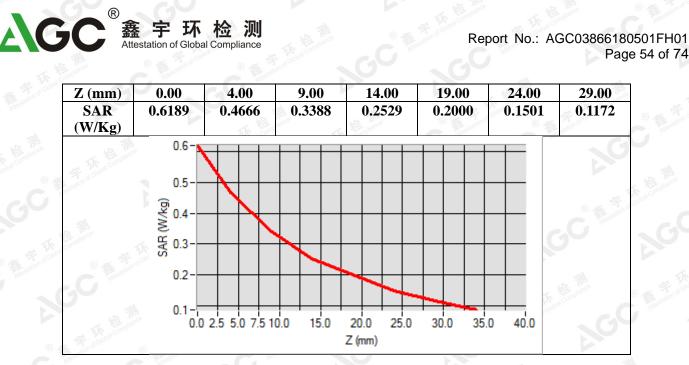
Communication System: GPRS-2 Slot; Communication System Band: GSM 850; Duty Cycle: 1:4.2; Conv.F=1.74 Frequency: 836.6 MHz; Medium parameters used: f = 835 MHz; σ =0.92 mho/m; ϵ r =40.67 ρ = 1000 kg/m³; Phantom section: Left Section

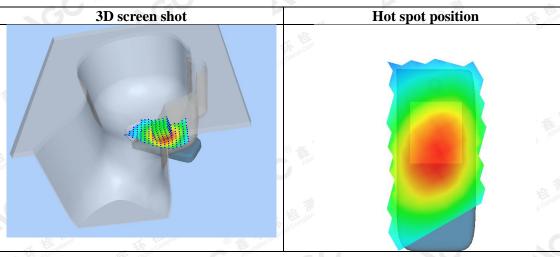

Ambient temperature (°C): 22.1, Liquid temperature (°C): 21.7

SATIMO Configuration:

- · Probe: SSE2; Calibrated: Aug. 08,2017; Serial No.: SN 08/16 EPGO282
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Phantom: SAM twin phantom
- Measurement SW: OpenSAR V4_02_35

Configuration/GPRS 850 Mid-Touch-Left/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/GPRS 850 Mid-Touch-Left/Zoom Scan: Measurement grid: dx=8mm,dy=8mm, dz=5mm


Area Scan	sam_direct_droit2_surf8mm.txt
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm,Complete
Phantom	Left head
Device Position	Cheek
Band	GSM 850
Channels	Middle
Signal	TDMA (Crest factor: 4.0)


Maximum location: X=-47.00, Y=-24.00 SAR Peak: 0.63 W/kg

SAR 10g (W/Kg)	0.325782
SAR 1g (W/Kg)	0.458713

The results showing this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

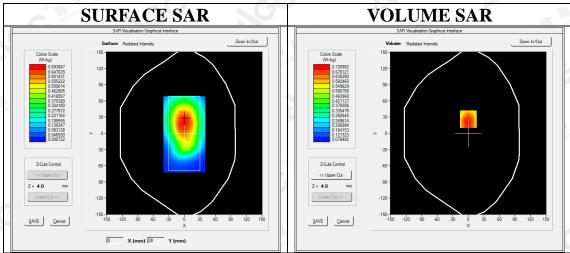
Report No.: AGC03866180501FH01

The results showing this test eport refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-gert.com.

Report No.: AGC03866180501FH01 Page 55 of 74

Test Laboratory: AGC Lab GPRS 850 Mid- Body- Back (2up) DUT: FEATURE PHONE; Type: DIAMOND Date: May. 10, 2018

Communication System: GPRS-2 Slot; Communication System Band: GSM 850; Duty Cycle: 1:4.2; Conv.F=1.81; Frequency: 836.6 MHz; Medium parameters used: f = 835 MHz; σ =0.96 mho/m; ϵ r = 55.23; ρ = 1000 kg/m³; Phantom section: Flat Section

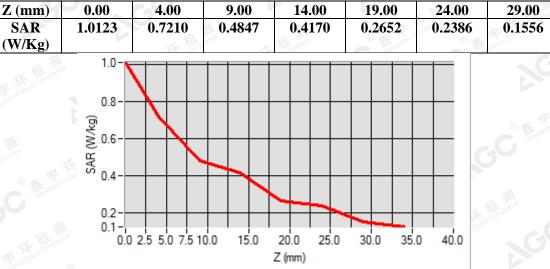

Ambient temperature (°C): 22.1, Liquid temperature (°C): 21.8

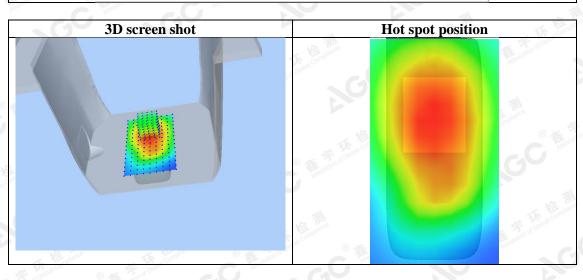
SATIMO Configuration:

- · Probe: SSE2; Calibrated: Aug. 08,2017; Serial No.: SN 08/16 EPGO282
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Phantom: SAM twin phantom
- Measurement SW: OpenSAR V4_02_35

Configuration/GPRS 850 Mid-Body-Back/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/GPRS 850 Mid-Body-Back/Zoom Scan: Measurement grid: dx=8mm,dy=8mm, dz=5mm;

Area Scan	sam_direct_droit2_surf8mm.txt
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm,Complete
Phantom	Validation plane
Device Position	Body Back
Band	GSM 850
Channels	Middle
Signal	TDMA (Crest factor: 4.0)


Maximum location: X=0.00, Y=26.00 SAR Peak: 0.94 W/kg


SAR 10g (W/Kg)	0.497682
SAR 1g (W/Kg)	0.694142

The results showing this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Actestation of Global Compliance Z (mm) 0.00 4.00 9.00 14.00

Report No.: AGC03866180501FH01 Page 56 of 74

The results show the first est report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attraction.

Report No.: AGC03866180501FH01 Page 57 of 74

Date: May. 07, 2018

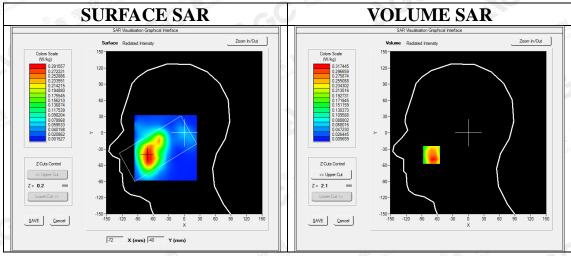
Test Laboratory: AGC Lab PCS 1900 Mid-Touch-Right <SIM 1> DUT: FEATURE PHONE; Type: DIAMOND

Communication System: Generic GSM; Communication System Band: PCS 1900; Duty Cycle: 1:8.3; Conv.F=2.32; Frequency: 1880 MHz; Medium parameters used: f = 1900 MHz; σ = 1.38 mho/m; ϵ r =40.63; ρ = 1000 kg/m³; Phantom section: Right Section

Ambient temperature (°C): 21.7, Liquid temperature (°C): 21.1

SATIMO Configuration:

- · Probe: SSE2; Calibrated: Aug. 08,2017; Serial No.: SN 08/16 EPGO282
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Phantom: SAM twin phantom


GCS

Attestation of Global Compliance

Measurement SW: OpenSAR V4_02_35

Configuration/PCS1900 Mid-Touch-Right/Area Scan: Measurement grid: dx=8mm, dy=8mm **Configuration/PCS1900 Mid-Touch-Right/Zoom Scan:** Measurement grid: dx=8mm,dy=8mm, dz=5mm;

Area Scan	sam_direct_droit2_surf8mm.txt
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm,Complete
Phantom	Right head
Device Position	Cheek
Band	PCS 1900
Channels	Middle
Signal	TDMA (Crest factor: 8.0)

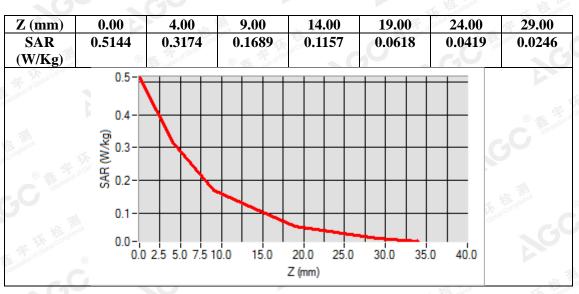
Maximum location: X=-71.00, Y=-41.00 SAR Peak: 0.51 W/kg

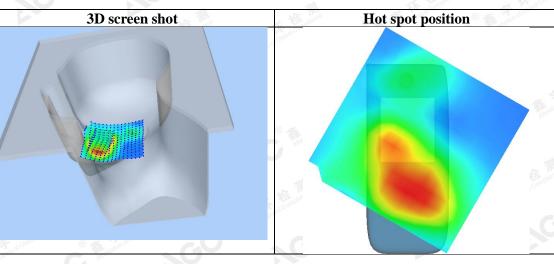
Difference	
SAR 10g (W/Kg)	0.174221
SAR 1g (W/Kg)	0.306353

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Fax: +86-755 2600 8484

Add: 2/F., Building 2, No.1-4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Baoan District, Shenzhen, Guangdong China


E-mail: agc@agc-cert.com


() 400 089 2118

Tel: +86-755 2908 1955

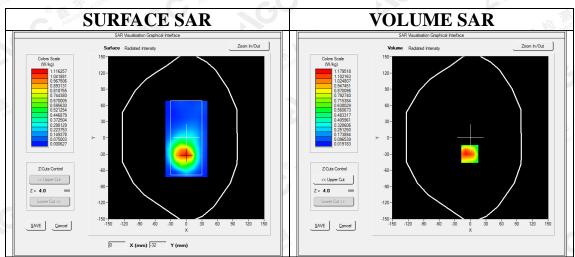
Report No.: AGC03866180501FH01 Page 58 of 74

The results show of this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by ACC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attraction.

Report No.: AGC03866180501FH01 Page 59 of 74

Test Laboratory: AGC Lab PCS 1900 Mid-Body-Back (MS)<SIM 1> DUT: FEATURE PHONE; Type: DIAMOND Date: May. 07, 2018

Communication System: Generic GSM; Communication System Band: PCS 1900; Duty Cycle: 1:8.3; Conv.F=2.39; Frequency: 1880 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.50 \text{ mho/m}$; $\epsilon r = 53.71$; $\rho = 1000 \text{ kg/m}^3$; Phantom section: Flat Section

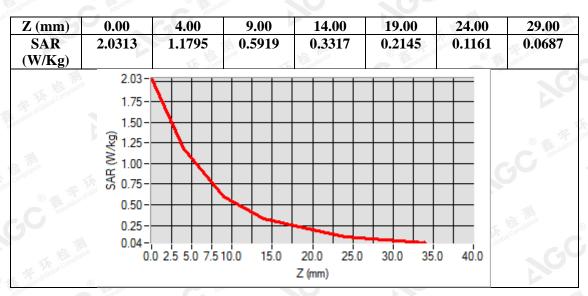

Ambient temperature (°C): 21.7, Liquid temperature (°C): 21.3

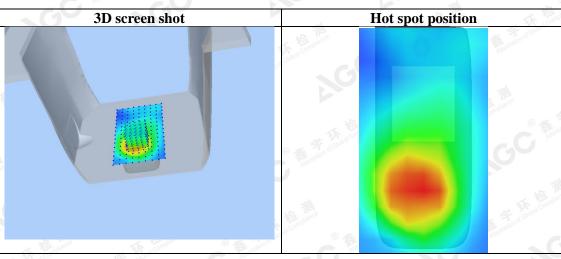
SATIMO Configuration:

- Probe: SSE2; Calibrated: Aug. 08,2017; Serial No.: SN 08/16 EPGO282
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Phantom: SAM twin phantom
- Measurement SW: OpenSAR V4_02_35

Configuration/PCS1900 Mid-Body-Back/Area Scan: Measurement grid: dx=8mm, dy=8mm **Configuration/PCS1900 Mid-Body-Back/Zoom Scan:** Measurement grid: dx=8mm,dy=8mm, dz=5mm;

sam_direct_droit2_surf8mm.txt
5x5x7,dx=8mm dy=8mm dz=5mm,Complete
Validation plane
Body Back
PCS 1900
Middle
TDMA (Crest factor: 8.0)


Maximum location: X=-1.00, Y=-30.00 SAR Peak: 2.01 W/kg


SAD_{12} (W/ U_2) 1 124510	SAR 10g (W/Kg)	0.617835
SAR Ig (W/Kg) 1.134519	SAR 1g (W/Kg)	1.134519

The results showing this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Report No.: AGC03866180501FH01 Page 60 of 74

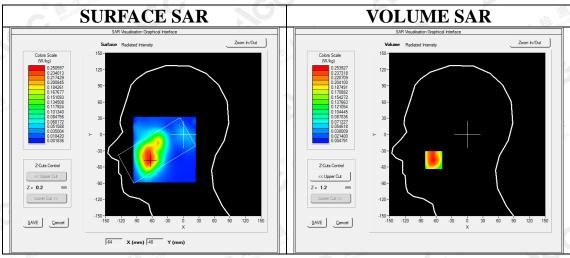
The results show the first est report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attraction.

Report No.: AGC03866180501FH01 Page 61 of 74

Date: May. 07, 2018

Test Laboratory: AGC Lab GPRS1900 Mid-Touch-Right (3up) DUT: FEATURE PHONE; Type: DIAMOND

Communication System: GPRS-3Slot; Communication System Band: PCS 1900; Duty Cycle: 1:2.7; Conv.F=2.32; Frequency: 1880 MHz; Medium parameters used: f = 1900 MHz; σ = 1.38 mho/m; ϵ r =40.63; ρ = 1000 kg/m³; Phantom section: Right Section

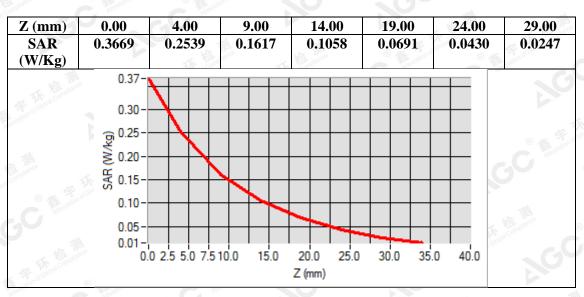

Ambient temperature (°C): 21.7, Liquid temperature (°C): 21.1

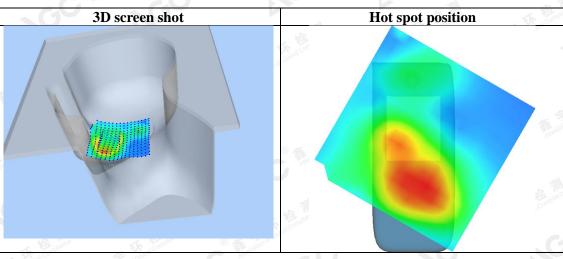
SATIMO Configuration:

- · Probe: SSE2; Calibrated: Aug. 08,2017; Serial No.: SN 08/16 EPGO282
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Phantom: SAM twin phantom
- Measurement SW: OpenSAR V4_02_35

Configuration/GPRS1900 Mid-Touch-Right/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/GPRS1900 Mid-Touch-Right/Zoom Scan: Measurement grid: dx=8mm,dy=8mm, dz=5mm;

sam_direct_droit2_surf8mm.txt
5x5x7,dx=8mm dy=8mm dz=5mm,Complete
Right head
Čheek
PCS 1900
Middle
TDMA (Crest factor: 2.7)


Maximum location: X=-65.00, Y=-47.00 SAR Peak: 0.37 W/kg


0.147937
0.244969

The results showing this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

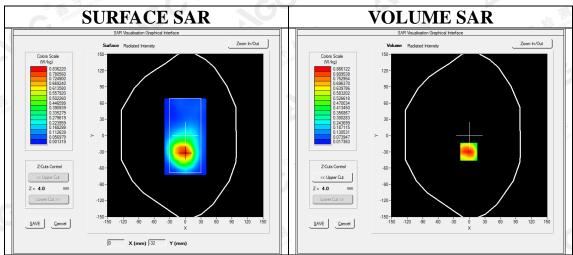
Report No.: AGC03866180501FH01 Page 62 of 74

The results show the first est report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attraction.

Report No.: AGC03866180501FH01 Page 63 of 74

Test Laboratory: AGC Lab GPRS 1900 Low-Body-Back (3up) DUT: FEATURE PHONE; Type: DIAMOND Date: May. 07, 2018

Communication System: GPRS-3Slot; Communication System Band: PCS 1900; Duty Cycle: 1:2.7; Conv.F=2.39; Frequency: 1850.2 MHz; Medium parameters used: f = 1900 MHz; σ = 1.46 mho/m; ϵ r =54.75; ρ = 1000 kg/m³; Phantom section: Flat Section

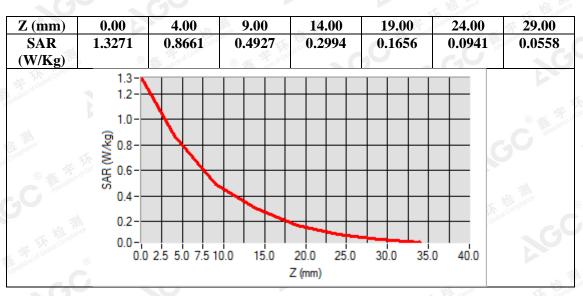

Ambient temperature (°C): 21.7, Liquid temperature (°C): 21.3

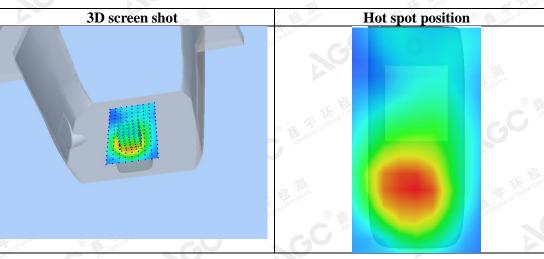
SATIMO Configuration:

- Probe: SSE2; Calibrated: Aug. 08,2017; Serial No.: SN 08/16 EPGO282
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Phantom: SAM twin phantom
- Measurement SW: OpenSAR V4_02_35

Configuration/GPRS1900 Low-Body-Back/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/GPRS1900 Low-Body-Back/Zoom Scan: Measurement grid: dx=8mm,dy=8mm, dz=5mm;

Area Scan	sam_direct_droit2_surf8mm.txt
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm,Complete
Phantom	Validation plane
Device Position	Body Back
Band	PCS 1900
Channels	Low
Signal	TDMA (Crest factor: 2.7)
Signal	TDMA (Crest factor: 2.7)


Maximum location: X=-1.00, Y=-30.00 SAR Peak: 1.34 W/kg


	SAR 10g (W/Kg)	0.462583
SAR 1g (W/Kg) 0.824284	SAR 1g (W/Kg)	0.824284

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Report No.: AGC03866180501FH01 Page 64 of 74

The results show the first est report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attraction.

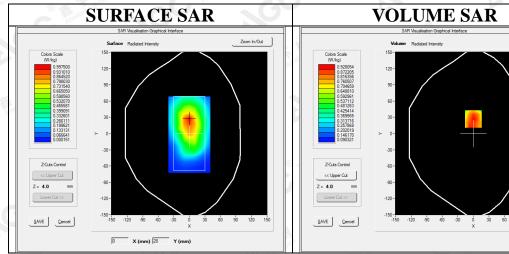
Report No.: AGC03866180501FH01 Page 65 of 74

Repeated SAR Test Laboratory: AGC Lab GSM 850 High - Body- Back (MS)<SIM 1> DUT: FEATURE PHONE; Type: DIAMOND

Date: May. 10, 2018

Zoom In/Out

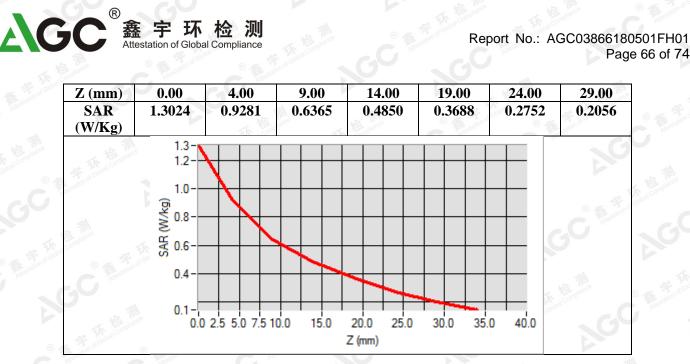
Communication System: Generic GSM; Communication System Band: GSM 850; Duty Cycle: 1:8.3; Conv.F=1.81; Frequency: 848.8 MHz; Medium parameters used: f = 835 MHz; σ = 0.98 mho/m; ϵ r = 54.00; ρ = 1000 kg/m³; Phantom section: Flat Section

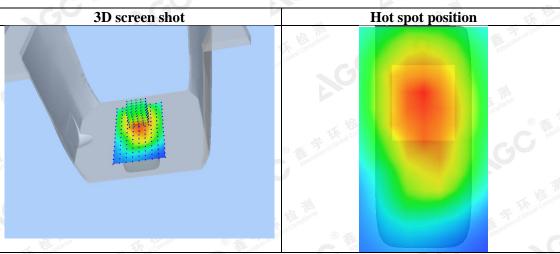

Ambient temperature (°C): 22.1, Liquid temperature (°C): 21.8

SATIMO Configuration:

- Probe: SSE2; Calibrated: Aug. 08,2017; Serial No.: SN 08/16 EPGO282
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Phantom: SAM twin phantom
- Measurement SW: OpenSAR V4_02_35

Configuration/GSM 850 High -Body-Back/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/GSM 850 High -Body-Back/Zoom Scan: Measurement grid: dx=8mm,dy=8mm, dz=5mm;


Area Scan	sam_direct_droit2_surf8mm.txt
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm,Complete
Phantom	Validation plane
Device Position	Body Back
Band	GSM 850
Channels	High
Signal	TDMA (Crest factor: 8.0)


Maximum location: X=0.00, Y=27.00 SAR Peak: 1.36 W/kg

SAR 10g (W/Kg)	0.624994
SAR 1g (W/Kg)	0.921614

The results showing this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.ceit.com.

Report No.: AGC03866180501FH01

The results showing this test eport refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-gert.com.

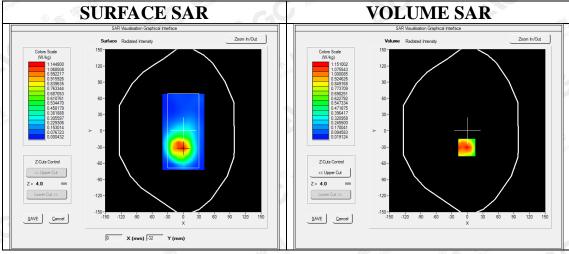
Report No.: AGC03866180501FH01 Page 67 of 74

Test Laboratory: AGC Lab PCS 1900 Mid-Body-Back (MS)<SIM 1> DUT: FEATURE PHONE; Type: DIAMOND Date: May. 07, 2018

Communication System: Generic GSM; Communication System Band: PCS 1900; Duty Cycle: 1:8.3; Conv.F=2.39; Frequency: 1880 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.50 \text{ mho/m}$; $\epsilon r = 53.71$; $\rho = 1000 \text{ kg/m}^3$; Phantom section: Flat Section

Ambient temperature (°C): 21.7, Liquid temperature (°C): 21.3

SATIMO Configuration:


- Probe: SSE2; Calibrated: Aug. 08,2017; Serial No.: SN 08/16 EPGO282
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Phantom: SAM twin phantom

Attestation of Global Compliance

Measurement SW: OpenSAR V4_02_35

Configuration/PCS1900 Mid-Body-Back/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/PCS1900 Mid-Body-Back/Zoom Scan: Measurement grid: dx=8mm,dy=8mm, dz=5mm;

Area Scan	sam_direct_droit2_surf8mm.txt
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm,Complete
Phantom	Validation plane
Device Position	Body Back
Band	PCS 1900
Channels	Middle
Signal	TDMA (Crest factor: 8.0)

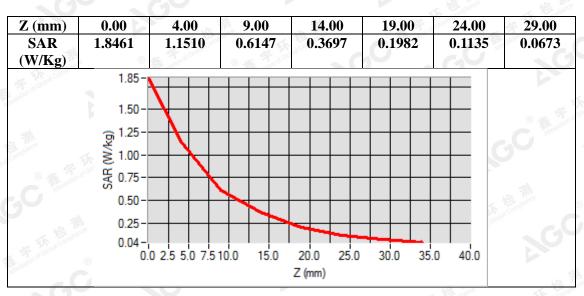
Maximum location: X=-1.00, Y=-31.00 SAR Peak: 1.86 W/kg

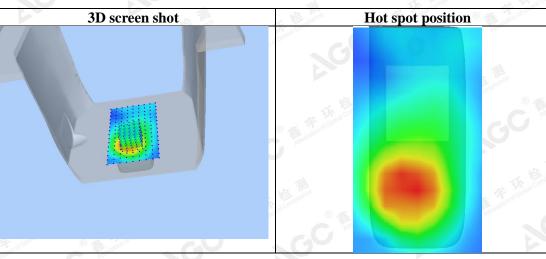
Diff. I cult	1.00 ///1.5
SAR 10g (W/Kg)	0.594476
SAR 1g (W/Kg)	1.088893

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Fax: +86-755 2600 8484

Add: 2/F., Building 2, No.1-4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Baoan District, Shenzhen, Guangdong China

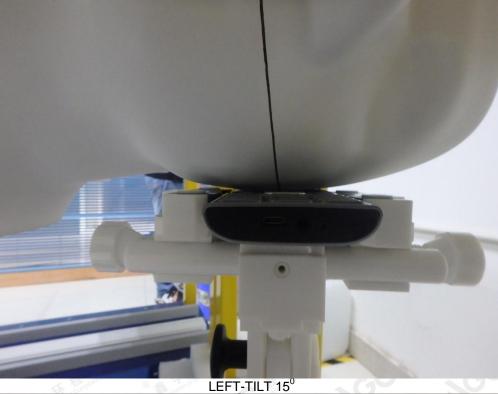

E-mail: agc@agc-cert.com

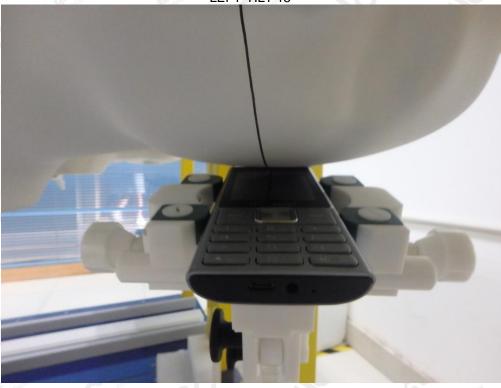

() 400 089 2118

Tel: +86-755 2908 1955

Report No.: AGC03866180501FH01 Page 68 of 74

The results show the first est report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attraction.

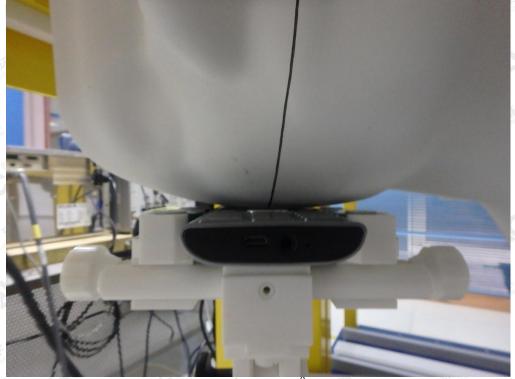




Report No.: AGC03866180501FH01 Page 69 of 74

APPENDIX C. TEST SETUP PHOTOGRAPHS

LEFT- CHEEK TOUCH



The results show of this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gent.com.

Report No.: AGC03866180501FH01 Page 70 of 74

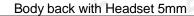
RIGHT- CHEEK TOUCH

RIGHT-TILT 15°

The results show of this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attraction.

Report No.: AGC03866180501FH01 Page 71 of 74

Body Back 5mm


Body Front 5mm

The results shown in this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc?gett.com.

Report No.: AGC03866180501FH01 Page 72 of 74

Position of the device under test in relation to the phantom

The results shows in this report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by (ACC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Report No.: AGC03866180501FH01 Page 73 of 74

DEPTH OF THE LIQUID IN THE PHANTOM—ZOOM IN State in the measurement were according to IEEE 1528-2013 S35MHz head S35MHz body OPPH OF THE UQUID IN THE PHANTOM—ZOOM IN S35MHz head S35MHz body OPPH OF THE UQUID IN THE PHANTOM—ZOOM IN S35MHz head S35MHz body OPPH OF THE UQUID IN THE PHANTOM—ZOOM IN S35MHz body OPPH OF THE UQUID IN THE PHANTOM—ZOOM IN S35MHz body OPPH OF THE UQUID IN THE PHANTOM—ZOOM IN S35MHz body OPPH OF THE UQUID IN THE PHANTOM—ZOOM IN OPPH OF THE UCUID IN THE PHANTOM—ZOOM IN OPPH OF THE UCUID IN THE PHANTOM IN OPPH OF THE UCUID IN TH

The results shown in this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc-cent.com.

Report No.: AGC03866180501FH01 Page 74 of 74

APPENDIX D. CALIBRATION DATA

Refer to Attached files.

The results show on the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

