

RADIO TEST REPORT FCC ID: 2APQU-M2303

Product: Moxee m2303 Trade Mark: Moxee Model No.: m2303 Family Model: N/A Report No.: STR230302001002E Issue Date: Apr 04, 2023

Prepared for

KonnectONE,Inc.

40 Lake Bellevue Drive, Suite 340, Bellevue, Washington 98005, U.S.A.

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China Tel. 400-800-6106, 0755-2320 0050, 0755-2320 0090 Website: http://www.ntek.org.cn

TABLE OF CONTENTS

1	TEST RESULT CERTIFICATION	4
2	SUMMARY OF TEST RESULTS	5
3	FACILITIES AND ACCREDITATIONS	
-		
3	FACILITIES LABORATORY ACCREDITATIONS AND LISTINGS	
3	MEASUREMENT UNCERTAINTY	
4	GENERAL DESCRIPTION OF EUT	
5	DESCRIPTION OF TEST MODES	
6	ETUP OF EQUIPMENT UNDER TEST	
6	BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM	
6	SUPPORT EQUIPMENT	11
6	EQUIPMENTS LIST FOR ALL TEST ITEMS	12
7	TEST REQUIREMENTS	14
7	CONDUCTED EMISSIONS TEST	
,	1.1 Applicable Standard	
	1.2 Conformance Limit	
	1.3 Measuring Instruments	
	7.1.4 Test Configuration	14
	7.1.5 Test Procedure	
	1.6 Test Results	
7		
	2.1 Applicable Standard	
	2.2 Conformance Limit	
	7.2.3 Measuring Instruments	
	V.2.4 Test Configuration	
	2.5 Test Froceaure	
7		
,	3.1 Applicable Standard	
	3.2 Conformance Limit	
	.3.3 Measuring Instruments	
	.3.4 Test Setup	
	7.3.5 Test Procedure	
	7.3.6 Test Results	
7	DUTY CYCLE	
	4.1 Applicable Standard	
	4.2 Conformance Limit	
	4.3 Measuring Instruments	
	4.4 Test Setup	
	1.4.5 Test Procedure	
7	<i>I.4.6 Test Results</i> PEAK OUTPUT POWER	
/	<i>I.S.1 Applicable Standard</i>	
	5.1 Applicable Standard	
	5.3 Measuring Instruments	
	1.5.4 Test Setup	
	1.5.5 Test Procedure	
	7.5.6 Test Results	

Certificate #4298.01

7.6	5 POWER SPECTRAL DENSITY	
	7.6.1 Applicable Standard	
	7.6.2 Conformance Limit	
	7.6.3 Measuring Instruments	
	7.6.4 Test Setup	
	7.6.5 Test Procedure	
	7.6.6 Test Results	
7.7	7 CONDUCTED BAND EDGE MEASUREMENT	
	7.7.1 Applicable Standard	
	7.7.2 Conformance Limit	
	7.7.3 Measuring Instruments	
	7.7.4 Test Setup	
	7.7.5 Test Procedure	
	7.7.6 Test Results	
7.8	8 SPURIOUS RF CONDUCTED EMISSIONS	
	7.8.1 Conformance Limit	
	7.8.2 Measuring Instruments	
	7.8.3 Test Setup	
	7.8.4 Test Procedure	
	7.8.5 Test Results	
7.9		
	7.9.1 Antenna Requirement	
	7.9.2 Result	
8 7	TEST RESULTS	35
8.1	1 MAXIMUM CONDUCTED OUTPUT POWER	
8.2		
8.3		
8.4	4 MAXIMUM POWER SPECTRAL DENSITY LEVEL	44
8.5	5 BAND EDGE	47
8.6	6 CONDUCTED RF SPURIOUS EMISSION	

NTEK 北测

Complied

1 TEST RESULT CERTIFICATION

Applicant's name:	KonnectONE,Inc.
Address	40 Lake Bellevue Drive, Suite 340, Bellevue, Washington 98005, U.S.A.
Manufacturer's Name:	Shenzhen Tianruixiang Communication Equipment Co.,LTD
Address:	12 / F, Building B, Longhua Digital Innovation Center, Longhua District, Shenzhen, China
Product description	
Product name:	Moxee m2303
Trade Mark:	Мохее
Model name:	m2303
Family Model	N/A
Test Sample Number:	T230302001R002

Measurement Procedure Used:

APPLICABLE STANDARDS

APPLICABLE STANDARD/ TEST PROCEDURE TEST RESULT

FCC 47 CFR Part 2, Subpart J

FCC 47 CFR Part 15, Subpart C

ANSI C63.10-2013

KDB 558074 D01 15.247 Meas Guidance v05r02

This device described above has been tested by Shenzhen NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK Testing Technology Co., Ltd., this document may be altered or revised by Shenzhen NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

The test results of this report relate only to the tested sample identified in this report.

Date of Test	:	Mar 02, 2023 ~ Apr 04, 2023
Testing Engineer	:	Muhzi Lee
		(Mukzi Lee)
Authorized Signatory	:	Alex
с <i>г</i>		(Alex Li)

NTEK 北测

2 SUMMARY OF TEST RESULTS

R

ilac.M

FCC Part15 (15.247), Subpart C					
Standard Section Test Item Verdict Rema					
15.207	Conducted Emission	PASS			
15.247 (a)(2)	6dB Bandwidth	PASS			
15.247 (b)	Peak Output Power	PASS			
15.209 (a) 15.205 (a)	Radiated Spurious Emission	PASS			
15.247 (e)	Power Spectral Density	PASS			
15.247 (d)	Band Edge Emission	PASS			
15.247 (d)	Spurious RF Conducted Emission	PASS			
15.203	Antenna Requirement	PASS			

ACCREDITED

Certificate #4298.01

Remark:

 "N/A" denotes test is not applicable in this Test Report.
 All test items were verified and recorded according to the standards and without any deviation during the test.

3 FACILITIES AND ACCREDITATIONS

3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

3.2 LABORATORY ACCREDITATIONS AND LISTINGS

CNAS-Lab.:The Certificate Registration Number is L5516.IC-RegistrationThe Certificate Registration Number is 9270A.
IC-Registration The Certificate Registration Number is 92704
CAB identifier:CN0074
FCC- Accredited Test Firm Registration Number: 463705.
Designation Number: CN1184
A2LA-Lab. The Certificate Registration Number is 4298.01
This laboratory is accredited in accordance with the recognized
International Standard ISO/IEC 17025:2005 General requirements for
the competence of testing and calibration laboratories.
This accreditation demonstrates technical competence for a defined
scope and the operation of a laboratory quality management system
(refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).
Name of Firm : Shenzhen NTEK Testing Technology Co., Ltd.
Site Location : 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang
Street, Bao'an District, Shenzhen 518126 P.R. China.

3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	±2.80dB
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(30MHz~1GHz)	±2.64dB
5	All emissions, radiated(1GHz~6GHz)	±2.40dB
6	All emissions, radiated(>6GHz)	±2.52dB
7	Temperature	±0.5°C
8	Humidity	±2%
9	All emissions, radiated(9KHz~30MHz)	±6dB

NTEK 北测

4 GENERAL DESCRIPTION OF EUT

Product Feature and Specification				
Equipment	Moxee m2303			
Trade Mark	Moxee			
FCC ID	2APQU-M2303			
Model No.	m2303			
Family Model	N/A			
Model Difference	N/A			
Operating Frequency	2402MHz~2480MHz			
Modulation	GFSK			
Number of Channels	40 Channels			
Antenna Type	PIFA Antenna			
Antenna Gain	-0.1 dBi			
Adapter	Model: ZFX-03U-0510-09 Input: AC 100-240V~50/60Hz 0.2A Output: DC 5.0V1000mA			
Battery	DC 3.7V, 3000mAh			
Power supply	DC 3.7V from battery or DC 5V from adapter			
HW Version	M896_39WD3EFMA2_G20T			
SW Version	m2303_V01.02			

Note 1: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.

Note 2: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

Revision History

ACCREDITED

Certificate #4298.01

Revision history							
Report No.	Version	Description	Issued Date				
STR230302001002E	Rev.01	Initial issue of report	Apr 04, 2023				

5 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (1Mbps for GFSK modulation) were used for all test.

The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement -X, Y, and Z-plane. The X-plane results were found as the worst case and were shown in this report.

Carrier Frequency and Channel list:

Frequency(MHz)
2402
2404
2440
2442
2478
2480
-

Note: fc=2402MHz+k×2MHz k=0 to 39

The following summary table is showing all test modes to demonstrate in compliance with the standard.

	Test Cases
Test Item	Data Rate/ Modulation
AC Conducted Emission	Mode 1: normal link mode
	Mode 1: normal link mode
Radiated Test	Mode 2: GFSK Tx Ch00_2402MHz_1Mbps
Cases	Mode 3: GFSK Tx Ch19_2440MHz_1Mbps
	Mode 4: GFSK Tx Ch39_2480MHz_1Mbps
Conducted Test	Mode 2: GFSK Tx Ch00_2402MHz_1Mbps
Conducted Test Cases	Mode 3: GFSK Tx Ch19_2440MHz_1Mbps
Cases	Mode 4: GFSK Tx Ch39_2480MHz_1Mbps

Note:

1. The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode(duty cycle =100% during the test)

2. AC power line Conducted Emission was tested under maximum output power.

3. For radiated test cases, the worst mode data rate 1Mbps was reported only, because this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.

4. EUT built-in battery-powered, the battery is fully-charged.

6	SETUP OF	EQUIPMENT	UNDER TE	ST			
6	.1 BLOCK D	DIAGRAM CONFIG	URATION O	F TEST SYST	ЕМ		
Fo	r AC Conducted	d Emission Mode					
		EUT		AE-1 Adapter	AC PLUG		
Fo	r Radiated Test	Cases					
		EUT					
Fo	r Conducted Te	est Cases				!	
	Measurement Instrument	C-2 EU	Т				
No tes	te: The tempo ts and this tem	rary antenna con nporary antenna c	nector is solo onnector is l	dered on the isted in the e	PCB board in orde quipment list.	er to perform cor	nducted

ACCREDITED

Certificate #4298.01

6.2 SUPPORT EQUIPMENT

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Model/Type No.	Series No.	Note
AE-1	Adapter	ZFX-03U-0510-09	N/A	Peripherals

Item	Cable Type	Shielded Type	Ferrite Core	Length
C-1	USB Cable	YES	NO	1.0m
C-2	RF Cable	YES	NO	0.1m

Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in [Length] column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

NTEK 北测

6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation& Conducted Test equipment

	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibrati on period
1	Spectrum Analyzer	Aglient	E4407B	MY45108040	2022.04.01 2023.03.31	2023.03.31 2024.03.30	1 year
2	Spectrum Analyzer	Agilent	N9020A	MY49100060	2022.06.16	2023.06.15	1 year
3	Spectrum Analyzer	R&S	FSV40	101417	2022.06.16	2023.06.15	1 year
4	Test Receiver	R&S	ESPI7	101318	2022.04.06	2023.04.05	1 year
5	Bilog Antenna	TESEQ	CBL6111D	31216	2022.03.30 2023.03.16	2023.03.29 2024.03.15	1 year
6	50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2020.05.11	2023.05.10	3 year
7	Horn Antenna	EM	EM-AH-1018 0	2011071402	2022.03.31	2025.03.30	3 year
8	Broadband Horn Antenna	SCHWARZBE CK	BBHA 9170	803	2022.11.07	2023.11.06	1 year
9	Amplifier	EMC	EMC051835 SE	980246	2022.06.17	2023.06.16	1 year
10	Active Loop Antenna	SCHWARZBE CK	FMZB 1519 B	055	2022.11.04	2023.11.03	1 year
11	Power Meter	DARE	RPR3006W	15I00041SN 084	2022.06.16	2023.06.15	1 year
12	Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2022.06.17	2025.06.16	3 year
13	Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2022.06.17	2025.06.16	3 year
14	High Test Cable(1G-40G Hz)	N/A	R-03	N/A	2022.06.17	2025.06.16	3 year
15	Filter	TRILTHIC	2400MHz	29	2020.04.07	2023.04.06	3 year
16	temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

Report No.: STR230302001002E

AC Conduction Test equipment							
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Test Receiver	R&S	ESCI	101160	2022.04.06	2023.04.05	1 year
2	LISN	R&S	ENV216	101313	2022.04.06	2023.04.05	1 year
3	LISN	SCHWARZBE CK	NNLK 8129	8129245	2022.04.06	2023.04.05	1 year
4	50Ω Coaxial Switch	ANRITSU CORP	MP59B	6200983704	2020.05.11	2023.05.10	3 year
5	Test Cable (9KHz-30MH z)	N/A	C01	N/A	2020.05.11	2023.05.10	3 year
6	Test Cable (9KHz-30MH z)	N/A	C02	N/A	2020.05.11	2023.05.10	3 year
7	Test Cable (9KHz-30MH z)	N/A	C03	N/A	2020.05.11	2023.05.10	3 year

ACCRED

Certificate #4298.01

Note: Each piece of equipment is scheduled for calibration once a year except the Aux Equipment & Test Cable which is scheduled for calibration every 2 or 3 years.

NTEK 北测^{® 《}

7 TEST REQUIREMENTS

7.1 CONDUCTED EMISSIONS TEST

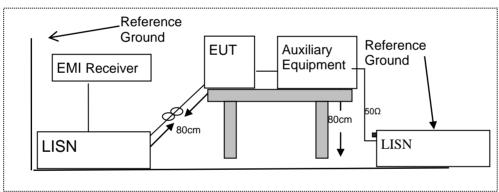
7.1.1 Applicable Standard

According to FCC Part 15.207(a)

7.1.2 Conformance Limit

	Conducted Emission Limit		
Frequency(MHz)	Quasi-peak	Average	
0.15-0.5	66-56*	56-46*	
0.5-5.0	56	46	
5.0-30.0	60	50	

Note: 1. *Decreases with the logarithm of the frequency


2. The lower limit shall apply at the transition frequencies

3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

7.1.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

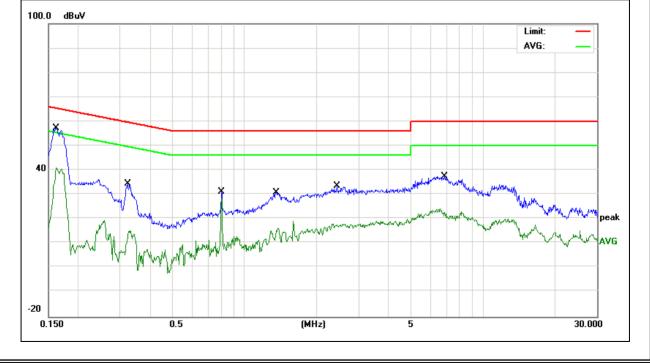
7.1.4 Test Configuration

7.1.5 Test Procedure

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- 3. Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- 5. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item -EUT Test Photos.

7.1.6 Test Results

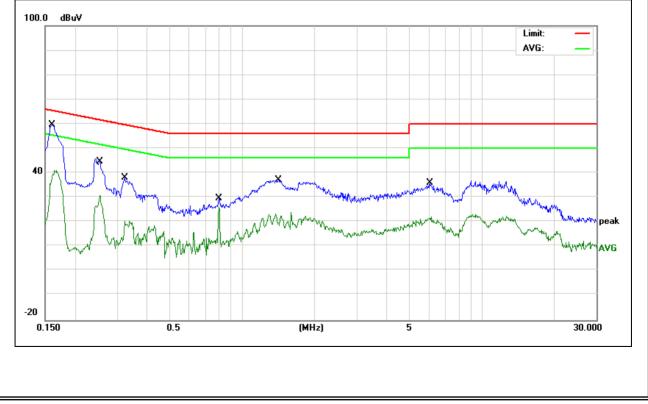

EUT:	Moxee m2303	Model Name :	m2303
Temperature:	22 °C	Relative Humidity:	57%
Pressure:	1010hPa	Phase :	L
Test Voltage :	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Mode 1

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Domork
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.1620	47.55	9.61	57.16	65.36	-8.20	QP
0.1620	31.36	9.61	40.97	55.36	-14.39	AVG
0.3220	24.95	9.64	34.59	59.65	-25.06	QP
0.3220	3.60	9.64	13.24	49.65	-36.41	AVG
0.7980	21.51	9.68	31.19	56.00	-24.81	QP
0.7980	18.78	9.68	28.46	46.00	-17.54	AVG
1.3580	21.30	9.67	30.97	56.00	-25.03	QP
1.3580	5.56	9.67	15.23	46.00	-30.77	AVG
2.4380	23.78	9.71	33.49	56.00	-22.51	QP
2.4380	8.02	9.71	17.73	46.00	-28.27	AVG
6.8898	27.75	9.84	37.59	60.00	-22.41	QP
6.8898	12.91	9.84	22.75	50.00	-27.25	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.


EUT:	Moxee m2303	Model Name :	m2303
Temperature:	22 ℃	Relative Humidity:	57%
Pressure:	1010hPa	Phase :	Ν
Test Voltage :	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Mode 1

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Demerle
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.1597	50.14	9.65	59.79	65.47	-5.68	QP
0.1597	28.65	9.65	38.30	55.47	-17.17	AVG
0.2540	35.12	9.62	44.74	61.62	-16.88	QP
0.2540	21.21	9.62	30.83	51.62	-20.79	AVG
0.3220	28.44	9.65	38.09	59.65	-21.56	QP
0.3220	10.53	9.65	20.18	49.65	-29.47	AVG
0.7980	20.09	9.68	29.77	56.00	-26.23	QP
0.7980	16.44	9.68	26.12	46.00	-19.88	AVG
1.4136	27.57	9.67	37.24	56.00	-18.76	QP
1.4136	10.03	9.67	19.70	46.00	-26.30	AVG
6.0617	26.04	9.79	35.83	60.00	-24.17	QP
6.0617	11.07	9.79	20.86	50.00	-29.14	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.

7.2 RADIATED SPURIOUS EMISSION

7.2.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and ANSI C63.10-2013

7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

Certificate #4298.01

According to 1 00 1 art 10.200; Accord bands				
MHz	MHz	GHz		
16.42-16.423	399.9-410	4.5-5.15		
16.69475-16.69525	608-614	5.35-5.46		
16.80425-16.80475	960-1240	7.25-7.75		
25.5-25.67	1300-1427	8.025-8.5		
37.5-38.25	1435-1626.5	9.0-9.2		
73-74.6	1645.5-1646.5	9.3-9.5		
74.8-75.2	1660-1710	10.6-12.7		
123-138	2200-2300	14.47-14.5		
149.9-150.05	2310-2390	15.35-16.2		
156.52475-156.52525	2483.5-2500	17.7-21.4		
156.7-156.9	2690-2900	22.01-23.12		
162.0125-167.17	3260-3267	23.6-24.0		
167.72-173.2	3332-3339	31.2-31.8		
240-285	3345.8-3358	36.43-36.5		
322-335.4	3600-4400	(2)		
	MHz 16.42-16.423 16.69475-16.69525 16.80425-16.80475 25.5-25.67 37.5-38.25 73-74.6 74.8-75.2 123-138 149.9-150.05 156.52475-156.52525 156.7-156.9 162.0125-167.17 167.72-173.2 240-285	MHzMHz16.42-16.423399.9-41016.69475-16.69525608-61416.80425-16.80475960-124025.5-25.671300-142737.5-38.251435-1626.573-74.61645.5-1646.574.8-75.21660-1710123-1382200-2300149.9-150.052310-2390156.52475-156.525252483.5-2500156.7-156.92690-2900162.0125-167.173260-3267167.72-173.23332-3339240-2853345.8-3358		

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009~0.490	2400/F(KHz)	20 log (uV/m)	300
0.490~1.705	24000/F(KHz)	20 log (uV/m)	30
1.705~30.0	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

Limits of Radiated Emission Measurement(Above 1000MHz)

	Class B (dBuV/m) (at 3M)		
Frequency(MHz)	PEAK	AVERAGE	
Above 1000	74	54	

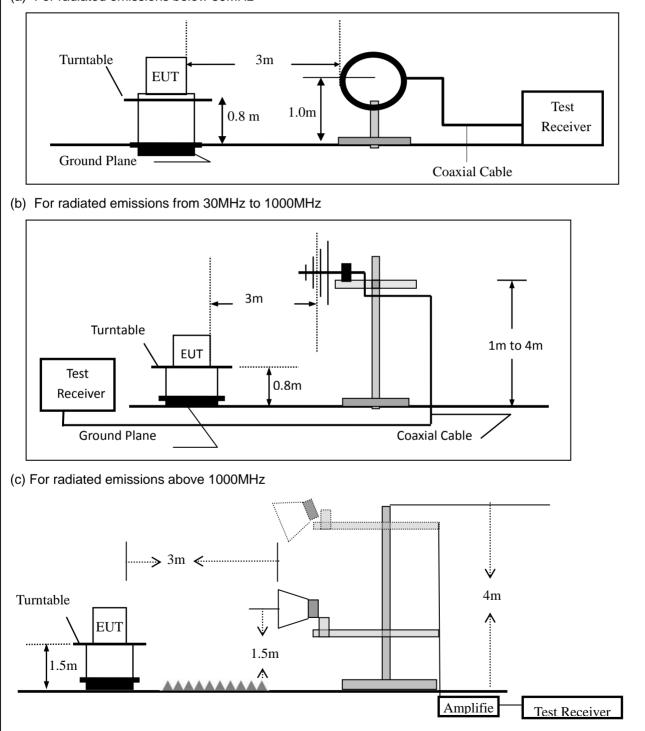
Remark :1. Emission level in dBuV/m=20 log (uV/m)

2. Measurement was performed at an antenna to the closed point of EUT distance of meters.

3. For Frequency 9kHz~30MHz: Distance extrapolation factor =40log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor.

For Frequency above 30MHz: Distance extrapolation factor =20log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor.

NTEK 北测



7.2.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.2.4 Test Configuration

(a) For radiated emissions below 30MHz

7.2.5 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m. The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

Spectrum Parameter	Setting					
Attenuation	Auto					
Start Frequency	1000 MHz					
Stop Frequency	10th carrier harmonic					
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 1MHz for Average					

Receiver Parameter	Setting					
Attenuation	Auto					
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP					
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP					
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP					

a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.

- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For the radiated emission test above 1GHz:

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

- e. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- f. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- g. For the actual test configuration, please refer to the related Item -EUT Test Photos.

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

During the radiated emission test, the Spectrum Analyzer was set with the following configurations:

Certificate #4298.01

Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth		
30 to 1000	30 to 1000 QP		300 kHz		
Above 4000	Peak	1 MHz	1 MHz		
Above 1000	Average	1 MHz	1 MHz		

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz]). , the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

7.2.6 Test Results

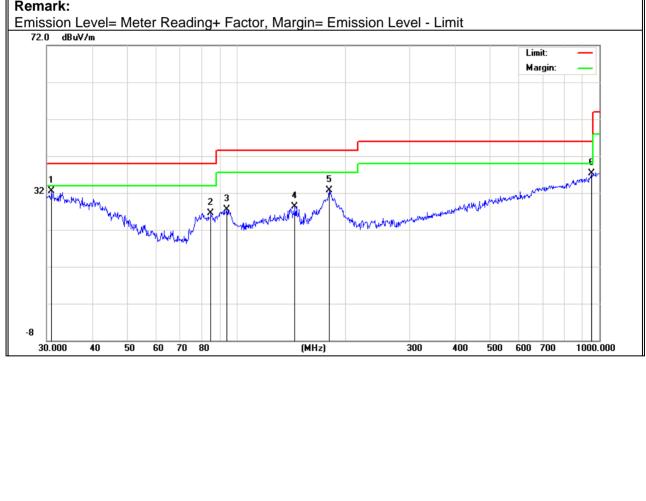
	Spurious	Emission	below	30MHz	(9KHz to 30MHz)
--	----------	----------	-------	-------	-----------------

EUT:	Moxee m2303	Model No.:	m2303
Temperature:	20 ℃	Relative Humidity:	48%
Lest Mode:	Mode1/Mode2/Mode3/ Mode4	Test By:	Mukzi Lee

Freq.	Ant.Pol.	Emission L	Emission Level(dBuV/m)		m(dBuV/m)	Over(dB)		
(MHz)	H/V	PK	AV	PK	AV PK		AV	

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

Spurious Emission below 1GHz (30MHz to 1GHz) All the modulation modes have been tested, and the worst result was report as below:


EUT:	Moxee m2303	Model Name :	m2303
Temperature:	25 ℃	Relative Humidity:	55%
Pressure:	1010hPa	Test Mode:	Mode 2
Test Voltage :	DC 3.7V		

ACCREDITED

Certificate #4298.01

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Limits Margin		
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Remark	
V	30.9618	6.64	25.87	32.51	40.00	-7.49	QP	
V	84.9993	10.04	16.41	26.45	40.00	-13.55	QP	
V	94.0978	10.24	17.26	27.50	43.50	-16.00	QP	
V	144.8418	9.69	18.56	28.25	43.50	-15.25	QP	
V	180.0165	15.81	16.84	32.65	43.50	-10.85	QP	
V	952.0937	6.48	30.86	37.34	46.00	-8.66	QP	

Remark:

Report No.: STR230302001002E

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
Н	33.3278	6.30	24.16	30.46	40.00	-9.54	QP
Н	113.3161	7.34	18.48	25.82	43.50	-17.68	QP
Н	184.4898	13.90	16.75	30.65	43.50	-12.85	QP
Н	554.8251	5.97	25.27	31.24	46.00	-14.76	QP
Н	661.1503	6.20	27.26	33.46	46.00	-12.54	QP
Н	922.5157	6.97	30.52	37.49	46.00	-8.51	QP
						Limit: Margin:	
72.0 dE	3uV/m					Limit:]
						Maigin.	
							6
						5	Jun 10
32 1				3			with
Mar an	mu		2 	A.	Normannen	hand with me	
	- Surry	from	a the marine water the	min hunder	Whytherenter		
	Mywywww.man	NOWAT A THE AND A SHARE		MURANNE			
		AT AT A MAN					
-8							
30.000	40 50 60	70 80	(Mł	lz)	300 400 !	500 600 700	1000.000

ACCREDITED

Certificate #4298.01

EUT:		Moxee m2	2303		Mode	el No.:		m23	303		
Temperatu	ure:	20 °C			Relative Humidity:			dity: 48%			
Test Mode	э:	Mode2/Mo	ode3/Mode	94	Test I	Test By: Mukzi Lee					
		·									
Frequency	Read Level	Cable loss	Antenna Factor	Pream Facto		Emission Level	Limits	6	Margin	Remark	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dB)	, ((dBµV/m)	(dBµV/r	,	(dB)		
	.		Low	Channel	(2402	MHz)(GFSI	K)Above	91G	1		T
4804	68.05	5.21	35.59	44.3	0	64.55	74.00)	-9.45	Pk	Vertical
4804	45.61	5.21	35.59	44.3	,0	42.11	54.00)	-11.89	AV	Vertical
7206	69.44	6.48	36.27	44.6	0	67.59	74.00)	-6.41	Pk	Vertical
7206	45.66	6.48	36.27	44.6	0	43.81	54.00	5	-10.19	AV	Vertical
4804	68.28	5.21	35.55	44.3	0	64.74	74.00)	-9.26	Pk	Horizontal
4804	46.1	5.21	35.55	44.3	0	42.56	54.00)	-11.44	AV	Horizontal
7206	70.16	6.48	36.27	44.5	2	68.39	74.00)	-5.61	Pk	Horizontal
7206	50.62	6.48	36.27	44.5	2	48.85	54.00)	-5.15	AV	Horizontal
		_ 		Channel	(2440	MHz)(GFSk	<)Above	1G		_	
4880	68.45	5.21	35.66	44.2	.0	65.12	74.00)	-8.88	Pk	Vertical
4880	48.79	5.21	35.66	44.2	.0	45.46	54.00)	-8.54	AV	Vertical
7320	69.95	7.10	36.50	44.43	3	69.12	74.00)	-4.88	Pk	Vertical
7320	49.11	7.10	36.50	44.43	.3	48.28	54.00)	-5.72	AV	Vertical
4880	69.18	5.21	35.66	44.2	.0	65.85	74.00)	-8.15	Pk	Horizontal
4880	45.22	5.21	35.66	44.2	.0	41.89	54.00)	-12.11	AV	Horizontal
7320	68.47	7.10	36.50	44.43	3	67.64	74.00)	-6.36	Pk	Horizontal
7320	47.88	7.10	36.50	44.43		47.05	54.00		-6.95	AV	Horizontal
			High	Channel	(2480	MHz)(GFSI	<) Above	e 1G			
4960	68.95	5.21	35.52	44.2	1	65.47	74.00)	-8.53	Pk	Vertical
4960	50.83	5.21	35.52	44.2	1	47.35	54.00)	-6.65	AV	Vertical
7440	69.54	7.10	36.53	44.6	,0	68.57	74.00)	-5.43	Pk	Vertical
7440	45.89	7.10	36.53	44.6	0	44.92	54.00)	-9.08	AV	Vertical
4960	68.38	5.21	35.52	44.2	1	64.90	74.00)	-9.10	Pk	Horizontal
4960	45.86	5.21	35.52	44.2	1	42.38	54.00)	-11.62	AV	Horizontal
7440	68.86	7.10	36.53	44.6	0	67.89	74.00)	-6.11	Pk	Horizontal
7440	45.13	7.10	36.53	44.6	0	44.16	54.00)	-9.84	AV	Horizontal

Note:

(1) Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor

(2)All other emissions more than 20dB below the limit.

(3)Only the worst data is recorded in the report, the data rates (1Mbps for GFSK modulation) test result is the worst

Spurious Emission in Restricted Band 2310-2390MHz and 2483.5-2500MHz										
UT:	Moxee	m2303		Mod	el No.:	1	m2303			
emperature	e: 20 ℃			Rela	Relative Humidity:					
est Mode:	Mode2	/ Mode4		Test	By:		Mukz	i Lee		
	•									
Frequency	Meter Reading	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Lim	its	Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµ∖	V/m)	(dB)	Туре	
			1Mb	ps(GFSK)						
2310.00	70.25	2.97	27.80	43.80	57.22	74	4	-16.78	Pk	Horizontal
2310.00	45.45	2.97	27.80	43.80	32.42	54	4	-21.58	AV	Horizontal
2310.00	68.45	2.97	27.80	43.80	55.42	74	4	-18.58	Pk	Vertical
2310.00	45.81	2.97	27.80	43.80	32.78	54	4	-21.22	AV	Vertical
2390.00	69.91	3.14	27.21	43.80	56.46	74	4	-17.54	Pk	Vertical
2390.00	48.08	3.14	27.21	43.80	34.63	54	4	-19.37	AV	Vertical
2390.00	70.85	3.14	27.21	43.80	57.40	74	4	-16.60	Pk	Horizontal
2390.00	48.15	3.14	27.21	43.80	34.70	54	4	-19.30	AV	Horizontal
2483.50	68.39	3.58	27.70	44.00	55.67	74	4	-18.33	Pk	Vertical
2483.50	47.62	3.58	27.70	44.00	34.90	54	4	-19.10	AV	Vertical
2483.50	70.12	3.58	27.70	44.00	57.40	74	4	-16.60	Pk	Horizontal
2483.50	45.53	3.58	27.70	44.00	32.81	54	4	-21.19	AV	Horizontal

.

ilac-M

ACCRED

Certificate #4298.01

Note: (1) All other emissions more than 20dB below the limit.

(2)Only the worst data is recorded in the report, the data rates (1Mbps for GFSK modulation) test result is the worst

■ Spurious	s Emission	in Restric	cted Band	3260MHz-	18000MHz						
EUT:	Moxe	e m2303		Model	Model No.:			m2303			
Temperature	e: 20 ℃			Relativ	e Humidity	': 4	48%				
Test Mode:	Mode	2/ Mode4	1	Test B	sy:		Mukzi	Lee			
· · · · · · · · · · · · · · · · · · ·					1					1	
Frequency	Reading Level	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Lir	nits	Margin	Detector	Comment	
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµ	ıV/m)	(dB)	Туре		
3260	70.05	4.04	29.57	44.70	58.96	7	74	-15.04	Pk	Vertical	
3260	47.54	4.04	29.57	44.70	36.45	5	54	-17.55	AV	Vertical	
3260	70.97	4.04	29.57	44.70	59.88	7	74	-14.12	Pk	Horizontal	
3260	48.27	4.04	29.57	44.70	37.18	5	54	-16.82	AV	Horizontal	
3332	68.03	4.26	29.87	44.40	57.76	7	74	-16.24	Pk	Vertical	
3332	48.25	4.26	29.87	44.40	37.98	5	54	-16.02	AV	Vertical	
3332	69.14	4.26	29.87	44.40	58.87	7	74	-15.13	Pk	Horizontal	
3332	50.63	4.26	29.87	44.40	40.36	5	54	-13.64	AV	Horizontal	
17797	49.26	10.99	43.95	43.50	60.70	7	74	-13.30	Pk	Vertical	
17797	32.15	10.99	43.95	43.50	43.59	54		-10.41	AV	Vertical	
17788	48.06	11.81	43.69	44.60	58.96	7	74	-15.04	Pk	Horizontal	
17788	39.52	11.81	43.69	44.60	50.42	5	54	-3.58	AV	Horizontal	

ACCREDITED

Certificate #4298.01

ilac-M

Note: (1) All other emissions more than 20dB below the limit.

(2)Only the worst data is recorded in the report, the data rates (1Mbps for GFSK modulation) test result is the worst

7.3 6DB BANDWIDTH

7.3.1 Applicable Standard

According to FCC Part 15.247(a)(2) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.2.

Certificate #4298.01

7.3.2 Conformance Limit

The minimum permissible 6dB bandwidth is 500 kHz.

7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.3.4 Test Setup

Please refer to Section 6.1 of this test report.

7.3.5 Test Procedure

The testing follows Subclause 11.8 of ANSI C63.10

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) \geq 3*RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.

g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

7.3.6 Test Results

EUT:	Moxee m2303	Model No.:	m2303
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mukzi Lee

7.4 DUTY CYCLE

7.4.1 Applicable Standard

According to KDB 558074 D01 15.247 Meas Guidance v05r02s Section 6.

7.4.2 Conformance Limit

No limit requirement.

7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

7.4.5 Test Procedure

The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on and off times of the transmitted signal. Set the center frequency of the instrument to the center frequency of the transmission. Set RBW \geq OBW if possible; otherwise, set RBW to the largest available value. Set VBW \geq RBW. Set detector = peak or average. The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring duty cycle shall not be used if T \leq 16.7 microseconds.)

Certificate #4298.01

The transmitter output is connected to the Spectrum Analyzer. We tested accroding to the zero-span measurement method, 6.0)b) in KDB 558074

The largest available value of RBW is 8 MHz and VBW is 50 MHz. The zero-span method of measuring duty cycle shall not be used if $T \le 6.25$ microseconds. (50/6.25 = 8)

The zero-span method was used because all measured T data are > 6.25 microseconds and both RBW and VBW are > 50/T.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = Zero Span RBW = 8MHz(the largest available value) VBW = 8MHz (\ge RBW) Number of points in Sweep >100 Detector function = peak Trace = Clear write Measure T_{total} and T_{on} Calculate Duty Cycle = T_{on} / T_{total}

7.4.6 Test Results

EUT:	Moxee m2303	Model No.:	m2303
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	N/A	Test By:	N/A

Note: Not Applicable

7.5 PEAK OUTPUT POWER

7.5.1 Applicable Standard

According to FCC Part 15.247(b)(3) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.3.1.

Certificate #4298.01

7.5.2 Conformance Limit

The maximum peak conducted output power of the intentional radiator for systems using digital modulation in the 2400 - 2483.5 MHz bands shall not exceed: 1 Watt (30dBm). If transmitting antenna of directional gain greater than 6dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

7.5.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.5.4 Test Setup

Please refer to Section 6.1 of this test report.

7.5.5 Test Procedure

The testing follows Subclause 11.9.1.1 of ANSI C63.10 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Set the RBW \geq DTS bandwidth. Set VBW =3*RBW. Set the span \geq 3*RBW Set Sweep time = auto couple. Set Detector = peak. Set Trace mode = max hold. Allow trace to fully stabilize. Use peak marker function to determine the peak amplitude level.

7.5.6 Test Results

EUT:	Moxee m2303	Model No.:	m2303
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mukzi Lee

7.6 POWER SPECTRAL DENSITY

7.6.1 Applicable Standard

According to FCC Part 15.247(e) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.4.

7.6.2 Conformance Limit

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

7.6.5 Test Procedure

The testing follows Measurement Procedure Subclause 11.10.2 of ANSI C63.10 This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance, and is optional if the maximum conducted (average) output power was used to demonstrate compliance.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

- a) Set analyzer center frequency to DTS channel center frequency.
- b) Set the span to 1.5*DTS bandwidth.
- c) Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- d) Set the VBW \geq 3 RBW.
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW.
- j) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

7.6.6 Test Results

EUT:	Moxee m2303	Model No.:	m2303
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mukzi Lee

ACCREDITED

Certificate #4298.01

7.7 CONDUCTED BAND EDGE MEASUREMENT

7.7.1 Applicable Standard

According to FCC Part 15.247(d) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.7.

7.7.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

7.7.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

7.7.5 Test Procedure

The testing follows FCC KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.7.

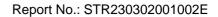
The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.


Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

7.7.6 Test Results

EUT:	Moxee m2303	Model No.:	m2303
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode4	Test By:	Mukzi Lee

7.8 SPURIOUS RF CONDUCTED EMISSIONS

7.8.1 Conformance Limit

1. Below -20dB of the highest emission level in operating band.

2. Fall in the restricted bands listed in section 15.205. The maximum permitted average field strength is listed in section 15.209.

Certificate #4298.01

7.8.2 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.8.3 Test Setup

Please refer to Section 6.1 of this test report.

7.8.4 Test Procedure

The Spurious RF conducted emissions compliance of RF radiated emission should be measured by following the guidance in ANSI C63.10-2013 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization etc. Set RBW=100kHz and VBW= 300KHz to measure the peak field strength , and measure frequency range from 30MHz to 26.5GHz.

7.8.5 Test Results

Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.

7.9 ANTENNA APPLICATION

7.9.1 Antenna Requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

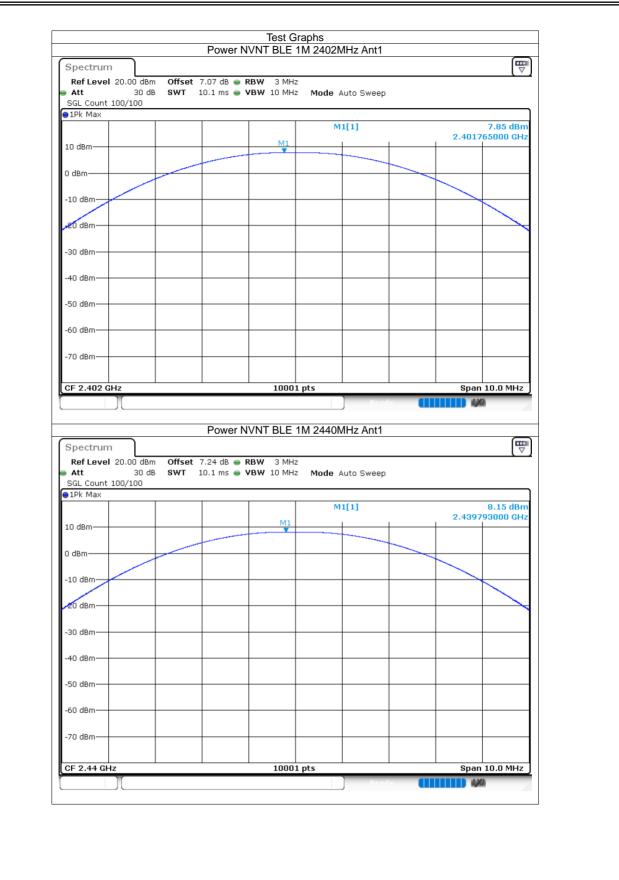
7.9.2 Result

The EUT antenna is permanent attached PIFA antenna (Gain: -0.1 dBi). It comply with the standard requirement.

8 TEST RESULTS

8.1 MAXIMUM CONDUCTED OUTPUT POWER

Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Duty Factor (dB)	Total Power (dBm)	Limit (dBm)	Verdict
NVNT	BLE 1M	2402	Ant1	7.85	0	7.85	30	Pass
NVNT	BLE 1M	2440	Ant1	8.15	0	8.15	30	Pass
NVNT	BLE 1M	2480	Ant1	7.68	0	7.68	30	Pass



ilac-MR

ACCREDITED

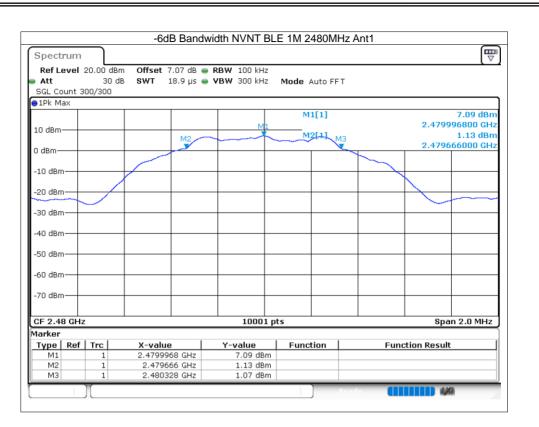
Certificate #4298.01

Report No.: STR230302001002E

	Power NVNT BLE 1M 248	0MHz Ant1	
Spectrum			
	07 dB 👄 RBW 3 MHz		
	.1 ms 👄 VBW 10 MHz 🛛 Mod	e Auto Sweep	
SGL Count 100/100 1Pk Max			
		M1[1]	7.68 dBm
	M1	1 1	2.479766000 GHz
10 dBm			
D dBm			
-10 dBm			
10 dBill			
e0 dBm			
-30 dBm			
-40 dBm			
-50 dBm			
-60 dBm			
-70 dBm			
CF 2.48 GHz	10001 pts		Span 10.0 MHz
		Ready	

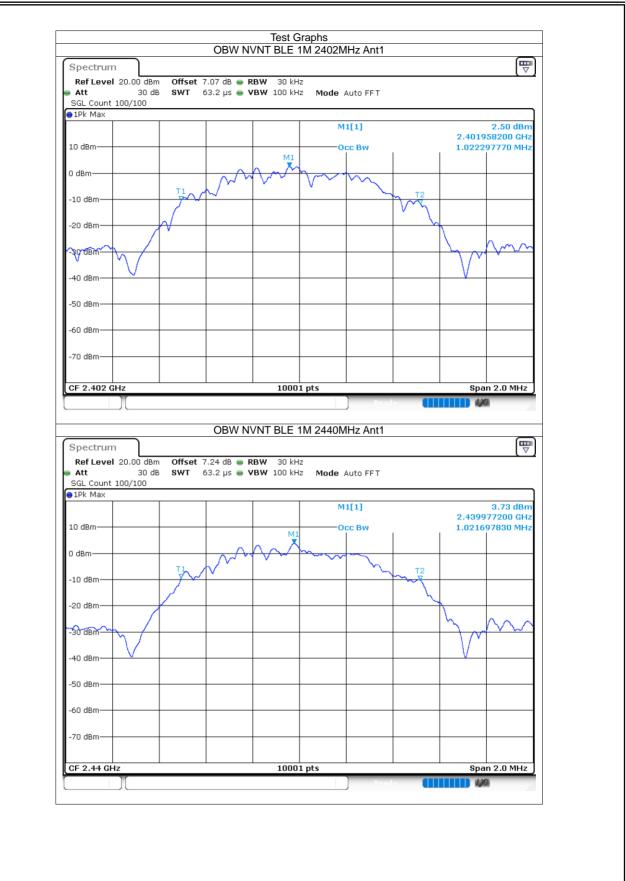
ACCREDITED

8.2 -6DB BANDWIDTH


Condition	Mode	Frequency (MHz)	Antenna	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict
NVNT	BLE 1M	2402	Ant1	0.66	0.5	Pass
NVNT	BLE 1M	2440	Ant1	0.658	0.5	Pass
NVNT	BLE 1M	2480	Ant1	0.662	0.5	Pass

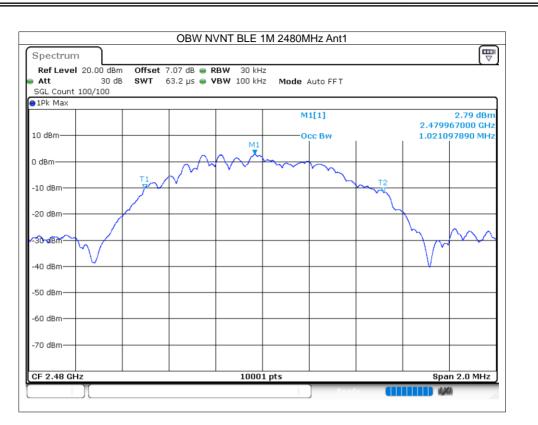
ACCREDITED

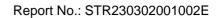
ACCREDITED



8.3 OCCUPIED CHANNEL BANDWIDTH

Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)
NVNT	BLE 1M	2402	Ant1	1.022
NVNT	BLE 1M	2440	Ant1	1.022
NVNT	BLE 1M	2480	Ant1	1.021


ACCREDITED

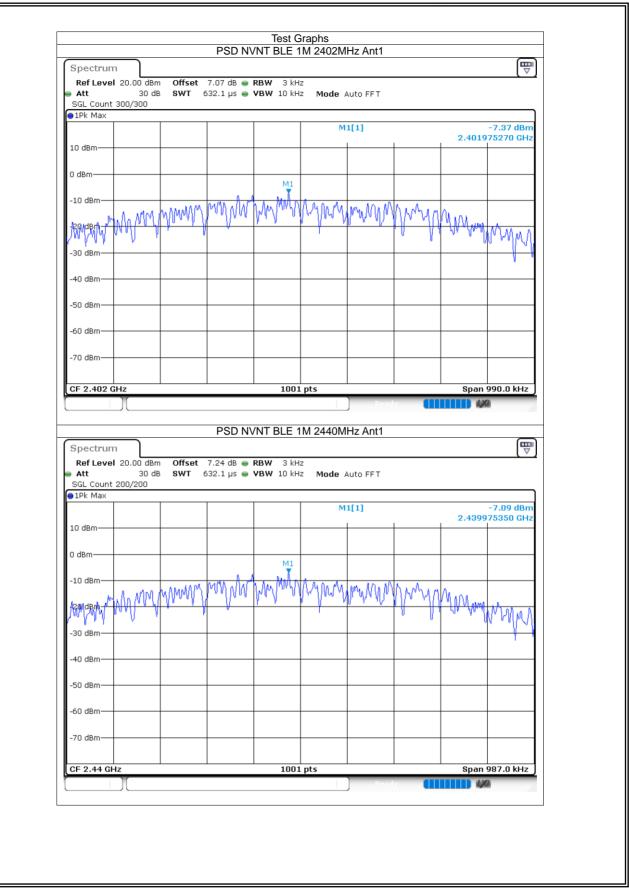

ACCREDITED

ACCREDITED

8.4 MAXIMUM POWER SPECTRAL DENSITY LEVEL

Condition	Mode	Frequency (MHz)	Antenna	Conducted PSD (dBm)	Duty Factor (dB)	Total PSD (dBm)	Limit (dBm)	Verdict
NVNT	BLE 1M	2402	Ant1	-7.37	0	-7.37	8	Pass
NVNT	BLE 1M	2440	Ant1	-7.09	0	-7.09	8	Pass
NVNT	BLE 1M	2480	Ant1	-7.2	0	-7.2	8	Pass

ACCRED

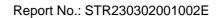


ilac-MF

ACCREDITED

Certificate #4298.01

Report No.: STR230302001002E



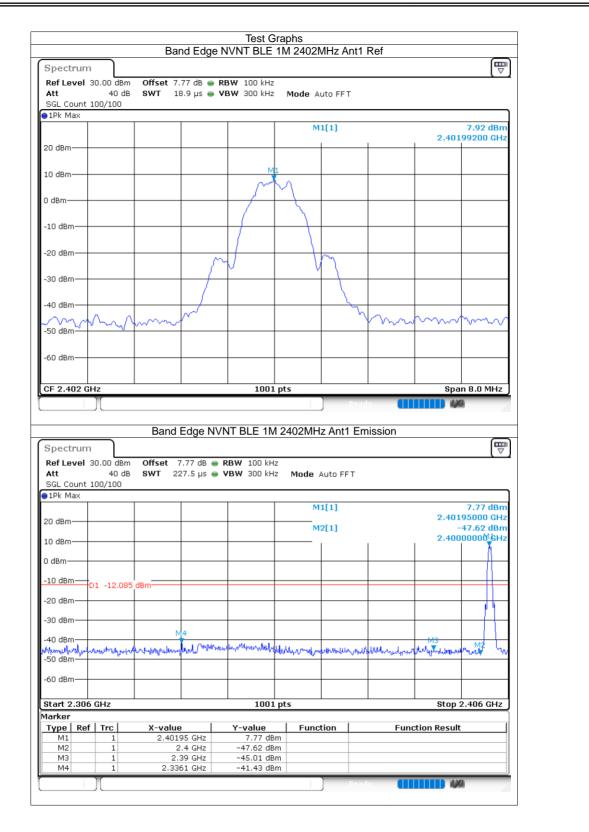
Spectrum									[₩
Ref Level 20 Att			07 dB 😑 R	BW 3 kHz BW 10 kHz					
SGL Count 300		WI Da	32 µs 👅 🗸	BW IUKHZ	Mode At	UTO FF I			
1Pk Max									
					M	1[1]			-7.20 dBm
10 dBm								2.4799	75200 GHz
0 dBm									
				M1					
-10 dBm			mp And	Milli	Barrele		N 0		
and A.	mm	www.r	ant MAA	MM	IMMUM	MANNI	111111	ALINE	
HVH 1. AREMAN			V	0 0	<u> </u>	U T *V *		~\{ ^\{}}\}	MAL.
չակվել՝	U						° ∦	ŤV	0. MILMUT
-30 dBm									
10 10									
-40 dBm									
-50 dBm									
oo abiii									
-60 dBm									
-70 dBm									
CF 2.48 GHz				1001	nts			Snan	993.0 kHz

ACCREDITED

8.5 BAND EDGE

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 1M	2402	Ant1	-49.35	-20	Pass
NVNT	BLE 1M	2480	Ant1	-50.79	-20	Pass

ACCREDITED



ILAC-MR

ACCREDITED

Certificate #4298.01

Report No.: STR230302001002E

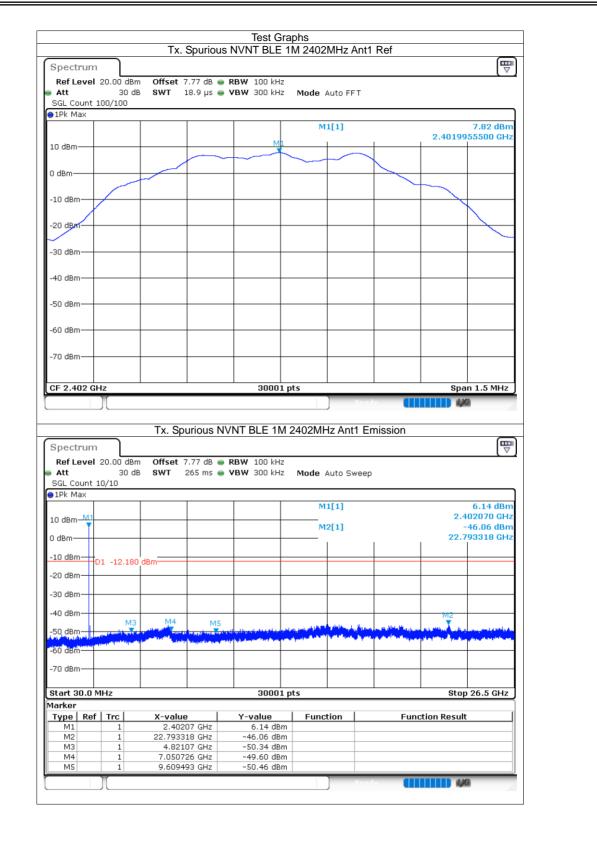
Spectrur Ref Level Att SGL Count	30.00 dBm 40 dB	n Offset 7.77 8 SWT 18.9			Mode A	uto FFT			
1Pk Max									
					м	1[1]		2.480	8.08 dBm 100000 GHz
20 dBm							+		┼───┨│
10 dBm				tM Mww	1				
0 dBm				-	Ľ_				
-10 dBm—					\rightarrow				
-20 dBm—			m	/		5			
-30 dBm—			$\overline{\mathbf{A}}$			h.			
-40 dBm—		Ind					h		<u>^</u>
∕,~~∕∕ -50 dBm—	~~~	- Veve					· ~~~~	\sim	
-60 dBm									
CF 2.48 G	 Hz			1001	pts			 Spa	n 8.0 MHz
			3		2400101	z Ant1 Er	nission		
Ref Level Att	30.00 dBm 40 dB	0 Offset 7.7 8 SWT 227.	7 dB 😑 RB	3W 100 kHz	2				
Ref Level Att SGL Count	30.00 dBm 40 dB		7 dB 😑 RB	3W 100 kHz	2 2 Mode /	Auto FFT	nission		.74 dBm
Ref Level Att SGL Count 1Pk Max	30.00 dBm 40 dB		7 dB 😑 RB	3W 100 kHz	2 2 Mode / M	Auto FFT			7.74 dBm 125000 GHz
Ref Level Att SGL Count 1Pk Max 20 dBm-	30.00 dBm 40 dB		7 dB 😑 RB	3W 100 kHz	2 2 Mode / M	Auto FFT	nission	-	7.74 dBm
Att SGL Count 1Pk Max 20 dBm	30.00 dBm 40 dB		7 dB 😑 RB	3W 100 kHz	2 2 Mode / M	Auto FFT		-	7.74 dBm 125000 GHz •45.21 dBm
Ref Level Att SGL Count 1Pk Max 20 dBm	30.00 dBm 40 dB 100/100	3 SWT 227.	7 dB 😑 RB	3W 100 kHz	2 2 Mode / M	Auto FFT		-	7.74 dBm 125000 GHz •45.21 dBm
Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm	30.00 dBm 40 dB	3 SWT 227.	7 dB 😑 RB	3W 100 kHz	2 2 Mode / M	Auto FFT		-	7.74 dBm 125000 GHz •45.21 dBm
Ref Level Att SGL Count IPk Max 20 dBm 10 dBm -10 dBm -10 dBm	30.00 dBm 40 dB 100/100	3 SWT 227.	7 dB 😑 RB	3W 100 kHz	2 2 Mode / M	Auto FFT		-	7.74 dBm 125000 GHz •45.21 dBm
Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm	30.00 dBm 40 dB 100/100	3 SWT 227.	7 dB 😑 RB	3W 100 kHz	2 2 Mode / M	Auto FFT		-	7.74 dBm 125000 GHz •45.21 dBm
Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm 0 dBm -20 dBm -30 dBm -30 dBm	30.00 dBm 40 dB 100/100	9 dBm	7 dB ● RB 5 μs ● VB	3W 100 kHz 3W 300 kHz	2 Mode / M 	Auto FFT 1[1] 2[1]		2.483	7.74 dBm 125000 GHz -45.21 dBm 50000 GHz
Ref Level Att SGL Count IPk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm	30.00 dBm 40 dB 100/100	3 SWT 227.	7 dB ● RB 5 μs ● VB	3W 100 kHz	2 Mode / M 	Auto FFT		-	7.74 dBm 125000 GHz -45.21 dBm 50000 GHz
Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm -10 cBm -20 cBm -30 dBm -40 dBm -40 dBm	30.00 dBm 40 dB 100/100	9 dBm	7 dB ● RB 5 μs ● VB	3W 100 kHz 3W 300 kHz	2 Mode / M 	Auto FFT 1[1] 2[1]		2.483	7.74 dBm 125000 GHz -45.21 dBm 50000 GHz
Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm 0 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm	30.00 dBm 40 dB 100/100	9 dBm	7 dB ● RB 5 μs ● VB	3W 100 kHz 3W 300 kHz	2 Mode / 	Auto FFT 1[1] 2[1]		2.483	7.74 dBm 925000 GHz •45.21 dBm 550000 GHz
Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm -10 cBm -20 dBm -20 dBm -30 dBm -30 dBm -60 dBm -60 dBm Start 2.47	30.00 dBm 40 dB 100/100 D1 -11.919 M4 M4 M4 M4 M4	9 dBm	7 dB ● RB 5 μs ● VB	3W 100 kHz 3W 300 kHz	2 Mode / 	Auto FFT 1[1] 2[1]		2.483	7.74 dBm 125000 GHz -45.21 dBm 50000 GHz
Ref Level Att SGL Count SGL Count 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm -60 dBm Start 2.47 Varker Type	30.00 dBm 40 dB 100/100 D1 -11.919 M4 Mup Mup 6 GHz	3 SWT 227.	7 dB P RB 5 μs P VB	3W 100 kHz 3W 300 kHz 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	2 Mode / M M M M	Auto FFT 1[1] 2[1] هرهرهارالاربه	l l l l l	2.483	7.74 dBm 25000 GHz 45.21 dBm 50000 GHz
Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm 0 dBm -20 dBm -30 dBm -30 dBm -40 dBm? -50 dBm -60 dBm Start 2.47 Arker Type Re M1 M2	30.00 dBm 40 dB 100/100	3 SWT 227.	7 dB	3W 100 kHz 3W 300 kHz 4 4 4 4 4 4 4 4 4 5 5 7 7 4 6 7 7 4 6 7 7 4 6 7 7 4 6 7 7 4 6 7 7 4 6 7 7 4 6 7 7 4 6 7 7 4 5 7 6 8 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	2 Mode / M M M M M M M M M M M M M	Auto FFT 1[1] 2[1] هرهرهارالاربه	l l l l l	2.483	7.74 dBm 25000 GHz 45.21 dBm 50000 GHz
Ref Level Att SGL Count IPk Max 20 dBm 10 ddm 0 ddm -10 ddm -20 dBm -30 dBm -20 dBm -30 dBm -50 dBm -60 dBm -60 dBm -60 dBm -60 dBm -70 dBm -70 dBm	30.00 dBm 40 dB 100/100	3 SWT 227.	7 dB	3W 100 kHz 3W 300 kHz 4 4 4 4 4 4 4 4 4 4 5 7 7 7 4 dBr	2 Mode / M M M M M M M M M M M M M M M M M	Auto FFT 1[1] 2[1] هرهرهارالاربه	l l l l l	2.483	7.74 dBm 25000 GHz 45.21 dBm 50000 GHz
Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -60 dBm -60 dBm -50 dBm -60 dBm -60 dBm -70 dRet Type Ra M1 M2	30.00 dBm 40 dB 100/100 D1 -11.919 M4 M4 M4 M4 M4 M4 M4 M4 M4 M4 M4 M4 M4	9 dBm 9 dBm 9 dBm 2.48025 2.48025 2.5	7 dB	3W 100 kHz 3W 300 kHz 4 4 4 4 4 4 4 5 7 7 7 4 8 7 7 7 4 8 8 7 7 7 4 8 8 7 7 4 8 8 4 8 4	2 Mode / M M M M M M M M M M M M M M M M M	Auto FFT 1[1] 2[1] هرهرهارالاربه	l l l l l	2.483	7.74 dBm 25000 GHz 45.21 dBm 50000 GHz

ACCREDITED

8.6 **CONDUCTED RF SPURIOUS EMISSION**

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 1M	2402	Ant1	-53.88	-20	Pass
NVNT	BLE 1M	2440	Ant1	-53.93	-20	Pass
NVNT	BLE 1M	2480	Ant1	-53.65	-20	Pass

ACCREDITED



ilac-MR

ACCREDITED

Certificate #4298.01

Report No.: STR230302001002E

SGL Count 100/10	30 dB SWT 1		RBW 100 kHz VBW 300 kHz	Mode Auto FFT			
1Pk Max				M1[1]			8.21 dBm
			M1	milil		2.43999	956500 GHz
LO dBm							
) dBm							
-10 dBm							
20 dgm							
30 dBm							
40 dBm							
50 dBm						-	
60 dBm							
70 dBm							
CF 2.44 GHz			30001 pt	s		Spa	in 1.5 MHz
	Tx. Sp	urious N\	/NT BLE 1M 2	2440MHz Ant1	Emission		
Ref Level 20.00 Att	dBm Offset 7	7.94 dB 👄	/NT BLE 1M 2 RBW 100 kHz VBW 300 kHz				
Ref Level 20.00 Att 3 SGL Count 10/10	dBm Offset 7	7.94 dB 👄	RBW 100 kHz				
Ref Level 20.00 Att 3 SGL Count 10/10 1Pk Max	dBm Offset 7	7.94 dB 👄	RBW 100 kHz				7.12 dBm
Ref Level 20.00 Att 3 SGL Count 10/10 1Pk Max	dBm Offset 7	7.94 dB 👄	RBW 100 kHz	Mode Auto Swe			7.12 dBm H40010 GHz -45.72 dBm
Ref Level 20.00 Att 3 SGL Count 10/10 1Pk Max	dBm Offset 7	7.94 dB 👄	RBW 100 kHz	Mode Auto Swe			7.12 dBm H40010 GHz
Ref Level 20.00 Att 3 SGL Count 10/10 IPk Max 3 IO dBm 11	dBm Offset 7 80 dB SWT :	7.94 dB 👄	RBW 100 kHz	Mode Auto Swe			7.12 dBm H40010 GHz -45.72 dBm
Ref Level 20.00 Att 33 SGL Count 10/10 1PK Max 10 dBm 10 10 dBm 01 -11	dBm Offset 7 80 dB SWT :	7.94 dB 👄	RBW 100 kHz	Mode Auto Swe			7.12 dBm H40010 GHz -45.72 dBm
Ref Level 20.00 Att 33 SGL Count 10/10 11Pk Max 33 10 dBm 01 10 dBm 01	dBm Offset 7 80 dB SWT :	7.94 dB 👄	RBW 100 kHz	Mode Auto Swe			7.12 dBm H40010 GHz -45.72 dBm
Ref Level 20.00 Att 33 SGL Count 10/10 10 dBm 0 10 dBm 01 20 dBm 01	dBm Offset 7 10 dB SWT :	7.94 dB 265 ms	RBW 100 kHz VBW 300 kHz	Mode Auto Swe M1[1] M2[1] 			7.12 dBm H40010 GHz -45.72 dBm
Ref Level 20.00 Att SGL Count 10/10 11Pk Max 0 dBm 10 dBm D1 -11 20 dBm 30 dBm 40 dBm	dBm Offset 7 80 dB SWT :	7.94 dB 👄	RBW 100 kHz VBW 300 kHz	Mode Auto Swe M1[1] M2[1] 			7.12 dBm H40010 GHz -45.72 dBm
Ref Level 20.00 Att SGL Count 10/10 IPK Max 0 dBm 10 dBm 20 dBm 30 dBm 40 dBm	dBm Offset 7 30 dB SWT :	7.94 dB 265 ms	RBW 100 kHz YBW 300 kHz	Mode Auto Swe M1[1] M2[1] 	ер 		7.12 dBm H40010 GHz -45.72 dBm
	dBm Offset 7 30 dB SWT :	7.94 dB 265 ms	RBW 100 kHz VBW 300 kHz	Mode Auto Swe M1[1] M2[1] 			7.12 dBm H40010 GHz -45.72 dBm
Ref Level 20.00 Att 33 SGL Count 10/10 IPk Max 10 0 dBm 0 10 dBm 01 20 dBm 01 30 dBm 10 40 dBm 50 dBm 50 dBm 10 70 dBm 10	dBm Offset 7 30 dB SWT :	7.94 dB 265 ms	RBW 100 kHz VBW 300 kHz	Mode Auto Swe 			7.12 dBm H40010 GHz -45.72 dBm 729357 GHz
Ref Level 20.00 Att 3 SGL Count 10/10 IPk Max 3 10 dBm 01 10 dBm 01 10 dBm 01 10 dBm 01 30 dBm 40 dBm 40 dBm 50 dBm 70 dBm 30 dBm 70 dBm 30 dBm	dBm Offset 7 30 dB SWT :	7.94 dB 265 ms	RBW 100 kHz VBW 300 kHz	Mode Auto Swe 			7.12 dBm H40010 GHz -45.72 dBm
Ref Level 20.00 Att 3 SGL Count 10/10 11Pk Max 3 10 dBm D1 10 dBm D1 10 dBm D1 10 dBm 5 30 dBm 3 40 dBm 5 50 dBm 3 60 dBm 3 70 dBm 3 31 dBm 3 32 dBm 3 40 dBm 3 50 dBm 3 60 dBm 4 70 dBm 3 31 darker 7 7 7	dBm Offset 7 10 dB SWT 2 .792 dBm	7.94 dB 265 ms M5	RBW 100 kHz VBW 300 kHz	Mode Auto Swe 			7.12 dBm H40010 GHz -45.72 dBm 729357 GHz
Ref Level 20.00 Att SGL Count 10/10 IPK Max ID dBm D1 -11 20 dBm 30 dBm 40 dBm 50 dBm 70 dBm 70 dBm 310 dBm	dBm Offset 7 80 dB SWT 2 .792 dBm .792 dBm .792 dBm	7.94 dB 265 ms M5	RBW 100 kHz VBW 300 kHz	Mode Auto Swe		15.7	7.12 dBm H40010 GHz -45.72 dBm 729357 GHz
Ref Level 20.00 Att 3 SGL Count 10/10 IPK Max 0 10 dBm D1 10 dBm D1 10 dBm 01 10 dBm 01 30 dBm 0 40 dBm 0 50 dBm 0 60 dBm 0 70 dBm 0 30 dBm 0 40 dBm 0 50 dBm 0 70 dBm 0 11 0 12 1 M2 1	dBm Offset 7 0 dB SWT : .792 dBm 	7.94 dB 265 ms 265 ms 26	RBW 100 kHz VBW 300 kHz Image: state st	Mode Auto Swe		15.7	7.12 dBm H40010 GHz -45.72 dBm 729357 GHz
Ref Level 20.00 Att 3 SGL Count 10/10 IPK Max 3 10 dBm 01 10 dBm 01 10 dBm 01 10 dBm 01 30 dBm 30 dBm 40 dBm 50 dBm 70 dBm 30 dBm 70 dBm 10 70 dBm 10 70 dBm 10 70 dBm 10 10 dBm 10	dBm Offset 7 10 dB SWT 1 .792 dBm .792 dBm	7.94 dB 265 ms 265 ms 26	RBW 100 kHz VBW 300 kHz Image: state sta	Mode Auto Swe		15.7	7.12 dBm H40010 GHz -45.72 dBm 729357 GHz
Ref Level 20.00 Att 3 SGL Count 10/10 11PK Max 3 10 dBm D1 10 dBm D1 10 dBm D1 20 dBm 30 dBm 40 dBm 50 dBm 50 dBm 30 dBm 60 dBm 30 dBm 50 dBm 30 dBm 60 dBm 30 dBm 50 dBm 30 dBm 40 dBm 10 50 dBm 30 dBm 60 dBm 10 70 dBm 11 M1 1 M2 1 M3 1 M4 1	dBm Offset 7 10 dB SWT 1 .792 dBm .792 dBm	7.94 dB 265 ms 265 ms 26	RBW 100 kHz VBW 300 kHz Image: state st	Mode Auto Swe		15.7	7.12 dBm H40010 GHz -45.72 dBm 729357 GHz

ACCREDITED

	30 dB 200/200	5111	. – ch s – ,	JUU KHZ	Mode Auto Ff	1			
●1Pk Max					M1[1]			7.40 dBm	
10 dBm				Mj			2.47998	899000 GHz	
			\sim	+					
0 dBm									
-10 dBm-									
-20 dpm									
-20 0811									
-30 dBm									
-40 dBm									
-50 dBm									
-60 dBm				+				<u> </u>]	
-70 dBm									
CF 2.48 GH	lz			30001	ots		Spa	an 1.5 MHz	
-					2480MHz Ant	1 Emission			
Att SGL Count	20.00 dBm 30 dB	Offset 7	.77 dB 👄 I	RBW 100 kHz	2480MHz Ant Mode Auto S ^a				
Ref Level Att SGL Count 1Pk Max	20.00 dBm 30 dB	Offset 7	.77 dB 👄 I	RBW 100 kHz				(₩) 5.69 dBm	
Ref Level Att SGL Count 1Pk Max	20.00 dBm 30 dB	Offset 7	.77 dB 👄 I	RBW 100 kHz	Mode Auto S				-
Ref Level Att SGL Count 1Pk Max 10 dBm MI	20.00 dBm 30 dB	Offset 7	.77 dB 👄 I	RBW 100 kHz	Mode Auto S M1[1]			6.69 dBm 479720 GHz	
Ref Level Att SGL Count 1Pk Max 10 dBm MI 0 dBm 10 dBm	20.00 dBm 30 dB	Offset 7 SWT 2	.77 dB 👄 I	RBW 100 kHz	Mode Auto S M1[1]			6.69 dBm 479720 GHz -46.25 dBm	
Ref Level Att SGL Count 1Pk Max 10 dBm 0 dBm -10 dBm	20.00 dBm 30 dB 5/5	Offset 7 SWT 2	.77 dB 👄 I	RBW 100 kHz	Mode Auto S M1[1]			6.69 dBm 479720 GHz -46.25 dBm	
Ref Level Att SGL Count 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm	20.00 dBm 30 dB 5/5	Offset 7 SWT 2	.77 dB 👄 I	RBW 100 kHz	Mode Auto S M1[1]			6.69 dBm 479720 GHz -46.25 dBm	
Mathematical Count Att SGL Count 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	20.00 dBm 30 dB 5/5	Offset 7 SWT 2	.77 dB 👄 I	RBW 100 kHz	Mode Auto St M1[1] M2[1]	weep	15.4	6.69 dBm 479720 GHz -46.25 dBm	
Ref Level Att SGL Count 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	20.00 dBm 30 dB 5/5	Offset 7 SWT 2	7.77 dB 🕳 I 265 ms 👄 V	RBW 100 kHz	Mode Auto St M1[1] M2[1]	weep		6.69 dBm 479720 GHz -46.25 dBm 851119 GHz	
Ref Level Att SGL Count 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm	20.00 dBm 30 dB 5/5	Offset 7 SWT 2	7.77 dB 🕳 I 265 ms 👄 V	RBW 100 kHz VBW 300 kHz	Mode Auto S M1[1] M2[1] M2[1]	weep		6.69 dBm 479720 GHz -46.25 dBm 851119 GHz	
Ref Level Att SGL Count 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm	20.00 dBm 30 dB 5/5	Offset 7 SWT 2	7.77 dB 🕳 I 265 ms 👄 V	RBW 100 kHz VBW 300 kHz	Mode Auto S M1[1] M2[1] M2[1]	weep		6.69 dBm 479720 GHz -46.25 dBm 851119 GHz	
Ref Level Att SGL Count 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm -70 dBm	20.00 dBm 30 dB 5/5	Offset 7 SWT 2	7.77 dB 🕳 I 265 ms 👄 V	RBW 100 kHz VBW 300 kHz	Mode Auto S M1[1] M2[1] M2[1]	weep		6.69 dBm 479720 GHz -46.25 dBm 851119 GHz	
Ref Level Att SGL Count 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -70 dBm Start 30.0 Marker Type	20.00 dBm 30 dB 5/5 D1 -12.603 M3 M4z MHz	Offset 7 SWT 2 dBm M4 X-value	M5	RBW 100 kHz VBW 300 kHz	Mode Auto Si M1[1] M2[1] W2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2	weep		6.69 dBm 479720 GHz -46.25 dBm 851119 GHz	
Ref Level Att SGL Count 1Pk Max 10 dBm 10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm	20.00 dBm 30 dB 5/5 D1 -12.603 M3 MHz f Trc 1 1	Offset 7 SWT 2 dBm 	M5	RBW 100 kHz VBW 300 kHz VBW 300 kHz 3000 kHz 3000 kHz 40 kHz kHz 50 kHz	Mode Auto Si M1[1] M2[1] W2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2	weep	15.4	6.69 dBm 479720 GHz -46.25 dBm 851119 GHz	
Ref Level Att SGL Count 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm -70 dBm -80 dBm -70 dBm Marker Type M1 M2 M3 M4	20.00 dBm 30 dB 5/5 D1 -12.603 M3 MHz MHz f Trc 1 1 1 1	Offset 7 SWT 2 dBm 	M5 0.77 dB I I 265 ms I M5 0.72 GHz 19 GHz 26 GHz 26 GHz 26 GHz	RBW 100 kHz VBW 300 kHz VBW 300 kHz 300 kHz 40 kHz	Mode Auto Si M1[1] M2[1] W2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2	weep	15.4	6.69 dBm 479720 GHz -46.25 dBm 851119 GHz	
Ref Level Att SGL Count 1Pk Max 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -70 dBm -50 dBm -70 dBm -70 dBm Marker Type M1 M2 M3	20.00 dBm 30 dB 5/5 D1 -12.603 M3 MHz MHz	Offset 7 SWT 2 dBm 	M5 0.77 dB I I 265 ms I M5 0.72 GHz 19 GHz 26 GHz 26 GHz 26 GHz	RBW 100 kHz VBW 300 kHz VBW 300 kHz 300 kHz 300 kHz 40 kHz 50 kH	Mode Auto Si M1[1] M2[1] W2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2	weep	15.4	6.69 dBm 479720 GHz -46.25 dBm 851119 GHz	
Ref Level Att SGL Count 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm -70 dBm -80 dBm -70 dBm Marker Type M1 M2 M3 M4	20.00 dBm 30 dB 5/5 D1 -12.603 M3 MHz MHz f Trc 1 1 1 1	Offset 7 SWT 2 dBm 	M5 0.77 dB I I 265 ms I M5 0.72 GHz 19 GHz 26 GHz 26 GHz 26 GHz	RBW 100 kHz VBW 300 kHz VBW 300 kHz 300 kHz 40 kHz	Mode Auto Si M1[1] M2[1] W2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2	weep	15.4	6.69 dBm 479720 GHz -46.25 dBm 851119 GHz	

ACCREDITED