FCC SAR Test Report Report No. : SA180507W002 Applicant : KonnectONE, LLC Address : 30 N Gould Street, Suite 4004, Sheridan, Wyoming, United States Product : LTE OBDII Hotspot FCC ID : 2APQU-SD6200 Brand : moxee Model No. : SD6200 Standards : FCC 47 CFR Part 2 (2.1093) / IEEE C95.1:1992 / IEEE 1528:2013 KDB 865664 D01 v01r04 / KDB 865664 D02 v01r02 KDB 248227 D01 v02r02 / KDB 447498 D01 v06 KDB 941225 D01 v03r01 / KDB 941225 D05 v02r05 Sample Received Date : Jul. 13, 2016 Date of Testing : Jul. 25, 2016 ~ Aug. 31, 2016 **CERTIFICATION:** The above equipment have been tested by **BV 7LAYERS COMMUNICATIONS TECHNOLOGY (SHENZHEN) CO. LTD.**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's SAR characteristics under the conditions specified in this report. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product certification, approval, or endorsement by A2LA or any government agencies. Prepared By: Xianxiong Qin / Engineer Approved By: Luke Lu / Manager ACCREDITED Certificate # 3939.01 Report Format Version 5.0.0 Page No. : 1 of 45 Report No. : SA180507W002 Issued Date : May 24, 2018 # **Table of Contents** | Re | lease (| Control Record | 3 | |----|---------|--|----| | 1. | Sum | mary of Maximum SAR Value | 4 | | 2. | Desc | cription of Equipment Under Test | 5 | | 3. | SAR | Measurement System | 6 | | | 3.1 | Definition of Specific Absorption Rate (SAR) | 6 | | | 3.2 | SPEAG DASY System | 6 | | | | 3.2.1 Robot | 7 | | | | 3.2.2 Probes | | | | | 3.2.3 Data Acquisition Electronics (DAE) | 8 | | | | 3.2.4 Phantoms | 9 | | | | 3.2.5 Device Holder | | | | | 3.2.6 System Validation Dipoles | 10 | | | | 3.2.7 Tissue Simulating Liquids | | | | 3.3 | SAR System Verification | | | | 3.4 | SAR Measurement Procedure | 15 | | | | 3.4.1 Area & Zoom Scan Procedure | | | | | 3.4.2 Volume Scan Procedure | | | | | 3.4.3 Power Drift Monitoring | 16 | | | | 3.4.4 Spatial Peak SAR Evaluation | | | | | 3.4.5 SAR Averaged Methods | | | 4. | SAR | Measurement Evaluation | | | | 4.1 | EUT Configuration and Setting | 17 | | | 4.2 | EUT Testing Position | | | | | 4.2.1 Body Exposure Conditions | | | | | 4.2.2 Extremity Exposure Conditions | | | | | 4.2.3 SAR Test Exclusion Evaluations | | | | | 4.2.4 Simultaneous Transmission Possibilities | | | | 4.3 | Tissue Verification | | | | 4.4 | System Validation | | | | 4.5 | System Verification | | | | 4.6 | Maximum Output Power | | | | | 4.6.1 Maximum Conducted Power | 24 | | | | 4.6.2 Measured Conducted Power Result | 24 | | | 4.7 | SAR Testing Results | 31 | | | | 4.7.1 SAR Test Reduction Considerations | | | | | 4.7.2 SAR Results for Body Exposure Condition (Separation Distance is 1.0 cm Gap) | | | | | 4.7.3 SAR Results for Extremity Exposure Condition (Separation Distance is 0 cm Gap) | | | | | 4.7.4 SAR Measurement Variability | 35 | | _ | | 4.7.5 Simultaneous Multi-band Transmission Evaluation | | | | | pration of Test Equipment | | | 6. | | surement Uncertainty | | | 7. | Infor | mation on the Testing Laboratories | 45 | Appendix A. SAR Plots of System Verification Appendix B. SAR Plots of SAR Measurement Appendix C. Calibration Certificate for Probe and Dipole Appendix D. Photographs of EUT and Setup # **Release Control Record** | Report No. | Reason for Change | Date Issued | |--------------|-------------------|--------------| | SA180507W002 | Initial release | May 24, 2018 | Report Format Version 5.0.0 Page No. : 3 of 45 Report No.: \$A180507W002 Issued Date : May 24, 2018 # 1. Summary of Maximum SAR Value | Equipment
Class | Mode | Highest Reported Body SAR _{1a} (1.0 cm Gap) (W/kg) | Highest Reported Extremity SAR _{10q} (0 cm Gap) (W/kg) | |---------------------------------------|--------------|---|---| | | WCDMA II | 0.73 | 2.83 | | | WCDMA IV | 0.71 | 2.11 | | РСВ | LTE 2 | <mark>0.88</mark> | <mark>2.90</mark> | | PCB | LTE 4 | 0.73 | 1.70 | | | LTE 5 | 0.20 | 0.67 | | | LTE 12 | 0.14 | 0.57 | | DTS | 2.4G WLAN | 0.30 | 0.63 | | DTS | Bluetooth LE | N/A | N/A | | Highest Simultaneous Transmission SAR | | Body
(W/kg) | Extremity
(W/kg) | | PCB + DTS(WLAN) | | 1.01 | 2.90 | | PCB + DTS(BT_LE) | | PCB + DTS(BT_LE) 0.89 2.91 | | ## Note: 1. The SAR limit (Head & Body: SAR_{1g} 1.6 W/kg, Extremity: SAR_{10g} 4.0 W/kg) for general population / uncontrolled exposure is specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1992. Report Format Version 5.0.0 Page No. : 4 of 45 Report No. : SA180507W002 Issued Date : May 24, 2018 # 2. <u>Description of Equipment Under Test</u> | EUT Type | LTE OBDII Hotspot | |--|--| | FCC ID | 2APQU-SD6200 | | Brand Name | moxee | | Model Name | SD6200 | | HW Version | SD6200.H02 | | SW Version | TMO_US_SD6200V1.0.0B01 | | Tx Frequency Bands
(Unit: MHz) | WCDMA Band II: 1852.4 ~ 1907.6
WCDMA Band IV: 1712.4 ~ 1752.6
LTE Band 2: 1850.7 ~ 1909.3 (1.4M), 1851.5 ~ 1908.5 (3M), 1852.5 ~ 1907.5 (5M),
1855 ~ 1905 (10M), 1857.5 ~ 1902.5 (15M), 1860 ~ 1900 (20M)
LTE Band 4: 1710.7 ~ 1754.3 (1.4M), 1711.5 ~ 1753.5 (3M), 1712.5 ~ 1752.5 (5M),
1715 ~ 1750 (10M), 1717.5 ~ 1747.5 (15M), 1720 ~ 1745 (20M)
LTE Band 5: 824.7 ~ 848.3 (1.4M), 825.5 ~ 847.5 (3M), 826.5 ~ 846.5 (5M),
829 ~ 844 (10M)
LTE Band 12: 699.7 ~ 715.3 (1.4M), 700.5 ~ 714.5 (3M), 701.5 ~ 713.5 (5M),
704 ~ 711 (10M)
WLAN: 2412 ~ 2462
BT-LE(GFSK): 2402 ~ 2480 | | Uplink Modulations | WCDMA: QPSK
LTE: QPSK, 16QAM, 64QAM
802.11b: DSSS
802.11g/n: OFDM
BT-LE(GFSK): DTS | | Maximum Tune-up Conducted Power
(Unit: dBm) | WCDMA Band II: 23.0
WCDMA Band IV: 23.0
LTE Band 2: 23.5
LTE Band 4: 23.5
LTE Band 5: 23.5
LTE Band 12: 23.5
WLAN 2.4G: 18.5
BT-LE(GFSK): -6.0 | | Antenna Type | WLAN: PIFA Antenna
WWAN: Fixed Internal Antenna | | EUT Stage | Identical Prototype | ## Note: 1. The above EUT information is declared by manufacturer and for more detailed features description please refers to the manufacturer's specifications or User's Manual. # **List of Accessory:** | | Brand Name | GOSUNCN | |----------|--------------|--------------------| | Battery | Model Name | Li3702T42P3h292833 | | Datter y | Power Rating | 3.7Vdc, 180mAh | | | Туре | Li-ion | Report Format Version 5.0.0 Page No. : 5 of 45 Report No. : SA180507W002 Issued Date : May 24, 2018 # 3. SAR Measurement System ## 3.1 Definition of Specific Absorption Rate (SAR) SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled. The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below: $$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$ SAR is expressed in units of Watts per kilogram (W/kg) SAR measurement can be related to the electrical field in the tissue by $$SAR = \frac{\sigma |E|^2}{\rho}$$ Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength. ## 3.2 SPEAG DASY System DASY system consists of high precision robot, probe alignment sensor, phantom, robot controller, controlled measurement server and near-field probe. The robot includes six axes that can move to the precision position of the DASY5 software defined. The DASY software can define the area that is detected by the probe. The robot is connected to controlled box. Controlled measurement server is connected to the controlled robot box. The DAE includes amplifier, signal multiplexing, AD converter, offset measurement and surface detection. It is connected to the Electro-optical coupler (ECO). The ECO performs the conversion form the optical into digital electric signal of the DAE and transfers data to the PC. Report Format Version 5.0.0 Page No. : 6 of 45 Report No.: SA180507W002 Issued Date : May 24, 2018 Fig-3.1 DASY System Setup ## 3.2.1 Robot The DASY system uses the high precision robots from Stäubli SA (France). For the 6-axis controller system, the robot controller version (DASY5: CS8c) from Stäubli is used. The Stäubli robot series have many features that are important for our application: - High precision (repeatability ±0.035 mm) - High reliability (industrial design) - · Jerk-free straight movements - Low ELF
interference (the closed metallic construction shields against motor control fields) Report Format Version 5.0.0 Page No. : 7 of 45 Report No. : SA180507W002 Issued Date : May 24, 2018 ## 3.2.2 Probes The SAR measurement is conducted with the dosimetric probe. The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. | Model | EX3DV4 | | |---------------|--|-----| | Construction | Symmetrical design with triangular core. Built-in shielding against static charges. PEEK enclosure material (resistant to organic solvents, e.g., DGBE). | - | | Frequency | 10 MHz to 6 GHz
Linearity: ± 0.2 dB | | | Directivity | ± 0.3 dB in HSL (rotation around probe axis) ± 0.5 dB in tissue material (rotation normal to probe axis) | | | Dynamic Range | 10 μW/g to 100 mW/g
Linearity: ± 0.2 dB (noise: typically < 1 μW/g) | /// | | Dimensions | Overall length: 337 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm | | | Model | ES3DV3 | | |---------------|---|---| | Construction | Symmetrical design with triangular core. Interleaved sensors. Built-in shielding against static charges. PEEK enclosure material (resistant to organic solvents, e.g., DGBE). | P | | Frequency | 10 MHz to 4 GHz
Linearity: ± 0.2 dB | | | Directivity | ± 0.2 dB in HSL (rotation around probe axis) ± 0.3 dB in tissue material (rotation normal to probe axis) | | | Dynamic Range | 5 μW/g to 100 mW/g
Linearity: ± 0.2 dB | AND THE RESERVE OF THE PERSON | | Dimensions | Overall length: 337 mm (Tip: 20 mm) Tip diameter: 3.9 mm (Body: 12 mm) Distance from probe tip to dipole centers: 2.0 mm | | # 3.2.3 Data Acquisition Electronics (DAE) | Model | DAE3, DAE4 | | |-------------------------|---|--| | Construction | Signal amplifier, multiplexer, A/D converter and control logic. Serial optical link for communication with DASY embedded system (fully remote controlled). Two step probe touch detector for mechanical surface detection and emergency robot stop. | | | Measurement
Range | -100 to +300 mV (16 bit resolution and two range settings: 4mV, 400mV) | | | Input Offset
Voltage | < 5μV (with auto zero) | | | Input Bias Current | < 50 fA | | | Dimensions | 60 x 60 x 68 mm | | Report Format Version 5.0.0 Page No. : 8 of 45 Report No. : SA180507W002 Issued Date : May 24, 2018 ## 3.2.4 Phantoms | Model | Twin SAM | | |-----------------|---|--| | Construction | The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528 and IEC 62209-1. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by teaching three points with the robot. | | | Material | Vinylester, glass fiber reinforced (VE-GF) | | | Shell Thickness | 2 ± 0.2 mm (6 ± 0.2 mm at ear point) | | | Dimensions | Length: 1000 mm
Width: 500 mm
Height: adjustable feet | | | Filling Volume | approx. 25 liters | | | Model | ELI | | |-----------------|---|--| | Construction | Phantom for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI is fully compatible with the IEC 62209-2 standard and all known tissue simulating liquids. ELI has been optimized regarding its performance and can be integrated into our standard phantom tables. A cover prevents evaporation of the liquid. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids, by teaching three points. The phantom is compatible with all SPEAG dosimetric probes and dipoles. | | | Material | Vinylester, glass fiber reinforced (VE-GF) | | | Shell Thickness | 2.0 ± 0.2 mm (bottom plate) | | | Dimensions | Major axis: 600 mm
Minor axis: 400 mm | | | Filling Volume | approx. 30 liters | | Report Format Version 5.0.0 Page No. : 9 of 45 Report No.: \$A180507W002 Issued Date : May 24, 2018 ## 3.2.5 Device Holder | Model | Mounting Device | - | |--------------|---|---| | Construction | In combination with the Twin SAM Phantom or ELI4, the Mounting Device enables the rotation of the mounted transmitter device in spherical coordinates. Rotation point is the ear opening point. Transmitter devices can be easily and accurately positioned according to IEC, IEEE, FCC or other specifications. The device holder can be locked for positioning at different phantom sections (left head, right head, flat). | | | Material | POM | | | Model | Laptop Extensions Kit | | |--------------|---|--| | Construction | Simple but effective and easy-to-use extension for Mounting Device that facilitates the testing of larger devices according to IEC 62209-2 (e.g., laptops, cameras, etc.). It is lightweight and fits easily on the upper part of the Mounting Device in place of the phone positioner. | | | Material | POM, Acrylic glass, Foam | | # 3.2.6 System Validation Dipoles | Model | D-Serial | | |------------------|--|--| | Construction | Symmetrical dipole with I/4 balun. Enables measurement of feed point impedance with NWA. Matched for use near flat phantoms filled with tissue simulating solutions. | | | Frequency | 750 MHz to 5800 MHz | | |
Return Loss | > 20 dB | | | Power Capability | > 100 W (f < 1GHz), > 40 W (f > 1GHz) | | Report Format Version 5.0.0 Page No. : 10 of 45 Report No.: \$A180507W002 Issued Date : May 24, 2018 ## 3.2.7 Tissue Simulating Liquids For SAR measurement of the field distribution inside the phantom, the phantom must be filled with homogeneous tissue simulating liquid to a depth of at least 15 cm. For head SAR testing, the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm. The nominal dielectric values of the tissue simulating liquids in the phantom and the tolerance of 5% are listed in Table-3.1. The dielectric properties of the head tissue simulating liquids are defined in IEEE 1528, and KDB 865664 D01 Appendix A. For the body tissue simulating liquids, the dielectric properties are defined in KDB 865664 D01 Appendix A. The dielectric properties of the tissue simulating liquids were verified prior to the SAR evaluation using a dielectric assessment kit and a network analyzer. Report Format Version 5.0.0 Page No. : 11 of 45 Report No. : SA180507W002 Issued Date : May 24, 2018 **Table-3.1 Targets of Tissue Simulating Liquid** | Гианизанан | - | Denga of | • | Denge of | |--------------------|----------------------|----------------------------|---------------------|----------------------------| | Frequency
(MHz) | Target Permittivity | Range of ±5% | Target Conductivity | Range of ±5% | | (1411 12) | 1 Crimitary | For Head | Conductivity | ±370 | | 750 | 41.9 | 39.8 ~ 44.0 | 0.89 | 0.85 ~ 0.93 | | 835 | 41.5 | 39.4 ~ 43.6 | 0.90 | 0.86 ~ 0.95 | | 900 | 41.5 | 39.4 ~ 43.6 | 0.97 | 0.92 ~ 1.02 | | 1450 | 40.5 | 38.5 ~ 42.5 | 1.20 | 1.14 ~ 1.26 | | 1640 | 40.3 | 38.3 ~ 42.3 | 1.29 | 1.23 ~ 1.35 | | 1750 | 40.1 | 38.1 ~ 42.1 | 1.37 | 1.30 ~ 1.44 | | 1800 | 40.0 | 38.0 ~ 42.0 | 1.40 | 1.33 ~ 1.47 | | 1900 | 40.0 | 38.0 ~ 42.0 | 1.40 | 1.33 ~ 1.47 | | 2000 | 40.0 | 38.0 ~ 42.0 | 1.40 | 1.33 ~ 1.47 | | 2300 | 39.5 | 37.5 ~ 41.5 | 1.67 | 1.59 ~ 1.75 | | 2450 | 39.2 | 37.2 ~ 41.2 | 1.80 | 1.71 ~ 1.89 | | 2600 | 39.0 | 37.2 ~ 41.2 | 1.96 | 1.86 ~ 2.06 | | 3500 | 37.9 | 36.0 ~ 39.8 | 2.91 | 2.76 ~ 3.06 | | 5200 | 36.0 | 34.2 ~ 37.8 | 4.66 | 4.43 ~ 4.89 | | 5300 | 35.9 | 34.1 ~ 37.7 | 4.76 | 4.52 ~ 5.00 | | 5500 | 35.6 | 33.8 ~ 37.4 | 4.76 | 4.71 ~ 5.21 | | 5600 | 35.5 | 33.7 ~ 37.3 | 5.07 | 4.82 ~ 5.32 | | 5800 | 35.3 | 33.5 ~ 37.1 | 5.27 | 5.01 ~ 5.53 | | 3600 | 33.3 | For Body | 5.21 | 5.01 ~ 5.55 | | 750 | 55.5 | 52.7 ~ 58.3 | 0.96 | 0.01 1.01 | | 835 | 55.2 | 52.7 ~ 58.0
52.4 ~ 58.0 | 0.96 | 0.91 ~ 1.01
0.92 ~ 1.02 | | 900 | 55.0 | 52.4 ~ 56.0
52.3 ~ 57.8 | 1.05 | 1.00 ~ 1.10 | | 1450 | 54.0 | 52.3 ~ 57.6
51.3 ~ 56.7 | 1.30 | 1.00 ~ 1.10 | | 1640 | 53.8 | 51.3 ~ 56.7 | 1.40 | 1.33 ~ 1.47 | | 1750 | 53.4 | 51.1 ~ 56.5 | 1.49 | 1.42 ~ 1.56 | | 1800 | 53.4 | | 1.52 | 1.42 ~ 1.50 | | 1900 | 53.3 | 50.6 ~ 56.0
50.6 ~ 56.0 | 1.52 | 1.44 ~ 1.60 | | 2000 | 53.3 | | 1.52 | 1.44 ~ 1.60 | | | | 50.6 ~ 56.0
50.3 ~ 55.5 | | 1.44 ~ 1.60 | | 2300
2450 | 52.9
52.7 | | 1.81
1.95 | | | 2600 | 52. <i>1</i>
52.5 | 50.1 ~ 55.3 | 2.16 | 1.85 ~ 2.05
2.05 ~ 2.27 | | 3500 | 52.5 | 49.9 ~ 55.1
48.7 ~ 53.9 | 3.31 | 2.05 ~ 2.27
3.14 ~ 3.48 | | 5200
5200 | 49.0 | | 5.30 | | | | 49.0 | 46.6 ~ 51.5 | | 5.04 ~ 5.57
5.15 ~ 5.69 | | 5300 | | 46.5 ~ 51.3 | 5.42 | | | 5500
5600 | 48.6
48.5 | 46.2 ~ 51.0 | 5.65
5.77 | 5.37 ~ 5.93 | | | | 46.1 ~ 50.9 | | 5.48 ~ 6.06 | | 5800 | 48.2 | 45.8 ~ 50.6 | 6.00 | 5.70 ~ 6.30 | Report Format Version 5.0.0 Page No. : 12 of 45 Report No.: \$A180507W002 Issued Date : May 24, 2018 The following table gives the recipes for tissue simulating liquids. Table-3.2 Recipes of Tissue Simulating Liquid | | | Table | -3.2 Necipe | o or moode t | Simulating L | iquiu | | | |----------------|-------------|-------|-------------|--------------|--------------|-----------------|-------|---| | Tissue
Type | Bactericide | DGBE | HEC | NaCl | Sucrose | Triton
X-100 | Water | Diethylene
Glycol
Mono-
hexylether | | H750 | 0.2 | - | 0.2 | 1.5 | 56.0 | - | 42.1 | - | | H835 | 0.2 | - | 0.2 | 1.5 | 57.0 | - | 41.1 | - | | H900 | 0.2 | - | 0.2 | 1.4 | 58.0 | - | 40.2 | - | | H1450 | - | 43.3 | - | 0.6 | - | - | 56.1 | - | | H1640 | - | 45.8 | - | 0.5 | - | - | 53.7 | - | | H1750 | - | 47.0 | - | 0.4 | - | - | 52.6 | - | | H1800 | - | 44.5 | - | 0.3 | - | - | 55.2 | - | | H1900 | - | 44.5 | - | 0.2 | - | - | 55.3 | - | | H2000 | - | 44.5 | - | 0.1 | - | - | 55.4 | - | | H2300 | - | 44.9 | - | 0.1 | - | - | 55.0 | - | | H2450 | - | 45.0 | - | 0.1 | - | - | 54.9 | - | | H2600 | - | 45.1 | - | 0.1 | - | - | 54.8 | - | | H3500 | - | 8.0 | - | 0.2 | - | 20.0 | 71.8 | - | | H5G | - | - | 1 | - | - | 17.2 | 65.5 | 17.3 | | B750 | 0.2 | - | 0.2 | 0.8 | 48.8 | - | 50.0 | - | | B835 | 0.2 | - | 0.2 | 0.9 | 48.5 | - | 50.2 | - | | B900 | 0.2 | - | 0.2 | 0.9 | 48.2 | - | 50.5 | - | | B1450 | - | 34.0 | - | 0.3 | - | - | 65.7 | - | | B1640 | - | 32.5 | - | 0.3 | - | - | 67.2 | - | | B1750 | - | 31.0 | - | 0.2 | - | - | 68.8 | - | | B1800 | - | 29.5 | - | 0.4 | - | - | 70.1 | - | | B1900 | - | 29.5 | - | 0.3 | - | - | 70.2 | - | | B2000 | - | 30.0 | - | 0.2 | - | - | 69.8 | - | | B2300 | - | 31.0 | | 0.1 | - | | 68.9 | - | | B2450 | - | 31.4 | | 0.1 | - | | 68.5 | - | | B2600 | - | 31.8 | | 0.1 | - | | 68.1 | - | | B3500 | - | 28.8 | | 0.1 | - | | 71.1 | - | | B5G | - | - | | - | - | 10.7 | 78.6 | 10.7 | Report Format Version 5.0.0 Page No. : 13 of 45 Report No.: \$A180507W002 Issued Date : May 24, 2018 ## 3.3 SAR System Verification The system check verifies that the system operates within its specifications. It is performed daily or before every SAR measurement. The system check uses normal SAR measurements in the flat section of the phantom with a matched dipole at a specified distance. The system verification setup is shown as below. The validation dipole is placed beneath the flat phantom with the specific spacer in place. The distance spacer is touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The spectrum analyzer measures the forward power at the location of the system check dipole connector. The signal generator is adjusted for the desired forward power (250 mW is used for 700 MHz to 3 GHz, 100 mW is used for 3.5 GHz to 6 GHz) at the dipole connector and the power meter is read at that level. After connecting the cable to the dipole, the signal generator is readjusted for the same reading at power meter. After system check testing, the SAR result will be normalized to 1W forward input power and compared with the reference SAR value derived from validation dipole certificate report. The deviation of system check should be within 10 %. Report Format Version 5.0.0 Page No. : 14 of 45 Report No. : SA180507W002 Issued Date : May 24, 2018 ## 3.4 SAR Measurement Procedure According to the SAR test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps: - (a) Power reference measurement - (b) Area scan - (c) Zoom scan - (d) Power drift measurement The SAR measurement procedures for each of test conditions are as follows: - (a) Make EUT to transmit maximum output power - (b) Measure conducted output power through RF cable - (c) Place the EUT in the specific position of phantom - (d) Perform SAR testing steps on the DASY system - (e) Record the SAR value #### 3.4.1 Area & Zoom Scan Procedure First Area Scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an Area Scan is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, Zoom Scan is required. The Zoom Scan is performed around the highest E-field value to determine the averaged SAR-distribution over 10 g. According to KDB 865664 D01, the resolution for Area and Zoom scan is specified in the table below. | Items | <= 2 GHz | 2-3 GHz | 3-4 GHz | 4-5 GHz | 5-6 GHz | |-----------------------|----------|----------|----------|----------|----------| | Area Scan
(Δx, Δy) | <= 15 mm | <= 12 mm | <= 12 mm | <= 10 mm | <= 10 mm | | Zoom Scan
(Δx, Δy) | <= 8 mm | <= 5 mm | <= 5 mm | <= 4 mm | <= 4 mm | | Zoom Scan
(Δz) | <= 5 mm | <= 5 mm | <= 4 mm | <= 3 mm | <= 2 mm | | Zoom Scan
Volume | >= 30 mm | >= 30 mm | >= 28 mm | >= 25 mm | >= 22 mm | #### Note: When zoom scan is required and report SAR is \leq 1.4 W/kg, the zoom scan resolution of $\Delta x / \Delta y$ (2-3GHz: \leq 8 mm, 3-4GHz: \leq 7 mm, 4-6GHz: \leq 5 mm) may be applied. #### 3.4.2 Volume Scan Procedure The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR. Report Format Version 5.0.0 Page No. : 15 of 45 Report No. : SA180507W002 Issued Date : May 24, 2018 #### 3.4.3 Power Drift Monitoring All SAR testing is under the EUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference
measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drift more than 5%, the SAR will be retested. #### 3.4.4 Spatial Peak SAR Evaluation The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value. The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan. The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages: - (a) Extraction of the measured data (grid and values) from the Zoom Scan - (b) Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters) - (c) Generation of a high-resolution mesh within the measured volume - (d) Interpolation of all measured values form the measurement grid to the high-resolution grid - (e) Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface - (f) Calculation of the averaged SAR within masses of 1g and 10g #### 3.4.5 SAR Averaged Methods In DASY, the interpolation and extrapolation are both based on the modified Quadratic Shepard's method. The interpolation scheme combines a least-square fitted function method and a weighted average method which are the two basic types of computational interpolation and approximation. Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. The uncertainty increases with the extrapolation distance. To keep the uncertainty within 1% for the 1 g and 10 g cubes, the extrapolation distance should not be larger than 5 mm. Report Format Version 5.0.0 Page No. : 16 of 45 Report No. : SA180507W002 Issued Date : May 24, 2018 # 4. SAR Measurement Evaluation ## 4.1 EUT Configuration and Setting ## <Connections between EUT and System Simulator> For WWAN SAR testing, the EUT was linked and controlled by base station emulator (Agilent E5515C is used for WCDMA, and Anritsu MT8820C is used for LTE). Communication between the EUT and the emulator was established by air link. The distance between the EUT and the communicating antenna of the emulator is larger than 50 cm and the output power radiated from the emulator antenna is at least 30 dB smaller than the output power of EUT. The EUT was set from the emulator to radiate maximum output power during SAR testing. ## <Considerations Related to WCDMA for Setup and Testing> WCDMA Handsets Body-worn SAR SAR for body-worn configurations is measured using a 12.2 kbps RMC with TPC bits configured to all "1's". The 3G SAR test reduction procedure is applied to other spreading codes and multiple DPDCH_n configurations supported by the handset with 12.2 kbps RMC as the primary mode. #### Handsets with Release 5 HSDPA The 3G SAR test reduction procedure is applied to HSDPA body-worn configurations with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured for HSDPA using the HSDPA body SAR procedures in the "Release 5 HSDPA Data Devices", for the highest reported SAR body-worn exposure configuration in 12.2 kbps RMC. Handsets with both HSDPA and HSUPA are tested according to Release 6 HSPA test procedures. #### Handsets with Release 6 HSUPA The 3G SAR test reduction procedure is applied to HSPA (HSUPA/HSDPA with RMC) body-worn configurations with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured for HSPA using the HSPA body SAR procedures in the "Release 6 HSPA Data Devices", for the highest reported body-worn exposure SAR configuration in 12.2 kbps RMC. When VOIP is applicable for next to the ear head exposure in HSPA, the 3G SAR test reduction procedure is applied to HSPA with 12.2 kbps RMC as the primary mode; otherwise, the same HSPA configuration used for body-worn measurements is tested for next to the ear head exposure. #### **Release 5 HSDPA Data Devices** The 3G SAR test reduction procedure is applied to body SAR with 12.2 kbps RMC as the primary mode. Otherwise, body SAR for HSDPA is measured using an FRC with H-Set 1 in Sub-test 1 and a 12.2 kbps RMC configured in Test Loop Mode 1, for the highest reported SAR configuration in 12.2 kbps RMC without HSDPA. HSDPA is configured according to the applicable UE category of a test device. The number of HS-DSCH / HS-PDSCHs, HARQ processes, minimum inter-TTI interval, transport block sizes and RV coding sequence are defined by the H-set. To maintain a consistent test configuration and stable transmission conditions, QPSK is used in the H-set for SAR testing. HS-DPCCH should be configured with a CQI feedback cycle of 4 ms and a CQI repetition factor of 2 to maintain a constant rate of active CQI slots. DPCCH and DPDCH gain factors (β_c , β_d), and HS-DPCCH power offset parameters (Δ_{ACK} , Δ_{NACK} , Δ_{CQI}) are set according to values indicated in below. The CQI value is determined by the UE category, transport block size, number of HS-PDSCHs and modulation used in the H-set. Report Format Version 5.0.0 Page No. : 17 of 45 Report No. : SA180507W002 Issued Date : May 24, 2018 ## **FCC SAR Test Report** | Sub-test | β _c | β_d | β _d
(SF) | β _c / β _d | β _{hs} ⁽¹⁾ | CM (dB) ⁽²⁾ | MPR | |----------|------------------------|------------------------|------------------------|---------------------------------|--------------------------------|------------------------|-----| | 1 | 2 / 15 | 15 / 15 | 64 | 2 / 15 | 4 / 15 | 0.0 | 0 | | 2 | 12 / 15 ⁽³⁾ | 15 / 15 ⁽³⁾ | 64 | 12 / 15 ⁽³⁾ | 24 / 15 | 1.0 | 0 | | 3 | 15 / 15 | 8 / 15 | 64 | 15 / 8 | 30 / 15 | 1.5 | 0.5 | | 4 | 15 / 15 | 4 / 15 | 64 | 15 / 4 | 30 / 15 | 1.5 | 0.5 | Note 1: Δ_{ACK} , Δ_{NACK} and Δ_{CQI} = 8 \Leftrightarrow A_{hs} = β_{hs} / β_c = 30 / 15 \Leftrightarrow β_{hs} = 30 / 15 * β_c . Note 2: CM = 1 for β_c / β_d = 12 / 15, β_{hs} / β_c = 24 / 15. Note 3: For subtest 2 the β_c / β_d ratio of 12 / 15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to β_c = 11 / 15 and β_d = 15 / 15. #### **Release 6 HSUPA Data Devices** The 3G SAR test reduction procedure is applied to body SAR with 12.2 kbps RMC as the primary mode. Otherwise, body SAR for HSPA is measured with E-DCH Sub-test 5, using H-Set 1 and QPSK for FRC and a 12.2 kbps RMC configured in Test Loop Mode 1 and power control algorithm 2, according to the highest reported body SAR configuration in 12.2 kbps RMC without HSPA. When VOIP applies to head exposure, the 3G SAR test reduction procedure is applied with 12.2 kbps RMC as the primary mode. Otherwise, the same HSPA configuration used for body SAR measurements are applied to head exposure testing. Due to inner loop power control requirements in HSPA, a communication test set is required for output power and SAR tests. The 12.2 kbps RMC, FRC H-set 1 and E-DCH configurations for HSPA are configured according to the β values indicated in below. | Sub-test | βε | βd | β _d
(SF) | β _c / β _d | β _{hs} ⁽¹⁾ | βec | β_{ed} | β _{ed}
(SF) | β _{ed}
(codes) | CM ⁽²⁾
(dB) | MPR
(dB) | AG (4)
Index | E-TFCI | |----------|------------------------|-------------|------------------------|---------------------------------|--------------------------------|-----------|--|-------------------------|----------------------------|---------------------------|-------------|-----------------|--------| | 1 | 11 / 15 (3) | 15 / 15 (3) | 64 | 11 / 15 (3) | 22 / 15 | 209 / 225 | 1039 / 225 | 4 | 1 | 1.0 | 0.0 | 20 | 75 | | 2 | 6 / 15 | 15 / 15 | 64 | 6 / 15 | 12 / 15 | 12 / 15 | 94 / 75 | 4 | 1 | 3.0 | 2.0 | 12 | 67 | | 3 | 15 / 15 | 9 / 15 | 64 | 15 / 9 | 30 / 15 | 30 / 15 | β _{ed1} : 47/15
β _{ed2} : 47/15 | 4 | 2 | 2.0 | 1.0 | 15 | 92 | | 4 | 2 / 15 | 15 / 15 | 64 | 2 / 15 | 4 / 15 | 2 / 15 | 56 / 75 | 4 | 1 | 3.0 | 2.0 | 17 | 71 | | 5 | 15 / 15 ⁽⁴⁾ | 15 / 15 (4) | 64 | 15 / 15 (4) | 30 / 15 | 24 / 15 | 134 / 15 | 4 | 1 | 1.0 | 0.0 | 21 | 81 | Note 1: Δ_{ACK} , Δ_{NACK} and Δ_{CQI} = 8 \Leftrightarrow A_{hs} = β_{hs} / β_c = 30 / 15 \Leftrightarrow β_{hs} = 30 / 15 * β_c . Report Format Version 5.0.0 Page No. : 18 of 45 Report No. : SA180507W002 Issued Date : May 24, 2018 Note 2: CM = 1 for β_c / β_d = 12 / 15, β_{hs} / β_c = 24 / 15. For all other combinations of DPDCH, DPCCH, HS-DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference. Note 3: For subtest 1 the β_c / β_d ratio of 11 / 15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to β_c = 10 / 15 and β_d = 15 / 15. Note 4: For subtest 5 the β_c / β_d ratio of 15 / 15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to β_c = 14 / 15 and β_d = 15 / 15. Note 5: Testing UÉ using E-DPDCH Physical Layer category 1 Sub-test 3 is not required
according to TS 25.306 Table 5.1g. Note 6: βed cannot be set directly; it is set by Absolute Grant Value. ## <Considerations Related to LTE for Setup and Testing> This device contains LTE transmitter which follows 3GPP standards, is category 3, supports both QPSK and 16QAM modulations, and supported LTE band and channel bandwidth is listed in below. The output power was tested per 3GPP TS 36.521-1 maximum transmit procedures for both QPSK and 16QAM modulation. The results please refer to section 4.6 of this report. | | EUT Supported LTE Band and Channel Bandwidth | | | | | | | | | | |----------|---|---|---|---|---|---|--|--|--|--| | LTE Band | LTE Band BW 1.4 MHz BW 3 MHz BW 5 MHz BW 10 MHz BW 15 MHz BW 20 MHz | | | | | | | | | | | 2 | V | V | V | V | V | V | | | | | | 4 | V | V | V | V | V | V | | | | | | 5 | V | V | V | V | | | | | | | | 12 | V | V | V | V | | | | | | | The LTE maximum power reduction (MPR) in accordance with 3GPP TS 36.101 is active all times during LTE operation. The allowed MPR for the maximum output power is specified in below. | | | Cha | annel Bandwidth | / RB Configuration | ons | | LTE MPR | |------------|------------|----------|-----------------|--------------------|-----------|-----------|-----------------| | Modulation | BW 1.4 MHz | BW 3 MHz | BW 5 MHz | BW 10 MHz | BW 15 MHz | BW 20 MHz | Setting
(dB) | | QPSK | > 5 | > 4 | > 8 | > 12 | > 16 | > 18 | 1 | | 16QAM | <= 5 | <= 4 | <= 8 | <= 12 | <= 16 | <= 18 | 1 | | 16QAM | > 5 | > 4 | > 8 | > 12 | > 16 | > 18 | 2 | Note: MPR is according to the standard and implemented in the circuit (mandatory). In addition, the device is compliant with additional maximum power reduction (A-MPR) requirements defined in 3GPP TS 36.101 section 6.2.4 that was disabled for all FCC compliance testing. During LTE SAR testing, the related parameters of operating band, channel bandwidth, uplink channel number, modulation type, and RB was set in base station simulator. When the EUT has registered and communicated to base station simulator, the simulator set to make EUT transmitting the maximum radiated power. ## <Considerations Related to WLAN for Setup and Testing> In general, various vendor specific external test software and chipset based internal test modes are typically used for SAR measurement. These chipset based test mode utilities are generally hardware and manufacturer dependent, and often include substantial flexibility to reconfigure or reprogram a device. A Wi-Fi device must be configured to transmit continuously at the required data rate, channel bandwidth and signal modulation, using the highest transmission duty factor supported by the test mode tools for SAR measurement. The test frequencies established using test mode must correspond to the actual channel frequencies. When 802.11 frame gaps are accounted for in the transmission, a maximum transmission duty factor of 92 - 96% is typically achievable in most test mode configurations. A minimum transmission duty factor of 85% is required to avoid certain hardware and device implementation issues related to wide range SAR scaling. In addition, a periodic transmission duty factor is required for current generation SAR systems to measure SAR correctly. The reported SAR must be scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit. According to KDB 248227 D01, this device has installed WLAN engineering testing software which can provide Report Format Version 5.0.0 Page No. : 19 of 45 Report No. : SA180507W002 Issued Date : May 24, 2018 # **FCC SAR Test Report** continuous transmitting RF signal. During WLAN SAR testing, this device was operated to transmit continuously at the maximum transmission duty with specified transmission mode, operating frequency, lowest data rate, and maximum output power. ## **Initial Test Configuration** An initial test configuration is determined for OFDM transmission modes in 2.4 GHz and 5 GHz bands according to the channel bandwidth, modulation and data rate combination(s) with the highest maximum output power specified for production units in each standalone and aggregated frequency band. When the same maximum power is specified for multiple transmission modes in a frequency band, the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order 802.11a/g/n/ac mode is used for SAR measurement, on the highest measured output power channel in the initial test configuration, for each frequency band. #### **Subsequent Test Configuration** SAR measurement requirements for the remaining 802.11 transmission mode configurations that have not been tested in the initial test configuration are determined separately for each standalone and aggregated frequency band, in each exposure condition, according to the maximum output power specified for production units. Additional power measurements may be required to determine if SAR measurements are required for subsequent highest output power channels in a subsequent test configuration. When the highest reported SAR for the initial test configuration according to the initial test position or fixed exposure position requirements, is adjusted by the ratio of the subsequent test configuration to initial test configuration specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg, SAR is not required for that subsequent test configuration. ## **SAR Test Configuration and Channel Selection** When multiple channel bandwidth configurations in a frequency band have the same specified maximum output power, the initial test configuration is using largest channel bandwidth, lowest order modulation, lowest data rate, and lowest order 802.11 mode (i.e., 802.11a is chosen over 802.11n then 802.11ac or 802.11g is chosen over 802.11n). After an initial test configuration is determined, if multiple test channels have the same measured maximum output power, the channel chosen for SAR measurement is determined according to the following. - 1) The channel closest to mid-band frequency is selected for SAR measurement. - 2) For channels with equal separation from mid-band frequency; for example, high and low channels or two mid-band channels, the higher frequency (number) channel is selected for SAR measurement. Report Format Version 5.0.0 Page No. : 20 of 45 Report No. : SA180507W002 Issued Date : May 24, 2018 ## **4.2 EUT Testing Position** ## 4.2.1 Body Exposure Conditions Body accessory exposure is typically related to voice mode operations when handsets are carried in body accessories. The body accessory procedures in KDB 447498 D01 are used to test for body accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body accessory test separation distance is greater than or equal to that required for hotspot mode. When the reported SAR for a body accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a headset attached to the handset. Body accessories that do not contain metallic or conductive components may be tested according to worst-case exposure configurations, typically according to the smallest test separation distance required for the group of body accessories with similar operating and exposure characteristics. All body accessories containing metallic components are tested in conjunction with the host device. Body accessory SAR compliance is based on a single minimum test separation distance for all wireless and operating modes applicable to each body accessory used by the host, and according to the relevant voice and/or data mode transmissions and operations. If a body accessory supports voice only operations in its normal and expected use conditions, testing of data mode for body compliance is not required. A conservative minimum test separation distance for supporting off-the-shelf body accessories that may be acquired by users of consumer handsets is used to test for body accessory SAR compliance. This distance is determined by the handset manufacturer, according to the requirements of Supplement C 01-01. Devices that are designed to operate on the body of users using lanyards and straps, or without requiring additional body accessories, will be tested using a conservative minimum test separation distance <= 5 mm to support compliance. #### 4.2.2 Extremity Exposure Conditions Devices that are designed or intended for use on extremities, or mainly operated in extremity only exposure conditions, i.e., hands, wrists, feet and ankles, may require extremity SAR evaluation. When the device also operates in close proximity to the user's body, SAR compliance for the body is also required. The 1-g body and 10-g extremity SAR Test Exclusion Thresholds in 4.3 should be applied to determine SAR test requirements. When extremity SAR testing is required, a flat phantom must be used if the exposure condition is more conservative than the actual use conditions. Report Format Version 5.0.0 Page No. : 21 of 45 Report No. : SA180507W002 Issued Date : May 24, 2018 #### 4.2.3 SAR Test Exclusion Evaluations According to KDB 447498 D01, the SAR test exclusion condition is based on source-based time-averaged maximum conducted output power, adjusted for tune-up tolerance, and the minimum test separation distance required for the exposure conditions. The SAR exclusion threshold is determined by the following formula. $$\frac{\text{Max. Tune up Power}_{\text{(mW)}}}{\text{Min. Test Separation Distance}_{\text{(mm)}}} \times \sqrt{f_{\text{(GHz)}}} \leq 3.0 \text{ for SAR-1g} \leq 7.5 \text{ for SAR-10g}$$ When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion. | | Max. | Max. |
Body | | | | | |------------|--|------|-------------------------|----------------------|----------------------------|--|--| | Mode | Tune-up Tune-up Power Power Power (dBm) (mW) | | Ant. to Surface
(mm) | Calculated
Result | Require
SAR
Testing? | | | | BT (2.48G) | -6.0 | 0.25 | 10 | 0.0 | No | | | | | Max. | Max. | Extremity | | | | | |------------|---------------------------|--------------------------|-------------------------|----------------------|----------------------------|--|--| | Mode | Tune-up
Power
(dBm) | Tune-up
Power
(mW) | Ant. to Surface
(mm) | Calculated
Result | Require
SAR
Testing? | | | | BT (2.48G) | -6.0 | 0.25 | 5 | 0.1 | No | | | #### Note: 1. When separation distance <= 50 mm and the calculated result shown in above table is <= 3.0 for SAR-1g exposure condition, or <= 7.5 for SAR-10g exposure condition, the SAR testing exclusion is applied. ## 4.2.4 Simultaneous Transmission Possibilities The simultaneous transmission possibilities for this device are listed as below. | Simultaneous TX Combination | Capable Transmit Configurations | Body
(Voice / VoIP) | Extremity
(Data) | |-----------------------------|---------------------------------------|------------------------|---------------------| | 1 | WCDMA II (Voice / Data) + WLAN (Data) | Yes | Yes | | 2 | WCDMA IV (Voice / Data) + WLAN (Data) | Yes | Yes | | 3 | LTE 2 (Data) + WLAN (Data) | Yes | Yes | | 4 | LTE 4 (Data) + WLAN (Data) | Yes | Yes | | 5 | LTE 5 (Data) + WLAN (Data) | Yes | Yes | | 6 | LTE 12 (Data) + WLAN (Data) | Yes | Yes | | 7 | WCDMA II (Voice / Data) + BT (Data) | Yes | Yes | | 8 | WCDMA IV (Voice / Data) + BT (Data) | Yes | Yes | | 9 | LTE 2 (Data) + BT (Data) | Yes | Yes | | 10 | LTE 4 (Data) + BT (Data) | Yes | Yes | | 11 | LTE 5 (Data) + BT (Data) | Yes | Yes | | 12 | LTE 12 (Data) + BT (Data) | Yes | Yes | #### Note: 1. This device does not support voice transmission capability. Report Format Version 5.0.0 Page No. : 22 of 45 Report No. : SA180507W002 Issued Date : May 24, 2018 # 4.3 Tissue Verification The measuring results for tissue simulating liquid are shown as below. | Test
Date | Tissue
Type | Frequency
(MHz) | Liquid
Temp.
(℃) | Measured
Conductivity
(σ) | Measured
Permittivity
(ε _r) | Target
Conductivity
(σ) | Target
Permittivity
(ε _r) | Conductivity
Deviation
(%) | Permittivity Deviation (%) | |---------------|----------------|--------------------|------------------------|---------------------------------|---|-------------------------------|---|----------------------------------|----------------------------| | Aug. 31, 2016 | B750 | 750 | 21.2 | 0.966 | 55.257 | 0.96 | 55.50 | 0.63 | -0.44 | | Aug. 31, 2016 | B850 | 835 | 21.2 | 0.992 | 54.645 | 0.97 | 55.20 | 2.27 | -1.01 | | Aug. 30, 2016 | B1750 | 1750 | 21.3 | 1.530 | 53.773 | 1.49 | 53.40 | 2.68 | 0.70 | | Aug. 30, 2016 | B1900 | 1900 | 21.3 | 1.540 | 52.220 | 1.52 | 53.30 | 1.32 | -2.03 | | Jul. 25, 2016 | B2450 | 2450 | 20.9 | 1.906 | 51.411 | 1.95 | 52.70 | -2.26 | -2.45 | #### Note: The dielectric properties of the tissue simulating liquid must be measured within 24 hours before the SAR testing and within $\pm 5\%$ of the target values. Liquid temperature during the SAR testing must be within ± 2 °C. ## 4.4 System Validation The SAR measurement system was validated according to procedures in KDB 865664 D01. The validation status in tabulated summary is as below. | Toot | Probe | | | Measured | Measured | Va | lidation for C | W | Validation for Modulation | | | | |---------------|-------|---------|------------|------------------|-----------------------------|----------------------|--------------------|-------------------|---------------------------|-------------|------|--| | Test
Date | S/N | Calibra | tion Point | Conductivity (σ) | Permittivity (ϵ_r) | Sensitivity
Range | Probe
Linearity | Probe
Isotropy | Modulation
Type | Duty Factor | PAR | | | Aug. 31, 2016 | 7346 | Body | 750 | 0.966 | 55.257 | Pass | Pass | Pass | N/A | N/A | N/A | | | Aug. 31, 2016 | 7346 | Body | 835 | 0.992 | 54.645 | Pass | Pass | Pass | N/A | N/A | N/A | | | Aug. 30, 2016 | 7346 | Body | 1750 | 1.530 | 53.773 | Pass | Pass | Pass | N/A | N/A | N/A | | | Aug. 30, 2016 | 7346 | Body | 1900 | 1.540 | 52.220 | Pass | Pass | Pass | N/A | N/A | N/A | | | Jul. 25, 2016 | 3873 | Body | 2450 | 1.906 | 51.411 | Pass | Pass | Pass | OFDM | N/A | Pass | | # 4.5 System Verification The measuring result for system verification is tabulated as below. | Test
Date | Mode | Frequency
(MHz) | 1W Target
SAR-1g
(W/kg) | Measured
SAR-1g
(W/kg) | Normalized
to 1W
SAR-1g
(W/kg) | Deviation
(%) | Dipole
S/N | Probe
S/N | DAE
S/N | |---------------|------|--------------------|-------------------------------|------------------------------|---|------------------|---------------|--------------|------------| | Aug. 31, 2016 | Body | 750 | 8.63 | 2.09 | 8.36 | -3.13 | 1078 | 7346 | 905 | | Aug. 31, 2016 | Body | 835 | 9.59 | 2.31 | 9.24 | -3.65 | 4d092 | 7346 | 905 | | Aug. 30, 2016 | Body | 1750 | 36.40 | 8.88 | 35.52 | -2.42 | 1023 | 7346 | 905 | | Aug. 30, 2016 | Body | 1900 | 39.70 | 9.47 | 37.88 | -4.58 | 5d018 | 7346 | 905 | | Jul. 25, 2016 | Body | 2450 | 51.90 | 12.60 | 50.40 | -2.89 | 835 | 3873 | 1341 | ## Note: Comparing to the reference SAR value provided by SPEAG, the validation data should be within its specification of 10 %. The result indicates the system check can meet the variation criterion and the plots can be referred to Appendix A of this report. Report Format Version 5.0.0 Page No. : 23 of 45 Report No.: \$A180507W002 Issued Date : May 24, 2018 # 4.6 Maximum Output Power # 4.6.1 Maximum Conducted Power The maximum conducted average power (Unit: dBm) including tune-up tolerance is shown as below. | Mode | WCDMA Band II | WCDMA Band IV | |-----------|---------------|---------------| | RMC 12.2K | 23.0 | 23.0 | | HSDPA | 22.0 | 22.0 | | HSUPA | 22.0 | 22.0 | | Mode | LTE 2 | LTE 4 | LTE 5 | LTE 12 | |--------------|-------|-------|-------|--------| | QPSK / 16QAM | 23.5 | 23.5 | 23.5 | 23.5 | | Mode | 2.4G WLAN | |--------------|-----------| | 802.11b | 18.5 | | 802.11g | 11.5 | | 802.11n HT20 | 11.0 | | Mode | 2.4G Bluetooth | |-------|----------------| | BT_LE | -6.0 | ## 4.6.2 Measured Conducted Power Result The measuring conducted average power (Unit: dBm) is shown as below. | Band | V | WCDMA Band | I | V | VCDMA Band I | V | 3GPP | |-----------------|--------|------------|--------|-------|--------------|-------|------| | Channel | 9262 | 9400 | 9538 | 4132 | 4182 | 4233 | MPR | | Frequency (MHz) | 1852.4 | 1880.0 | 1907.6 | 826.4 | 836.4 | 846.6 | (dB) | | RMC 12.2K | 22.28 | 22.49 | 22.35 | 22.67 | 22.56 | 22.69 | - | | HSDPA Subtest-1 | 21.33 | 21.54 | 21.40 | 21.72 | 21.61 | 21.74 | 0 | | HSDPA Subtest-2 | 21.30 | 21.51 | 21.37 | 21.69 | 21.58 | 21.71 | 0 | | HSDPA Subtest-3 | 20.77 | 20.98 | 20.84 | 21.16 | 21.05 | 21.18 | 0.5 | | HSDPA Subtest-4 | 20.71 | 20.92 | 20.78 | 21.10 | 20.99 | 21.12 | 0.5 | | HSUPA Subtest-1 | 21.28 | 21.49 | 21.35 | 21.67 | 21.56 | 21.69 | 0 | | HSUPA Subtest-2 | 19.34 | 19.55 | 19.41 | 19.73 | 19.62 | 19.75 | 2 | | HSUPA Subtest-3 | 20.25 | 20.46 | 20.32 | 20.64 | 20.53 | 20.66 | 1 | | HSUPA Subtest-4 | 19.43 | 19.64 | 19.50 | 19.82 | 19.71 | 19.84 | 2 | | HSUPA Subtest-5 | 21.44 | 21.65 | 21.51 | 21.83 | 21.72 | 21.85 | 0 | Report Format Version 5.0.0 Page No. : 24 of 45 Report No. : SA180507W002 Issued Date : May 24, 2018 | | | | | QPSK | | | | 16QAM | | | |-----------|------------|--------------|-----------------|-----------------|------------------|-------------|-----------------|-----------------|------------------|-------------| | LTE | RB
Size | RB
Offset | Low CH
18607 | Mid CH
18900 | High CH
19193 | 3GPP
MPR | Low CH
18607 | Mid CH
18900 | High CH
19193 | 3GPP
MPR | | Band / BW | Size | Oliset | 1850.7
MHz | 1880.0
MHz | 1909.3
MHz | (dB) | 1850.7
MHz | 1880.0
MHz | 1909.3
MHz | (dB) | | | 1 | 0 | 22.81 | 22.85 | 22.75 | 0 | 21.83 | 21.87 | 21.77 | 1 | | | 1 | 2 | 22.79 | 22.83 | 22.73 | 0 | 21.81 | 21.85 | 21.75 | 1 | | | 1 | 5 | 22.76 | 22.80 | 22.70 | 0 | 21.78 | 21.82 | 21.72 | 1 | | 2 / 1.4M | 3 | 0 | 22.80 | 22.84 | 22.74 | 0 | 21.81 | 21.85 | 21.75 | 1 | | | 3 | 1 | 22.78 | 22.82 | 22.72 | 0 | 21.79 | 21.83 | 21.73 | 1 | | | 3 | 3 | 22.75 | 22.79 | 22.69 | 0 | 21.76 | 21.80 | 21.70 | 1 | | | 6 | 0 | 21.60 | 21.64 | 21.54 | 1 | 20.62 | 20.66 | 20.56 | 2 | | | | | | QPSK | | | | 16QAM | | | |------------------|------------|--------------|-----------------|-----------------|------------------|-------------|-----------------|-----------------|------------------|-------------| | LTE
Band / BW | RB
Size | RB
Offset | Low CH
18615 | Mid CH
18900 | High CH
19185 | 3GPP
MPR | Low CH
18615 | Mid CH
18900 | High CH
19185 | 3GPP
MPR | | Band / BW | Size | Oliset | 1851.5
MHz | 1880.0
MHz | 1908.5
MHz | (dB) | 1851.5
MHz | 1880.0
MHz | 1908.5
MHz | (dB) | | | 1 | 0 | 22.84 | 22.88 | 22.78 | 0 | 21.86 | 21.90 | 21.80 | 1 | | | 1 | 7 | 22.82 | 22.86 | 22.76 | 0 | 21.84 | 21.88 | 21.78 | 1 | | | 1 | 14 | 22.79 | 22.83 | 22.73 | 0 | 21.81 | 21.85 | 21.75 | 1 | | 2 / 3M | 8 | 0 | 21.71 | 21.75 | 21.65 | 1 | 20.73 | 20.77 | 20.67 | 2 | | | 8 | 3 | 21.69 | 21.73 | 21.63 | 1 | 20.71 | 20.75 | 20.65 | 2 | | | 8 | 7 | 21.59 | 21.63 | 21.53 | 1 | 20.61 | 20.65 | 20.55 | 2 | | | 15 | 0 | 21.63 | 21.67 | 21.57 | 1 | 20.65 | 20.69 | 20.59 | 2 | | | | | | QPSK | | | | 16QAM | | | |------------------|------------|--------------|-----------------|-----------------|------------------|-------------|-----------------
-----------------|------------------|-------------| | LTE
Band / BW | RB
Size | RB
Offset | Low CH
18625 | Mid CH
18900 | High CH
19175 | 3GPP
MPR | Low CH
18625 | Mid CH
18900 | High CH
19175 | 3GPP
MPR | | Balla / BW | 0.20 | Gillott | 1852.5
MHz | 1880.0
MHz | 1907.5
MHz | (dB) | 1852.5
MHz | 1880.0
MHz | 1907.5
MHz | (dB) | | | 1 | 0 | 22.87 | 22.91 | 22.81 | 0 | 21.89 | 21.93 | 21.83 | 1 | | | 1 | 12 | 22.85 | 22.89 | 22.79 | 0 | 21.87 | 21.91 | 21.81 | 1 | | | 1 | 24 | 22.82 | 22.86 | 22.76 | 0 | 21.84 | 21.88 | 21.78 | 1 | | 2 / 5M | 12 | 0 | 21.74 | 21.78 | 21.68 | 1 | 20.76 | 20.80 | 20.70 | 2 | | | 12 | 6 | 21.72 | 21.76 | 21.66 | 1 | 20.74 | 20.78 | 20.68 | 2 | | | 12 | 13 | 21.62 | 21.66 | 21.56 | 1 | 20.64 | 20.68 | 20.58 | 2 | | | 25 | 0 | 21.66 | 21.70 | 21.60 | 1 | 20.68 | 20.72 | 20.62 | 2 | | | RB | | | QPSK | | | 16QAM | | | | |-----------|------|--------------|-----------------|-----------------|------------------|-------------|-----------------|-----------------|------------------|-------------| | LTE | | RB
Offset | Low CH
18650 | Mid CH
18900 | High CH
19150 | 3GPP
MPR | Low CH
18650 | Mid CH
18900 | High CH
19150 | 3GPP
MPR | | Band / BW | Size | Oliset | 1855.0
MHz | 1880.0
MHz | 1905.0
MHz | (dB) | 1855.0
MHz | 1880.0
MHz | 1905.0
MHz | (dB) | | | 1 | 0 | 22.89 | 22.93 | 22.83 | 0 | 21.91 | 21.95 | 21.85 | 1 | | | 1 | 24 | 22.87 | 22.91 | 22.81 | 0 | 21.89 | 21.93 | 21.83 | 1 | | | 1 | 49 | 22.84 | 22.88 | 22.78 | 0 | 21.86 | 21.90 | 21.80 | 1 | | 2/10M | 25 | 0 | 21.76 | 21.80 | 21.70 | 1 | 20.78 | 20.82 | 20.72 | 2 | | | 25 | 12 | 21.74 | 21.78 | 21.68 | 1 | 20.76 | 20.80 | 20.70 | 2 | | | 25 | 25 | 21.64 | 21.68 | 21.58 | 1 | 20.66 | 20.70 | 20.60 | 2 | | | 50 | 0 | 21.68 | 21.72 | 21.62 | 1 | 20.70 | 20.74 | 20.64 | 2 | Report Format Version 5.0.0 Page No. : 25 of 45 Report No.: \$A180507W002 Issued Date : May 24, 2018 | | RB | | | QPSK | | | | 16QAM | | | |-----------|------|--------------|-----------------|-----------------|------------------|-------------|-----------------|-----------------|------------------|-------------| | LTE | | RB
Offset | Low CH
18675 | Mid CH
18900 | High CH
19125 | 3GPP
MPR | Low CH
18675 | Mid CH
18900 | High CH
19125 | 3GPP
MPR | | Band / BW | Size | Oliset | 1857.5
MHz | 1880.0
MHz | 1902.5
MHz | (dB) | 1857.5
MHz | 1880.0
MHz | 1902.5
MHz | (dB) | | | 1 | 0 | 22.92 | 22.96 | 22.86 | 0 | 21.94 | 21.98 | 21.88 | 1 | | | 1 | 37 | 22.90 | 22.94 | 22.84 | 0 | 21.92 | 21.96 | 21.86 | 1 | | | 1 | 74 | 22.87 | 22.91 | 22.81 | 0 | 21.89 | 21.93 | 21.83 | 1 | | 2 / 15M | 36 | 0 | 21.79 | 21.83 | 21.73 | 1 | 20.81 | 20.85 | 20.75 | 2 | | | 36 | 19 | 21.77 | 21.81 | 21.71 | 1 | 20.79 | 20.83 | 20.73 | 2 | | | 36 | 39 | 21.67 | 21.71 | 21.61 | 1 | 20.69 | 20.73 | 20.63 | 2 | | | 75 | 0 | 21.71 | 21.75 | 21.65 | 1 | 20.73 | 20.77 | 20.67 | 2 | | | | | | QPSK | | | | 16QAM | | | |------------------|------------|--------------|-----------------|-----------------|------------------|-------------|-----------------|-----------------|------------------|-------------| | LTE
Band / BW | RB
Size | RB
Offset | Low CH
18700 | Mid CH
18900 | High CH
19100 | 3GPP
MPR | Low CH
18700 | Mid CH
18900 | High CH
19100 | 3GPP
MPR | | Ballu / BW | 3126 | Oliset | 1860.0
MHz | 1880.0
MHz | 1900.0
MHz | (dB) | 1860.0
MHz | 1880.0
MHz | 1900.0
MHz | (dB) | | | 1 | 0 | 22.97 | 23.01 | 22.91 | 0 | 21.99 | 22.03 | 21.93 | 1 | | | 1 | 50 | 22.95 | 22.99 | 22.89 | 0 | 21.97 | 22.01 | 21.91 | 1 | | | 1 | 99 | 22.92 | 22.96 | 22.86 | 0 | 21.94 | 21.98 | 21.88 | 1 | | 2 / 20M | 50 | 0 | 21.84 | 21.88 | 21.78 | 1 | 20.86 | 20.90 | 20.80 | 2 | | | 50 | 25 | 21.82 | 21.86 | 21.76 | 1 | 20.84 | 20.88 | 20.78 | 2 | | | 50 | 50 | 21.72 | 21.76 | 21.66 | 1 | 20.74 | 20.78 | 20.68 | 2 | | | 100 | 0 | 21.76 | 21.80 | 21.70 | 1 | 20.78 | 20.82 | 20.72 | 2 | | | | | | QPSK | | | | 16QAM | | | |-----------|------------|---------------|-----------------|-----------------|------------------|-------------|-----------------|-----------------|------------------|-------------| | LTE | RB
Size | RB
Officer | Low CH
19957 | Mid CH
20175 | High CH
20393 | 3GPP
MPR | Low CH
19957 | Mid CH
20175 | High CH
20393 | 3GPP
MPR | | Band / BW | Size | Offset | 1710.7
MHz | 1732.5
MHz | 1754.3
MHz | (dB) | 1710.7
MHz | 1732.5
MHz | 1754.3
MHz | (dB) | | | 1 | 0 | 22.99 | 22.79 | 22.73 | 0 | 22.01 | 21.81 | 21.75 | 1 | | | 1 | 2 | 22.81 | 22.61 | 22.55 | 0 | 21.83 | 21.63 | 21.57 | 1 | | | 1 | 5 | 22.91 | 22.71 | 22.65 | 0 | 21.93 | 21.73 | 21.67 | 1 | | 4 / 1.4M | 3 | 0 | 22.97 | 22.77 | 22.71 | 0 | 22.00 | 21.80 | 21.74 | 1 | | | 3 | 1 | 22.79 | 22.59 | 22.53 | 0 | 21.82 | 21.62 | 21.56 | 1 | | | 3 | 3 | 22.89 | 22.69 | 22.63 | 0 | 21.92 | 21.72 | 21.66 | 1 | | | 6 | 0 | 21.80 | 21.60 | 21.54 | 1 | 20.82 | 20.62 | 20.56 | 2 | | | | | | QPSK | | | | 16QAM | | | |-----------|------------|--------------|-----------------|-----------------|------------------|-------------|-----------------|-----------------|------------------|-------------| | LTE | RB
Size | RB
Offset | Low CH
19965 | Mid CH
20175 | High CH
20385 | 3GPP
MPR | Low CH
19965 | Mid CH
20175 | High CH
20385 | 3GPP
MPR | | Band / BW | Size | Offset | 1711.5
MHz | 1732.5
MHz | 1753.5
MHz | (dB) | 1711.5
MHz | 1732.5
MHz | 1753.5
MHz | (dB) | | | | | IVITIZ | IVITIZ | IVITZ | | IVITIZ | IVITZ | IVITIZ | | | | 1 | 0 | 23.00 | 22.80 | 22.74 | 0 | 22.02 | 21.82 | 21.76 | 1 | | | 1 | 7 | 22.82 | 22.62 | 22.56 | 0 | 21.84 | 21.64 | 21.58 | 1 | | | 1 | 14 | 22.92 | 22.72 | 22.66 | 0 | 21.94 | 21.74 | 21.68 | 1 | | 4 / 3M | 8 | 0 | 21.79 | 21.59 | 21.53 | 1 | 20.81 | 20.61 | 20.55 | 2 | | | 8 | 3 | 21.74 | 21.54 | 21.48 | 1 | 20.76 | 20.56 | 20.50 | 2 | | | 8 | 7 | 21.77 | 21.57 | 21.51 | 1 | 20.79 | 20.59 | 20.53 | 2 | | | 15 | 0 | 21.81 | 21.61 | 21.55 | 1 | 20.83 | 20.63 | 20.57 | 2 | Report Format Version 5.0.0 Page No. : 26 of 45 Report No. : SA180507W002 Issued Date : May 24, 2018 | | | | | QPSK | | | | 16QAM | | | |------------------|------------|--------------|-----------------|-----------------|------------------|-------------|-----------------|-----------------|------------------|-------------| | LTE
Band / BW | RB
Size | RB
Offset | Low CH
19975 | Mid CH
20175 | High CH
20375 | 3GPP
MPR | Low CH
19975 | Mid CH
20175 | High CH
20375 | 3GPP
MPR | | Banu / BW | Size | Oliset | 1712.5
MHz | 1732.5
MHz | 1752.5
MHz | (dB) | 1712.5
MHz | 1732.5
MHz | 1752.5
MHz | (dB) | | | 1 | 0 | 23.03 | 22.83 | 22.77 | 0 | 22.05 | 21.85 | 21.79 | 1 | | | 1 | 12 | 22.85 | 22.65 | 22.59 | 0 | 21.87 | 21.67 | 21.61 | 1 | | | 1 | 24 | 22.95 | 22.75 | 22.69 | 0 | 21.97 | 21.77 | 21.71 | 1 | | 4 / 5M | 12 | 0 | 21.82 | 21.62 | 21.56 | 1 | 20.84 | 20.64 | 20.58 | 2 | | | 12 | 6 | 21.77 | 21.57 | 21.51 | 1 | 20.79 | 20.59 | 20.53 | 2 | | | 12 | 13 | 21.80 | 21.60 | 21.54 | 1 | 20.82 | 20.62 | 20.56 | 2 | | | 25 | 0 | 21.84 | 21.64 | 21.58 | 1 | 20.86 | 20.66 | 20.60 | 2 | | | | | | QPSK | | | | 16QAM | | | |-----------|------------|--------------|-----------------|-----------------|------------------|-------------|-----------------|-----------------|------------------|-------------| | LTE | RB
Size | RB
Offset | Low CH
20000 | Mid CH
20175 | High CH
20350 | 3GPP
MPR | Low CH
20000 | Mid CH
20175 | High CH
20350 | 3GPP
MPR | | Band / BW | Size | Oliset | 1715.0
MHz | 1732.5
MHz | 1750.0
MHz | (dB) | 1715.0
MHz | 1732.5
MHz | 1750.0
MHz | (dB) | | | 1 | 0 | 23.07 | 22.87 | 22.81 | 0 | 22.09 | 21.89 | 21.83 | 1 | | | 1 | 24 | 22.89 | 22.69 | 22.63 | 0 | 21.91 | 21.71 | 21.65 | 1 | | | 1 | 49 | 22.99 | 22.79 | 22.73 | 0 | 22.01 | 21.81 | 21.75 | 1 | | 4 / 10M | 25 | 0 | 21.86 | 21.66 | 21.60 | 1 | 20.88 | 20.68 | 20.62 | 2 | | | 25 | 12 | 21.81 | 21.61 | 21.55 | 1 | 20.83 | 20.63 | 20.57 | 2 | | | 25 | 25 | 21.84 | 21.64 | 21.58 | 1 | 20.86 | 20.66 | 20.60 | 2 | | | 50 | 0 | 21.88 | 21.68 | 21.62 | 1 | 20.90 | 20.70 | 20.64 | 2 | | | | | | QPSK | | | | 16QAM | | | |-----------|------------|--------------|-----------------|-----------------|------------------|-------------|-----------------|-----------------|------------------|-------------| | LTE | RB
Size | RB
Offert | Low CH
20025 | Mid CH
20175 | High CH
20325 | 3GPP
MPR | Low CH
20025 | Mid CH
20175 | High CH
20325 | 3GPP
MPR | | Band / BW | Size | Offset | 1717.5
MHz | 1732.5
MHz | 1747.5
MHz | (dB) | 1717.5
MHz | 1732.5
MHz | 1747.5
MHz | (dB) | | | 1 | 0 | 23.13 | 22.93 | 22.87 | 0 | 22.15 | 21.95 | 21.89 | 1 | | | 1 | 37 | 22.95 | 22.75 | 22.69 | 0 | 21.97 | 21.77 | 21.71 | 1 | | | 1 | 74 | 23.05 | 22.85 | 22.79 | 0 | 22.07 | 21.87 | 21.81 | 1 | | 4 / 15M | 36 | 0 | 21.92 | 21.72 | 21.66 | 1 | 20.94 | 20.74 | 20.68 | 2 | | | 36 | 19 | 21.87 | 21.67 | 21.61 | 1 | 20.89 | 20.69 | 20.63 | 2 | | | 36 | 39 | 21.90 | 21.70 | 21.64 | 1 | 20.92 | 20.72 | 20.66 | 2 | | | 75 | 0 | 21.94 | 21.74 | 21.68 | 1 | 20.96 | 20.76 | 20.70 | 2 | | | | | | QPSK | | | | 16QAM | | | |------------------|------------|--------------|-----------------|-----------------|------------------|-------------|-----------------|-----------------|------------------|-------------| | LTE
Band / BW | RB
Size | RB
Offset | Low CH
20050 | Mid CH
20175 | High CH
20300 | 3GPP
MPR | Low CH
20050 | Mid CH
20175 | High CH
20300 | 3GPP
MPR | | Band / BW | Size | Oliset | 1720.0
MHz | 1732.5
MHz | 1745.0
MHz | (dB) | 1720.0
MHz | 1732.5
MHz | 1745.0
MHz | (dB) | | | 1 | 0 | 23.16 | 22.96 | 22.90 | 0 | 22.18 | 21.98 | 21.92 | 1 | | | 1 | 50 | 22.98 | 22.78 | 22.72 | 0 | 22.00 | 21.80 | 21.74 | 1 | | | 1 | 99
| 23.08 | 22.88 | 22.82 | 0 | 22.10 | 21.90 | 21.84 | 1 | | 4 / 20M | 50 | 0 | 21.95 | 21.75 | 21.69 | 1 | 20.97 | 20.77 | 20.71 | 2 | | | 50 | 25 | 21.90 | 21.70 | 21.64 | 1 | 20.92 | 20.72 | 20.66 | 2 | | | 50 | 50 | 21.93 | 21.73 | 21.67 | 1 | 20.95 | 20.75 | 20.69 | 2 | | | 100 | 0 | 21.97 | 21.77 | 21.71 | 1 | 20.99 | 20.79 | 20.73 | 2 | Report Format Version 5.0.0 Page No. : 27 of 45 Report No.: \$A180507W002 Issued Date : May 24, 2018 | | | | | QPSK | | | | 16QAM | | | |------------------|------------|--------------|-----------------|-----------------|------------------|-------------|-----------------|-----------------|------------------|-------------| | LTE
Band / BW | RB
Size | RB
Offset | Low CH
20407 | Mid CH
20525 | High CH
20643 | 3GPP
MPR | Low CH
20407 | Mid CH
20525 | High CH
20643 | 3GPP
MPR | | Band / BW | Size | Oliset | 824.7
MHz | 836.5
MHz | 848.3
MHz | (dB) | 824.7
MHz | 836.5
MHz | 848.3
MHz | (dB) | | | 1 | 0 | 22.80 | 23.02 | 22.72 | 0 | 21.81 | 22.03 | 21.73 | 1 | | | 1 | 2 | 22.61 | 22.83 | 22.53 | 0 | 21.62 | 21.84 | 21.54 | 1 | | | 1 | 5 | 22.53 | 22.75 | 22.45 | 0 | 21.54 | 21.76 | 21.46 | 1 | | 5 / 1.4M | 3 | 0 | 22.78 | 23.00 | 22.70 | 0 | 21.80 | 22.02 | 21.72 | 1 | | | 3 | 1 | 22.59 | 22.81 | 22.51 | 0 | 21.61 | 21.83 | 21.53 | 1 | | | 3 | 3 | 22.51 | 22.73 | 22.43 | 0 | 21.53 | 21.75 | 21.45 | 1 | | | 6 | 0 | 21.55 | 21.77 | 21.47 | 1 | 20.56 | 20.78 | 20.48 | 2 | | LTE
Band / BW | RB
Size | RB
Offset | Low CH
20415
825.5
MHz | QPSK
Mid CH
20525
836.5
MHz | High CH
20635
847.5
MHz | 3GPP
MPR
(dB) | Low CH
20415
825.5
MHz | 16QAM
Mid CH
20525
836.5
MHz | High CH
20635
847.5
MHz | 3GPP
MPR
(dB) | |------------------|------------|--------------|---------------------------------|---|----------------------------------|---------------------|---------------------------------|--|----------------------------------|---------------------| | | 1 | 0 | 22.84 | 23.06 | 22.76 | 0 | 21.85 | 22.07 | 21.77 | 1 | | | 1 | 7 | 22.65 | 22.87 | 22.57 | 0 | 21.66 | 21.88 | 21.58 | 1 | | | 1 | 14 | 22.57 | 22.79 | 22.49 | 0 | 21.58 | 21.80 | 21.50 | 1 | | 5 / 3M | 8 | 0 | 21.65 | 21.87 | 21.57 | 1 | 20.66 | 20.88 | 20.58 | 2 | | | 8 | 3 | 21.57 | 21.79 | 21.49 | 1 | 20.58 | 20.80 | 20.50 | 2 | | | 8 | 7 | 21.63 | 21.85 | 21.55 | 1 | 20.64 | 20.86 | 20.56 | 2 | | | 15 | 0 | 21.59 | 21.81 | 21.51 | 1 | 20.60 | 20.82 | 20.52 | 2 | | | | | | QPSK | | | | 16QAM | | | |-----------|------------|--------------|-----------------|-----------------|------------------|-------------|-----------------|-----------------|------------------|-------------| | LTE | RB
Size | RB
Offset | Low CH
20425 | Mid CH
20525 | High CH
20625 | 3GPP
MPR | Low CH
20425 | Mid CH
20525 | High CH
20625 | 3GPP
MPR | | Band / BW | Size | Oliset | 826.5
MHz | 836.5
MHz | 846.5
MHz | (dB) | 826.5
MHz | 836.5
MHz | 846.5
MHz | (dB) | | | 1 | 0 | 22.90 | 23.12 | 22.82 | 0 | 21.91 | 22.13 | 21.83 | 1 | | | 1 | 12 | 22.71 | 22.93 | 22.63 | 0 | 21.72 | 21.94 | 21.64 | 1 | | | 1 | 24 | 22.63 | 22.85 | 22.55 | 0 | 21.64 | 21.86 | 21.56 | 1 | | 5 / 5M | 12 | 0 | 21.71 | 21.93 | 21.63 | 1 | 20.72 | 20.94 | 20.64 | 2 | | | 12 | 6 | 21.63 | 21.85 | 21.55 | 1 | 20.64 | 20.86 | 20.56 | 2 | | | 12 | 13 | 21.69 | 21.91 | 21.61 | 1 | 20.70 | 20.92 | 20.62 | 2 | | | 25 | 0 | 21.65 | 21.87 | 21.57 | 1 | 20.66 | 20.88 | 20.58 | 2 | | | | | | QPSK | | | | 16QAM | | | |------------------|------------|--------------|-----------------|-----------------|------------------|-------------|-----------------|-----------------|------------------|-------------| | LTE
Band / BW | RB
Size | RB
Offset | Low CH
20450 | Mid CH
20525 | High CH
20600 | 3GPP
MPR | Low CH
20450 | Mid CH
20525 | High CH
20600 | 3GPP
MPR | | Band / BW | Size | Oliset | 829.0
MHz | 836.5
MHz | 844.0
MHz | (dB) | 829.0
MHz | 836.5
MHz | 844.0
MHz | (dB) | | | 1 | 0 | 22.93 | 23.15 | 22.85 | 0 | 21.94 | 22.16 | 21.86 | 1 | | | 1 | 24 | 22.74 | 22.96 | 22.66 | 0 | 21.75 | 21.97 | 21.67 | 1 | | | 1 | 49 | 22.66 | 22.88 | 22.58 | 0 | 21.67 | 21.89 | 21.59 | 1 | | 5 / 10M | 25 | 0 | 21.74 | 21.96 | 21.66 | 1 | 20.75 | 20.97 | 20.67 | 2 | | | 25 | 12 | 21.66 | 21.88 | 21.58 | 1 | 20.67 | 20.89 | 20.59 | 2 | | | 25 | 25 | 21.72 | 21.94 | 21.64 | 1 | 20.73 | 20.95 | 20.65 | 2 | | | 50 | 0 | 21.68 | 21.90 | 21.60 | 1 | 20.69 | 20.91 | 20.61 | 2 | Report Format Version 5.0.0 Page No. : 28 of 45 Report No.: \$A180507W002 Issued Date : May 24, 2018 | | | | | QPSK | | | | 16QAM | | | |------------------|------------|--------------|-----------------|-----------------|------------------|-------------|-----------------|-----------------|------------------|-------------| | LTE
Band / BW | RB
Size | RB
Offset | Low CH
23017 | Mid CH
23095 | High CH
23173 | 3GPP
MPR | Low CH
23017 | Mid CH
23095 | High CH
23173 | 3GPP
MPR | | Bana / BW | Size | Oliset | 699.7
MHz | 707.5
MHz | 715.3
MHz | (dB) | 699.7
MHz | 707.5
MHz | 715.3
MHz | (dB) | | | 1 | 0 | 22.62 | 22.91 | 22.84 | 0 | 21.67 | 21.96 | 21.89 | 1 | | | 1 | 2 | 22.42 | 22.71 | 22.64 | 0 | 21.47 | 21.76 | 21.69 | 1 | | 10 / | 1 | 5 | 22.39 | 22.68 | 22.61 | 0 | 21.44 | 21.73 | 21.66 | 1 | | 12 /
1.4M | 3 | 0 | 22.60 | 22.89 | 22.82 | 0 | 21.66 | 21.95 | 21.88 | 1 | | 1.4101 | 3 | 1 | 22.40 | 22.69 | 22.62 | 0 | 21.46 | 21.75 | 21.68 | 1 | | | 3 | 3 | 22.37 | 22.66 | 22.59 | 0 | 21.43 | 21.72 | 21.65 | 1 | | | 6 | 0 | 21.42 | 21.71 | 21.64 | 1 | 20.47 | 20.76 | 20.69 | 2 | | | | | | QPSK | | | | 16QAM | | | |-----------|------------|--------------|-----------------|-----------------|------------------|-------------|-----------------|-----------------|------------------|-------------| | LTE | RB
Size | RB
Offset | Low CH
23025 | Mid CH
23095 | High CH
23165 | 3GPP
MPR | Low CH
23025 | Mid CH
23095 | High CH
23165 | 3GPP
MPR | | Band / BW | Size | Oliset | 700.5
MHz | 707.5
MHz | 714.5
MHz | (dB) | 700.5
MHz | 707.5
MHz | 714.5
MHz | (dB) | | | 1 | 0 | 22.66 | 22.95 | 22.88 | 0 | 21.71 | 22.00 | 21.93 | 1 | | | 1 | 7 | 22.46 | 22.75 | 22.68 | 0 | 21.51 | 21.80 | 21.73 | 1 | | | 1 | 14 | 22.43 | 22.72 | 22.65 | 0 | 21.48 | 21.77 | 21.70 | 1 | | 12 / 3M | 8 | 0 | 21.57 | 21.86 | 21.79 | 1 | 20.62 | 20.91 | 20.84 | 2 | | | 8 | 3 | 21.49 | 21.78 | 21.71 | 1 | 20.54 | 20.83 | 20.76 | 2 | | | 8 | 7 | 21.48 | 21.77 | 21.70 | 1 | 20.53 | 20.82 | 20.75 | 2 | | | 15 | 0 | 21.46 | 21.75 | 21.68 | 1 | 20.51 | 20.80 | 20.73 | 2 | | | | | | QPSK | | | | | | | |-----------|------------|--------------|-----------------|-----------------|------------------|-------------|-----------------|-----------------|------------------|-------------| | LTE | RB
Size | RB
Offset | Low CH
23035 | Mid CH
23095 | High CH
23155 | 3GPP
MPR | Low CH
23035 | Mid CH
23095 | High CH
23155 | 3GPP
MPR | | Band / BW | Size | Oliset | 701.5
MHz | 707.5
MHz | 713.5
MHz | (dB) | 701.5
MHz | 707.5
MHz | 713.5
MHz | (dB) | | | 1 | 0 | 22.72 | 23.01 | 22.94 | 0 | 21.77 | 22.06 | 21.99 | 1 | | | 1 | 12 | 22.52 | 22.81 | 22.74 | 0 | 21.57 | 21.86 | 21.79 | 1 | | | 1 | 24 | 22.49 | 22.78 | 22.71 | 0 | 21.54 | 21.83 | 21.76 | 1 | | 12 / 5M | 12 | 0 | 21.63 | 21.92 | 21.85 | 1 | 20.68 | 20.97 | 20.90 | 2 | | | 12 | 6 | 21.55 | 21.84 | 21.77 | 1 | 20.60 | 20.89 | 20.82 | 2 | | | 12 | 13 | 21.54 | 21.83 | 21.76 | 1 | 20.59 | 20.88 | 20.81 | 2 | | | 25 | 0 | 21.52 | 21.81 | 21.74 | 1 | 20.57 | 20.86 | 20.79 | 2 | | | | | | QPSK | | | | | | | |-----------|------------|--------------|-----------------|-----------------|------------------|-------------|-----------------|-----------------|------------------|-------------| | LTE | RB
Size | RB
Offset | Low CH
23060 | Mid CH
23095 | High CH
23130 | 3GPP
MPR | Low CH
23060 | Mid CH
23095 | High CH
23130 | 3GPP
MPR | | Band / BW | Size | Offset | 704.0
MHz | 707.5
MHz | 711.0
MHz | (dB) | 704.0
MHz | 707.5
MHz | 711.0
MHz | (dB) | | | | | IVITIZ | IVITIZ | IVITIZ | | IVITIZ | IVITIZ | IVITIZ | | | | 1 | 0 | 22.75 | 23.04 | 22.97 | 0 | 21.80 | 22.09 | 22.02 | 1 | | | 1 | 24 | 22.55 | 22.84 | 22.77 | 0 | 21.60 | 21.89 | 21.82 | 1 | | | 1 | 49 | 22.52 | 22.81 | 22.74 | 0 | 21.57 | 21.86 | 21.79 | 1 | | 12 / 10M | 25 | 0 | 21.66 | 21.95 | 21.88 | 1 | 20.71 | 21.00 | 20.93 | 2 | | | 25 | 12 | 21.58 | 21.87 | 21.80 | 1 | 20.63 | 20.92 | 20.85 | 2 | | | 25 | 25 | 21.57 | 21.86 | 21.79 | 1 | 20.62 | 20.91 | 20.84 | 2 | | | 50 | 0 | 21.55 | 21.84 | 21.77 | 1 | 20.60 | 20.89 | 20.82 | 2 | Report Format Version 5.0.0 Page No. : 29 of 45 Report No. : SA180507W002 Issued Date : May 24, 2018 ## <WLAN 2.4G> | Mode | | 802.11b | | | | | | | |---------------------------|----------|----------------|-----------|--|--|--|--|--| | Channel / Frequency (MHz) | 1 (2412) | 6 (2437) | 11 (2462) | | | | | | | Average Power | 18.19 | 17.58 | 17.91 | | | | | | | Mode | 802.11g | | | | | | | | | Channel / Frequency (MHz) | 1 (2412) | 6 (2437) | 11 (2462) | | | | | | | Average Power | 10.80 | 11.03 | 10.52 | | | | | | | Mode | | 802.11n (HT20) | | | | | | | | Channel / Frequency (MHz) | 1 (2412) | 6 (2437) | 11 (2462) | | | | | | | Average Power | 10.63 | 10.11 | 10.32 | | | | | | ## <Bluetooth> | Mode | Bluetooth LE | | | | | | | |---------------------------|--------------|-----------|-----------|--|--|--|--| | Channel / Frequency (MHz) | 0 (2402) | 19 (2440) | 39 (2480) | | | | | | Average Power | -6.74 | -6.62 | -6.57 | | | | | Report Format Version 5.0.0 Page No. : 30 of 45 Report No.: \$A180507W002 Issued Date : May 24, 2018 ## 4.7 SAR Testing Results #### 4.7.1 SAR Test Reduction Considerations #### <KDB
447498 D01, General RF Exposure Guidance> Testing of other required channels within the operating mode of a frequency band is not required when the reported SAR for the mid-band or highest output power channel is: - (1) ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz - (2) ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz - (3) ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz #### <KDB 941225 D01, 3G SAR Measurement Procedures> The mode tested for SAR is referred to as the primary mode. The equivalent modes considered for SAR test reduction are denoted as secondary modes. Both primary and secondary modes must be in the same frequency band. When the maximum output power and tune-up tolerance specified for production units in a secondary mode is $\leq 1/4$ dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for the secondary mode. #### <KDB 941225 D05, SAR Evaluation Considerations for LTE Devices> ## (1) QPSK with 1 RB and 50% RB allocation Start with the largest channel bandwidth and measure SAR, using the RB offset and required test channel combination with the highest maximum output power among RB offsets at the upper edge, middle and lower edge of each required test channel. When the reported SAR is ≤ 0.8 W/kg, testing of the remaining RB offset configurations and required test channels is not required; otherwise, SAR is required for the remaining required test channels and only for the RB offset configuration with the highest output power for that channel. When the reported SAR of a required test channel is > 1.45 W/kg, SAR is required for all three RB offset configurations for that required test channel. #### (2) QPSK with 100% RB allocation SAR is not required when the highest maximum output power for 100% RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation are \leq 0.8 W/kg. Otherwise, SAR is measured for the highest output power channel; and if the reported SAR is > 1.45 W/kg, the remaining required test channels must also be tested. #### (3) Higher order modulations SAR is required only when the highest maximum output power for the configuration in the higher order modulation is > 1/2 dB higher than the same configuration in QPSK or when the reported SAR for the QPSK configuration is > 1.45 W/kg. #### (4) Other channel bandwidth SAR is required when the highest maximum output power of the smaller channel bandwidth is > 1/2 dB higher than the equivalent channel configurations in the largest channel bandwidth configuration or the reported SAR of a configuration for the largest channel bandwidth is > 1.45 W/kg. Report Format Version 5.0.0 Page No. : 31 of 45 Report No. : SA180507W002 Issued Date : May 24, 2018 ## <KDB 248227 D01, SAR Guidance for Wi-Fi Transmitters> - (1) For handsets operating next to ear, hotspot mode or mini-tablet configurations, the initial test position procedures were applied. The test position with the highest extrapolated peak SAR will be used as the initial test position. When the reported SAR of initial test position is <= 0.4 W/kg, SAR testing for remaining test positions is not required. Otherwise, SAR is evaluated at the subsequent highest peak SAR positions until the reported SAR result is <= 0.8 W/kg or all test positions are measured.</p> - (2) For WLAN 2.4 GHz, the highest measured maximum output power channel for DSSS was selected for SAR measurement. When the reported SAR is <= 0.8 W/kg, no further SAR testing is required. Otherwise, SAR is evaluated at the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel. For OFDM modes (802.11g/n), SAR is not required when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and it is <= 1.2 W/kg. Report Format Version 5.0.0 Page No. : 32 of 45 Report No.: SA180507W002 Issued Date : May 24, 2018 # 4.7.2 SAR Results for Body Exposure Condition (Separation Distance is 1.0 cm Gap) | Plot
No. | Band | Mode | Test
Position | Ch. | Max.
Tune-up
Power
(dBm) | Measured
Conducted
Power
(dBm) | Power
Drift
(dB) | Measured
SAR-1g
(W/kg) | Scaling
Factor | Scaled
SAR-1g
(W/kg) | |-------------|----------|----------|------------------|------|-----------------------------------|---|------------------------|------------------------------|-------------------|----------------------------| | | WCDMA II | RMC12.2K | Front Face | 9400 | 23.0 | 22.49 | -0.14 | 0.504 | 1.12 | 0.57 | | | WCDMA II | RMC12.2K | Rear Face | 9400 | 23.0 | 22.49 | 0.13 | 0.427 | 1.12 | 0.48 | | | WCDMA II | RMC12.2K | Left Side | 9400 | 23.0 | 22.49 | -0.13 | 0.202 | 1.12 | 0.23 | | | WCDMA II | RMC12.2K | Right Side | 9400 | 23.0 | 22.49 | -0.05 | 0.192 | 1.12 | 0.22 | | 1 | WCDMA II | RMC12.2K | Bottom Side | 9400 | 23.0 | 22.49 | -0.09 | 0.645 | 1.12 | <mark>0.73</mark> | | | WCDMA IV | RMC12.2K | Front Face | 1513 | 23.0 | 22.69 | -0.06 | 0.657 | 1.07 | 0.71 | | | WCDMA IV | RMC12.2K | Rear Face | 1513 | 23.0 | 22.69 | -0.13 | 0.561 | 1.07 | 0.60 | | | WCDMA IV | RMC12.2K | Left Side | 1513 | 23.0 | 22.69 | -0.04 | 0.261 | 1.07 | 0.28 | | | WCDMA IV | RMC12.2K | Right Side | 1513 | 23.0 | 22.69 | -0.18 | 0.277 | 1.07 | 0.30 | | 2 | WCDMA IV | RMC12.2K | Bottom Side | 1513 | 23.0 | 22.69 | 0.01 | 0.664 | 1.07 | <mark>0.71</mark> | | Plot
No. | Band | Mode | Test
Position | Ch. | RB# | RB
Offset | Max.
Tune-up
Power
(dBm) | Measured
Conducted
Power
(dBm) | Power
Drift
(dB) | Measured
SAR-1g
(W/kg) | Scaling
Factor | Scaled
SAR-1g
(W/kg) | |-------------|-------|---------|------------------|-------|-----|--------------|-----------------------------------|---|------------------------|------------------------------|-------------------|----------------------------| | | LTE 2 | QPSK20M | Front Face | 18900 | 1 | 0 | 23.5 | 23.01 | -0.06 | 0.635 | 1.12 | 0.71 | | | LTE 2 | QPSK20M | Rear Face | 18900 | 1 | 0 | 23.5 | 23.01 | -0.07 | 0.554 | 1.12 | 0.62 | | | LTE 2 | QPSK20M | Left Side | 18900 | 1 | 0 | 23.5 | 23.01 | -0.12 | 0.279 | 1.12 | 0.31 | | | LTE 2 | QPSK20M | Right Side | 18900 | 1 | 0 | 23.5 | 23.01 | 0.01 | 0.279 | 1.12 | 0.31 | | 3 | LTE 2 | QPSK20M | Bottom Side | 18900 | 1 | 0 | 23.5 | 23.01 | -0.01 | 0.788 | 1.12 | 0.88 | | | LTE 2 | QPSK20M | Front Face | 18900 | 50 | 0 | 22.5 | 21.88 | -0.03 | 0.426 | 1.15 | 0.49 | | | LTE 2 | QPSK20M | Rear Face | 18900 | 50 | 0 | 22.5 | 21.88 | 0.06 | 0.372 | 1.15 | 0.43 | | | LTE 2 | QPSK20M | Left Side | 18900 | 50 | 0 | 22.5 | 21.88 | 0.01 | 0.187 | 1.15 | 0.22 | | | LTE 2 | QPSK20M | Right Side | 18900 | 50 | 0 | 22.5 | 21.88 | -0.06 | 0.186 | 1.15 | 0.21 | | | LTE 2 | QPSK20M | Bottom Side | 18900 | 50 | 0 | 22.5 | 21.88 | 0.03 | 0.529 | 1.15 | 0.61 | | | LTE 2 | QPSK20M | Bottom Side | 18700 | 1 | 0 | 23.5 | 22.97 | -0.09 | 0.636 | 1.13 | 0.72 | | | LTE 2 | QPSK20M | Bottom Side | 19100 | 1 | 0 | 23.5 | 22.91 | -0.08 | 0.7 | 1.15 | 0.80 | | | LTE 2 | QPSK20M | Bottom Side | 18900 | 100 | 0 | 22.5 | 21.80 | 0.01 | 0.519 | 1.17 | 0.61 | | | LTE 2 | QPSK20M | Bottom Side | 18900 | 1 | 0 | 23.5 | 23.01 | -0.01 | 0.756 | 1.12 | 0.85 | | | LTE 4 | QPSK20M | Front Face | 20050 | 1 | 0 | 23.5 | 23.16 | -0.06 | 0.537 | 1.08 | 0.58 | | 4 | LTE 4 | QPSK20M | Rear Face | 20050 | 1 | 0 | 23.5 | 23.16 | 0.04 | 0.671 | 1.08 | 0.73 | | | LTE 4 | QPSK20M | Left Side | 20050 | 1 | 0 | 23.5 | 23.16 | -0.09 | 0.256 | 1.08 | 0.28 | | | LTE 4 | QPSK20M | Right Side | 20050 | 1 | 0 | 23.5 | 23.16 | -0.05 | 0.272 | 1.08 | 0.29 | | | LTE 4 | QPSK20M | Bottom Side | 20050 | 1 | 0 | 23.5 | 23.16 | -0.06 | 0.584 | 1.08 | 0.63 | | | LTE 4 | QPSK20M | Front Face | 20050 | 50 | 0 | 22.5 | 21.95 | -0.06 | 0.398 | 1.14 | 0.45 | | | LTE 4 | QPSK20M | Rear Face | 20050 | 50 | 0 | 22.5 | 21.95 | 0.06 | 0.498 | 1.14 | 0.57 | | | LTE 4 | QPSK20M | Left Side | 20050 | 50 | 0 | 22.5 | 21.95 | 0.05 | 0.191 | 1.14 | 0.22 | | | LTE 4 | QPSK20M | Right Side | 20050 | 50 | 0 | 22.5 | 21.95 | 0.08 | 0.202 | 1.14 | 0.23 | | | LTE 4 | QPSK20M | Bottom Side | 20050 | 50 | 0 | 22.5 | 21.95 | 0.01 | 0.433 | 1.14 | 0.49 | | 5 | LTE 5 | QPSK10M | Front Face | 20525 | 1 | 0 | 23.5 | 23.15 | 0.09 | 0.185 | 1.08 | 0.20 | | | LTE 5 | QPSK10M | Rear Face | 20525 | 1 | 0 | 23.5 | 23.15 | -0.08 | 0.089 | 1.08 | 0.10 | | | LTE 5 | QPSK10M | Left Side | 20525 | 1 | 0 | 23.5 | 23.15 | -0.01 | 0.088 | 1.08 | 0.10 | | | LTE 5 | QPSK10M | Right Side | 20525 | 1 | 0 | 23.5 | 23.15 | 0.03 | 0.08 | 1.08 | 0.09 | | | LTE 5 | QPSK10M | Bottom Side | 20525 | 1 | 0 | 23.5 | 23.15 | -0.09 | 0.113 | 1.08 | 0.12 | | | LTE 5 | QPSK10M | Front Face | 20525 | 25 | 0 | 22.5 | 21.96 | 0.06 | 0.165 | 1.13 | 0.19 | | | LTE 5 | QPSK10M | Rear Face | 20525 | 25 | 0 | 22.5 | 21.96 | 0.01 | 0.08 | 1.13 | 0.09 | | | LTE 5 | QPSK10M | Left Side | 20525 | 25 | 0 | 22.5 | 21.96 | 0.08 | 0.079 | 1.13 | 0.09 | | | LTE 5 | QPSK10M | Right Side | 20525 | 25 | 0 | 22.5 | 21.96 | 0.05 | 0.071 | 1.13 | 0.08 | | | LTE 5 | QPSK10M | Bottom Side | 20525 | 25 | 0 | 22.5 | 21.96 | -0.07 | 0.101 | 1.13 | 0.11 | Report Format Version 5.0.0 Page No. : 33 of 45 Report No.: \$A180507W002 Issued Date : May 24, 2018 | Plot
No. | Band | Mode | Test
Position | Ch. | RB# | RB
Offset | Max.
Tune-up
Power
(dBm) | Measured
Conducted
Power
(dBm) | Power
Drift
(dB) | Measured
SAR-1g
(W/kg) | Scaling
Factor | Scaled
SAR-1g
(W/kg) | |-------------
--------|---------|------------------|-------|-----|--------------|-----------------------------------|---|------------------------|------------------------------|-------------------|----------------------------| | 6 | LTE 12 | QPSK10M | Front Face | 23095 | 1 | 0 | 23.5 | 23.04 | 0.04 | 0.125 | 1.11 | <mark>0.14</mark> | | | LTE 12 | QPSK10M | Rear Face | 23095 | 1 | 0 | 23.5 | 23.04 | -0.03 | 0.07 | 1.11 | 0.08 | | | LTE 12 | QPSK10M | Left Side | 23095 | 1 | 0 | 23.5 | 23.04 | 0.03 | 0.064 | 1.11 | 0.07 | | | LTE 12 | QPSK10M | Right Side | 23095 | 1 | 0 | 23.5 | 23.04 | -0.04 | 0.052 | 1.11 | 0.06 | | | LTE 12 | QPSK10M | Bottom Side | 23095 | 1 | 0 | 23.5 | 23.04 | -0.08 | 0.074 | 1.11 | 0.08 | | | LTE 12 | QPSK10M | Front Face | 23095 | 25 | 0 | 22.5 | 21.95 | 0.02 | 0.111 | 1.14 | 0.13 | | | LTE 12 | QPSK10M | Rear Face | 23095 | 25 | 0 | 22.5 | 21.95 | 0.06 | 0.062 | 1.14 | 0.07 | | | LTE 12 | QPSK10M | Left Side | 23095 | 25 | 0 | 22.5 | 21.95 | 0.01 | 0.057 | 1.14 | 0.06 | | | LTE 12 | QPSK10M | Right Side | 23095 | 25 | 0 | 22.5 | 21.95 | 0.00 | 0.046 | 1.14 | 0.05 | | | LTE 12 | QPSK10M | Bottom Side | 23095 | 25 | 0 | 22.5 | 21.95 | -0.14 | 0.066 | 1.14 | 0.07 | | Plot
No. | Band | Mode | Test
Position | Ch. | Max.
Tune-up
Power
(dBm) | Measured
Conducted
Power
(dBm) | Power
Drift
(dB) | Measured
SAR-1g
(W/kg) | Scaling
Factor | Scaled
SAR-1g
(W/kg) | |-------------|---------|------|------------------|-----|-----------------------------------|---|------------------------|------------------------------|-------------------|----------------------------| | 7 | 802.11b | - | Front Face | 1 | 18.5 | 18.19 | 0.07 | 0.28 | 1.07 | <mark>0.30</mark> | | | 802.11b | - | Rear Face | 1 | 18.5 | 18.19 | 0.00 | 0.04 | 1.07 | 0.04 | | | 802.11b | - | Left Side | 1 | 18.5 | 18.19 | -0.02 | 0.208 | 1.07 | 0.22 | | | 802.11b | | Right Side | 1 | 18.5 | 18.19 | 0.02 | 0.024 | 1.07 | 0.03 | | | 802.11b | | Bottom Side | 1 | 18.5 | 18.19 | -0.08 | 0.074 | 1.07 | 0.08 | # 4.7.3 SAR Results for Extremity Exposure Condition (Separation Distance is 0 cm Gap) | Plot
No. | Band | Mode | Test
Position | Ch. | Max.
Tune-up
Power
(dBm) | Measured
Conducted
Power
(dBm) | Power
Drift
(dB) | Measured
SAR-10g
(W/kg) | Scaling
Factor | Scaled
SAR-10g
(W/kg) | |-------------|----------|----------|------------------|------|-----------------------------------|---|------------------------|-------------------------------|-------------------|-----------------------------| | | WCDMA II | RMC12.2K | Bottom Side | 9400 | 23.0 | 22.49 | -0.02 | 2.36 | 1.12 | 2.65 | | | WCDMA II | RMC12.2K | Bottom Side | 9262 | 23.0 | 22.28 | -0.01 | 2.18 | 1.18 | 2.57 | | 8 | WCDMA II | RMC12.2K | Bottom Side | 9538 | 23.0 | 22.35 | -0.04 | 2.44 | 1.16 | 2.83 | | | WCDMA II | RMC12.2K | Bottom Side | 9400 | 23.0 | 22.49 | -0.03 | 2.41 | 1.12 | 2.71 | | 9 | WCDMA IV | RMC12.2K | Bottom Side | 1513 | 23.0 | 22.69 | -0.09 | 1.96 | 1.07 | <mark>2.11</mark> | | | WCDMA IV | RMC12.2K | Bottom Side | 1312 | 23.0 | 22.67 | -0.06 | 1.69 | 1.08 | 1.82 | | | WCDMA IV | RMC12.2K | Bottom Side | 1413 | 23.0 | 22.56 | -0.03 | 1.73 | 1.11 | 1.91 | | Plot
No. | Band | Mode | Test
Position | Ch. | RB# | RB
Offset | Max.
Tune-up
Power
(dBm) | Measured
Conducted
Power
(dBm) | Power
Drift
(dB) | Measured
SAR-10g
(W/kg) | Scaling
Factor | Scaled
SAR-10g
(W/kg) | |-------------|--------|---------|------------------|-------|-----|--------------|-----------------------------------|---|------------------------|-------------------------------|-------------------|-----------------------------| | 10 | LTE 2 | QPSK20M | Bottom Side | 18900 | 1 | 0 | 23.5 | 23.01 | -0.14 | 2.59 | 1.12 | <mark>2.90</mark> | | | LTE 2 | QPSK20M | Bottom Side | 18900 | 50 | 0 | 22.5 | 21.88 | -0.11 | 1.65 | 1.15 | 1.90 | | | LTE 2 | QPSK20M | Bottom Side | 18700 | 1 | 0 | 23.5 | 22.97 | -0.09 | 2.01 | 1.13 | 2.27 | | | LTE 2 | QPSK20M | Bottom Side | 19100 | 1 | 0 | 23.5 | 22.91 | 0.01 | 2.21 | 1.15 | 2.53 | | | LTE 2 | QPSK20M | Bottom Side | 18900 | 100 | 0 | 22.5 | 21.80 | 0.03 | 1.64 | 1.17 | 1.93 | | | LTE 2 | QPSK20M | Bottom Side | 18900 | 1 | 0 | 23.5 | 23.01 | 0.08 | 2.57 | 1.12 | 2.88 | | 11 | LTE 4 | QPSK20M | Rear Face | 20050 | 1 | 0 | 23.5 | 23.16 | -0.02 | 1.57 | 1.08 | 1.70 | | | LTE 4 | QPSK20M | Rear Face | 20050 | 50 | 0 | 22.5 | 21.95 | -0.04 | 1.16 | 1.14 | 1.32 | | 12 | LTE 5 | QPSK10M | Front Face | 20525 | 1 | 0 | 23.5 | 23.15 | 0.07 | 0.621 | 1.08 | <mark>0.67</mark> | | | LTE 5 | QPSK10M | Front Face | 20525 | 25 | 0 | 22.5 | 21.96 | 0.14 | 0.592 | 1.13 | 0.67 | | 13 | LTE 12 | QPSK10M | Front Face | 23095 | 1 | 0 | 23.5 | 23.04 | 0.03 | 0.515 | 1.11 | <mark>0.57</mark> | | | LTE 12 | QPSK10M | Front Face | 23095 | 25 | 0 | 22.5 | 21.95 | -0.04 | 0.438 | 1.14 | 0.50 | Report Format Version 5.0.0 Page No. : 34 of 45 Report No.: \$A180507W002 Issued Date : May 24, 2018 | Plot
No. | Band | Mode | Test
Position | Ch. | Max.
Tune-up
Power
(dBm) | Measured
Conducted
Power
(dBm) | Power
Drift
(dB) | Measured
SAR-10g
(W/kg) | Scaling
Factor | Scaled
SAR-10g
(W/kg) | |-------------|---------|------|------------------|-----|-----------------------------------|---|------------------------|-------------------------------|-------------------|-----------------------------| | 14 | 802.11b | - | Front Face | 1 | 18.5 | 18.19 | 0.04 | 0.587 | 1.07 | <mark>0.63</mark> | #### 4.7.4 SAR Measurement Variability According to KDB 865664 D01, SAR measurement variability was assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media are required for SAR measurements in a frequency band, the variability measurement procedures should be applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. Alternatively, if the highest measured SAR for both head and body tissue-equivalent media are ≤ 1.45 W/kg and the ratio of these highest SAR values, i.e., largest divided by smallest value, is ≤ 1.10 , the highest SAR configuration for either head or body tissue-equivalent medium may be used to perform the repeated measurement. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results. #### SAR repeated measurement procedure: - 1. When the highest measured SAR is < 0.80 W/kg, repeated measurement is not required. - 2. When the highest measured SAR is >= 0.80 W/kg, repeat that measurement once. - 3. If the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20, or when the original or repeated measurement is >= 1.45 W/kg, perform a second repeated measurement. - 4. If the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20, and the original, first or second repeated measurement is >= 1.5 W/kg, perform a third repeated measurement. | Band | Mode | Test
Position | Ch. | Original
Measured
SAR-1g
(W/kg) | 1st
Repeated
SAR-1g
(W/kg) | L/S
Ratio | 2nd
Repeated
SAR-1g
(W/kg) | L/S
Ratio | 3rd
Repeated
SAR-1g
(W/kg) | L/S
Ratio | |----------|----------|------------------|-------|--|-------------------------------------|--------------|-------------------------------------|--------------|-------------------------------------|--------------| | WCDMA II | RMC12.2K | Bottom Side | 9400 | 2.44 | 2.41 | 1.01 | N/A | N/A | N/A | N/A | | LTE 2 | QPSK20M | Bottom Side | 18900 | 2.59 | 2.57 | 1.01 | N/A | N/A | N/A | N/A | Report Format Version 5.0.0 Page No. : 35 of 45 Report No.: SA180507W002 Issued Date : May 24, 2018 #### 4.7.5 Simultaneous Multi-band Transmission Evaluation #### <Estimated SAR Calculation> According to KDB 447498 D01, when standalone SAR test exclusion applies to an antenna that transmits simultaneously with other antennas, the standalone SAR was estimated according to following formula to result in substantially conservative SAR values of <= 0.4 W/kg to determine simultaneous transmission SAR test exclusion. $$\text{Estimated SAR} = \frac{\text{Max. Tune up Power}_{(mW)}}{\text{Min. Test Separation Distance}_{(mm)}} \times \frac{\sqrt{f_{(GHz)}}}{7.5}$$ If the minimum test separation distance is < 5 mm, a distance of 5 mm is used for estimated SAR calculation. When the test separation distance is > 50 mm, the 0.4 W/kg is used for SAR-1g. | Mode / Band | Frequency
(GHz) | Max. Tune-up
Power
(dBm) | Test
Position | Separation
Distance
(mm) | Estimated
SAR
(W/kg) | | |-------------|--------------------|--------------------------------|------------------|--------------------------------|----------------------------|--| | BT (DTS) | 2.48 | 6.0 | Body | 10 | 0.01 | | | BT (DTS) | 2.48 | 6.0 | Extremity | 5 | 0.40 | | #### Note: - 1. The separation distance is determined from the outer housing of the EUT to the user. - 2. When standalone SAR testing is not required, an estimated SAR can be applied to determine simultaneous transmission SAR test exclusion. Report Format Version 5.0.0 Page No. : 36 of 45 Report No.: SA180507W002 Issued Date : May 24, 2018 #### <SAR
Summation Analysis> Simultaneous transmission SAR test exclusion is determined for each operating configuration and exposure condition according to the reported standalone SAR of each applicable simultaneous transmitting antenna. When the sum of SAR_{1g} of all simultaneously transmitting antennas in an operating mode and exposure condition combination is within the SAR limit (SAR_{1g} 1.6 W/kg), the simultaneous transmission SAR is not required. When the sum of SAR_{1g} is greater than the SAR limit (SAR_{1g} 1.6 W/kg), SAR test exclusion is determined by the SPLSR. | No. | Conditions
(SAR1 + SAR2) | Exposure
Condition | Test
Position | Max.
SAR1 | Max.
SAR2 | SAR
Summation | SPLSR
Analysis | |-----|-----------------------------|-----------------------|------------------|--------------|--------------|------------------|-------------------------------------| | | (SAICT + SAICE) | Condition | | | | | ΣSAR < 1.6, | | | | | Front Face | 0.57 | 0.30 | 0.87 | Not required | | | | | Rear Face | 0.48 | 0.04 | 0.52 | Σ SAR < 1.6,
Not required | | | | | Left Side | 0.23 | 0.22 | 0.45 | ΣSAR < 1.6,
Not required | | | | Body | Right Side | 0.22 | 0.03 | 0.25 | Σ SAR < 1.6,
Not required | | | | | Top Side | 0.00 | 0.00 | 0.00 | Σ SAR < 1.6,
Not required | | 1 | WCDMA
Band II | | Bottom Side | 0.73 | 0.08 | 0.81 | Σ SAR < 1.6, Not required | | ' | +
WLAN (DTS) | | Front Face | 0.00 | 0.63 | 0.63 | Σ SAR < 4.0,
Not required | | | | | Rear Face | 0.00 | 0.00 | 0.00 | Σ SAR < 4.0, Not required | | | | Extremity | Left Side | 0.00 | 0.00 | 0.00 | Σ SAR < 4.0, Not required | | | | Extremity | Right Side | 0.00 | 0.00 | 0.00 | Σ SAR < 4.0, Not required | | | | | Top Side | 0.00 | 0.00 | 0.00 | Σ SAR < 4.0, Not required | | | | | Bottom Side | 2.83 | 0.00 | 2.83 | Σ SAR < 4.0,
Not required | | | | | Front Face | 0.57 | 0.01 | 0.58 | Σ SAR < 1.6, Not required | | | | | Rear Face | 0.48 | 0.01 | 0.49 | Σ SAR < 1.6, Not required | | | | Body | Left Side | 0.23 | 0.01 | 0.24 | Σ SAR < 1.6, Not required | | | | Dody | Right Side | 0.22 | 0.01 | 0.23 | Σ SAR < 1.6, Not required | | | | | Top Side | 0.00 | 0.01 | 0.01 | Σ SAR < 1.6, Not required | | 2 | WCDMA
Band II | | Bottom Side | 0.73 | 0.01 | 0.74 | Σ SAR < 1.6, Not required | | _ | +
BT_LE (DTS) | | Front Face | 0.00 | 0.01 | 0.01 | Σ SAR < 4.0, Not required | | | | | Rear Face | 0.00 | 0.01 | 0.01 | Σ SAR < 4.0, Not required | | | | France 1979 | Left Side | 0.00 | 0.01 | 0.01 | Σ SAR < 4.0, Not required | | | | Extremity | Right Side | 0.00 | 0.01 | 0.01 | Σ SAR < 4.0, Not required | | | | | Top Side | 0.00 | 0.01 | 0.01 | Σ SAR < 4.0,
Not required | | | | | Bottom Side | 2.83 | 0.01 | 2.84 | Σ SAR < 4.0,
Not required | Report Format Version 5.0.0 Page No. : 37 of 45 Report No. : SA180507W002 Issued Date : May 24, 2018 | No. | Conditions
(SAR1 + SAR2) | Exposure
Condition | Test
Position | Max.
SAR1 | Max.
SAR2 | SAR
Summation | SPLSR
Analysis | |-----|-----------------------------|-----------------------|------------------|--------------|--------------|------------------|-------------------------------------| | | | | Front Face | 0.71 | 0.30 | 1.01 | Σ SAR < 1.6,
Not required | | | | | Rear Face | 0.60 | 0.04 | 0.64 | ΣSAR < 1.6,
Not required | | | | | Left Side | 0.28 | 0.22 | 0.50 | Σ SAR < 1.6,
Not required | | | | Body | Right Side | 0.30 | 0.03 | 0.33 | ΣSAR < 1.6,
Not required | | | | | Top Side | 0.00 | 0.00 | 0.00 | ΣSAR < 1.6,
Not required | | | WCDMA
Band IV | | Bottom Side | 0.71 | 0.08 | 0.79 | Σ SAR < 1.6,
Not required | | 3 | +
WLAN (DTS) | | Front Face | 0.00 | 0.63 | 0.63 | Σ SAR < 4.0,
Not required | | | 112/11 (210) | | Rear Face | 0.00 | 0.00 | 0.00 | Σ SAR < 4.0,
Not required | | | | - | Left Side | 0.00 | 0.00 | 0.00 | Σ SAR < 4.0,
Not required | | | | Extremity | Right Side | 0.00 | 0.00 | 0.00 | Σ SAR < 4.0,
Not required | | | | | Top Side | 0.00 | 0.00 | 0.00 | Σ SAR < 4.0,
Not required | | | | | Bottom Side | 2.11 | 0.00 | 2.11 | Σ SAR < 4.0,
Not required | | | | | Front Face | 0.71 | 0.01 | 0.72 | Σ SAR < 1.6,
Not required | | | | | Rear Face | 0.60 | 0.01 | 0.61 | Σ SAR < 1.6,
Not required | | | | | Left Side | 0.28 | 0.01 | 0.29 | Σ SAR < 1.6,
Not required | | | | Body | Right Side | 0.30 | 0.01 | 0.31 | ΣSAR < 1.6,
Not required | | | | | Top Side | 0.00 | 0.01 | 0.01 | ΣSAR < 1.6,
Not required | | | WCDMA
Band IV | | Bottom Side | 0.71 | 0.01 | 0.72 | ΣSAR < 1.6,
Not required | | 4 | +
BT_LE (DTS) | | Front Face | 0.00 | 0.01 | 0.01 | Σ SAR < 4.0,
Not required | | | B1_LL (B10) | | Rear Face | 0.00 | 0.01 | 0.01 | Σ SAR < 4.0,
Not required | | | | | Left Side | 0.00 | 0.01 | 0.01 | Σ SAR < 4.0,
Not required | | | | Extremity | Right Side | 0.00 | 0.01 | 0.01 | Σ SAR < 4.0,
Not required | | | | | Top Side | 0.00 | 0.01 | 0.01 | Σ SAR < 4.0,
Not required | | | | | Bottom Side | 2.11 | 0.01 | 2.12 | Σ SAR < 4.0,
Not required | Report Format Version 5.0.0 Page No. : 38 of 45 Report No.: \$A180507W002 Issued Date : May 24, 2018 | No. | Conditions | Exposure | Test | Max. | Max. | SAR | SPLSR | | |-----|---------------|-----------|--------------|------|------|-----------|-------------------------------------|---------------------| | | (SAR1 + SAR2) | Condition | Position | SAR1 | SAR2 | Summation | Analysis ∑SAR < 1.6, | | | | | | Front Face | 0.71 | 0.30 | 1.01 | Not required | | | | | | Rear Face | 0.62 | 0.04 | 0.66 | Σ SAR < 1.6, | | | | | | Real Face | 0.62 | 0.04 | 0.00 | Not required | | | | | | Left Side | 0.31 | 0.22 | 0.53 | Σ SAR < 1.6, Not required | | | | | Body | D. 1. 0. 1 | 0.04 | 0.00 | 0.04 | Σ SAR < 1.6, | | | | | | Right Side | 0.31 | 0.03 | 0.34 | Not required | | | | | | Top Side | 0.00 | 0.00 | 0.00 | Σ SAR < 1.6, | | | | LTE 2 | | · | | | | Not required
ΣSAR < 1.6. | | | 5 | + | | Bottom Side | 0.88 | 0.08 | 0.96 | Not required | | | 5 | WLAN (DTS) | | Front Face | 0.00 | 0.63 | 0.63 | Σ SAR < 4.0, | | | | WEAR (DIO) | | | | | | Not required
ΣSAR < 4.0. | | | | | | Rear Face | 0.00 | 0.00 | 0.00 | Not required | | | | | | Left Side | 0.00 | 0.00 | 0.00 | Σ SAR < 4.0, | | | | | Extremity | Left Olde | 0.00 | 0.00 | 0.00 | Not required Σ SAR < 4.0, | | | | | | Right Side | 0.00 | 0.00 | 0.00 | ∑ SAR < 4.0,
Not required | | | | | | Top Side | 0.00 | 0.00 | 0.00 | Σ SAR < 4.0, | | | | | | Top Side | 0.00 | 0.00 | 0.00 | Not required | | | | | | Bottom Side | 2.90 | 0.00 | 2.90 | Σ SAR < 4.0,
Not required | | | | | | | | | | | Σ SAR < 1.6. | | | | | Front Face | 0.71 | 0.01 | 0.72 | Not required | | | | | | Rear Face | 0.62 | 0.01 | 0.63 | Σ SAR < 1.6, | | | | | | | | | | Not required
ΣSAR < 1.6, | | | | | Dody | Left Side | 0.31 | 0.01 | 0.32 | Not required | | | | | Body | Right Side | 0.31 | 0.01 | 0.32 | ∑SAR < 1.6, | | | | | | Trigiti Glac | | | | Not required
ΣSAR < 1.6. | | | | | | Top Side | 0.00 | 0.01 | 0.01 | Not required | | | | LTE 2 | | Bottom Side | 0.88 | 0.01 | 0.89 | Σ SAR < 1.6, | | | 6 | + | | Bottom Side | 0.00 | 0.01 | 0.09 | Not required | | | | BT_LE (DTS) | | Front Face | 0.00 | 0.01 | 0.01 | Σ SAR < 4.0, Not required | | | | | | D | 0.00 | 0.01 | 0.01 | Σ SAR < 4.0, | | | | | | Rear Face | 0.00 | 0.01 | 0.01 | Not required | | | | | | Left Side | 0.00 | 0.01 | 0.01 | Σ SAR < 4.0, Not required | | | | | Extremity | D. 1. 0. 1 | 0.00 | 0.04 | 0.04 | Σ SAR < 4.0, | | | | | | Right Side | 0.00 | 0.01 | 0.01 | Not required | | | | | | Top Side | 0.00 | 0.01 | 0.01 | Σ SAR < 4.0, | | | | | | | | | | Not required Σ SAR < 4.0, | | | | | | Bottom Side | 2.90 | 0.01 | 2.91 | Not required | | Report Format Version 5.0.0 Page No. : 39 of 45 Report No.: \$A180507W002 Issued Date : May 24, 2018 | No. | Conditions
(SAR1 + SAR2) | Exposure
Condition | Test
Position | Max.
SAR1 | Max.
SAR2 | SAR
Summation | SPLSR
Analysis | |-----|-----------------------------|-----------------------|------------------|--------------|--------------|------------------|--| | | | | Front Face | 0.58 | 0.30 | 0.88 | ΣSAR < 1.6,
Not required | | | | | Rear Face | 0.73 | 0.04 | 0.77 | Σ SAR < 1.6,
Not required | | | | Body | Left Side | 0.28 | 0.22 | 0.50 | Σ SAR < 1.6,
Not required | | | | Doay | Right Side | 0.29 | 0.03 | 0.32 | ΣSAR < 1.6,
Not required | | | | | Top Side | 0.00 | 0.00 | 0.00 | Σ SAR < 1.6,
Not required
Σ SAR < 1.6. | | 7 | LTE 4
+ | | Bottom Side | 0.63 | 0.08 | 0.71 | Not required | | | WLAN (DTS) | | Front Face | 0.00 | 0.63 | 0.63 | ΣSAR < 4.0,
Not required | | | | | Rear Face | 1.27 | 0.00 | 1.27 | ΣSAR < 4.0,
Not required | | | | Extremity | Left Side | 0.00 | 0.00 | 0.00 | ΣSAR < 4.0,
Not required | | | | , | Right Side | 0.00 | 0.00 | 0.00 | ΣSAR < 4.0,
Not required | | | | | Top Side | 0.00 | 0.00 | 0.00 | Σ SAR < 4.0,
Not required | | | | | Bottom Side | 1.70 | 0.00 | 1.70 | Σ SAR < 4.0,
Not required | | | | | Front Face | 0.58 | 0.01 | 0.59 | ΣSAR < 1.6,
Not required | | | | | Rear Face | 0.73 | 0.01 | 0.74 | Σ SAR < 1.6,
Not required | | | | Body | Left Side | 0.28 | 0.01 | 0.29 | ΣSAR < 1.6,
Not required | | | | Dody | Right Side | 0.29 | 0.01 | 0.30 | ΣSAR < 1.6,
Not required | | | | | Top Side | 0.00 | 0.01 | 0.01 | Σ SAR < 1.6,
Not required | | 8 | LTE 4 | | Bottom Side | 0.63 | 0.01 | 0.64 | ΣSAR < 1.6,
Not required | | | BT_LE (DTS) | | Front Face | 0.00 | 0.01 |
0.01 | Σ SAR < 4.0,
Not required | | | | Extremity | Rear Face | 1.27 | 0.01 | 1.28 | Σ SAR < 4.0,
Not required | | | | | Left Side | 0.00 | 0.01 | 0.01 | Σ SAR < 4.0,
Not required | | | | - ZAGOTING | Right Side | 0.00 | 0.01 | 0.01 | Σ SAR < 4.0,
Not required | | | | | Top Side | 0.00 | 0.01 | 0.01 | Σ SAR < 4.0,
Not required | | | | | Bottom Side | 1.70 | 0.01 | 1.71 | Σ SAR < 4.0, Not required | Report Format Version 5.0.0 Page No. : 40 of 45 Report No.: \$A180507W002 Issued Date : May 24, 2018 | No. | Conditions | Exposure | Test | Max. | Max. | SAR | SPLSR | |-----|---------------|------------|-------------|------|------|-----------|-------------------------------------| | | (SAR1 + SAR2) | Condition | Position | SAR1 | SAR2 | Summation | Analysis | | | | | Front Face | 0.20 | 0.30 | 0.50 | Σ SAR < 1.6, Not required | | | | | | 0.40 | 0.04 | 0.44 | Σ SAR < 1.6, | | | | | Rear Face | 0.10 | 0.04 | 0.14 | Not required | | | | | Left Side | 0.10 | 0.22 | 0.32 | ∑ SAR < 1.6, | | | | Body | | | _ | | Not required
ΣSAR < 1.6. | | | | | Right Side | 0.09 | 0.03 | 0.12 | Not required | | | | | Top Side | 0.00 | 0.00 | 0.00 | Σ SAR < 1.6, | | | | | Top Side | 0.00 | 0.00 | 0.00 | Not required | | | LTE 5 | | Bottom Side | 0.12 | 0.08 | 0.20 | Σ SAR < 1.6, Not required | | 9 | + | | | | | | Σ SAR < 4.0, | | | WLAN (DTS) | | Front Face | 0.67 | 0.63 | 1.30 | Not required | | | | | Rear Face | 0.00 | 0.00 | 0.00 | Σ SAR < 4.0, | | | | | 110011 000 | 0.00 | 0.00 | 0.00 | Not required
ΣSAR < 4.0. | | | | _ | Left Side | 0.00 | 0.00 | 0.00 | Not required | | | | Extremity | Right Side | 0.00 | 0.00 | 0.00 | Σ SAR < 4.0, | | | | | Right Side | 0.00 | 0.00 | 0.00 | Not required | | | | | Top Side | 0.00 | 0.00 | 0.00 | Σ SAR < 4.0, | | | | | · · | | | | Not required
ΣSAR < 4.0, | | | | | Bottom Side | 0.00 | 0.00 | 0.00 | Not required | | | | | Front Face | 0.20 | 0.01 | 0.21 | Σ SAR < 1.6, | | | | | FIOHI Face | 0.20 | 0.01 | 0.21 | Not required | | | | | Rear Face | 0.10 | 0.01 | 0.11 | Σ SAR < 1.6, Not required | | | | | | | | | Σ SAR < 1.6, | | | | Body | Left Side | 0.10 | 0.01 | 0.11 | Not required | | | | Бойу | Right Side | 0.09 | 0.01 | 0.10 | Σ SAR < 1.6, | | | | | Trigin Glas | | | | Not required
ΣSAR < 1.6. | | | | | Top Side | 0.00 | 0.01 | 0.01 | Not required | | | LTE 5 | | Bottom Side | 0.12 | 0.01 | 0.13 | Σ SAR < 1.6, | | 10 | + | | Bottom Side | 0.12 | 0.01 | 0.13 | Not required | | | BT_LE (DTS) | | Front Face | 0.67 | 0.01 | 0.68 | Σ SAR < 4.0,
Not required | | | _ 、 , | 1_LL (013) | | | | | Σ SAR < 4.0, | | | | | Rear Face | 0.00 | 0.01 | 0.01 | Not required | | | | Extremity | Left Side | 0.00 | 0.01 | 0.01 | Σ SAR < 4.0, | | | | | 2011 0100 | 0.00 | 0.0. | | Not required
ΣSAR < 4.0. | | | | _ | Right Side | 0.00 | 0.01 | 0.01 | ∑ SAR < 4.0,
Not required | | | | | Top Cide | 0.00 | 0.01 | 0.01 | Σ SAR < 4.0, | | | | | Top Side | 0.00 | 0.01 | 0.01 | Not required | | | | | Bottom Side | 0.00 | 0.01 | 0.01 | Σ SAR < 4.0, | | | | | | | | | Not required | Report Format Version 5.0.0 Page No. : 41 of 45 Report No.: \$A180507W002 Issued Date : May 24, 2018 | No. | Conditions
(SAR1 + SAR2) | Exposure
Condition | Test
Position | Max.
SAR1 | Max.
SAR2 | SAR
Summation | SPLSR
Analysis | |-----|-----------------------------|-----------------------|------------------|--------------|--------------|------------------|---| | | (0) | | Front Face | 0.14 | 0.30 | 0.44 | ΣSAR < 1.6,
Not required | | | | | Rear Face | 0.08 | 0.04 | 0.12 | Σ SAR < 1.6, | | | | | Left Side | 0.07 | 0.22 | 0.29 | Not required Σ SAR < 1.6, Not required | | | | Body | Right Side | 0.06 | 0.03 | 0.09 | Σ SAR < 1.6,
Not required | | | | | Top Side | 0.00 | 0.00 | 0.00 | ΣSAR < 1.6,
Not required | | | LTE 12 | | Bottom Side | 0.08 | 0.08 | 0.16 | ΣSAR < 1.6,
Not required | | 11 | +
WLAN (DTS) | | Front Face | 0.57 | 0.63 | 1.20 | Σ SAR < 4.0,
Not required | | | | | Rear Face | 0.00 | 0.00 | 0.00 | Σ SAR < 4.0,
Not required | | | | F | Left Side | 0.00 | 0.00 | 0.00 | Σ SAR < 4.0,
Not required | | | | Extremity | Right Side | 0.00 | 0.00 | 0.00 | Σ SAR < 4.0,
Not required | | | | | Top Side | 0.00 | 0.00 | 0.00 | Σ SAR < 4.0,
Not required | | | | | Bottom Side | 0.00 | 0.00 | 0.00 | Σ SAR < 4.0,
Not required | | | | | Front Face | 0.14 | 0.01 | 0.15 | Σ SAR < 1.6,
Not required | | | | | Rear Face | 0.08 | 0.01 | 0.09 | ΣSAR < 1.6,
Not required | | | | Dody | Left Side | 0.07 | 0.01 | 0.08 | ΣSAR < 1.6,
Not required | | | | Body | Right Side | 0.06 | 0.01 | 0.07 | Σ SAR < 1.6,
Not required | | | | | Top Side | 0.00 | 0.01 | 0.01 | Σ SAR < 1.6,
Not required | | ١., | LTE 12 | | Bottom Side | 0.08 | 0.01 | 0.09 | ΣSAR < 1.6,
Not required | | 12 | +
BT_LE (DTS) | | Front Face | 0.57 | 0.01 | 0.58 | Σ SAR < 4.0,
Not required | | | | | Rear Face | 0.00 | 0.01 | 0.01 | Σ SAR < 4.0,
Not required | | | | | Left Side | 0.00 | 0.01 | 0.01 | Σ SAR < 4.0,
Not required | | | | Extremity | Right Side | 0.00 | 0.01 | 0.01 | Σ SAR < 4.0,
Not required | | | | | Top Side | 0.00 | 0.01 | 0.01 | Σ SAR < 4.0,
Not required | | | | | Bottom Side | 0.00 | 0.01 | 0.01 | ∑SAR < 4.0,
Not required | Test Engineer : XianXiongQin Report Format Version 5.0.0 Page No. : 42 of 45 Report No.: \$A180507W002 Issued Date : May 24, 2018 # 5. Calibration of Test Equipment | Equipment | Manufacturer | Model | SN | Cal. Date | Cal. Interval | |---------------------------------|--------------|----------------|------------|---------------|---------------| | System Validation Dipole | SPEAG | D750V3 | 1078 | Jun. 22, 2016 | 1 Year | | System Validation Dipole | SPEAG | D835V2 | 4d092 | Jun. 22, 2016 | 1 Year | | System Validation Dipole | SPEAG | D1750V2 | 1023 | Jun. 23, 2016 | 1 Year | | System Validation Dipole | SPEAG | D1900V2 | 5d018 | Jun. 21, 2016 | 1 Year | | System Validation Dipole | SPEAG | D2450V2 | 835 | May. 12, 2016 | 1 Year | | Dosimetric E-Field Probe | SPEAG | EX3DV4 | 3873 | Aug. 26, 2015 | 1 Year | | Data Acquisition Electronics | SPEAG | DAE4 | 1341 | Aug. 25, 2015 | 1 Year | | Dosimetric E-Field Probe | SPEAG | EX3DV4 | 7346 | Jun. 23, 2016 | 1 Year | | Data Acquisition Electronics | SPEAG | DAE4 | 905 | Jun. 22, 2016 | 1 Year | | Radio Communication Analyzer | ANRITSU | MT8820C | 6201300717 | Oct. 12, 2015 | 1 Year | | Wireless Communication Test Set | Agilent | E5515C | MY50260600 | Jun. 29, 2016 | 1 Year | | ENA Series Network Analyzer | Agilent | E5071C | MY46214638 | Jul. 27, 2016 | 1 Year | | Spectrum Analyzer | KEYSIGHT | N9010A | MY54510355 | Jun. 29, 2016 | 1Year | | MXG Analog Signal Generator | KEYSIGHT | N5183A | MY50143024 | Mar. 03, 2016 | 1 Year | | Power Meter | Agilent | ML2495A | 1506002 | Mar. 09, 2016 | 1Year | | Power Sensor | Agilent | MA2411B | 1339353 | Mar. 09, 2016 | 1 Year | | Temp. & Humi. Recorder | CLOCK | HTC-1 | 157248 | Jul. 29, 2016 | 1 Year | | Electronic Thermometer | YONGFA | YF-160A | 120100323 | Oct. 15, 2015 | 1 Year | | Coupler | Woken | 0110A056020-10 | CON27RW1A3 | Sep. 18, 2015 | 1 Year | Report Format Version 5.0.0 Page No. : 43 of 45 Report No.: \$A180507W002 Issued Date : May 24, 2018 # 6. Measurement Uncertainty | Source of Uncertainty | Tolerance
(± %) | Probability
Distribution | Divisor | Ci
(1g) | Ci
(10g) | Standard
Uncertainty
(± %, 1g) | Standard
Uncertainty
(± %, 10g) | Vi | |--|--------------------|-----------------------------|---------|------------|-------------|--------------------------------------|---------------------------------------|----| | Measurement System | | | | | | | | | | Probe Calibration | 6.0 | Normal | 1 | 1 | 1 | 6.0 | 6.0 | ∞ | | Axial Isotropy | 4.7 | Rectangular | √3 | 0.707 | 0.707 | 1.9 | 1.9 | ∞ | | Hemispherical Isotropy | 9.6 | Rectangular | √3 | 0.707 | 0.707 | 3.9 | 3.9 | ∞ | | Boundary Effect | 1.0 | Rectangular | √3 | 1 | 1 | 0.6 | 0.6 | ∞ | | Linearity | 4.7 | Rectangular | √3 | 1 | 1 | 2.7 | 2.7 | 8 | | System Detection Limits | 0.25 | Rectangular | √3 | 1 | 1 | 0.14 | 0.14 | ∞ | | Readout Electronics | 0.3 | Normal | 1 | 1 | 1 | 0.3 | 0.3 | 8 | | Response Time | 0.0 | Rectangular | √3 | 1 | 1 | 0.0 | 0.0 | ∞ | | Integration Time | 1.7 | Rectangular | √3 | 1 | 1 | 1.0 | 1.0 | ∞ | | RF Ambient Conditions - Noise | 3.0 | Rectangular | √3 | 1 | 1 | 1.7 | 1.7 | ∞ | | RF Ambient Conditions - Reflections | 3.0 | Rectangular | √3 | 1 | 1 | 1.7 | 1.7 | 8 | | Probe Positioner Mechanical Tolerance | 0.4 | Rectangular | √3 | 1 | 1 | 0.2 | 0.2 | 8 | | Probe Positioning with Respect to Phantom Shell | 2.9 | Rectangular | √3 | 1 | 1 | 1.7 | 1.7 | ∞ | | Extrapolation, interpolation, and integration algorithms for max. SAR evaluation | 2.0 | Rectangular | √3 | 1 | 1 | 1.2 | 1.2 | 8 | | Test Sample Related | | | | | | | | | | Test Sample Positioning | 1.5 / 0.7 | Normal | 1 | 1 | 1 | 1.5 | 0.7 | 32 | | Device Holder Uncertainty | 4.2 / 1.8 | Normal | 1 | 1 | 1 | 4.2 | 1.8 | 32 | | Output Power Variation - SAR Drift Measurement | 5.0 | Rectangular | √3 | 1 | 1 | 2.9 | 2.9 | 8 | | Phantom and Tissue Parameters | | | | | | | | | | Phantom Uncertainty (Shape and Thickness Tolerances) | 7.2 | Rectangular | √3 | 1 | 1 | 4.2 | 4.2 | 8 | | Liquid Conductivity - Deviation from Target Values | 5.0 | Rectangular | √3 | 0.64 | 0.43 | 1.8 | 1.2 | 8 | | Liquid Conductivity - Measurement Uncertainty | 1.0 | Normal | 1 | 0.64 | 0.43 | 0.6 | 0.4 | 25 | | Liquid Permittivity - Deviation from Target Values | 5.0 | Rectangular | √3 | 0.60 | 0.49 | 1.7 |
1.4 | 8 | | Liquid Permittivity - Measurement Uncertainty | 0.5 | Normal | 1 | 0.60 | 0.49 | 0.3 | 0.2 | 25 | | Combined Standard Uncertainty | | | | | | ± 11.2 % | ± 10.4 % | | | Expanded Uncertainty (K=2) | | | | | | ± 22.4 % | ± 20.8 % | | Uncertainty budget for frequency range 300 MHz to 3 GHz Report Format Version 5.0.0 Page No. : 44 of 45 Report No.: \$A180507W002 Issued Date : May 24, 2018 # 7. Information on the Testing Laboratories We, BV 7LAYERS COMMUNICATIONS TECHNOLOGY (SHENZHEN) CO. LTD., were founded in 2015 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025. If you have any comments, please feel free to contact us at the following: Add: No. B102, Dazu Chuangxin Mansion, North of Beihuan Avenue, North Area, Hi-Tech Industry Park, Nanshan District, Shenzhen, Guangdong, China Tel: 86-755-8869-6566 Fax: 86-755-8869-6577 Email: customerservice.dg@cn.bureauveritas.com Web Site: www.bureauveritas.com The road map of all our labs can be found in our web site also. ---END--- Report Format Version 5.0.0 Page No. : 45 of 45 Report No. : SA180507W002 Issued Date : May 24, 2018 # Appendix A. SAR Plots of System Verification The plots for system verification with largest deviation for each SAR system combination are shown as follows. Report Format Version 5.0.0 Issued Date : May 24, 2018 Report No.: SA180507W002 ### **System Check B750 160822** ## **DUT: Dipole:750 MHz; D750V3;SN:1078** Communication System: CW; Frequency: 750 MHz; Duty Cycle: 1:1 Medium: B750 0831 Medium parameters used: f = 750 MHz; $\sigma = 0.966$ S/m; $\varepsilon_r = 55.257$; $\rho =$ Date: 2016/08/31 1000 kg/m^3 Ambient Temperature: 22.1 °C; Liquid Temperature: 21.2 °C ### DASY5 Configuration: - Probe: EX3DV4 SN7346; ConvF(10.06, 10.06, 10.06); Calibrated: 2016/06/23; - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn905; Calibrated: 2016/06/22 - Phantom: Left Phantom with CRP v5.0; Type: QD000P40CD; Serial: TP:1722 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) **Pin=250mW/Area Scan (71x111x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 2.62 W/kg Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 51.40 V/m; Power Drift = 0.13 dB Peak SAR (extrapolated) = 2.99 W/kg SAR(1 g) = 2.09 W/kg; SAR(10 g) = 1.42 W/kgMaximum value of SAR (measured) = 2.58 W/kg # **System Check_B835_1600821** # **DUT: Dipole:835 MHz; Type:D835V2; SN:4d092** Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: B835 0831 Medium parameters used: f = 835 MHz; $\sigma = 0.992$ S/m; $\varepsilon_r = 54.645$; $\rho =$ Date: 2016/08/31 1000 kg/m^3 Ambient Temperature: 22.1 °C; Liquid Temperature: 21.2 °C ### DASY5 Configuration: - Probe: EX3DV4 SN7346; ConvF(9.87, 9.87, 9.87); Calibrated: 2016/06/23; - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn905; Calibrated: 2016/06/22 - Phantom: Left Phantom with CRP v5.0; Type: QD000P40CD; Serial: TP:1722 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) **Pin=250mW/Area Scan (61x101x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 2.89 W/kg **Pin=250mW/Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 55.92 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 3.36 W/kg SAR(1 g) = 2.31 W/kg; SAR(10 g) = 1.54 W/kgMaximum value of SAR (measured) = 2.90 W/kg ### **System Check B1750 160830** # **DUT: Dipole 1750 MHz ;Type:D1750V2; SN:1023** Communication System: CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium: B1750 0830 Medium parameters used: f = 1750 MHz; $\sigma = 1.53$ S/m; $\varepsilon_r = 53.773$; $\rho =$ Date: 2016/08/30 1000 kg/m^3 Ambient Temperature: 22.3 °C; Liquid Temperature: 21.3 °C ### DASY5 Configuration: - Probe: EX3DV4 SN7346; ConvF(8.22, 8.22, 8.22); Calibrated: 2016/06/23; - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn905; Calibrated: 2016/06/22 - Phantom: Front Phantom with CRP v5.0; Type: QD000P40CD; Serial: TP:1695 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) **Pin=250mW/Area Scan (61x61x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 12.2 W/kg Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 83.68 V/m: Power Drift = 0.08 dB Peak SAR (extrapolated) = 15.1 W/kg SAR(1 g) = 8.88 W/kg; SAR(10 g) = 4.85 W/kg Maximum value of SAR (measured) = 12.3 W/kg # System Check_B1900_160830 # **DUT: Dipole:1900MHz; Type:D1900V2; SN:5d018** Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: B1900_0830. Medium parameters used : f = 1900 MHz; $\sigma = 1.54$ S/m; $\varepsilon_r = 52.22$; $\rho $\varepsilon_r = 1.54$ S/m; $\varepsilon_r = 52.22$; $\varepsilon_r = 1.54$ S/m; Date: 2016/08/30 1000 kg/m^3 Ambient Temperature: 22.3 °C; Liquid Temperature: 21.3 °C ## DASY5 Configuration: - Probe: EX3DV4 SN7346; ConvF(7.92, 7.92, 7.92); Calibrated: 2016/06/23; - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn905; Calibrated: 2016/06/22 - Phantom: Front Phantom with CRP v5.0; Type: QD000P40CD; Serial: TP:1695 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) **Pin=250mW/Area Scan (61x61x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 13.40 W/kg **Pin=250mW/Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 94.29 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 16.7 W/kg SAR(1 g) = 9.47 W/kg; SAR(10 g) = 4.97 W/kgMaximum value of SAR (measured) = 13.4 W/kg ### **System Check B2450 160725** # **DUT: Dipole 2450 MHz; Type:D2450V2; SN:835** Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: B2450_0725 Medium parameters used: f = 2450 MHz; $\sigma = 1.906$ S/m; $\varepsilon_r = 51.411$; $\rho =$ Date: 2016/07/25 1000 kg/m^3 Ambient Temperature: 21.9 °C; Liquid Temperature: 20.9 °C ### DASY5 Configuration: - Probe: EX3DV4 SN3873; ConvF(7.3, 7.3, 7.3); Calibrated: 2015/08/26; - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1341; Calibrated: 2015/08/25 - Phantom: Front Phantom with CRP v5.0; Type: QD000P40CD; Serial: TP:1695 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) **Pin=250mW/Area Scan (61x81x1):** Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 20.0 W/kg **Pin=250mW/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 100.6 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 26.7 W/kg SAR(1 g) = 12.6 W/kg; SAR(10 g) = 5.75 W/kgMaximum value of SAR (measured) = 19.3 W/kg # Appendix B. SAR Plots of SAR Measurement The SAR plots for highest measured SAR in each exposure configuration, wireless mode and frequency band combination, and measured SAR > 1.5 W/kg are shown as follows. Report Format Version 5.0.0 Issued Date : May 24, 2018 Report No.: SA180507W002 # P01 WCDMA II_RMC12.2K_Bottom Side_1cm_Ch9400 #### **DUT: 160713W008** Communication System: WCDMA; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: B1900_0830 Medium parameters used: f = 1880.1 MHz; σ = 1.516 S/m; ϵ_r = 52.281; ρ = Date: 2016/08/30 1000 kg/m^3 Ambient Temperature: 22.3 °C; Liquid Temperature: 21.3 °C - Probe: EX3DV4 SN7346; ConvF(7.92, 7.92, 7.92); Calibrated: 2016/06/23; - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn905; Calibrated: 2016/06/22 - Phantom: Front Phantom with CRP v5.0; Type: QD000P40CD; Serial: TP:1695 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) - Area Scan (61x81x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.933 W/kg - Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 14.38 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 1.09 W/kg SAR(1 g) = 0.645 W/kg; SAR(10 g) = 0.345 W/kg Maximum value of SAR (measured) = 0.944 W/kg # P02 WCDMA IV_RMC12.2K_Bottom Side_1cm_Ch1513 #### **DUT: 160713W008** Communication System: WCDMA; Frequency: 1752.6 MHz; Duty Cycle: 1:1 Medium: B1750_0830 Medium parameters used: f = 1753 MHz; $\sigma = 1.533$ S/m; $\epsilon_r = 53.764$; $\rho = 1.533$ S/m; $\epsilon_r = 53.764$; Date: 2016/08/30 1000 kg/m^3 Ambient Temperature : 22.3 °C; Liquid Temperature : 21.3 °C - Probe: EX3DV4 SN7346; ConvF(8.22, 8.22, 8.22); Calibrated: 2016/06/23; - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn905; Calibrated: 2016/06/22 - Phantom: Front Phantom with CRP v5.0; Type: QD000P40CD; Serial: TP:1695 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) - Area Scan (61x81x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.936 W/kg - Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 15.00 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 1.09 W/kg SAR(1 g) = 0.664 W/kg; SAR(10 g) = 0.369 W/kg Maximum value of SAR (measured) = 0.932 W/kg # P03 LTE 2_QPSK20M_Bottom Side_1cm_Ch18900_1RB_OS0 #### **DUT: 160713W008** Communication System: LTE; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: B1900_0830 Medium parameters used: f = 1880.1 MHz; $\sigma = 1.516$ S/m; $\varepsilon_r = 52.281$; $\rho =$ Date: 2016/08/30 1000 kg/m^3 Ambient Temperature: 22.3 °C; Liquid Temperature: 21.3 °C - Probe: EX3DV4 SN7346; ConvF(7.92, 7.92, 7.92); Calibrated: 2016/06/23; - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn905; Calibrated: 2016/06/22 - Phantom: Front Phantom with CRP v5.0; Type: QD000P40CD; Serial: TP:1695 - Measurement SW: DASY52, Version
52.8 (8); SEMCAD X Version 14.6.10 (7331) - Area Scan (61x81x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.16 W/kg - Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 16.00 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 1.33 W/kg SAR(1 g) = 0.788 W/kg; SAR(10 g) = 0.425 W/kg Maximum value of SAR (measured) = 1.16 W/kg # P04 LTE 4_QPSK20M_Rear Face_1cm_Ch20050_1RB_OS0 #### **DUT: 160713W008** Communication System: LTE; Frequency: 1720 MHz; Duty Cycle: 1:1 Medium: B1750_0830 Medium parameters used: f = 1720 MHz; $\sigma = 1.498$ S/m; $\varepsilon_r = 53.875$; $\rho =$ Date: 2016/08/30 1000 kg/m^3 Ambient Temperature: 22.3 °C; Liquid Temperature: 21.3 °C - Probe: EX3DV4 SN7346; ConvF(8.22, 8.22, 8.22); Calibrated: 2016/06/23; - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn905; Calibrated: 2016/06/22 - Phantom: Front Phantom with CRP v5.0; Type: QD000P40CD; Serial: TP:1695 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) - Area Scan (61x81x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.902 W/kg - Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 20.46 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 1.05 W/kg SAR(1 g) = 0.671 W/kg; SAR(10 g) = 0.424 W/kg Maximum value of SAR (measured) = 0.911 W/kg # P05 LTE 5_QPSK10M_Front Face_1cm_Ch20525_1RB_OS0 #### **DUT: 160713W008** Communication System: LTE; Frequency: 836.5 MHz; Duty Cycle: 1:1 Medium: B835_0831 Medium parameters used : f = 836.5 MHz; $\sigma = 0.994$ S/m; $\varepsilon_r = 54.631$; $\rho =$ Date: 2016/08/31 1000 kg/m^3 Ambient Temperature: 22.1 °C; Liquid Temperature: 21.2 °C - Probe: EX3DV4 SN7346; ConvF(9.87, 9.87, 9.87); Calibrated: 2016/06/23; - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn905; Calibrated: 2016/06/22 - Phantom: Left Phantom with CRP v5.0; Type: QD000P40CD; Serial: TP:1722 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) - Area Scan (61x81x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.279 W/kg - Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 10.89 V/m; Power Drift = 0.09 dB Peak SAR (extrapolated) = 0.324 W/kg SAR(1 g) = 0.185 W/kg; SAR(10 g) = 0.113 W/kg Maximum value of SAR (measured) = 0.271 W/kg # P06 LTE 12_QPSK10M_Front Face_1cm_Ch23095_1RB_OS0 #### **DUT: 160713W008** Communication System: LTE; Frequency: 707.5 MHz; Duty Cycle: 1:1 Medium: B750 0831 Medium parameters used : f = 707.5 MHz; $\sigma = 0.93$ S/m; $\varepsilon_r = 55.604$; $\rho =$ Date: 2016/08/31 1000 kg/m^3 Ambient Temperature: 22.1 °C; Liquid Temperature: 21.2 °C ### DASY5 Configuration: - Probe: EX3DV4 SN7346; ConvF(10.06, 10.06, 10.06); Calibrated: 2016/06/23; - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn905; Calibrated: 2016/06/22 - Phantom: Left Phantom with CRP v5.0; Type: QD000P40CD; Serial: TP:1722 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) - Area Scan (61x81x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.181 W/kg - Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 10.85 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 0.221 W/kg SAR(1 g) = 0.125 W/kg; SAR(10 g) = 0.084 W/kg SAR(1 g) = 0.125 W/kg; SAR(10 g) = 0.084 W/kg Maximum value of SAR (measured) = 0.183 W/kg ### **P07 802.11b** Front Face 1cm Ch1 #### **DUT: 160713W008** Communication System: 802.11b; Frequency: 2412 MHz; Duty Cycle: 1:1 Medium: B2450_0725 Medium parameters used: f = 2412 MHz; $\sigma = 1.853$ S/m; $\varepsilon_r = 51.535$; $\rho =$ Date: 2016/07/25 1000 kg/m^3 Ambient Temperature: 21.9 °C; Liquid Temperature: 20.9 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3873; ConvF(7.3, 7.3, 7.3); Calibrated: 2015/08/26; - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1341; Calibrated: 2015/08/25 - Phantom: Front Phantom with CRP v5.0; Type: QD000P40CD; Serial: TP:1695 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) - Area Scan (71x101x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.468 W/kg - Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 10.14 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 0.513 W/kg SAR(1 g) = 0.280 W/kg; SAR(10 g) = 0.159 W/kg Maximum value of SAR (measured) = 0.413 W/kg # P08 WCDMA II_RMC12.2K_Bottom Side_0cm_Ch9538 #### **DUT: 160713W008** Communication System: WCDMA; Frequency: 1907.6 MHz; Duty Cycle: 1:1 Medium: B1900_0830 Medium parameters used : f = 1907.6 MHz; σ = 1.549 S/m; ϵ_r = 52.205; ρ = Date: 2016/08/30 1000 kg/m^3 Ambient Temperature : 22.3 °C; Liquid Temperature : 21.3 °C #### DASY5 Configuration: - Probe: EX3DV4 SN7346; ConvF(7.92, 7.92, 7.92); Calibrated: 2016/06/23; - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn905; Calibrated: 2016/06/22 - Phantom: Front Phantom with CRP v5.0; Type: QD000P40CD; Serial: TP:1695 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) - Area Scan (61x81x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 9.25 W/kg - **Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 62.12 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 11.9 W/kg SAR(1 g) = 5.78 W/kg; SAR(10 g) = 2.44 W/kg SAR(1 g) = 5.78 W/kg; SAR(10 g) = 2.44 W/kg Maximum value of SAR (measured) = 8.43 W/kg # P09 WCDMA IV_RMC12.2K_Bottom Side_0cm_Ch1513 #### **DUT: 160713W008** Communication System: WCDMA; Frequency: 1752.6 MHz; Duty Cycle: 1:1 Medium: B1750_0830 Medium parameters used: f = 1753 MHz; $\sigma = 1.533$ S/m; $\epsilon_r = 53.764$; $\rho = 1.533$ S/m; $\epsilon_r = 53.764$; Date: 2016/08/30 1000 kg/m^3 Ambient Temperature : 22.3 °C; Liquid Temperature : 21.3 °C ### DASY5 Configuration: - Probe: EX3DV4 SN7346; ConvF(8.22, 8.22, 8.22); Calibrated: 2016/06/23; - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn905; Calibrated: 2016/06/22 - Phantom: Front Phantom with CRP v5.0; Type: QD000P40CD; Serial: TP:1695 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) - Area Scan (61x81x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 6.84 W/kg - **Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 54.80 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 9.17 W/kg SAR(1 g) = 4.55 W/kg; SAR(10 g) = 1.96 W/kgMaximum value of SAR (measured) = 7.00 W/kg # P10 LTE 2_QPSK20M_Bottom Side_0cm_Ch18900_1RB_OS0 #### **DUT: 160713W008** Communication System: LTE; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: B1900_0830 Medium parameters used: f = 1880.1 MHz; $\sigma = 1.516$ S/m; $\epsilon_r = 52.281$; $\rho = 1.516$ MHz; $\sigma = 1.516$ S/m; $\epsilon_r = 52.281$; $\rho = 1.516$ MHz; $\sigma = 1.516$ S/m; $\epsilon_r = 52.281$; $\rho = 1.516$ MHz; $\sigma = 1.516$ S/m; $\epsilon_r = 52.281$; $\rho = 1.516$ MHz; $\sigma = 1.516$ S/m; $\epsilon_r = 52.281$; $\rho = 1.516$ MHz; $\sigma = 1.516$ S/m; $\epsilon_r = 52.281$; $\rho = 1.516$ MHz; $\sigma = 1.516$ S/m; $\epsilon_r = 52.281$; $\rho = 1.516$ MHz; $\sigma = 1.516$ S/m; $\epsilon_r = 52.281$; $\rho = 1.516$ S/m; $\epsilon_r = 52.281$; $\rho = 1.516$ S/m; $\epsilon_r = 52.281$; Date: 2016/08/30 1000 kg/m^3 Ambient Temperature: 22.3 °C; Liquid Temperature: 21.3 °C ### DASY5 Configuration: - Probe: EX3DV4 SN7346; ConvF(7.92, 7.92, 7.92); Calibrated: 2016/06/23; - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn905; Calibrated: 2016/06/22 - Phantom: Front Phantom with CRP v5.0; Type: QD000P40CD; Serial: TP:1695 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) - Area Scan (61x81x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 9.97 W/kg - **Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 62.49 V/m; Power Drift = -0.14 dB Peak SAR (extrapolated) = 12.7 W/kg SAR(1 g) = 6.18 W/kg; SAR(10 g) = 2.59 W/kgMaximum value of SAR (measured) = 9.45 W/kg # P11 LTE 4_QPSK20M_Rear Face_0cm_Ch20050_1RB_OS0 #### **DUT: 160713W008** Communication System: LTE; Frequency: 1720 MHz; Duty Cycle: 1:1 Medium: B1750_0830 Medium parameters used: f = 1720 MHz; $\sigma = 1.498$ S/m; $\varepsilon_r = 53.875$; $\rho =$ Date: 2016/08/30 1000 kg/m^3 Ambient Temperature: 22.3 °C; Liquid Temperature: 21.3 °C ### DASY5 Configuration: - Probe: EX3DV4 SN7346; ConvF(8.22, 8.22, 8.22); Calibrated: 2016/06/23; - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn905; Calibrated: 2016/06/22 - Phantom: Front Phantom with CRP v5.0; Type: QD000P40CD; Serial: TP:1695 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) - Area Scan (61x81x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 4.24 W/kg - **Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 37.19 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 5.42 W/kg SAR(1 g) = 2.95 W/kg; SAR(10 g) = 1.57 W/kgMaximum value of SAR (measured) = 4.54 W/kg # P12 LTE 5_QPSK10M_Front Face_0cm_Ch20525_1RB_OS0 #### **DUT: 160713W008** Communication System: LTE; Frequency: 836.5 MHz; Duty Cycle: 1:1 Medium: B835_0831 Medium parameters used : f = 836.5 MHz; $\sigma = 0.994$ S/m; $\varepsilon_r = 54.631$; $\rho =$ Date: 2016/08/31 1000 kg/m^3 Ambient Temperature: 22.1 °C; Liquid Temperature: 21.2 °C ### DASY5 Configuration: - Probe: EX3DV4 SN7346; ConvF(9.87, 9.87, 9.87);
Calibrated: 2016/06/23; - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn905; Calibrated: 2016/06/22 - Phantom: Left Phantom with CRP v5.0; Type: QD000P40CD; Serial: TP:1722 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) - Area Scan (61x81x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.46 W/kg - Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 24.99 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 2.77 W/kg SAR(1 g) = 1.19 W/kg; SAR(10 g) = 0.621 W/kgMaximum value of SAR (measured) = 2.08 W/kg # P13 LTE 12_QPSK10M_Front Face_0cm_Ch23095_1RB_OS0 #### **DUT: 160713W008** Communication System: LTE; Frequency: 707.5 MHz; Duty Cycle: 1:1 Medium: B750 0831 Medium parameters used : f = 707.5 MHz; $\sigma = 0.93$ S/m; $\varepsilon_r = 55.604$; $\rho =$ Date: 2016/08/31 1000 kg/m^3 Ambient Temperature: 22.1 °C; Liquid Temperature: 21.2 °C ### DASY5 Configuration: - Probe: EX3DV4 SN7346; ConvF(10.06, 10.06, 10.06); Calibrated: 2016/06/23; - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn905; Calibrated: 2016/06/22 - Phantom: Left Phantom with CRP v5.0; Type: QD000P40CD; Serial: TP:1722 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) - Area Scan (61x81x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.28 W/kg - **Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 25.57 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 2.28 W/kg SAR(1 g) = 0.955 W/kg; SAR(10 g) = 0.515 W/kg Maximum value of SAR (measured) = 1.73 W/kg # P14 802.11b_Front Face_0cm_Ch1 #### **DUT: 160713W008** Communication System: 802.11b; Frequency: 2412 MHz; Duty Cycle: 1:1 Medium: B2450_0725 Medium parameters used: f = 2412 MHz; $\sigma = 1.853$ S/m; $\epsilon_r = 51.535$; $\rho = 1.853$ S/m; $\epsilon_r = 51.535$; Date: 2016/07/25 1000 kg/m^3 Ambient Temperature: 21.9°C; Liquid Temperature: 20.9°C ### DASY5 Configuration: - Probe: EX3DV4 SN3873; ConvF(7.3, 7.3, 7.3); Calibrated: 2015/08/26; - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1341; Calibrated: 2015/08/25 - Phantom: Front Phantom with CRP v5.0; Type: QD000P40CD; Serial: TP:1695 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) - Area Scan (71x101x1): Interpolated grid: dx=1.200 mm, dy=1.200 mmMaximum value of SAR (interpolated) = 2.39 W/kg - **Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 23.79 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 2.35 W/kg SAR(1 g) = 1.13 W/kg; SAR(10 g) = 0.587 W/kgMaximum value of SAR (measured) = 1.85 W/kg # Appendix C. Calibration Certificate for Probe and Dipole The SPEAG calibration certificates are shown as follows. Report Format Version 5.0.0 Issued Date : May 24, 2018 Report No.: SA180507W002 ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108 Client Auden Certificate No: D750V3-1078_Jun16 # **CALIBRATION CERTIFICATE** Object D750V3 - SN:1078 Calibration procedure(s) QA CAL-05.v9 Calibration procedure for dipole validation kits above 700 MHz Calibration date: June 22, 2016 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |--------------------|---|------------------------| | SN: 104778 | 06-Apr-16 (No. 217-02288/02289) | Apr-17 | | SN: 103244 | 06-Apr-16 (No. 217-02288) | Apr-17 | | SN: 103245 | 06-Apr-16 (No. 217-02289) | Apr-17 | | SN: 5058 (20k) | 05-Apr-16 (No. 217-02292) | Apr-17 | | SN: 5047.2 / 06327 | 05-Apr-16 (No. 217-02295) | Apr-17 | | SN: 7349 | 15-Jun-16 (No. EX3-7349_Jun16) | Jun-17 | | SN: 601 | 30-Dec-15 (No. DAE4-601_Dec15) | Dec-16 | | ID# | Check Date (in house) | Scheduled Check | | SN: GB37480704 | 07-Oct-15 (No. 217-02222) | In house check: Oct-16 | | SN: US37292783 | 07-Oct-15 (No. 217-02222) | In house check: Oct-16 | | SN: MY41092317 | 07-Oct-15 (No. 217-02223) | In house check: Oct-16 | | SN: 100972 | 15-Jun-15 (in house check Jun-15) | In house check: Oct-16 | | SN: US37390585 | 18-Oct-01 (in house check Oct-15) | In house check: Oct-16 | | Name | Function | Signature | | Leif Klysner | Laboratory Technician | Sif Mhr | | Katja Pokovic | Technical Manager | A) m | | | SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US37390585 Name Leif Klysner | SN: 104778 | Issued: June 27, 2016 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. # Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured ## Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" ### **Additional Documentation:** e) DASY4/5 System Handbook # Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. ## **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.8 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 750 MHz ± 1 MHz | | # **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.9 | 0.89 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 41.3 ± 6 % | 0.90 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ## SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.07 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 8.18 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.36 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 5.39 W/kg ± 16.5 % (k=2) | ## **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity |
---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 55.5 | 0.96 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 54.6 ± 6 % | 0.98 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | # SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.20 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 8.63 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.44 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 5.67 W/kg ± 16.5 % (k=2) | Certificate No: D750V3-1078_Jun16 Page 3 of 8 # Appendix (Additional assessments outside the scope of SCS 0108) ### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 54.5 Ω - 0.7 jΩ | |--------------------------------------|-----------------| | Return Loss | - 27.4 dB | ## **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 49.9 Ω - 2.9 jΩ | |--------------------------------------|-----------------| | Return Loss | - 30.9 dB | # **General Antenna Parameters and Design** | | Electrical Delay (one direction) | 1.034 ns | |--|----------------------------------|----------| |--|----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | | |-----------------|-------------------|--| | Manufactured on | November 15, 2012 | | Certificate No: D750V3-1078_Jun16 ### **DASY5 Validation Report for Head TSL** Date: 22.06.2016 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1078 Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.9 \text{ S/m}$; $\varepsilon_r = 41.3$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### DASY52 Configuration: • Probe: EX3DV4 - SN7349; ConvF(10.17, 10.17, 10.17); Calibrated: 15.06.2016; • Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 30.12.2015 Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001 • DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372) # Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 57.85 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 3.07 W/kg SAR(1 g) = 2.07 W/kg; SAR(10 g) = 1.36 W/kg Maximum value of SAR (measured) = 2.73 W/kg 0 dB = 2.73 W/kg = 4.36 dBW/kg ## Impedance Measurement Plot for Head TSL ## **DASY5 Validation Report for Body TSL** Date: 22.06.2016 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1078 Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.98 \text{ S/m}$; $\varepsilon_r = 54.6$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: • Probe: EX3DV4 - SN7349; ConvF(9.99, 9.99, 9.99); Calibrated: 15.06.2016; • Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 30.12.2015 Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001 DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372) ## Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.86 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 3.26 W/kg SAR(1 g) = 2.2 W/kg; SAR(10 g) = 1.44 W/kg Maximum value of SAR (measured) = 2.91 W/kg 0 dB = 2.91 W/kg = 4.64 dBW/kg ## Impedance Measurement Plot for Body TSL ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Auden Certificate No: D835V2-4d092_Jun16 # **CALIBRATION CERTIFICATE** Object D835V2 - SN:4d092 Calibration procedure(s) QA CAL-05.v9 Calibration procedure for dipole validation kits above 700 MHz Calibration date: June 22, 2016 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-----------------------------|--------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 06-Apr-16 (No. 217-02288/02289) | Apr-17 | | Power sensor NRP-Z91 | SN: 103244 | 06-Apr-16 (No. 217-02288) | Apr-17 | | Power sensor NRP-Z91 | SN: 103245 | 06-Apr-16 (No. 217-02289) | Apr-17 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 05-Apr-16 (No. 217-02292) | Apr-17 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 05-Apr-16 (No. 217-02295) | Apr-17 | | Reference Probe EX3DV4 | SN: 7349 | 15-Jun-16 (No. EX3-7349_Jun16) | Jun-17 | | DAE4 | SN: 601 | 30-Dec-15 (No. DAE4-601_Dec15) | Dec-16 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter EPM-442A | SN: GB37480704 | 07-Oct-15 (No. 217-02222) | In house check: Oct-16 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (No. 217-02222) | In house check: Oct-16 | | Power sensor HP 8481A | SN: MY41092317 | 07-Oct-15 (No. 217-02223) | In house check: Oct-16 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Jun-15) | In house check: Oct-16 | | Network Analyzer HP 8753E | SN: US37390585 | 18-Oct-01 (in house check Oct-15) | In house check: Oct-16 | | | Name | Function | Şignature | | Calibrated by: | Claudio Leubler | Laboratory Technician | | | Approved by: | Katja Pokovic | Technical Manager | flus- | Issued: June 27, 2016 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured ## Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" ## **Additional Documentation:** e) DASY4/5 System Handbook ## Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.
The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. ## **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.8 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 835 MHz ± 1 MHz | | ## **Head TSL parameters** The following parameters and calculations were applied. | To following parameters and sure su | Temperature | Permittivity | Conductivity | |--|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.5 | 0.90 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 41.0 ± 6 % | 0.92 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ## SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.40 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 9.42 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.55 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 6.11 W/kg ± 16.5 % (k=2) | ## Body TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 55.2 | 0.97 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 54.4 ± 6 % | 1.01 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | ## SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.48 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 9.59 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.61 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 6.27 W/kg ± 16.5 % (k=2) | Certificate No: D835V2-4d092_Jun16 Page 3 of 8 ## Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 51.7 Ω - 2.7 jΩ | |--------------------------------------|-----------------| | Return Loss | - 30.1 dB | #### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 47.4 Ω - 4.5 jΩ | |--------------------------------------|-----------------| | Return Loss | - 25.5 dB | ## General Antenna Parameters and Design | Electrical Delay (one direction) | 1.390 ns | |----------------------------------|----------| | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|--------------------| | Manufactured on | September 15, 2009 | Certificate No: D835V2-4d092_Jun16 Page 4 of 8 #### **DASY5 Validation Report for Head TSL** Date: 22.06.2016 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d092 Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.92 \text{ S/m}$; $\varepsilon_r = 41$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: • Probe: EX3DV4 - SN7349; ConvF(9.72, 9.72, 9.72); Calibrated: 15.06.2016; • Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 30.12.2015 Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001 • DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372) ## Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 61.93 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 3.61 W/kg SAR(1 g) = 2.4 W/kg; SAR(10 g) = 1.55 W/kg Maximum value of SAR (measured) = 3.19 W/kg 0 dB = 3.19 W/kg = 5.04 dBW/kg # Impedance Measurement Plot for Head TSL ## **DASY5 Validation Report for Body TSL** Date: 22.06.2016 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d092 Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 1.01 \text{ S/m}$; $\varepsilon_r = 54.4$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ## DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(9.73, 9.73, 9.73); Calibrated: 15.06.2016; • Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 30.12.2015 Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001 • DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372) # Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 60.12 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 3.63 W/kg SAR(1 g) = 2.48 W/kg; SAR(10 g) = 1.61 W/kg Maximum value of SAR (measured) = 3.26 W/kg 0 dB = 3.26 W/kg = 5.13 dBW/kg # Impedance Measurement Plot for Body TSL ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) Accreditation No.: SCS 0108 The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Auden Certificate No: D1750V2-1023 Jun16 # **CALIBRATION CERTIFICATE** Object D1750V2 - SN:1023 Calibration procedure(s) QA CAL-05.v9 Calibration procedure for dipole validation kits above 700 MHz Calibration date: June 23, 2016 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-----------------------------|--------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 06-Apr-16 (No. 217-02288/02289)
| A pr-17 | | Power sensor NRP-Z91 | SN: 103244 | 06-Apr-16 (No. 217-02288) | Apr-17 | | Power sensor NRP-Z91 | SN: 103245 | 06-Apr-16 (No. 217-02289) | Apr-17 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 05-Apr-16 (No. 217-02292) | Apr-17 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 05-Apr-16 (No. 217-02295) | Apr-17 | | Reference Probe EX3DV4 | SN: 7349 | 15-Jun-16 (No. EX3-7349_Jun16) | Jun-17 | | DAE4 | SN: 601 | 30-Dec-15 (No. DAE4-601_Dec15) | Dec-16 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter EPM-442A | SN: GB37480704 | 07-Oct-15 (No. 217-02222) | In house check: Oct-16 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (No. 217-02222) | In house check: Oct-16 | | Power sensor HP 8481A | SN: MY41092317 | 07-Oct-15 (No. 217-02223) | In house check: Oct-16 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Jun-15) | In house check: Oct-16 | | Network Analyzer HP 8753E | SN: US37390585 | 18-Oct-01 (in house check Oct-15) | In house check: Oct-16 | | | Name | Function | Signature | | Calibrated by: | Michael Weber | Laboratory Technician | Milleses | | Approved by: | Katja Pokovic | Tecħnical Manager | Mille | Issued: June 27, 2016 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D1750V2-1023_Jun16 # Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured ## Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.8 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy , $dz = 5 mm$ | 11 | | Frequency | 1750 MHz ± 1 MHz | | ## **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.1 | 1.37 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.2 ± 6 % | 1.35 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ## SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.01 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 36.2 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 4.78 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 19.2 W/kg ± 16.5 % (k=2) | ## **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 53.4 | 1.49 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 53.0 ± 6 % | 1.46 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | ## SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 8.99 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 36.4 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 4.79 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 19.3 W/kg ± 16.5 % (k=2) | Certificate No: D1750V2-1023_Jun16 Page 3 of 8 ## Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 50.8 Ω + 0.2 jΩ | |--------------------------------------|-----------------| | Return Loss | - 41.6 dB | ## Antenna Parameters with Body TSL | Impedance, transformed to feed point | 47.0 Ω - 0.4 jΩ | |--------------------------------------|-----------------| | Return Loss | - 29.7 dB | ## **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.217 ns | |----------------------------------|----------| | | <u></u> | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-----------------| | Manufactured on | August 20, 2009 | Certificate No: D1750V2-1023_Jun16 Page 4 of 8 ## **DASY5 Validation Report for Head TSL** Date: 23.06.2016 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1023 Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz; $\sigma = 1.35 \text{ S/m}$; $\varepsilon_r = 39.2$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(8.46, 8.46, 8.46); Calibrated: 15.06.2016; Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 30.12.2015 Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372) ## Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 104.4 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 16.5 W/kg SAR(1 g) = 9.01 W/kg; SAR(10 g) = 4.78 W/kg Maximum value of SAR (measured) = 13.9 W/kg 0 dB = 13.9 W/kg = 11.43 dBW/kg # Impedance Measurement Plot for Head TSL ## **DASY5 Validation Report for Body TSL** Date: 23.06.2016 Test Laboratory: SPEAG, Zurich, Switzerland # DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1023 Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz; $\sigma = 1.46 \text{ S/m}$; $\varepsilon_r = 53$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(8.25, 8.25, 8.25); Calibrated: 15.06.2016; • Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated:
30.12.2015 • Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002 • DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372) # Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 100.9 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 15.9 W/kg SAR(1 g) = 8.99 W/kg; SAR(10 g) = 4.79 W/kg Maximum value of SAR (measured) = 13.6 W/kg 0 dB = 13.6 W/kg = 11.34 dBW/kg Certificate No: D1750V2-1023_Jun16 # Impedance Measurement Plot for Body TSL ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108 Client Auden Certificate No: D1900V2-5d018_Jun16 # **CALIBRATION CERTIFICATE** Object D1900V2 - SN:5d018 Calibration procedure(s) QA CAL-05.v9 Calibration procedure for dipole validation kits above 700 MHz Calibration date: June 21, 2016 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-----------------------------|--------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 06-Apr-16 (No. 217-02288/02289) | Apr-17 | | Power sensor NRP-Z91 | SN: 103244 | 06-Apr-16 (No. 217-02288) | Apr-17 | | Power sensor NRP-Z91 | SN: 103245 | 06-Apr-16 (No. 217-02289) | Apr-17 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 05-Apr-16 (No. 217-02292) | Apr-17 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 05-Apr-16 (No. 217-02295) | Apr-17 | | Reference Probe EX3DV4 | SN: 7349 | 15-Jun-16 (No. EX3-7349_Jun16) | Jun-17 | | DAE4 | SN: 601 | 30-Dec-15 (No. DAE4-601_Dec15) | Dec-16 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter EPM-442A | SN: GB37480704 | 07-Oct-15 (No. 217-02222) | In house check: Oct-16 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (No. 217-02222) | In house check: Oct-16 | | Power sensor HP 8481A | SN: MY41092317 | 07-Oct-15 (No. 217-02223) | In house check: Oct-16 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Jun-15) | In house check: Oct-16 | | Network Analyzer HP 8753E | SN: US37390585 | 18-Oct-01 (in house check Oct-15) | In house check: Oct-16 | | | Name | Function | Signature | | Calibrated by: | Michael Weber | Laboratory Technician | Miles | | Approved by: | Katja Pokovic | Technical Manager | Mal | Issued: June 28, 2016 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. ## **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured not applicable or not measur ## Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D1900V2-5d018_Jun16 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.8 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy , $dz = 5 mm$ | | | Frequency | 1900 MHz ± 1 MHz | | ## **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.0 | 1.40 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 40.1 ± 6 % | 1.39 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ## SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.96 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 40.0 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.19 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 20.8 W/kg ± 16.5 % (k=2) | ## **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 53.3 | 1.52 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 53.1 ± 6 % | 1.53 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | ## SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.96 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 39.7 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.27 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 21.0 W/kg ± 16.5 % (k=2) | ## Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 51.7 Ω + 1.8 jΩ | |--------------------------------------|-----------------| | Return Loss | - 32.2 dB | ## **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 48.3 Ω + 2.9 jΩ | |--------------------------------------|-----------------| | Return Loss | - 29.3 dB | ## **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.194 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** |
Manufactured by | SPEAG | |-----------------|---------------| | Manufactured on | June 04, 2002 | Certificate No: D1900V2-5d018_Jun16 Page 4 of 8 ## **DASY5 Validation Report for Head TSL** Date: 21.06.2016 Test Laboratory: SPEAG, Zurich, Switzerland ## DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d018 Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.39 \text{ S/m}$; $\varepsilon_r = 40.1$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ## DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(8.12, 8.12, 8.12); Calibrated: 15.06.2016; • Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 30.12.2015 • Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 • DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) ## Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 107.6 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 19.0 W/kg ## SAR(1 g) = 9.96 W/kg; SAR(10 g) = 5.19 W/kg Maximum value of SAR (measured) = 15.7 W/kg 0 dB = 15.7 W/kg = 11.96 dBW/kg ## Impedance Measurement Plot for Head TSL ## **DASY5 Validation Report for Body TSL** Date: 21.06.2016 Test Laboratory: SPEAG, Zurich, Switzerland ## DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d018 Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.53 \text{ S/m}$; $\varepsilon_r = 53.1$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: • Probe: EX3DV4 - SN7349; ConvF(8.03, 8.03, 8.03); Calibrated: 15.06.2016; Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 30.12.2015 • Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002 • DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) ## Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 103.5 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 17.4 W/kg SAR(1 g) = 9.96 W/kg; SAR(10 g) = 5.27 W/kg Maximum value of SAR (measured) = 15.1 W/kg 0 dB = 15.1 W/kg = 11.79 dBW/kg # Impedance Measurement Plot for Body TSL Tel: +86-10-62304633-2079 E-mail: ettl@chinattl.com In Collaboration with # CALIBRATION LABORATORY Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 Http://www.chinattl.cn Client Auden **Certificate No:** Z16-97067 ## **CALIBRATION CERTIFICATE** Object D2450V2 - SN: 835 Calibration Procedure(s) FD-Z11-2-003-01 Calibration Procedures for dipole validation kits Calibration date: May 12, 2016 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)[™]C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|------------|--|-----------------------| | Power Meter NRP2 | 101919 | 01-Jul-15 (CTTL, No.J15X04256) | Jun-16 | | Power sensor NRP-Z91 | 101547 | 01-Jul-15 (CTTL, No.J15X04256) | Jun-16 | | Reference Probe EX3DV4 | SN 7307 | 19-Feb-16(SPEAG,No.EX3-7307_Feb16) | Feb-17 | | DAE4 | SN 771 | 02-Feb-16(CTTL-SPEAG,No.Z16-97011) | Feb-17 | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 01-Feb-16 (CTTL, No.J16X00893) | Jan-17 | | Network Analyzer E5071C | MY46110673 | 26-Jan-16 (CTTL, No.J16X00894) | Jan-17 | | | i | | | Name **Function** Calibrated by: Zhao Jing SAR Test Engineer Reviewed by: Qi Dianyuan SAR Project Leader Approved by: Lu Bingsong Deputy Director of the laboratory Issued: May 16, 2 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z16-97067 Page 1 of 8 # S D E A G CALIBRATION LABORATORY Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com Http://www.chinattl.cn Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORMx,y,z not applicable or not measured Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005 - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz #### **Additional Documentation:** e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z16-97067 ## 0 **CALIBRATION LABORATORY** Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.cn E-mail: cttl@chinattl.com #### **Measurement Conditions** DASY system configuration, as far as not given on page 1 | DASY Version | DASY52 | 52.8.8.1258 | | |------------------------------|--------------------------|-------------|--| | Extrapolation | Advanced Extrapolation | | | | Phantom | Triple Flat Phantom 5.1C | | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | | Frequency | 2450 MHz ± 1 MHz | | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.2 | 1.80 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.0 ± 6 % | 1.79 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | | ## SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 12.9 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 51.7 mW /g ± 20.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 6.10 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 24.4 mW /g ± 20.4 % (k=2) | ## **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52.7 | 1.95 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 52.8 ± 6 % | 1.96 mho/m ± 6 % | | Body TSL temperature change during test | <1.0 °C | | | SAR result with Body TSL | SAR averaged over 1 cm^3 (1 g) of Body TSL | Condition | | |--|--------------------|---------------------------| | SAR measured | 250 mW input power | 13.0 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 51.9 mW /g ± 20.8 % (k=2) | | SAR averaged over 10 $\ cm^3$ (10 g) of Body TSL | Condition | | | SAR measured | 250 mW input power | 6.14 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 24.5 mW /g ± 20.4 % (k=2) | # S D C A G CALIBRATION LABORATORY Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.cn #### **Appendix** #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 52.8Ω+ 5.88jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 24.0dB | | #### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 50.0Ω+ 5.87jΩ | | |--------------------------------------|---------------|--| | Return Loss | -
24.6dB | | #### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.265 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| Certificate No: Z16-97067 Page 4 of 8 # S P E A G CALIBRATION LABORATORY Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.cn #### DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 835 Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.789 \text{ S/m}$; $\epsilon r = 39.01$; $\rho = 1000 \text{ kg/m}3$ Phantom section: Right Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration: - Probe: EX3DV4 SN7307; ConvF(7.36, 7.36, 7.36); Calibrated: 2/19/2016; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn771; Calibrated: 2/2/2016 - Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7372) Date: 05.12.2016 **Dipole Calibration**/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 105.1 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 25.9 W/kg SAR(1 g) = 12.9 W/kg; SAR(10 g) = 6.1 W/kg Maximum value of SAR (measured) = 19.6 W/kg 0 dB = 19.6 W/kg = 12.92 dBW/kg Certificate No: Z16-97067 0 **CALIBRATION LABORATORY** Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com Fax: +86-10-62304633-2504 Http://www.chinattl.cn ## Impedance Measurement Plot for Head TSL # **CALIBRATION LABORATORY** Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com Fax: +86-10-62304633-2504 Http://www.chinattl.cn ## **DASY5 Validation Report for Body TSL** Test Laboratory: CTTL, Beijing, China DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 835 Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.963 \text{ S/m}$; $\varepsilon_r = 52.81$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Center Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) **DASY5** Configuration: - Probe: EX3DV4 SN7307; ConvF(7.22, 7.22, 7.22); Calibrated: 2/19/2016; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn771; Calibrated: 2/2/2016 - Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7372) Date: 05.12.2016 **Dipole Calibration**/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 97.17 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 25.9 W/kg SAR(1 g) = 13 W/kg; SAR(10 g) = 6.14 W/kg Maximum value of SAR (measured) = 19.6 W/kg 0 dB = 19.6 W/kg = 12.92 dBW/kg Certificate No: Z16-97067 # S D E 3 9 CALIBRATION LABORATORY Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.cn # Impedance Measurement Plot for Body TSL ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland C Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client **BV ADT-CN (Auden)** Certificate No: EX3-3873_Aug15 ## CALIBRATION CERTIFICATE Object EX3DV4 - SN:3873 Calibration procedure(s) QA CAL-01.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes Calibration date: August 26, 2015 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|-----------------|-----------------------------------|------------------------| | Power meter E4419B | GB41293874 | 01-Apr-15 (No. 217-02128) | Mar-16 | | Power sensor E4412A | MY41498087 | 01-Apr-15 (No. 217-02128) | Mar-16 | | Reference 3 dB Attenuator | SN: S5054 (3c) | 01-Apr-15 (No. 217-02129) | Mar-16 | | Reference 20 dB Attenuator | SN: S5277 (20x) | 01-Apr-15 (No. 217-02132) | Mar-16 | | Reference 30 dB Attenuator | SN: S5129 (30b) | 01-Apr-15 (No. 217-02133) | Mar-16 | | Reference Probe ES3DV2 | SN: 3013 | 30-Dec-14 (No. ES3-3013_Dec14) | Dec-15 | | DAE4 | SN: 660 | 14-Jan-15 (No. DAE4-660_Jan15) | Jan-16 | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | | RF generator HP 8648C | US3642U01700 | 4-Aug-99 (in house check Apr-13) | In house check: Apr-16 | | Network Analyzer HP 8753E | US37390585 | 18-Oct-01 (in house check Oct-14) | In house check: Oct-15 | Calibrated by: Name Function Laboratory Technician Approved by: Katja Pokovic Claudio Leubler Technical Manager Issued: August 27, 2015 Signature This calibration certificate shall not be reproduced except in full without written approval of the laboratory. ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL NORMx,y,z tissue simulating liquid sensitivity in free space ConvF DCP sensitivity in TSL / NORMx,y,z diode compression point CF A, B, C, D crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters Polarization φ φ rotation around probe axis Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 9 = 0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system ## Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" ## Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that
given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).