

Page 1 of 101

FCC 47 CFR PART 15 SUBPART C TEST REPORT

For

Product Name: Pro series 3D Printer

Brand Name: RAISE 3D Model No.: Pro2,Pro2 Plus

Series Model.: Pro1,Pro3,Pro3 Plus,Pro4,Pro5,Pro6

FCC ID: 2APQR-A Test Report Number: C180629R01-RPW

Issued for

Shanghai Fusion Tech Co., Ltd. Floor 4,Building B5,No.1600,Guoquan N Rd.Shanghai,200438 China

Issued by

Compliance Certification Services Inc.

Kun shan Laboratory

No.10 Weiye Rd., Innovation park, Eco&Tec, Development Zone, Kunshan City, Jiangsu, China

TEL: 86-512-57355888

FAX: 86-512-57370818

Note: This report shall not be reproduced except in full, without the written approval of Compliance Certification Services Inc. This document may be altered or revised by Compliance Certification Services Inc. personnel only, and shall be noted in the revision section of the document. The client should not use it to claim product endorsement by A2LA or any government agencies. The test results in the report only apply to the tested sample.

Page 2 of 101

TABLE OF CONTENTS

1.	TEST RESULT CERTIFICATION	4
2.	EUT DESCRIPTION	5
3.	TEST METHODOLOGY	6
3.1.	EUT CONFIGURATION	6
	EUT EXERCISE	
	GENERAL TEST PROCEDURES	
3.4.	FCC PART 15.205 RESTRICTED BANDS OF OPERATIONS	7
3.5.	DESCRIPTION OF TEST MODES	8
	DUTY CYCLE	
3.7.	ANTENNA DESCRIPTION	11
4.	INSTRUMENT CALIBRATION	12
4.1.	MEASURING INSTRUMENT CALIBRATION	12
4.2.	MEASUREMENT UNCERTAINTY	14
5.	FACILITIES AND ACCREDITATIONS	15
5.1.	FACILITIES	15
	EQUIPMENT	
	LABORATORY ACCREDITATIONS AND LISTING	
5.4.	TABLE OF ACCREDITATIONS AND LISTINGS	16
6.	SETUP OF EQUIPMENT UNDER TEST	18
6.1.	SETUP CONFIGURATION OF EUT	18
6.2.	SUPPORT EQUIPMENT	18
7.	FCC PART 15.247 REQUIREMENTS	19
7.1.	6DB BANDWIDTH	19
	PEAK POWER	
	PEAK POWER SPECTRAL DENSITY	
	SPURIOUS EMISSIONS	
	RADIATED EMISSIONS	
7.6.	POWERLINE CONDUCTED EMISSIONS	97

Page 3 of 101

Revision History

Rev.	Issue Date	Report NO.	Effect Page	Contents
00	June 24, 2018	C180502R02-RPW	ALL	N/A
Update	June 29, 2018	C180629R01-RPW	P1; P4	Modify Applicant's and Manufacturer's address
01	July 9, 2018	C180629R01-RPW	P5; P6; P8	Modify the data rate for HT20; Add the directional gain for MIMO on P5; Add KDB 558074 and KDB 662911 to Section 3; Modify the description of the Radiated emission and powerline conducted emission
02	July 16, 2018	C180629R01-RPW	P5; P30-33	Modify Directional gain

Page 4 of 101

1. TEST RESULT CERTIFICATION

Product Name:	Pro series 3D Printer
Trade Name:	RAISE 3D
Model Name.:	Pro2,Pro2 Plus
Series Model:	Pro1,Pro3,Pro3 Plus,Pro4,Pro5,Pro6
Applicant Discrepancy:	Initial
Device Category:	mobile unit
Date of Test:	May 9,2018~June 20, 2018
Applicant: Shanghai Fusion Tech Co., Ltd. Floor 4,Building B5,No.1600,Guoquan N Rd.Shanghai,200438 China	
Manufacturer: Shanghai Fusion Tech Co., Ltd. Floor 4,Building B5,No.1600,Guoquan N Rd.Shanghai,200438 China	
Application Type:	Certification

APPLICABLE STANDARDS			
STANDARD TEST RESULT			
FCC 47 CFR Part 15 Subpart C	No non-compliance noted		

We hereby certify that:

The above equipment was tested by Compliance Certification Services Inc. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.10: 2013 and the energy emitted by the sample EUT tested as described in this report is in compliance with the requirements of FCC Rules Part 15.207, 15.209, 15.247.

The test results of this report relate only to the tested sample EUT identified in this report.

Approved by:

Jeff fang

Jeff.Fang RF Manager

Compliance Certification Service Inc.

Tested by:

Lily.Wang Test Engineer

Compliance Certification Service Inc.

Page 5 of 101

2. EUT DESCRIPTION

Product Name:	Pro series 3D Printer		
Brand Name:	RAISE 3D		
Model Name:	Pro2,Pro2 Plus		
Series Model:	Pro1,Pro3,Pro3 Plus,Pro4,Pro5,Pro6		
Model Discrepancy:	The Pro2, Pro2 Plus, Pro1, Pro3, Pro3 Plus, Pro4, Pro5, Pro6 3D Printer are belong to Pro series 3D printer. All of them are manufactured by Shanghai Fusion. The Pro1, Pro2, Pro3, Pro4, Pro5, Pro6 are basic model. All height in dimension are lower. They use the same parts and components only for different markets. For Pro2 Plus, Pro3 Plus, that are plus series printer based on the Pro2 and Pro3. Only the printer's height is different. The Pro2 's height is 760 mm. The Pro2 Plus's height is 1105mm.		
Power Rating:	100-240V,50/60Hz		
Frequency Range:	IEEE 802.11b/g: 2412MHz to 2462 MHz IEEE 802.11n HT20: 2412MHz to 2462 MHz		
Max Peak Output Power:	IEEE 802.11b mode: 21.04dBm IEEE 802.11g mode: 23.62dBm IEEE 802.11n HT20 mode: 24.37dBm		
Max Average Output Power:	IEEE 802.11b mode: 18.31dBm IEEE 802.11g mode: 15.62dBm IEEE 802.11n HT20 mode: 14.90dBm		
Modulation Technique:	IEEE802.11b mode: DSSS (1,2,5.5 and 11 Mbps) IEEE802.11g mode: DSSS /OFDM (6,9,12,18,24,36,48 and 54 Mbps) IEEE802.11n HT20 mode: OFDM (MCS8~MCS15)		
Number of Channels:	IEEE 802.11b/g mode: 11 Channels IEEE 802.11n HT20: 11 Channels		
Antenna Specification:	FPC Antenna		
Antenna Specification:	Antenna 1 Antenna 2 Directional gain	Gain(dBi) 2.4G 4.33 4.33 7.34	
Beamforming Function:	☐ With beamforming		

Remark:

- 1. The sample selected for test was engineering sample that approximated to production product and was provided by manufacturer.
- 2.This submittal(s) (test report) is intended for *FCC ID: 2APQR-A* filling to comply with Section 15.207, 15.209 and 15.247 of the FCC Part 15, Subpart C Rules.

Page 6 of 101

3. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10 2013 and FCC CFR 47 15.207, 15.209, 15.247 and KDB 558074, KDB 662911.

3.1.EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

3.2.EUT EXERCISE

The EUT was operated in the engineering mode to fix the TX frequency that was for the purpose of the measurements.

According to its specifications, the EUT must comply with the requirements of the Section 15.207, 15.209 and 15.247 under the FCC Rules Part 15 Subpart C.

3.3.GENERAL TEST PROCEDURES

Conducted Emissions

The EUT is placed on the turntable, which is 0.1 m above ground plane. According to the requirements in Section 6.2 of ANSI C63.10 2013 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-peak and average detector modes.

Radiated Emissions

Under 1GHz

The EUT is placed on a turn table, which is 0.1 m above ground plane. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 6.4 & 6.5 of ANSI C63.10:2013.

Above 1GHz

The EUT is placed on a turn table, which is 0.1 m above ground plane. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 6.6 of ANSI C63.10:2013.

Page 7 of 101

3.4.FCC PART 15.205 RESTRICTED BANDS OF OPERATIONS

Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(2)
13.36 - 13.41			

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

² Above 38.6

Page 8 of 101

3.5.DESCRIPTION OF TEST MODES

Test Mode	Antenna 1	Antenna 2	Antenna 1+2
802.11b	4	4	х
802.11g	4	4	Х
802.11n HT20	√	√	√

The worst-case data rates:

IEEE802.11b mode:

Channel Low (2412MHz)

Channel Mid (2437MHz)

Channel High (2462MHz) with 11Mbps data rate was chosen for full testing.

IEEE802.11g mode:

Channel Low (2412MHz)

Channel Mid (2437MHz)

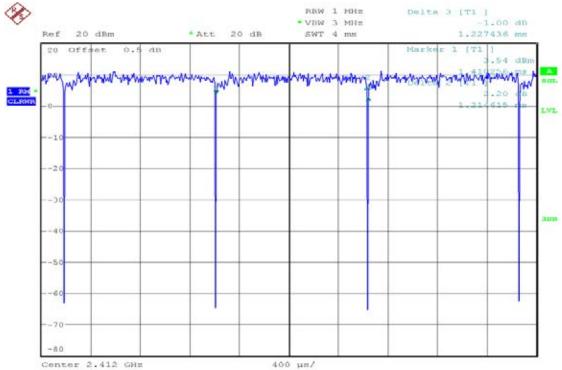
Channel High (2462MHz) with 54Mbps data rate was chosen for full testing.

IEEE 802.11n HT20 MHz Channel mode:

Channel Low (2412MHz)

Channel Mid (2437MHz)

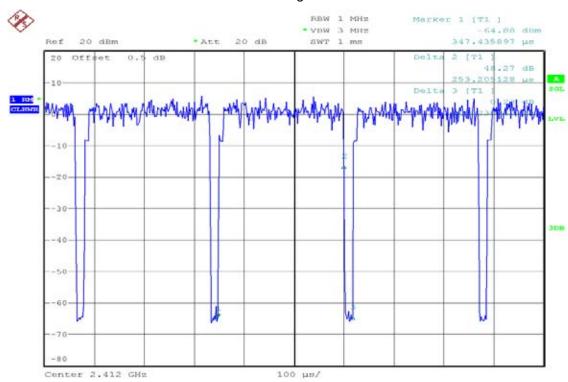
Channel High (2462MHz) with MCS15 data rate was chosen for full testing.

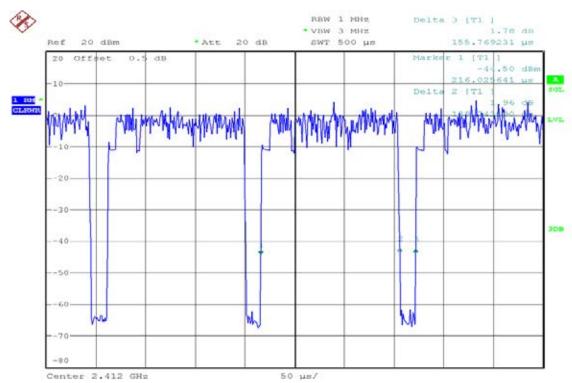


Page 9 of 101

3.6.DUTY CYCLE

Band	Duty Cycle(%)	T(ms)	1/T(kHz)	VBW Setting
IEEE 802.11 b	99.02	-	-	10Hz
IEEE 802.11 g	94.05	0.253	3.95	5KHz
IEEE 802.11n HT20	89.74	0.190	5.26	10KHz

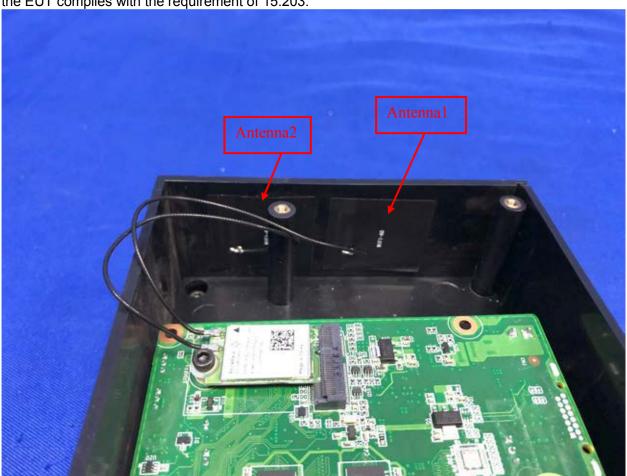




Page 10 of 101

IEEE 802.11 g

IEEE 802.11n HT20


Page 11 of 101

3.7.ANTENNA DESCRIPTION

According to FCC 47 CFR 15.203

"an intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached or an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section"

As the photo below, the EUT use a unique coupling to the intentional radiator attached antenna, so the EUT complies with the requirement of 15.203.

Page 12 of 101

4. INSTRUMENT CALIBRATION

4.1.MEASURING INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

Equipment Used for Emissions Measurement

Conducted Emissions Test Site					
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Data	Calibration Due
Spectrum Analyzer	Agilent	E4446A	MY44020154	2017-9-4	2018-9-3
Spectrum Analyzer	RS	FSU26	200789	2017-7-20	2018-7-19
Power meter	Anritsu	ML2495A	1445010	2018-4-26	2019-4-25
Power sensor	Anritsu	MA2411B	1339220	2018-4-26	2019-4-25
Power SPLITTER	Mini-Circuits	ZN2PD-9G	SF078500430	N.C.R	N.C.R
DC Power Supply	AGILENT	E3632A	MY50340053	N.C.R	N.C.R
Cable	N/A	Cable-05	N/A	2018-4-24	2019-4-23
Cable	N/A	Cable-06	N/A	2018-4-24	2019-4-23
6dB Attenuator	N/A	N/A	N/A	2018-4-24	2019-4-23
Temp. / Humidity Gauge	Anymetre	TH603	CCS007	2017-10-24	2018-10-23
Test S		EZ-EMC			

	Conducted Emission					
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due	
EMI TEST RECEIVER	R&S	ESCI	100781	2018-2-26	2019-2-25	
V (V-LISN)	SCHWARZBECK	NNLK 8129	8129-143	2017-10-29	2018-10-28	
TWO-LINE V-NETWORK	R&S	ENV216	101604	2017-10-29	2018-10-28	
Pulse LIMITER	R&S	ESH3-Z2	100524	2017-12-27	2018-12-26	
Cable	Thermax	Cable-02	14	2017-12-27	2018-12-26	
		EZ-EMC				

		977 Chamber			
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Data	Calibration Due
Spectrum Analyzer	Agilent	E4446A	MY44020154	2017-9-4	2018-9-3
Spectrum Analyzer	RS	FSU26	200789	2017-7-20	2018-7-19
EMI Test Receiver	R&S	ESCI	101378	2017-12-26	2018-12-25
Amplifier	COM-POWER	PAM-840A	461332	2017-11-29	2018-11-28
Amplifier	MITEQ	JS41-00101800-32-10P	1675713	2017-7-20	2018-7-19
Broad-Band Horn Antenna	SCHWARZBECK	BBHA 9170	9170-515	2018-2-27	2019-2-26
Bilog Antenna	SCHAFFNER	CBL6143	5078	2017-11-5	2018-11-4
Loop Antenna	COM-POWER	AL-130R	10160008	2018-5-8	2019-5-7
Horn-antenna	SCHWARZBECK	9120D	D:266	2018-2-26	2019-2-25
Horn-antenna	SCHWARZBECK	9120D	D:267	2017-11-5	2018-11-4
Turn Table	СТ	CT123	4165	N.C.R	N.C.R
Antenna Tower	СТ	CTERG23	3256	N.C.R	N.C.R
Controller	СТ	CT100	95637	N.C.R	N.C.R
Cable	REBES MICROWAVE	Cable-93	N/A	2017-10-29	2018-10-28
Cable	REBES MICROWAVE	Cable-94	N/A	2017-10-29	2018-10-28
Cable	REBES MICROWAVE	Cable-95	N/A	2017-10-29	2018-10-28
Cable	N/A	Cable-03	N/A	2018-4-24	2019-4-23
Cable	N/A	Cable-04	N/A	2018-4-24	2019-4-23
2.4G Filter	N/A	N/A	N/A	2018-4-24	2019-4-23
Filter 5150MHz-5350MHz	N/A	N/A	N/A	2018-4-24	2019-4-23
Filter 5725MHz-5850MHz	N/A	N/A	N/A	2018-4-24	2019-4-23
Test Software				EZ-EMC	

Remark: Each piece of equipment is scheduled for calibration once a year.

Page 14 of 101

4.2.MEASUREMENT UNCERTAINTY

For the test methods, according to the present document, the measurement uncertainty figures shall be calculated in accordance with TR 100 028-1 [2] and shall correspond to an expansion factor (coverage factor) k = 1,96 or k = 2 (which provide confidence levels of respectively 95 % and 95,45 % in the case where the distributions characterizing the actual measurement uncertainties are normal (Gaussian)).

Table 6 is based on such expansion factors.

Table 6: Maximum measurement uncertainty

Parameter	Uncertainty
RF output power, conducted	±1.129dB
Unwanted Emissions, conducted	±2.406dB
RF Power density, conducted	±2.379dB
Conducted emissions	±2.582dB
All emissions, radiated (Below 1GHz)	±4.725dB
All emissions, radiated (Above 1GHz)	± 4.818dB
Temperature	±0.3dB
Supply voltages	±0.2%

Page 15 of 101

5. FACILITIES AND ACCREDITATIONS

5.1.FACILITIES

All measurement facilities used to collect the measurement data are located at CCS China Kunshan Lab at 10#Weiye Rd, Innovation Park Eco. & Tec. Development Zone

Kunshan city JiangSu, (215300), CHINA.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 2013 and CISPR Publication 22.

5.2.EQUIPMENT

Radiated emissions are measured with one or more of the following types of linearly polarized antennas: tuned dipole, biconical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and quasi-peak detectors are used to perform radiated measurements.

Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers.

Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

5.3.LABORATORY ACCREDITATIONS AND LISTING

FCC -Designation Number: CN1172.

Compliance Certification Services Inc. Kun shan Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files and the Designation Number: CN1172.

Page 16 of 101

5.4.TABLE OF ACCREDITATIONS AND LISTINGS

Country	Agency	Scope of Accreditation	Logo
USA	A2LA	47 CFR FCC, Part 15, Subpart B (using ANSI 63.4 :2009 and ANSI C63.4:2014);ICES-003; 47 CFR FCC, Part 18(using MP-5:1986);ICES-001;VCCI - V3; VCCI-CISPR-32(up to 6GHz);VCCI 32-1;CNS 13438(up to 6GHz); CNS 13439; CNS 13803; CISPR 11; EN 55011; CISPR 13; EN 55013; CISPR 22; EN 55022; AS/NZS CISPR 22;CISPR32;EN55032; AS/NZS CISPR 32;EN55014-1(excluding clicks);CISPR 14-1(excluding clicks);CISPR 14-1(excluding clicks);CISPR 14-1(excluding clicks);CISPR 14-1(excluding clicks);CISPR 14-1(excluding clicks);CISPR 15; IEC 61000-3-2; EN 61000-3-2; AS/NZS 61000.3.2 IEC 61000-3-3; EN 61000-3-3; AS/NZS 61000.3.3 IEC 61000-4-2; EN 61000-3-3; AS/NZS 61000.3.3 IEC 61000-4-2; EN 61000-4-2; AS/NZS 61000.4.3 IEC 61000-4-3; EN 61000-4-4; AS/NZS 61000.4.3 IEC 61000-4-5; EN 61000-4-4; AS/NZS 61000.4.4 IEC 61000-4-6; EN 61000-4-6; AS/NZS 61000.4.5 IEC 61000-4-6; EN 61000-4-6; AS/NZS 61000.4.5 IEC 61000-4-6; EN 61000-4-6; AS/NZS 61000.4.8 IEC 61000-4-1; EN 61000-4-1; AS/NZS 61000.4.8 IEC 61000-4-1; EN 61000-6-2; EN 61000-6-3 (excluding discontinuous interference); EN 61000-6-4; AS/NZS 61000.4.1 EN 61000-6-1; IEC 61000-6-2; IEC 61000-6-3 (excluding discontinuous interference); IEC 61000-6-4; AS/NZS 61000.6.3 (excluding discontinuous interference); IEC 61000-6-4; AS/NZS 61000.6.3 (excluding discontinuous interference); IEC 61000-6-4; AS/NZS 61000.6.3 (excluding discontinuous interference); IEC 61000-6-3; IEC 61000-6-3; IEC 61000-6-4; AS/NZS 61000.6.3 (excluding discontinuous interference); IEC 61000-6-4; AS/NZS 61000.6.3 (excluding discontinuous interference); IEC 61000-6-4; AS/NZS 61000.6.3 (excluding discontinuous interference); AS/NZS 61000.6.3 (excluding discontinuous interference); IEC 61000-6-4; IEC 61000-6-4; IEC 61000-6-2; IEC 61000-6-2; IEC 61000-6-3; IEC 61000-6-3; IEC 61000-6-3; IEC 61000-6-4; IEC 6100-6-4; IEC 6100-6-5; IEC 6100-6-5; IEC 6100-6-6-3; IEC 61000-6-4; IEC 6100-6-6-3; IEC 61000-6-4; IEC 6100-6-6-3; IEC 61000-6-4; IEC 6100-6-6-3; IEC 6100-6-6-3; IEC 6100-6-6-3; IEC 6100-6-6-3; IEC 6100-6-6-3; IEC 6100-6-4; IEC 610	TESTING CERT #2541.01

Page 17 of 101

		EN 301 908-2 (clauses 4.2.4, 4.2.10, 5.3.3, and 5.3.9) AS/NZS 4268 IEEE Std 1528:2013; EN 50360; EN 50566; EN 62479; EN 50383; EN 50385; EN 62311; IEC 62209-1; EN 62209-1; IEC 62209-2; EN 62209-2; CNS 14958-1; CNS 14959; RSS-102; ACMA Radio Communications (Electromagnetic Radiation – Human Exposure) Standard 2014	
USA	FCC	3/10 meter Sites to perform FCC Part 15/18 measurements	FC CN1172
Japan	VCCI	3/10 meter Sites and conducted test sites to perform radiated/conducted measurements	VCCI R-1600 C-1707 G-216

^{*} No part of this report may be used to claim or imply product endorsement by A2LA or any agency of the US Government.

Page 18 of 101

6. SETUP OF EQUIPMENT UNDER TEST

6.1.SETUP CONFIGURATION OF EUT

See test photographs attached in Setup photo for the actual connections between EUT and support equipment.

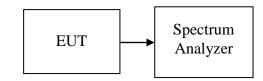
6.2.SUPPORT EQUIPMENT

No.	Device Type	Brand	Model	Series No.	FCC ID
N/A					

Remark:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

Page 19 of 101


7. FCC PART 15.247 REQUIREMENTS

7.1.6DB BANDWIDTH

LIMIT

According to §15.247(a)(2), systems using digital modulation techniques may operate in the 902 - 928 MHz, and 2400 - 2483.5 MHz bands, and 5725 - 5850 MHz bands. The minimum 6dB bandwidth shall be at least 500kHz.

Test Configuration

TEST PROCEDURE

Set the spectrum analyzer as RBW = 100 kHz, VBW = 300 kHz, Sweep = auto couple.

TEST RESULTS

No non-compliance noted

Test Data

IEEE 802.11b mode /Chain 1

Channel	Frequency (MHz)	Bandwidth (MHz)	Limit (kHz)	Result
Low	2412	8.654		PASS
Mid	2437	8.654	>500	PASS
High	2462	8.590		PASS

IEEE 802.11b mode /Chain 2

Channel	Frequency (MHz)	Bandwidth (MHz)	Limit (kHz)	Result
Low	2412	8.718	>500	PASS
Mid	2437	8.654		PASS
High	2462	8.846		PASS

IEEE 802.11g mode /Chain 1

Channel	Frequency (MHz)	Bandwidth (MHz)	Limit (kHz)	Result
Low	2412	16.474	>500	PASS
Mid	2437	16.410		PASS
High	2462	16.474		PASS

IEEE 802.11g mode /Chain 2

Channel	Frequency (MHz)	Bandwidth (MHz)	Limit (kHz)	Result
Low	2412	16.410	>500	PASS
Mid	2437	16.474		PASS
High	2462	16.410		PASS

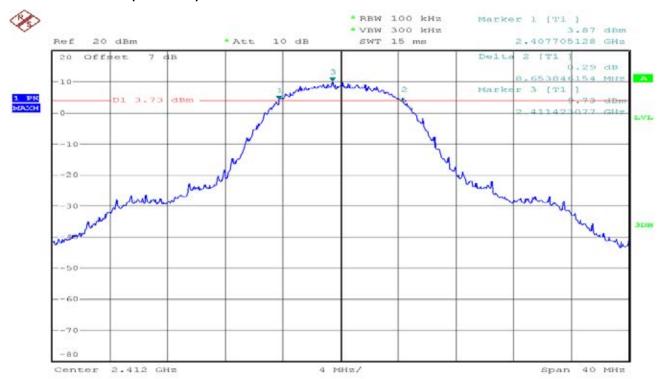
Page 20 of 101

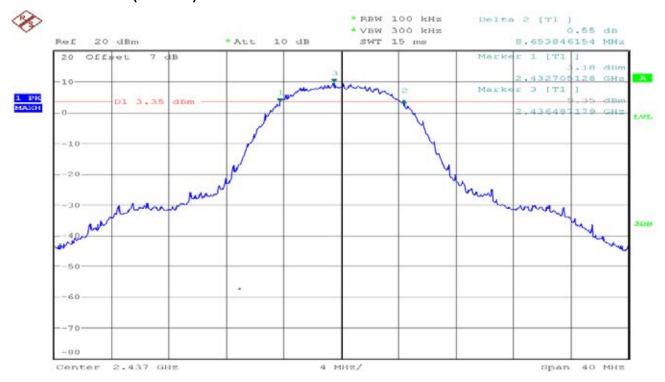
IEEE 802.11n HT20 mode / Chain 1

Channel	Frequency (MHz)	Bandwidth (MHz)	Limit (kHz)	Result
Low	2412	16.987		PASS
Mid	2437	16.987	>500	PASS
High	2462	16.987		PASS

IEEE 802.11n HT20 mode / Chain 2

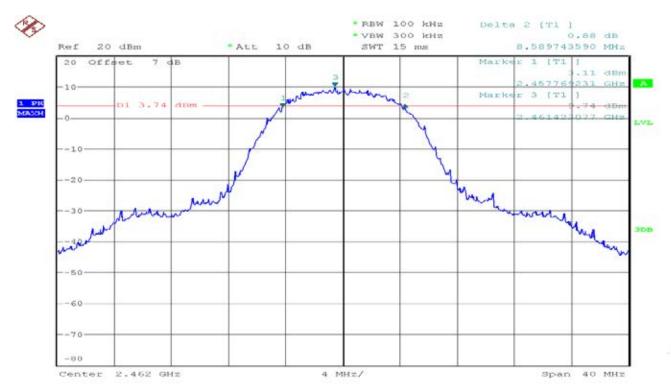
Channel	Frequency (MHz)	Bandwidth (MHz)	Limit (kHz)	Result
Low	2412	17.244		PASS
Mid	2437	17.051	>500	PASS
High	2462	16.987		PASS

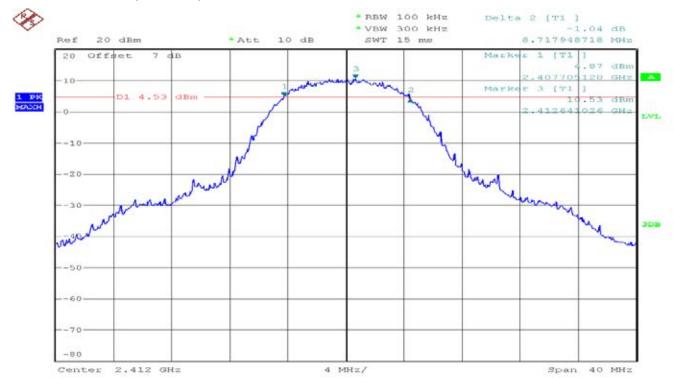



Page 21 of 101

Test Plot IEEE 802.11b MODE /Chain 1

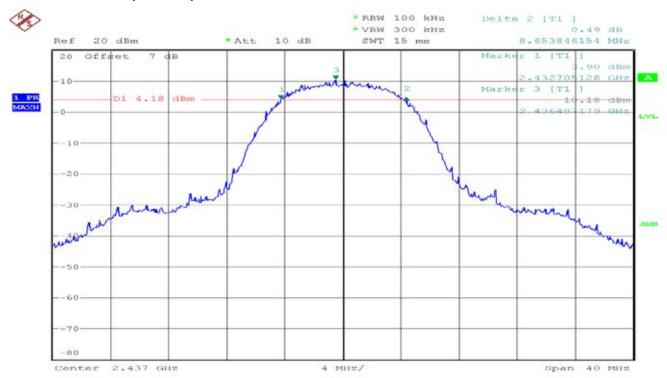
6dB Bandwidth (CH Low)

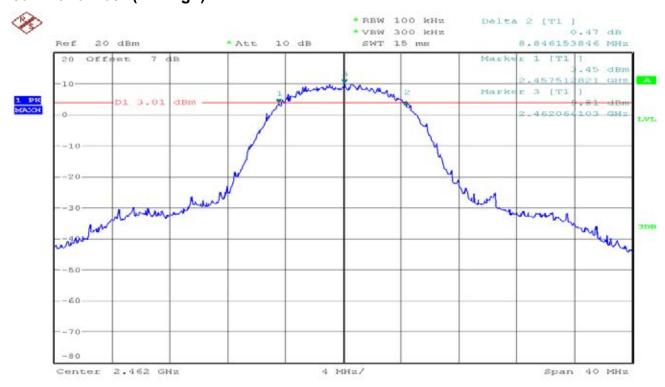

6dB Bandwidth (CH Mid)


Page 22 of 101

6dB Bandwidth (CH High)

IEEE 802.11b MODE /Chain 2

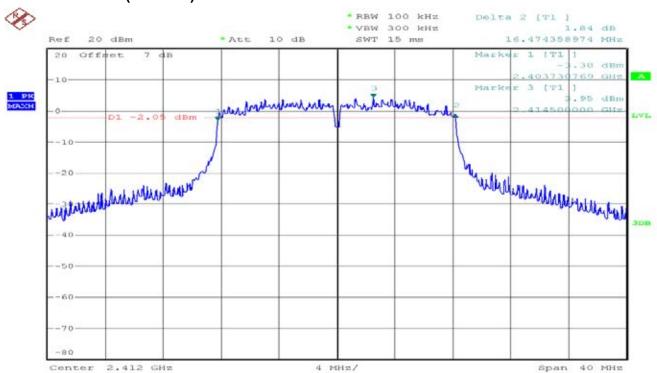

6dB Bandwidth (CH Low)

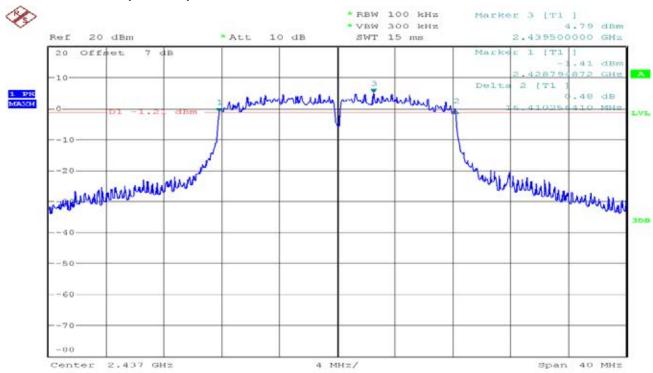


Page 23 of 101

6dB Bandwidth (CH Mid)

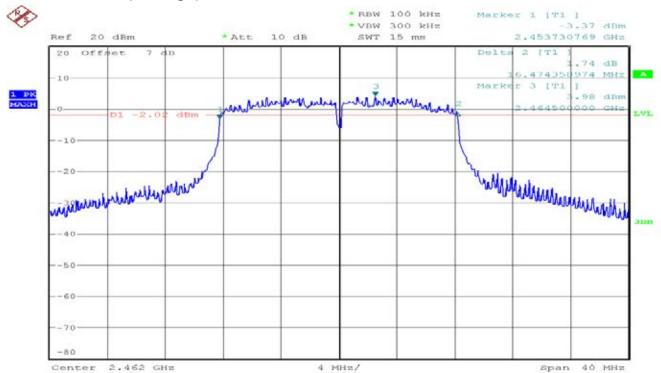
6dB Bandwidth (CH High)

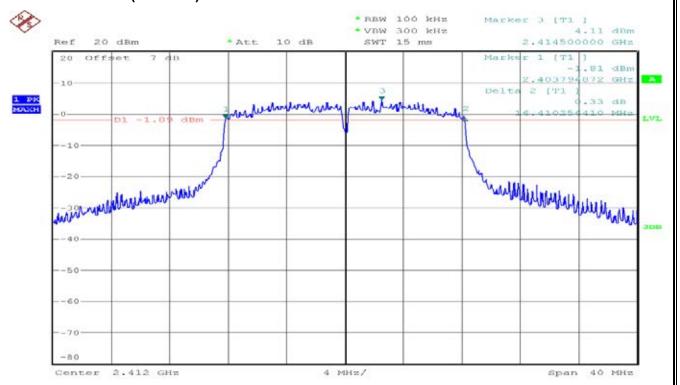



Page 24 of 101

IEEE 802.11g MODE /Chain 1

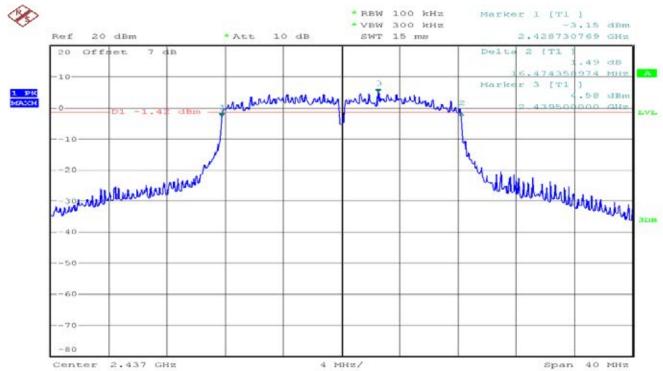
6dB Bandwidth (CH Low)

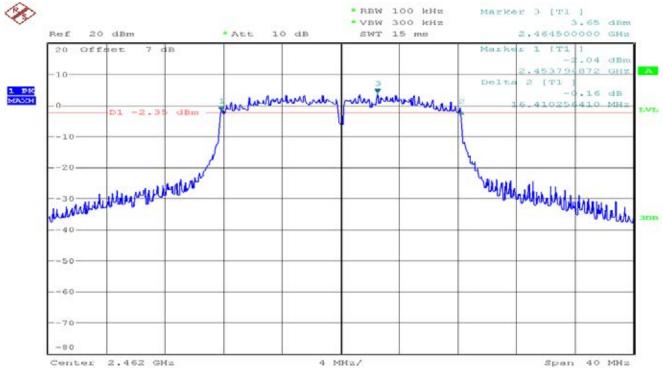

6dB Bandwidth (CH Mid)



Page 25 of 101

6dB Bandwidth (CH High)

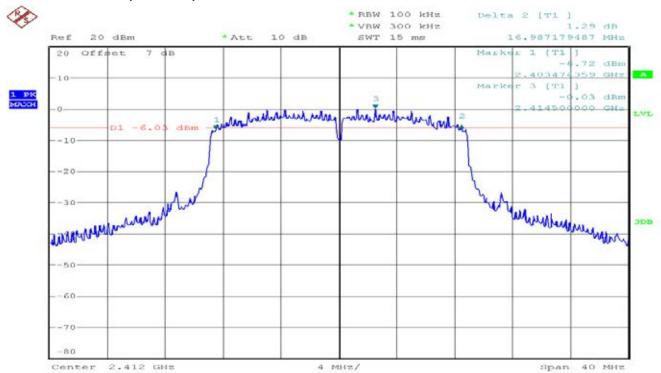

IEEE 802.11g MODE /Chain 2 6dB Bandwidth (CH Low)

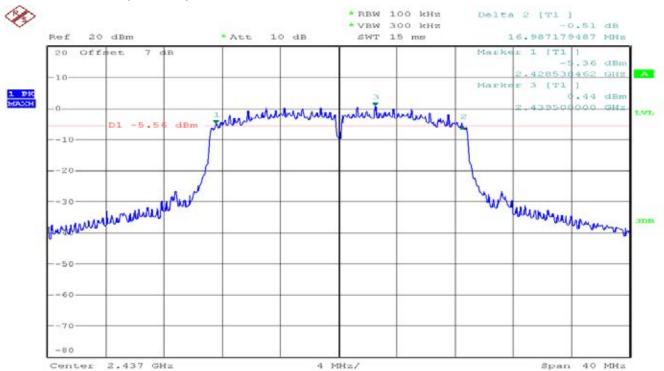


Page 26 of 101

6dB Bandwidth (CH Mid)

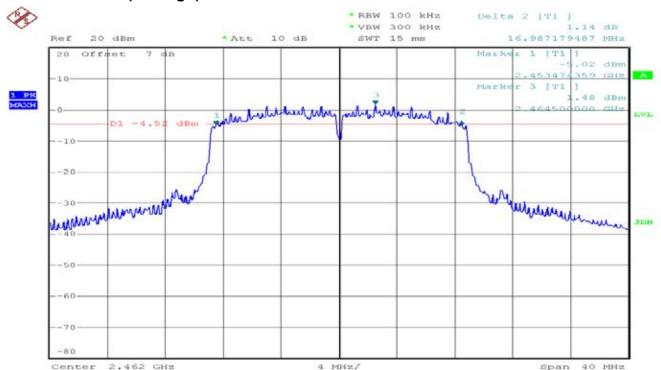
6dB Bandwidth (CH High)

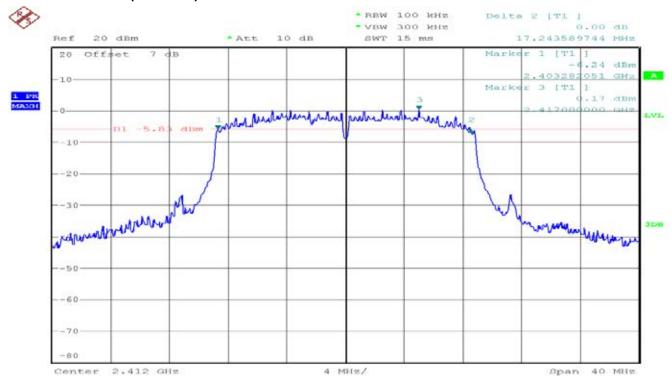



Page 27 of 101

IEEE 802.11n HT20 mode / Chain 1

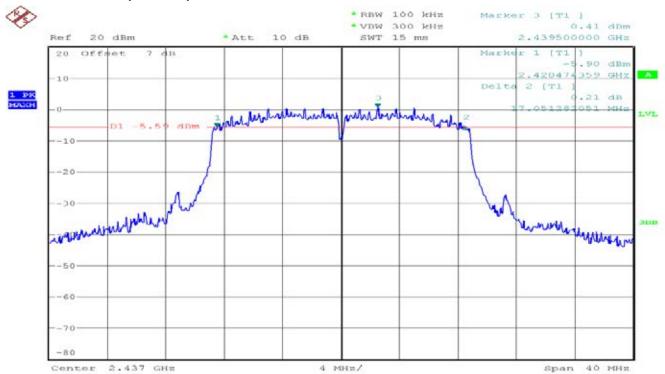
6dB Bandwidth (CH Low)

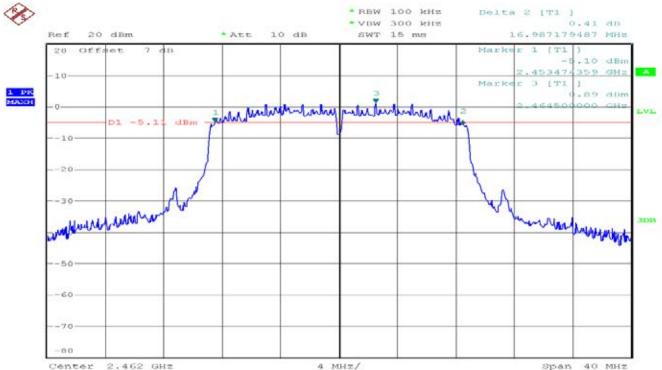

6dB Bandwidth (CH Mid)


Page 28 of 101

6dB Bandwidth (CH High)

IEEE 802.11n HT20 mode / Chain 2


6dB Bandwidth (CH Low)



Page 29 of 101

6dB Bandwidth (CH Mid)

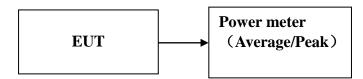
6dB Bandwidth (CH High)

Page 30 of 101

7.2.PEAK POWER

<u>LIMIT</u>

The maximum peak output power of the intentional radiator shall not exceed the following:


1.According to §15.247(b)(3), for systems using digital modulation in the bands of 902-928 MHz, and 2400-2483.5 MHz: 1 Watt.

2.According to §15.247(b)(4), the conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6dBi.

Directional Gain =7.34dBi>6dBi

Limit=30dBm-(7.34-6) dB=28.66dBm

Test Configuration

TEST PROCEDURE

- 1. The EUT transmitter output is connected to the Power meter. The Power meter is set to the peak power detection.
- 2. The testing follows the Measurement Procedure FCC KDB No. 558074 D01 DTS Meas. Guidance v04. 9.1.3 PKPM1 Peak-reading power meter method.

TEST RESULTS

No non-compliance noted

Page 31 of 101

Test Data

Test mode: IEEE 802.11b mode

Channel	Frequency (MHz)	Chain 1 peak Output Power (dBm)	Chain 2 peak Output Power (dBm)	Limit (dBm)		
Low	2412	20.99	21.04	30.00		
Mid	2437	20.45	20.58	30.00		
High	2462	20.60	20.83	30.00		

Channel	Frequency (MHz)	Chain 1 Average Output Power (dBm)	Chain 2 Average Output Power (dBm)
Low	2412	18.21	18.31
Mid	2437	17.36	17.55
High	2462	17.55	17.83

Test mode: IEEE 802.11g mode

Channel	Frequency (MHz)	Chain 1 peak Output Power (dBm)	Chain 2 peak Output Power (dBm)	Limit (dBm)
Low	2412	22.00	23.36	30.00
Mid	2437	22.84	23.62	30.00
High	2462	22.83	23.47	30.00

Channel	Frequency (MHz)	Chain 1 Average Output Power (dBm)	Chain 2 Average Output Power (dBm)	
Low	2412	15.07	15.17	
Mid	2437	15.62	15.47	
Hiah	2462	15.04	14.70	

Test mode: IEEE 802.11n HT20 mode

Channel	Frequency (MHz)	Chain 1 peak Output Power (dBm)	Chain 2 peak Output Power (dBm)	Total peak Output Power (dBm)	Limit (dBm)
Low	2412	20.53	21.11	23.84	28.66
Mid	2437	20.90	21.20	24.06	28.66
High	2462	21.24	21.47	24.37	28.66

Channel	Frequency (MHz)	Chain 1 Average Output Power (dBm)	Chain 2 Average Output Power (dBm)	Total Average Output Power (dBm)	
Low	2412	11.38	11.53	14.47	
Mid	2437	11.75	11.56	14.67	
High	2462	12.08	11.70	14.90	

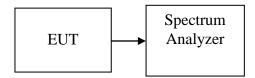
Remark: 1.Total Output Power (dBm) = 10*LOG(10^(Chain 0 Output Power / 10)+10^(Chain 1 Output Power /10))

2. Duty factor has been offset with cable loss

Page 32 of 101

7.3.PEAK POWER SPECTRAL DENSITY

LIMIT


1.According to §15.247(e), for digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

2.According to §15.247(f), the digital modulation operation of the hybrid system, with the frequency hopping turned off, shall comply with the power density requirements of paragraph (d) of this section.

Directional Gain =7.34dBi>6dBi

Limit=8dBm-(7.34-6) dB=6.66dBm

Test Configuration

TEST PROCEDURE

1.Place the EUT on the table and set it in transmitting mode.

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.

- 2.Set the spectrum analyzer as RBW = 3 kHz, VBW = 10 kHz, Span = 1.5 times the DTS bandwidth, Sweep = auto
- 3.Record the max reading.
- 4. Repeat the above procedure until the measurements for all frequencies are completed.

TEST RESULTS

No non-compliance noted

Page 33 of 101

Test Data

Test mode: IEEE 802.11b mode

Channel	Frequency (MHz)	Chain 1 PPSD (dBm)	Chain 2 PPSD (dBm)	Limit (dBm)	Result
Low	2412	-4.07	-2.87	8.00	PASS
Mid	2437	-6.35	-4.48	8.00	PASS
High	2462	-5.59	-4.87	8.00	PASS

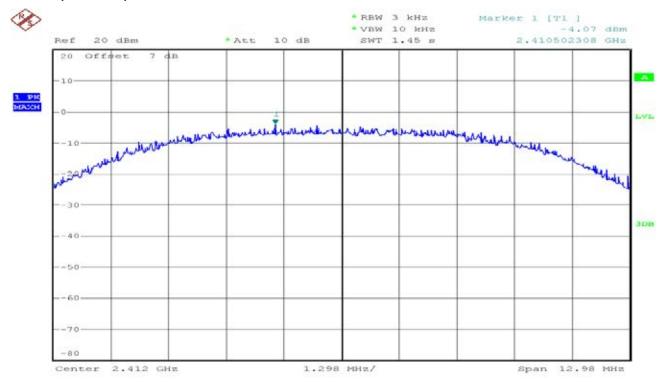
Test mode: IEEE 802.11g mode

300 mo 401 mo 40					
Channel	Frequency (MHz)	Chain 1 PPSD (dBm)	Chain 2 PPSD (dBm)	Limit (dBm)	Result
Low	2412	-10.64	-10.05	8.00	PASS
Mid	2437	-9.83	-10.48	8.00	PASS
High	2462	-11.02	-11.50	8.00	PASS

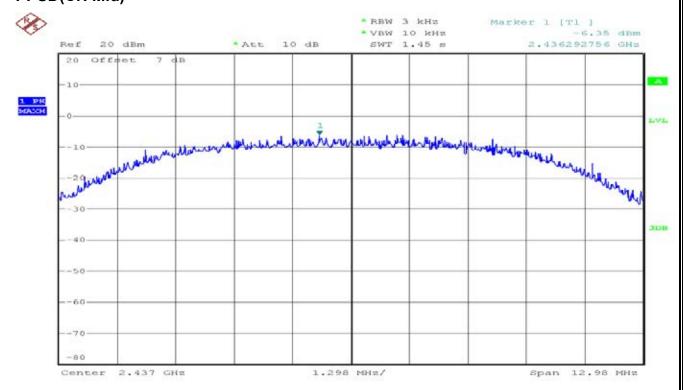
Test mode: IEEE 802.11n HT20 mode

1001 1110401 1222 00211 111 11120 111040						
Channel	Frequency (MHz)	Chain 1 PPSD (dBm)	Chain 2 PPSD (dBm)	Total PPSD (dBm)	Limit (dBm)	Result
Low	2412	-14.28	-12.56	-10.33	6.66	PASS
Mid	2437	-13.79	-13.15	-10.45	6.66	PASS
High	2462	-13.38	-11.97	-9.61	6.66	PASS

Remark:1.Total PPSD(dBm) = 10*LOG(10^(Chain 0 PPSD/ 10)+10^(Chain 1 PPSD/10))

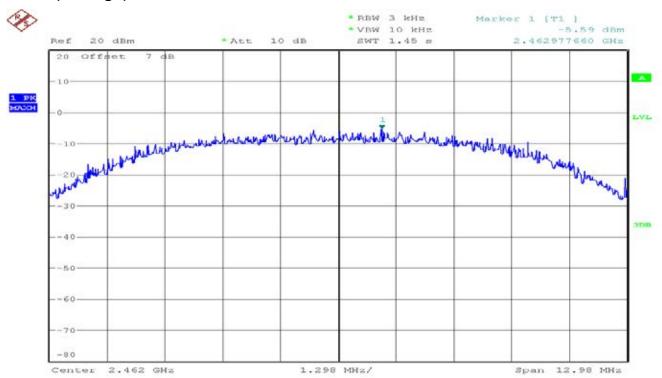


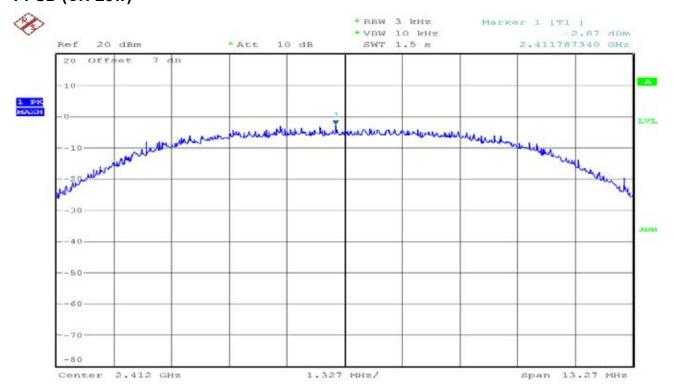
Page 34 of 101


Test Plot

IEEE 802.11b mode/Chain 1

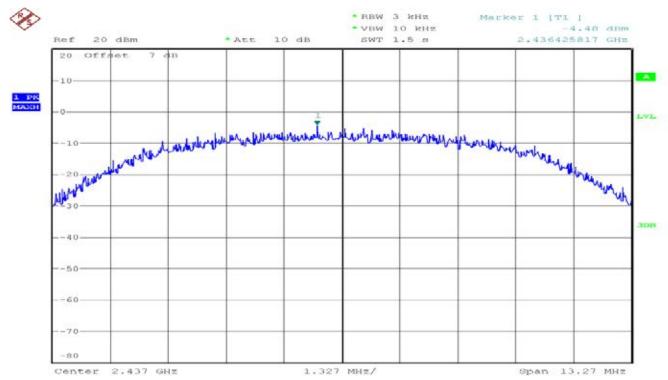
PPSD (CH Low)

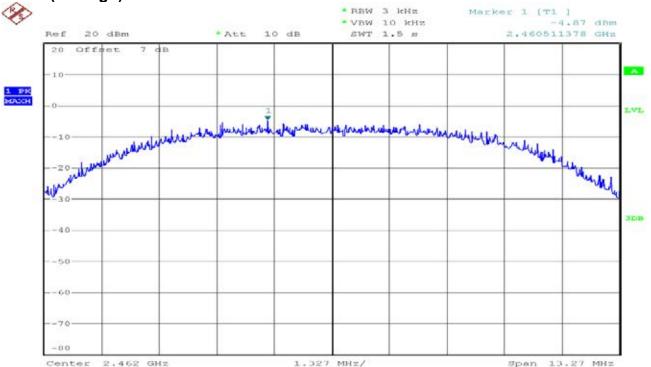

PPSD(CH Mid)


Page 35 of 101

PPSD (CH High)

IEEE 802.11b mode/Chain 2

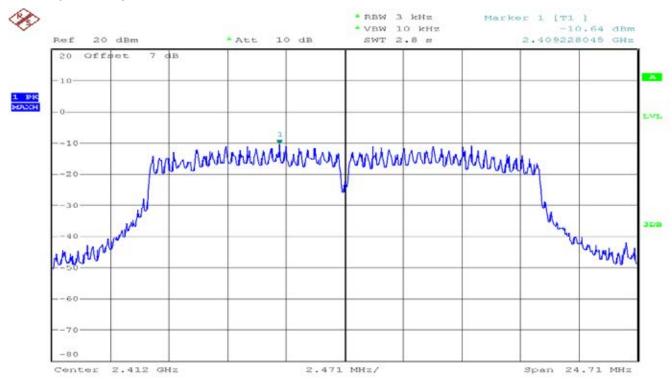

PPSD (CH Low)

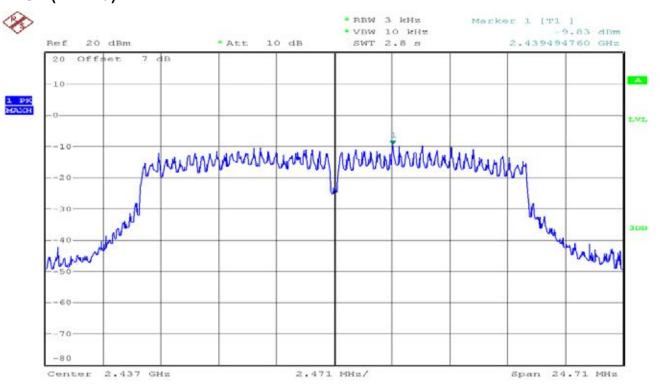


Page 36 of 101

PPSD(CH Mid)

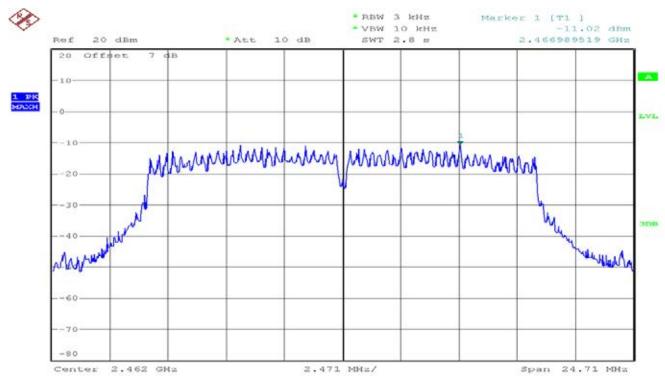
PPSD (CH High)

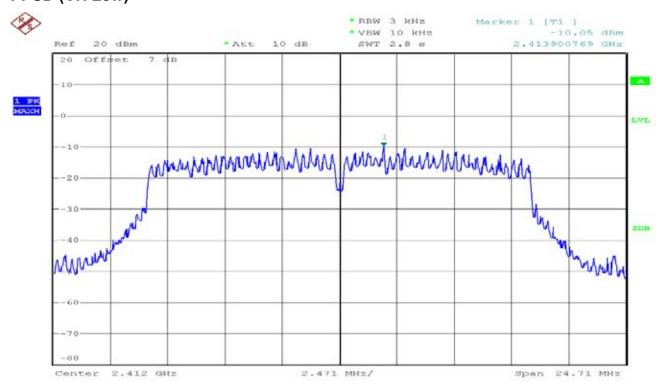



Page 37 of 101

IEEE 802.11g mode/Chain 1

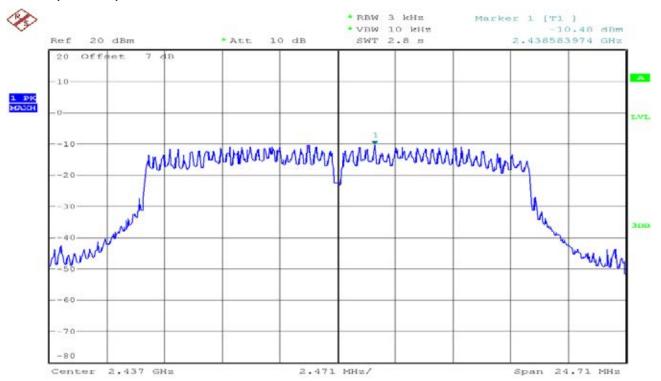
PPSD (CH Low)

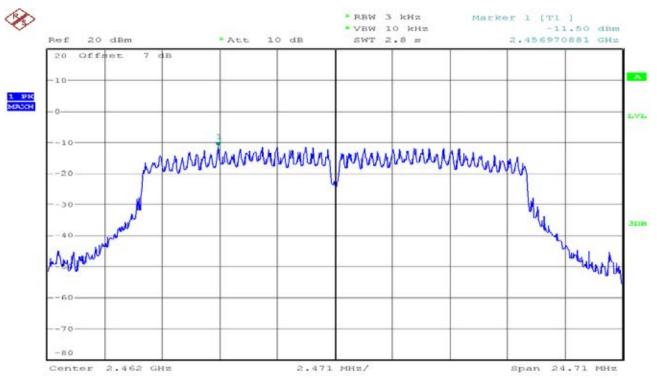

PPSD (CH Mid)


Page 38 of 101

PPSD (CH High)

IEEE 802.11g mode/Chain 2

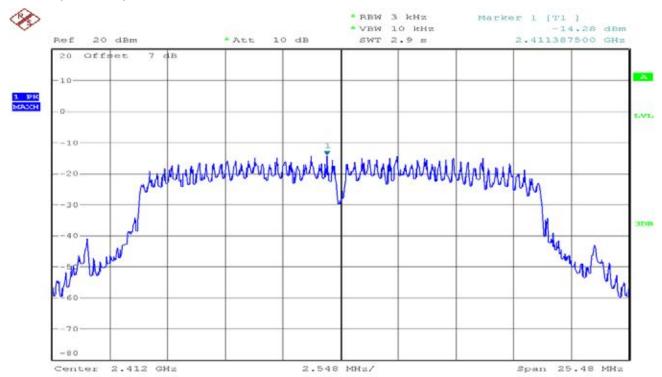

PPSD (CH Low)

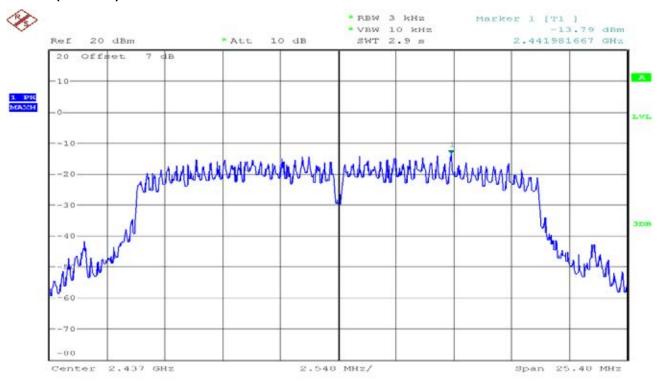


Page 39 of 101

PPSD (CH Mid)

PPSD (CH High)

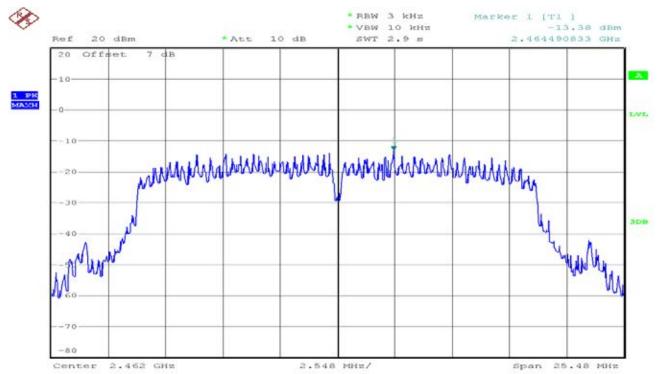


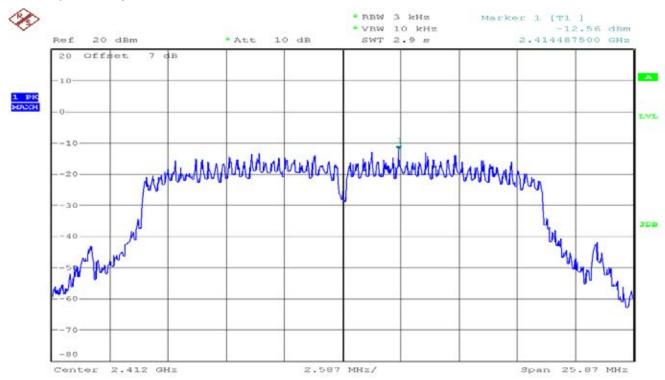

Page 40 of 101

IEEE 802.11n HT20 mode/Chain 1

PPSD (CH Low)

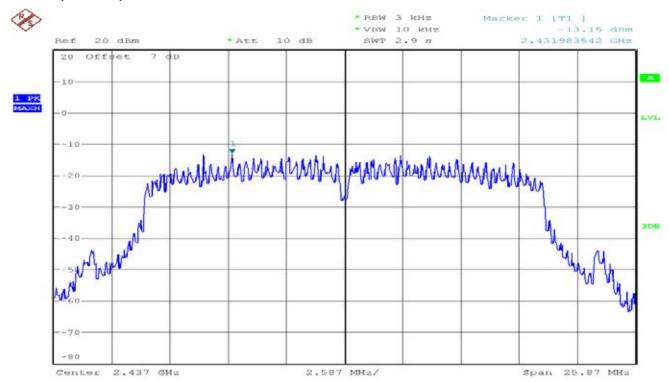
PPSD (CH Mid)

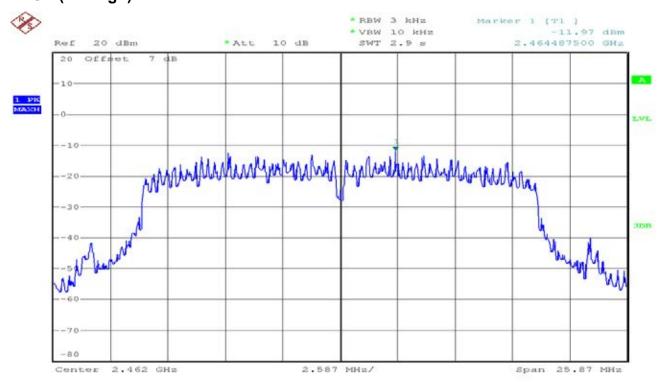



Page 41 of 101

PPSD (CH High)

IEEE 802.11n HT20 mode/Chain 2


PPSD (CH Low)

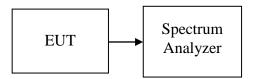


Page 42 of 101

PPSD (CH Mid)

PPSD (CH High)

Page 43 of 101


7.4.SPURIOUS EMISSIONS

Conducted Measurement

LIMIT

According to §15.247(d), in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in 15.209(a) (see Section 15.205(c)).

Test Configuration

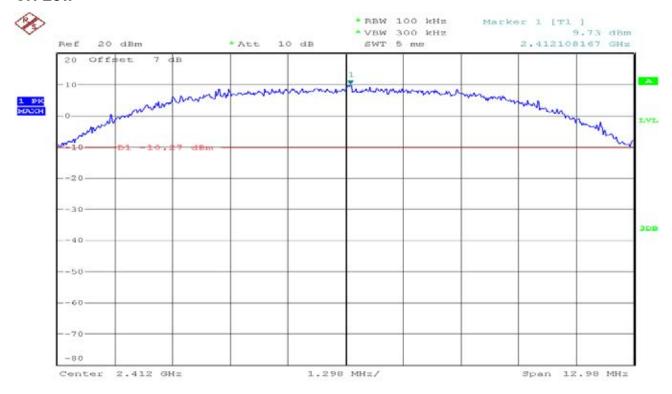
TEST PROCEDURE

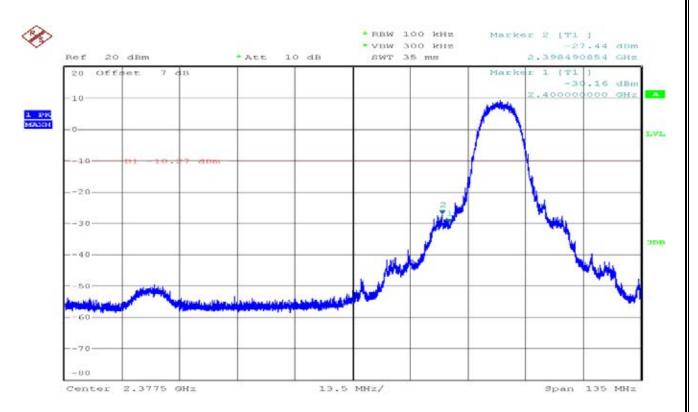
Conducted RF measurements of the transmitter output were made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.

The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

Measurements are made over the 30MHz to 25GHz range with the transmitter set to the lowest, middle, and highest channels.

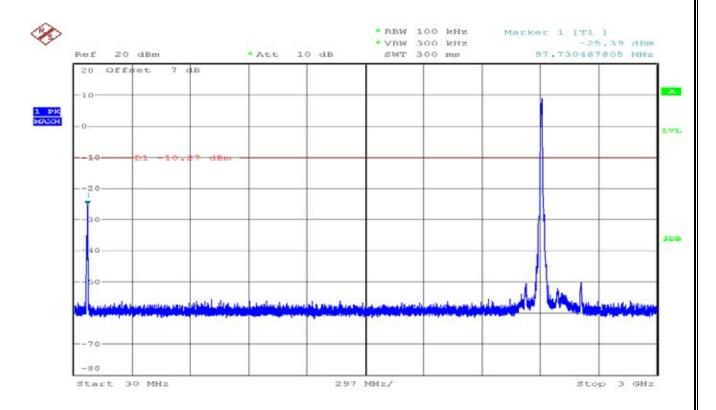
TEST RESULTS

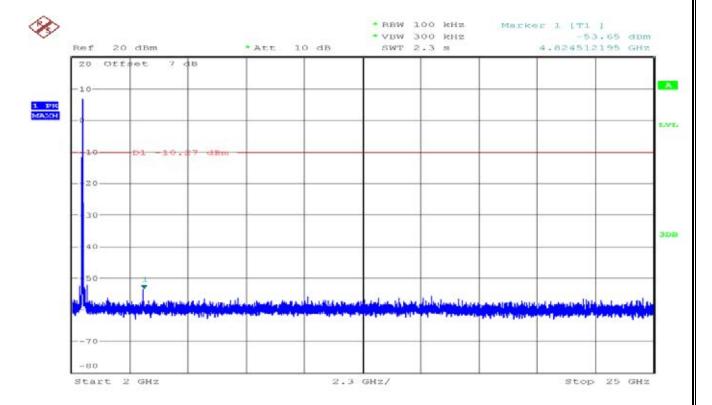

No non-compliance noted



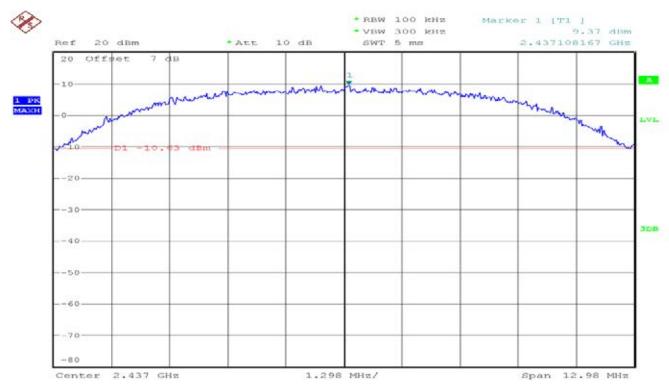
Page 44 of 101

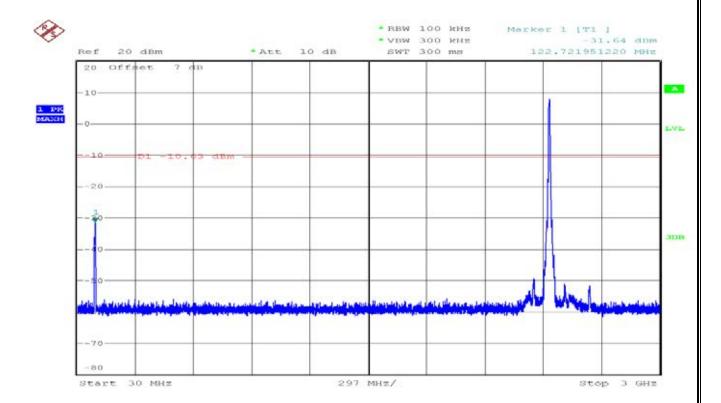
Test Plot OUT-OF-BAND SPURIOUS EMISSIONS-CONDUCTED MEASUREMENT IEEE 802.11b mode/Chain 1


CH Low

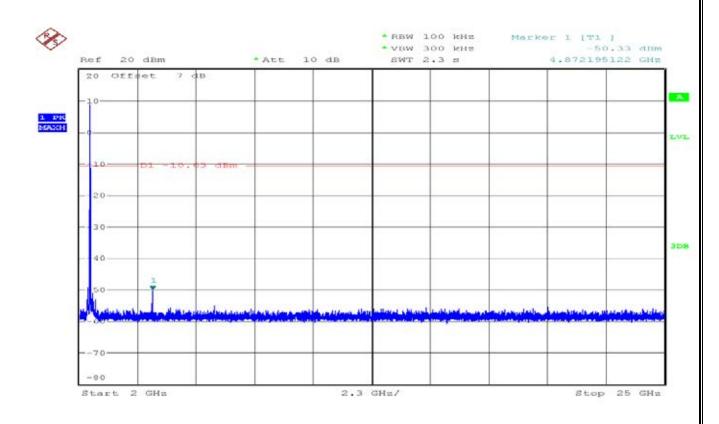


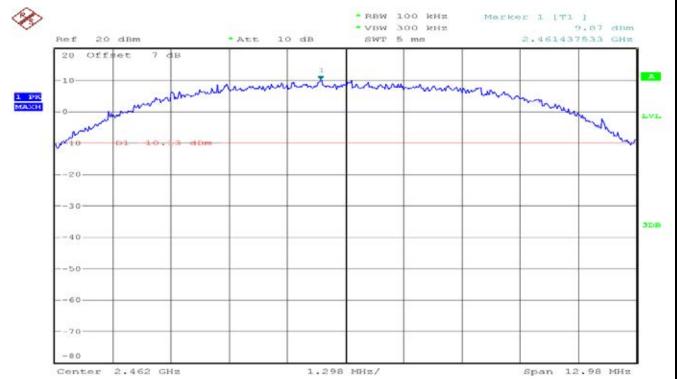
Page 45 of 101



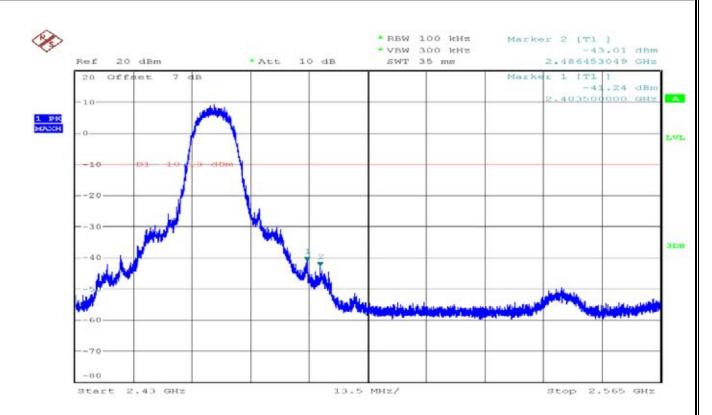


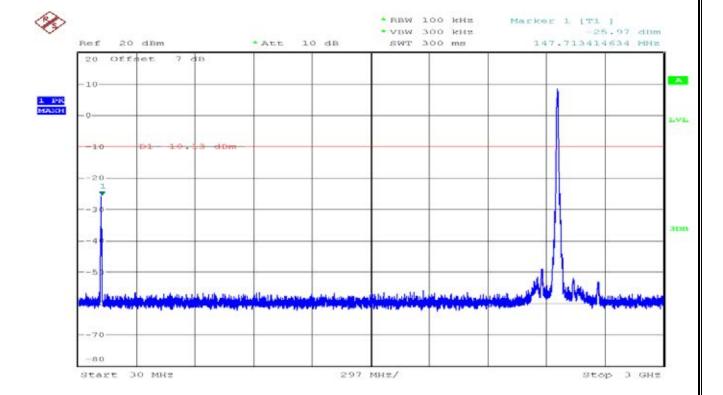
Page 46 of 101

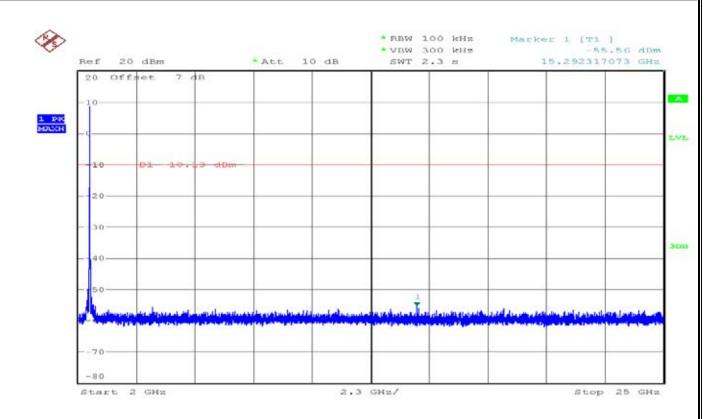

CH Mid

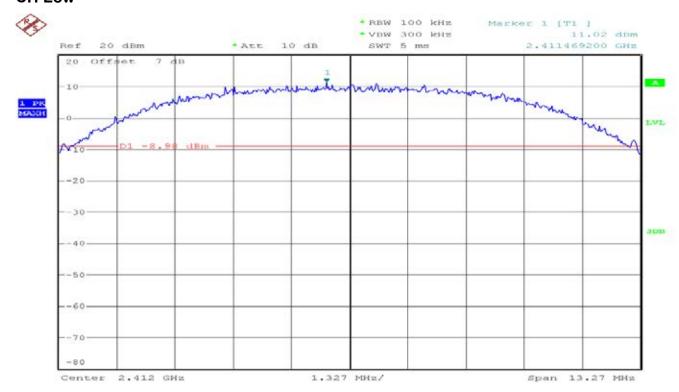


Page 47 of 101




CH High

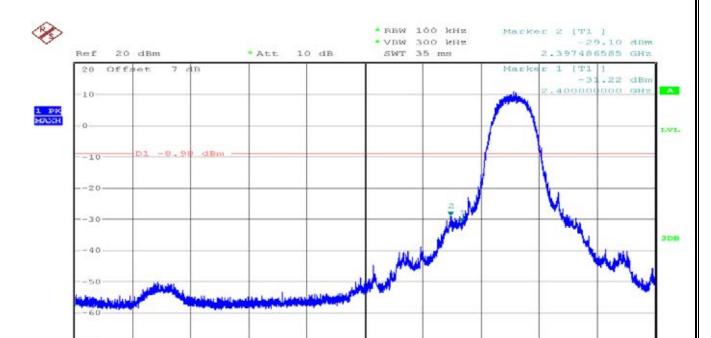

Page 48 of 101



Page 49 of 101

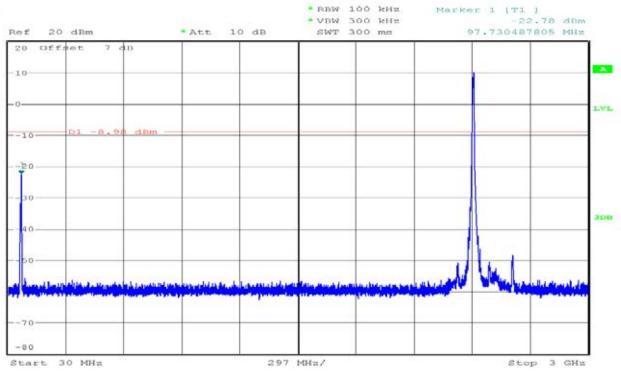
IEEE 802.11b mode/Chain 2

CH Low

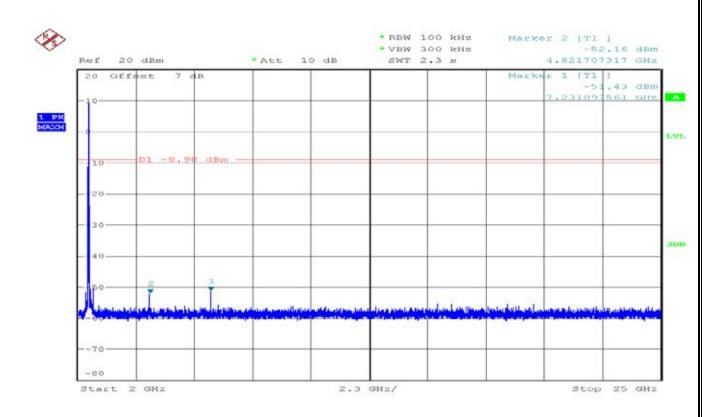


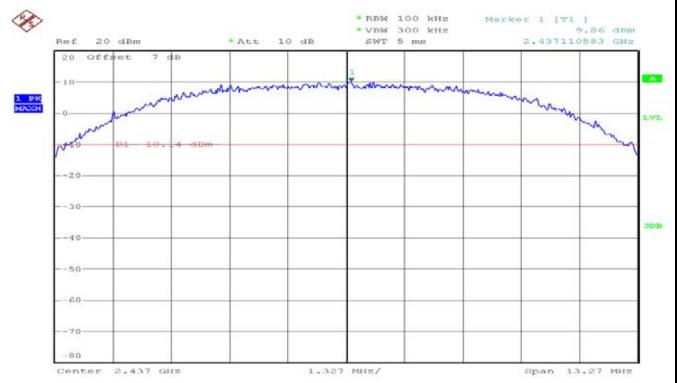
Stop 2.445 GHz

Page 50 of 101

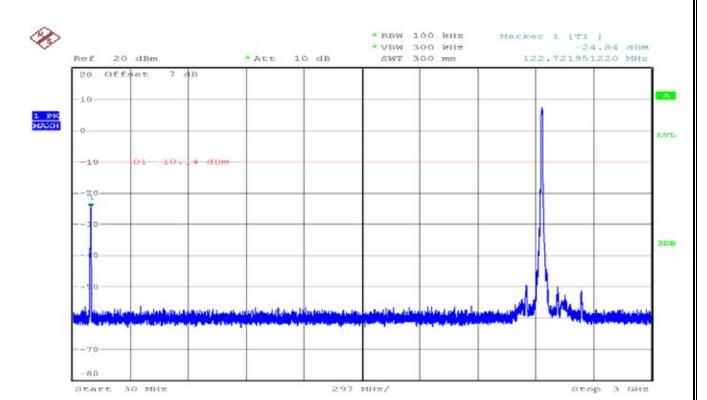


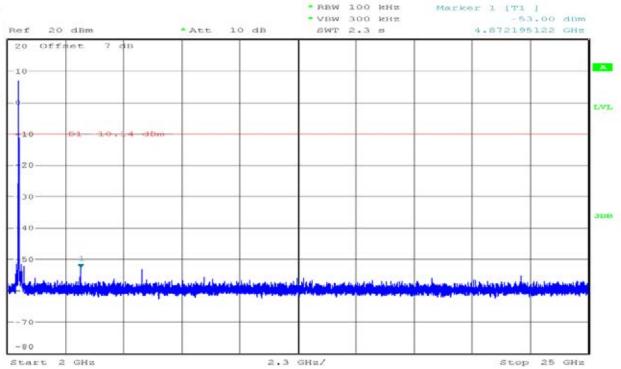
13.5 MHz/


Start 2.31 GHz

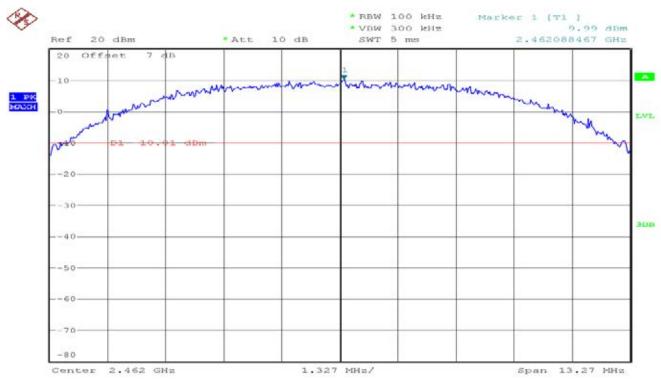


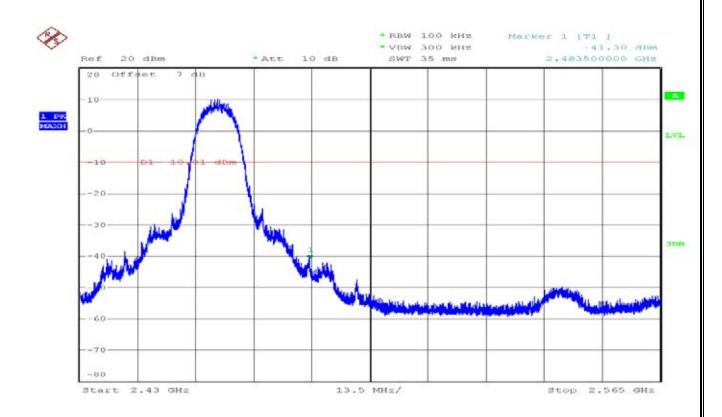
Page 51 of 101


CH Mid

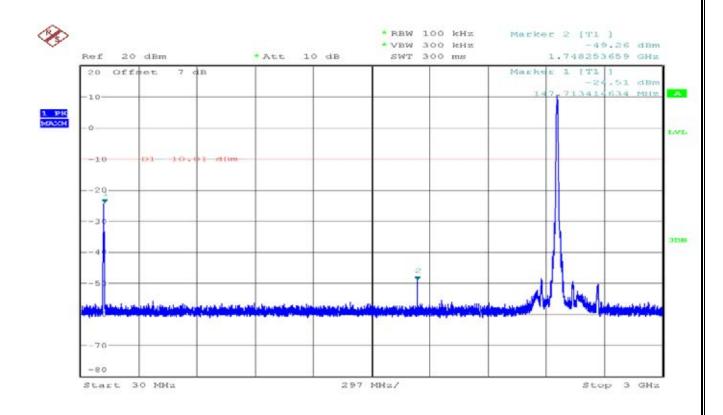


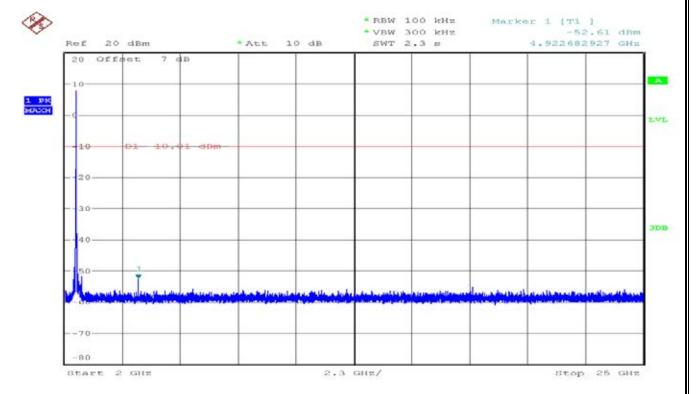
Page 52 of 101



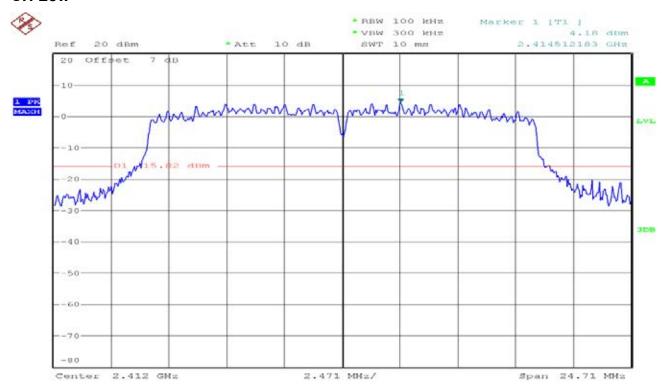


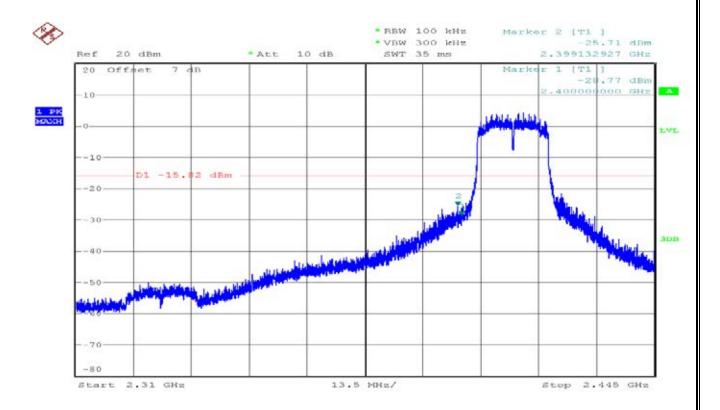
Page 53 of 101


CH High



Page 54 of 101

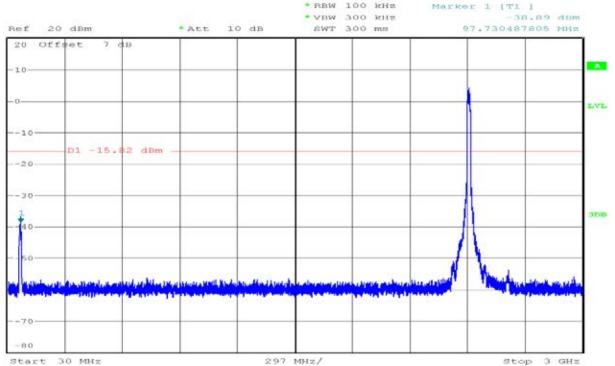




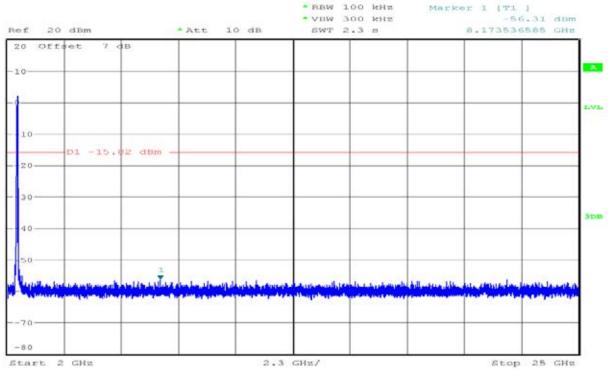
Page 55 of 101

IEEE 802.11g mode/Chain 1

CH Low



Page 56 of 101

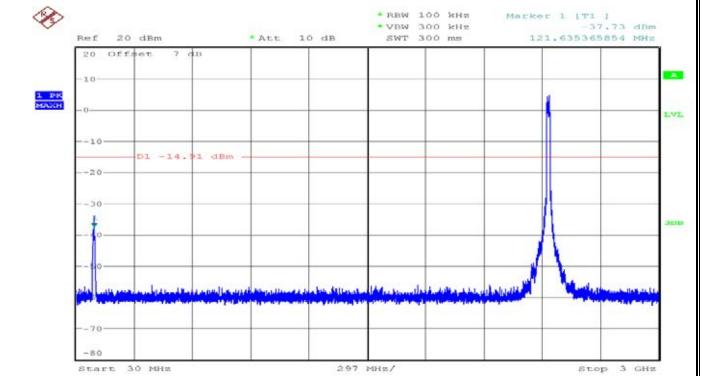


1 PK

Center 2.437 GHz



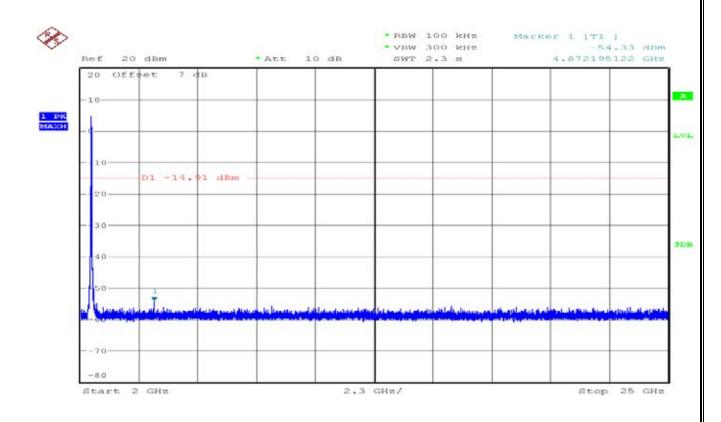
Reference No.: C180502R02-RPW Report No.:C180629R01-RPW


Span 24.71 MHz

Page 57 of 101

CH Mid

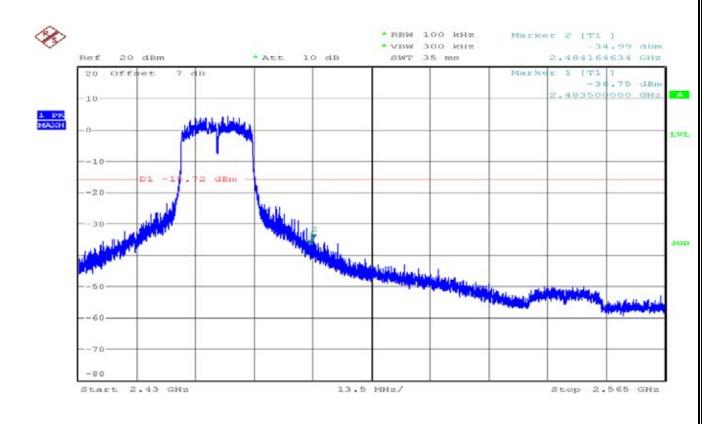
2.471 MHz/



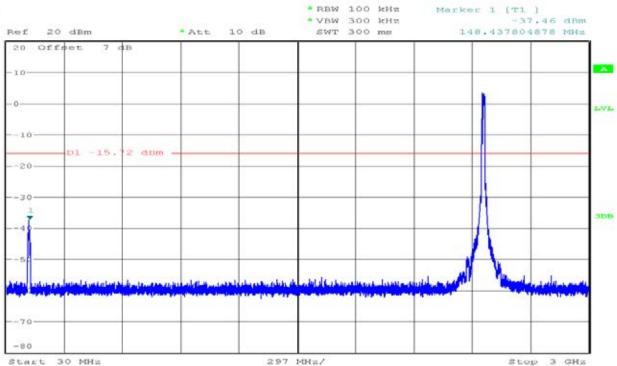
297 MHz/



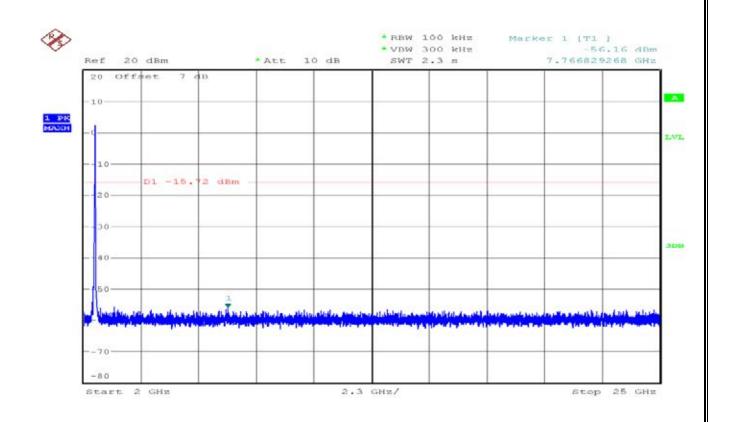
Page 58 of 101



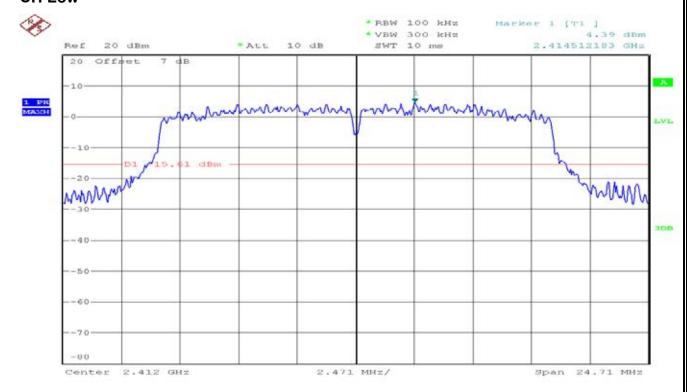
CH High



Page 59 of 101

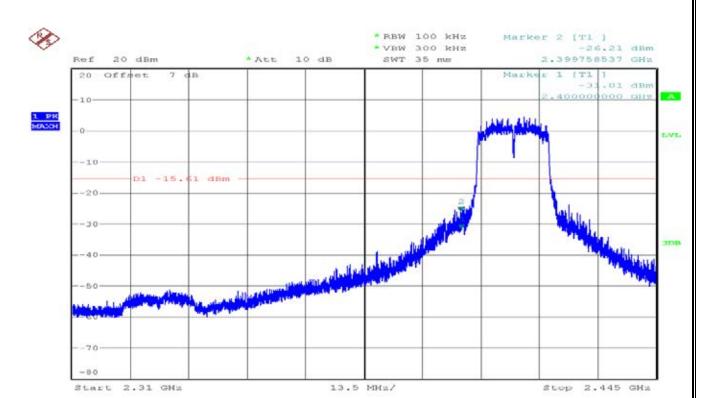


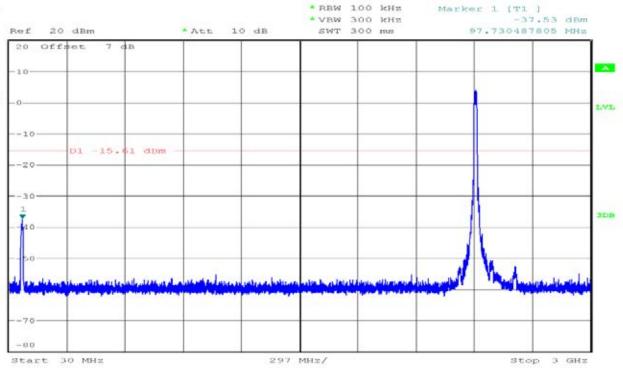
* RBW 100 kHz



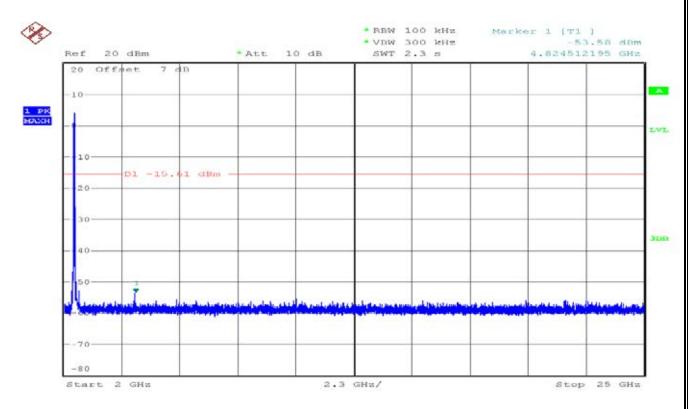
Page 60 of 101

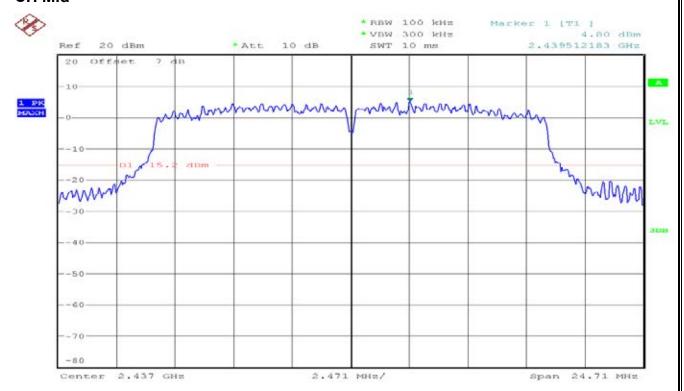
IEEE 802.11g mode/Chain 2


CH Low

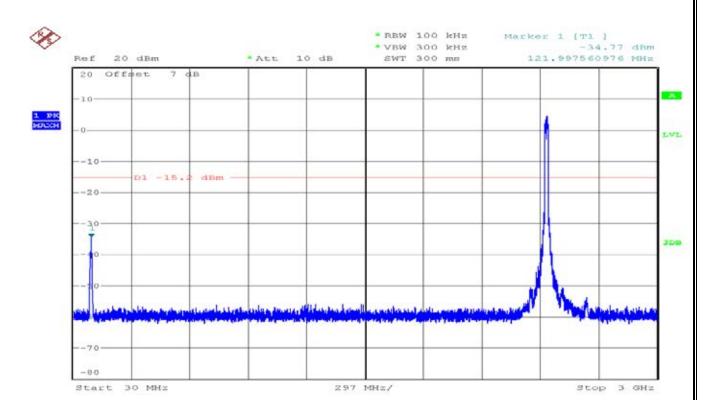


Page 61 of 101

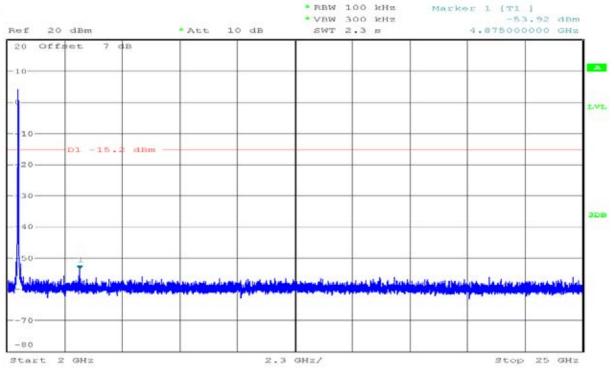




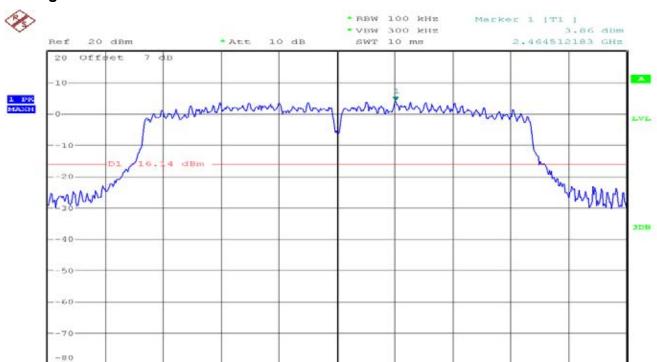
Page 62 of 101



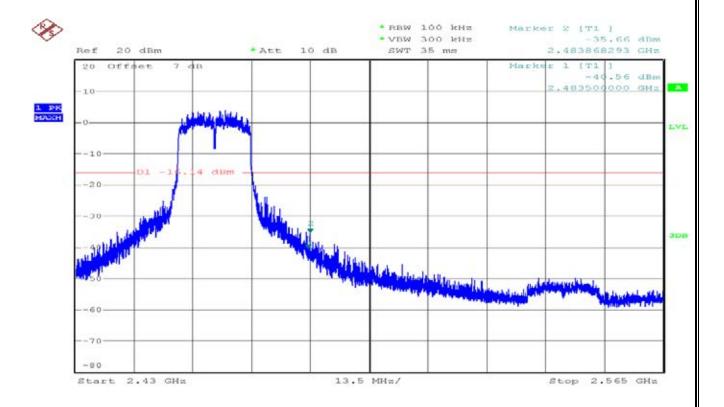
CH Mid



Page 63 of 101

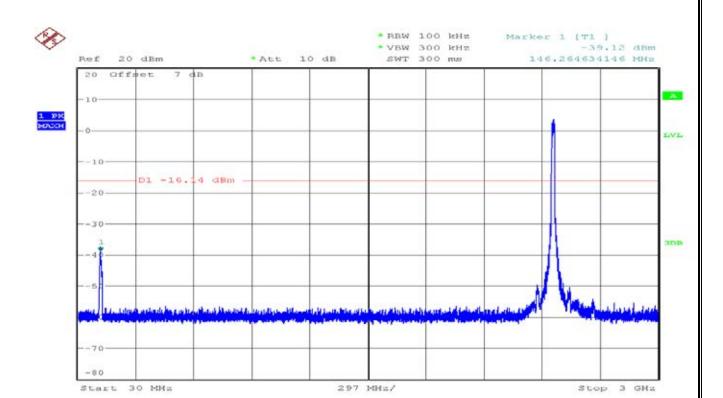

Center 2.462 GHz

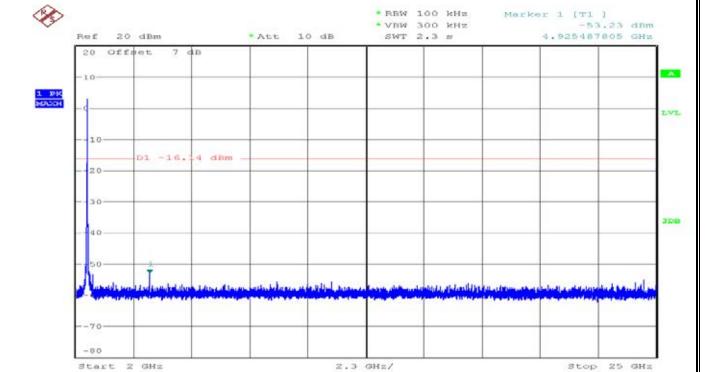
Reference No.: C180502R02-RPW Report No.:C180629R01-RPW


Span 24.71 MHz

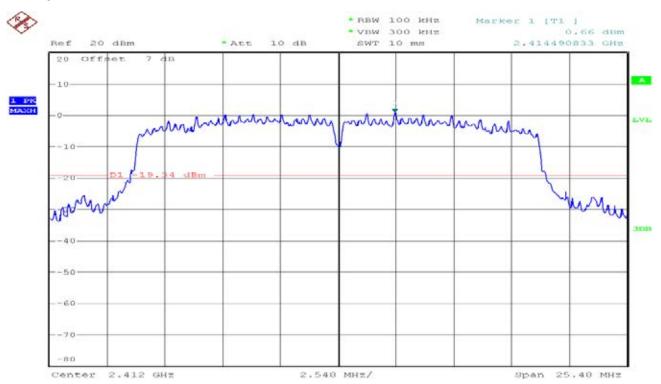
Page 64 of 101

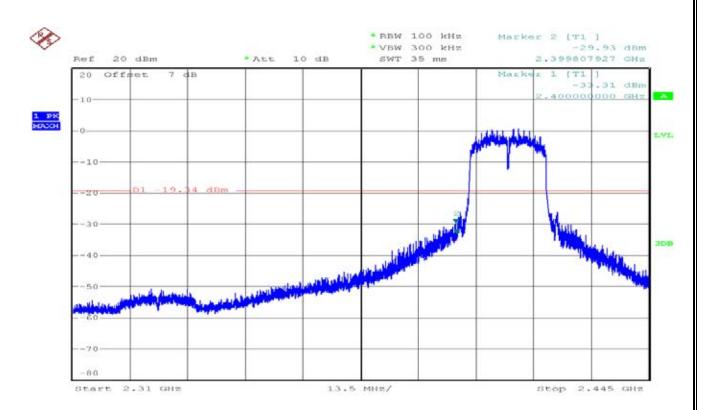
CH High




2.471 MHz/

Page 65 of 101

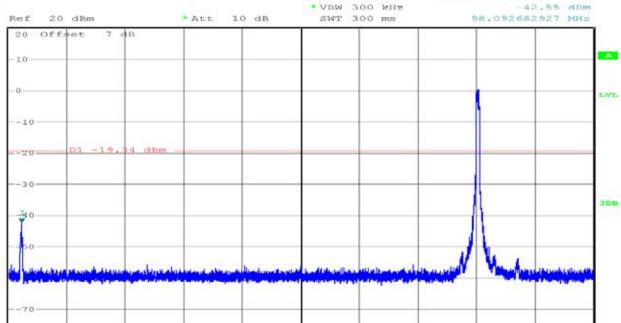




Page 66 of 101

IEEE 802.11n HT20 mode/Chain 1

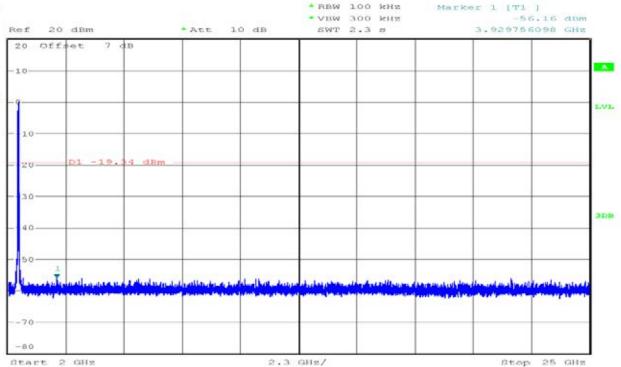
CH Low


Marker 1 [T1]

Page 67 of 101

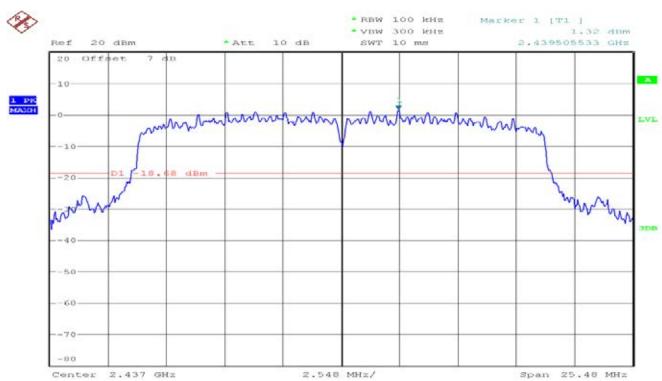
Stop 3 GHz

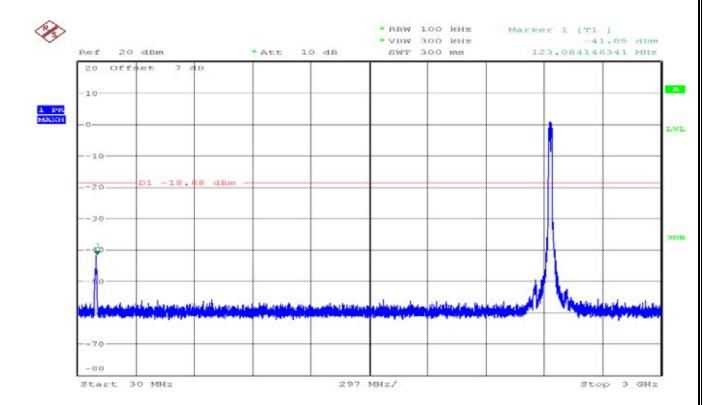
1 PK MAXH


297 MHz/

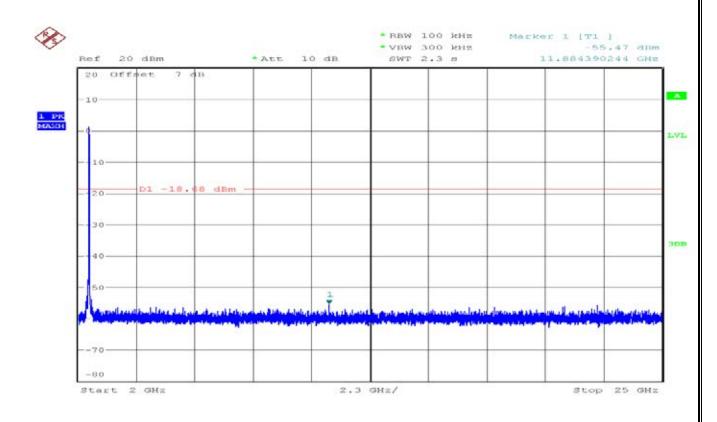
* RBW 100 kHz

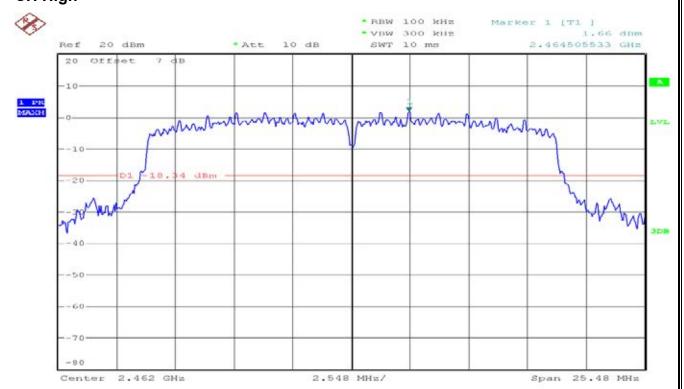
Start 30 MHz



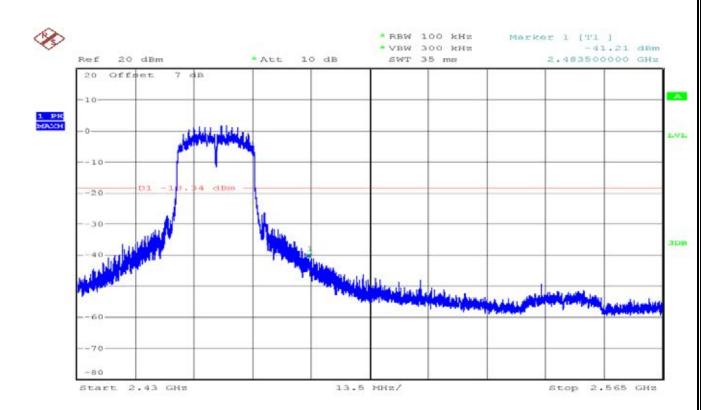


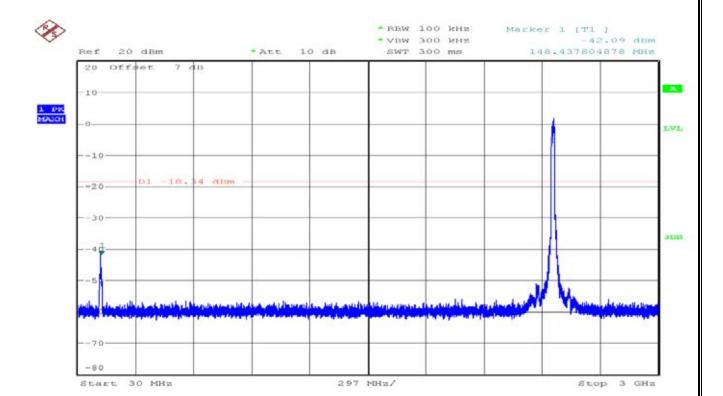
Page 68 of 101


CH Mid

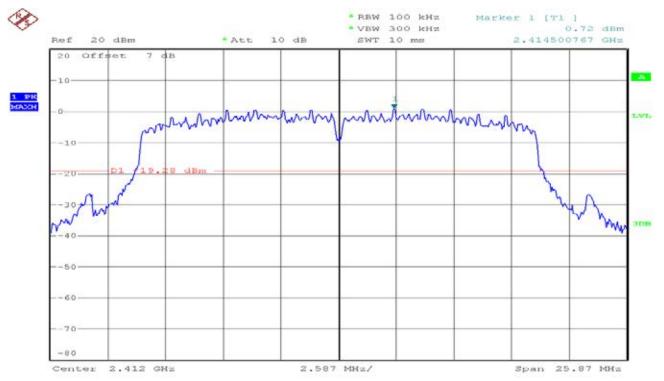


Page 69 of 101

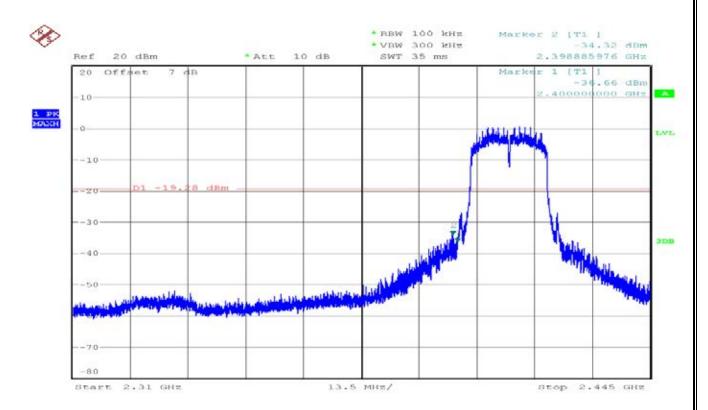



CH High

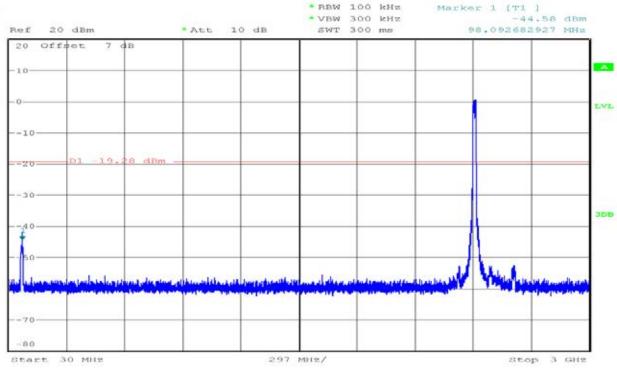

Page 70 of 101



Page 71 of 101

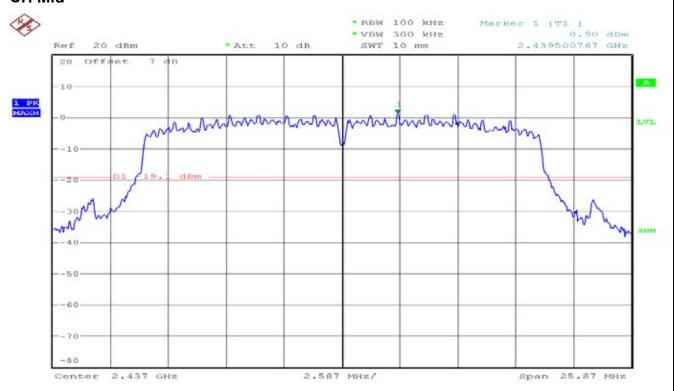

IEEE 802.11n HT20 mode/Chain 2

CH Low

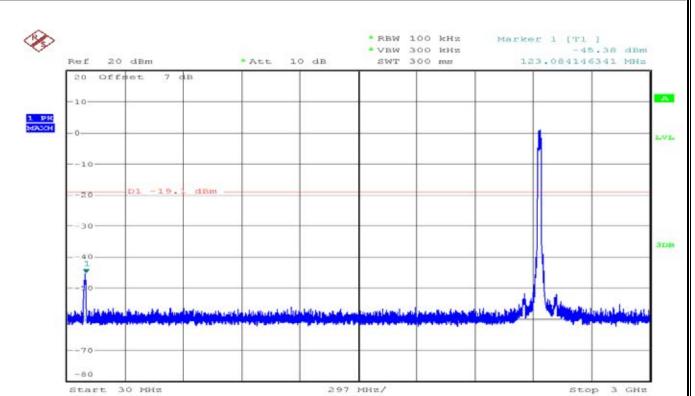


Page 72 of 101

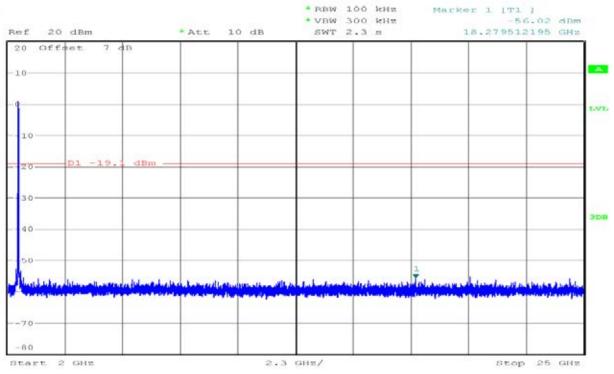
1 PK MOCH



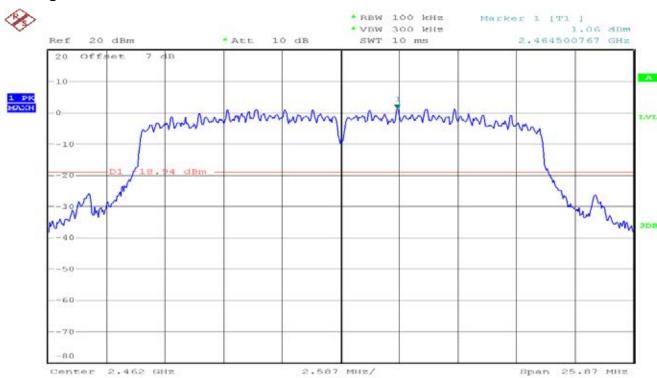
Page 73 of 101

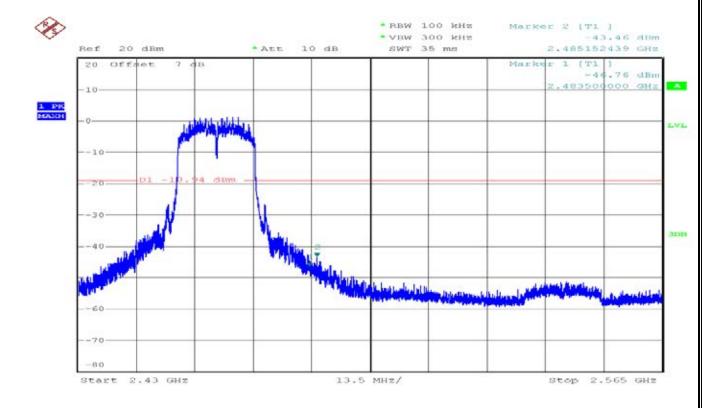


CH Mid



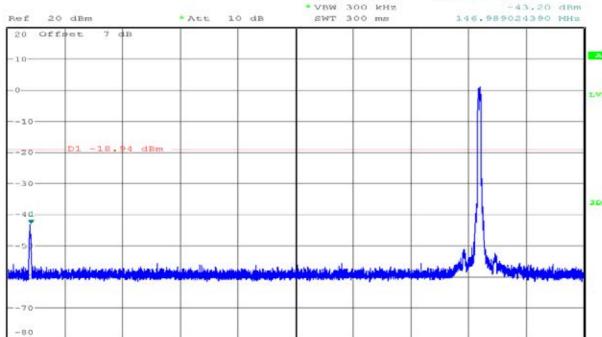
Page 74 of 101




* RBW 100 kHz

Page 75 of 101

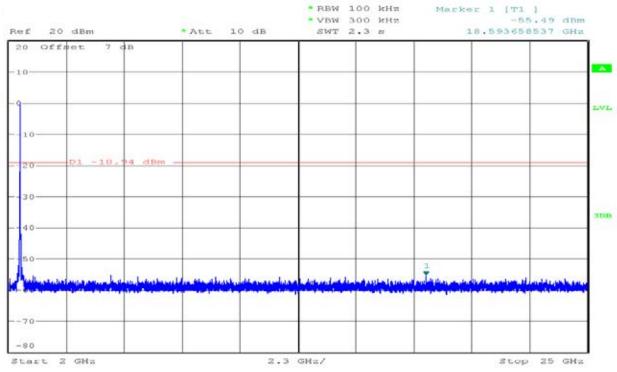
CH High


Marker 1 [T1]

Page 76 of 101

Stop 3 GHz

1 PK MACCH


297 MHz/

* RBW 100 kHz

Start 30 MHz

Page 77 of 101

7.5. RADIATED EMISSIONS

LIMIT

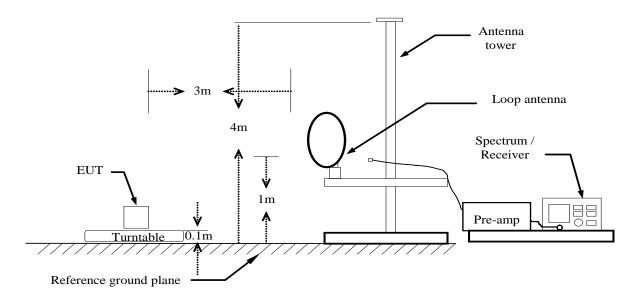
Radiated emissions from 9 kHz to 25 GHz were measured according to the methods defines in ANSI C63.10-2013. The EUT was placed above the ground plane, 0.1 meter for frequency below 1GHz and 0.1 meter for frequency above 1GHz. The interface cables and equipment positions were varied within limits of reasonable applications to determine the positions producing maximum radiated emissions

1. According to §15.209(a), except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

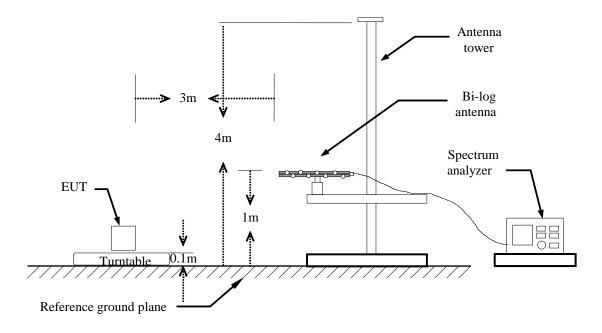
FREQUENCIES(MHz)	FIELD STRENGTH (microvolts/meter)	MEASUREMENT DISTANCE(meters)
0.009~0.490	2400/F(kHz)	300
0.490~1.705	24000/F(kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

Remark: Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

2.In the emission table above, the tighter limit applies at the band edges.

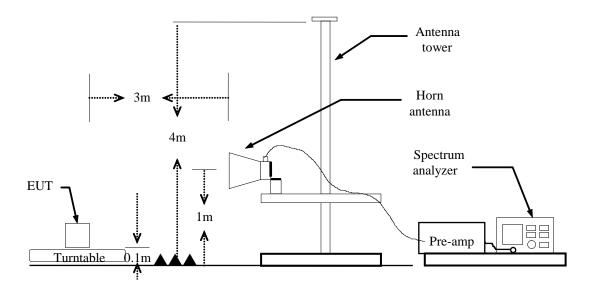

Frequency (MHz)	Field Strength (μV/m at 3-meter)	Field Strength (dBµV/m at 3-meter)
30-88	100	40
88-216	150	43.5
216-960	200	46
Above 960	500	54

Test Configuration



Page 78 of 101

Below 30MHz


Below 1 GHz

Page 79 of 101

Above 1 GHz

TEST PROCEDURE

- 1. The EUT is placed on a turntable above ground plane, which is 0.1 meter for frequency below 1GHz and 0.1 meter for frequency above 1GHz.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Set the spectrum analyzer in the following setting as:

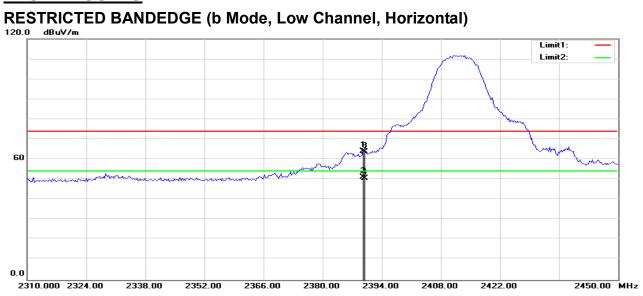
Below 1GHz:

RBW=100kHz / VBW=300kHz / Sweep=AUTO

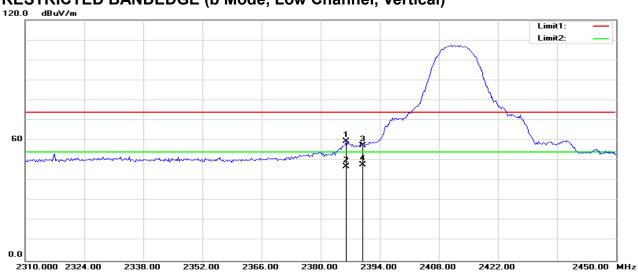
Above 1GHz:

PEAK: RBW=VBW=1MHz / Sweep=AUTO AVERAGE: RBW=1MHz / Sweep=AUTO

VBW=10Hz, when duty cycle is no less than 98 percent.

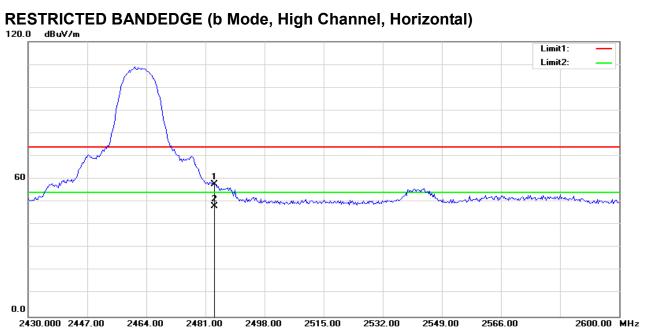

VBW \ge 1/T,when duty cycle is less than 98 percent,where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

7. Repeat above procedures until the measurements for all frequencies are complete.


Page 80 of 101

TEST RESULTS

No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)	
1	2389.647	71.60	-7.57	64.03	74.00	-9.97	100	350	peak
2	2389.647	58.69	-7.57	51.12	54.00	-2.88	100	349	AVG
3	2390.000	71.22	-7.57	63.65	74.00	-10.35	200	334	peak
4	2390.000	58.20	-7.57	50.63	54.00	-3.37	100	341	AVG

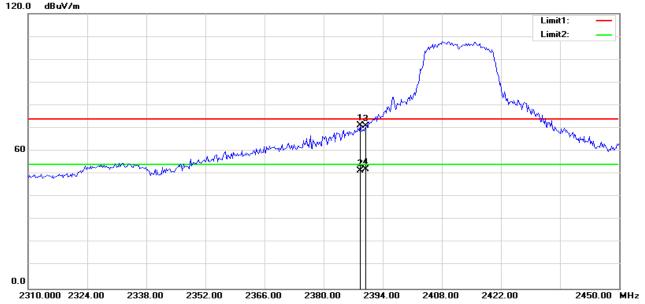

RESTRICTED BANDEDGE (b Mode, Low Channel, Vertical)

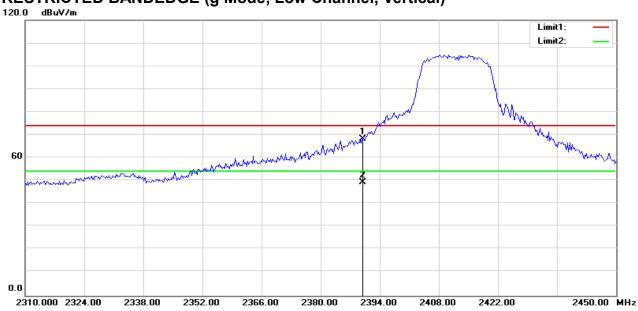
No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)	
1	2386.058	67.11	-7.59	59.52	74.00	-14.48	100	190	peak
2	2386.058	54.63	-7.59	47.04	54.00	-6.96	100	201	AVG
3	2390.000	65.17	-7.57	57.60	74.00	-16.40	100	205	peak
4	2390.000	55.43	-7.57	47.86	54.00	-6.14	100	205	AVG

Page 81 of 101

No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)	
1	2483.500	65.01	-7.26	57.75	74.00	-16.25	200	330	peak
2	2483.500	55.51	-7.26	48.25	54.00	-5.75	100	342	AVG

RESTRICTED BANDEDGE (b Mode, High Channel, Vertical)

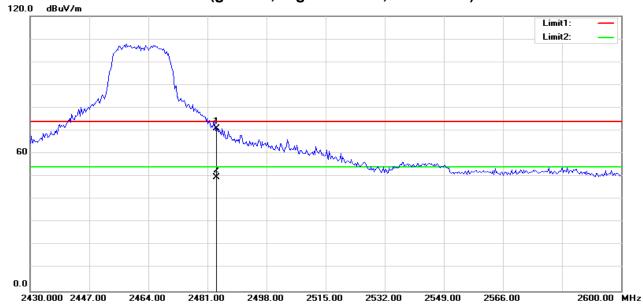

No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)	
1	2483.500	62.19	-7.26	54.93	74.00	-19.07	200	107	peak
2	2483.500	52.79	-7.26	45.53	54.00	-8.47	100	87	AVG


Page 82 of 101

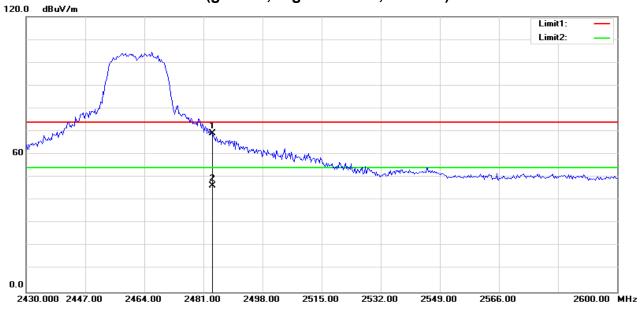
RESTRICTED BANDEDGE (g Mode, Low Channel, Horizontal)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)	
1	2388.750	78.73	-7.58	71.15	74.00	-2.85	100	29	peak
2	2388.750	58.93	-7.58	51.35	54.00	-2.65	100	32	AVG
3	2390.000	78.62	-7.57	71.05	74.00	-2.95	200	328	peak
4	2390.000	59.66	-7.57	52.09	54.00	-1.91	100	322	AVG

RESTRICTED BANDEDGE (g Mode, Low Channel, Vertical)

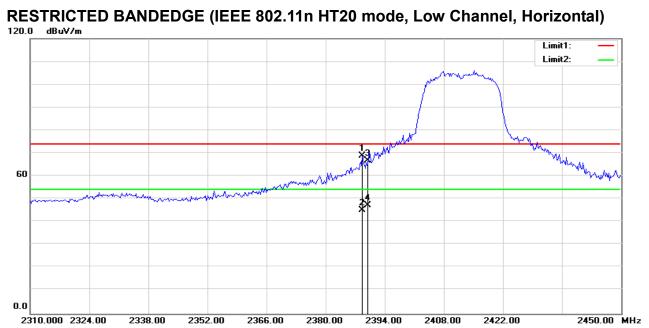


No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)	
1	2390.000	75.79	-7.57	68.22	74.00	-5.78	200	125	peak
2	2390.000	56.94	-7.57	49.37	54.00	-4.63	200	100	AVG

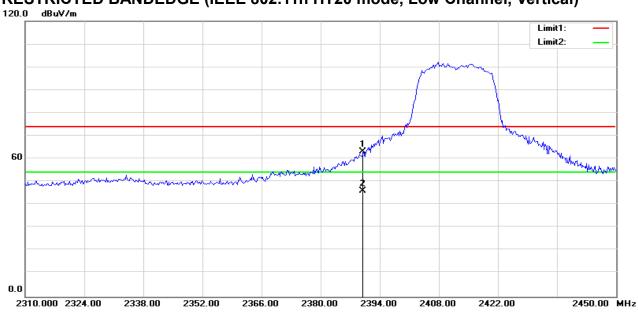

Page 83 of 101

RESTRICTED BANDEDGE (g Mode, High Channel, Horizontal)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)	
1	2483.500	78.13	-7.26	70.87	74.00	-3.13	200	254	peak
2	2483.500	56.87	-7.26	49.61	54.00	-4.39	100	30	AVG


RESTRICTED BANDEDGE (g Mode, High Channel, Vertical)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)	
1	2483.500	76.54	-7.26	69.28	74.00	-4.72	200	35	peak
2	2483.500	53.73	-7.26	46.47	54.00	-7.53	100	89	AVG



Page 84 of 101

No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)	
1	2388.750	76.49	-7.58	68.91	74.00	-5.09	100	339	peak
2	2388.750	52.88	-7.58	45.30	54.00	-8.70	200	323	AVG
3	2390.000	74.43	-7.57	66.86	74.00	-7.14	200	336	peak
4	2390.000	54.69	-7.57	47.12	54.00	-6.88	100	337	AVG

RESTRICTED BANDEDGE (IEEE 802.11n HT20 mode, Low Channel, Vertical)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)	
1	2390.000	70.62	-7.57	63.05	74.00	-10.95	200	59	peak
2	2390.000	53.66	-7.57	46.09	54.00	-7.91	100	102	AVG

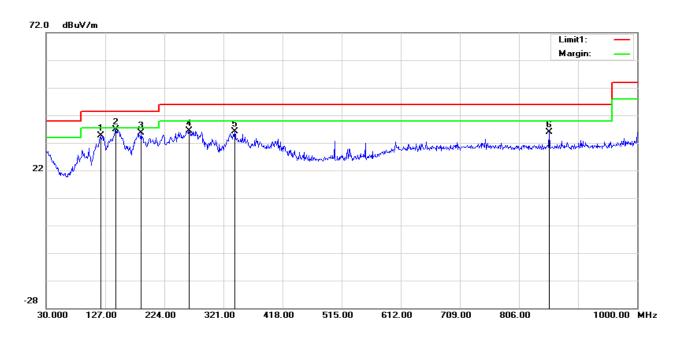
Page 85 of 101

RESTRICTED BANDEDGE (IEEE 802.11n HT20 mode, High Channel, Horizontal) 120.0 dBuV/m

No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)	
1	2483.500	77.68	-7.26	70.42	74.00	-3.58	200	117	peak
2	2483.500	55.19	-7.26	47.93	54.00	-6.07	100	38	AVG
3	2484.215	78.62	-7.26	71.36	74.00	-2.64	100	345	peak
4	2484.215	57.49	-7.26	50.23	54.00	-3.77	100	339	AVG

RESTRICTED BANDEDGE (IEEE 802.11n HT20 mode, High Channel, Vertical)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)	
1	2483.500	70.58	-7.26	63.32	74.00	-10.68	100	127	peak
2	2483.500	50.53	-7.26	43.27	54.00	-10.73	100	197	AVG
3	2484.487	70.92	-7.26	63.66	74.00	-10.34	100	103	peak
4	2484.487	49.31	-7.26	42.05	54.00	-11.95	100	300	AVG

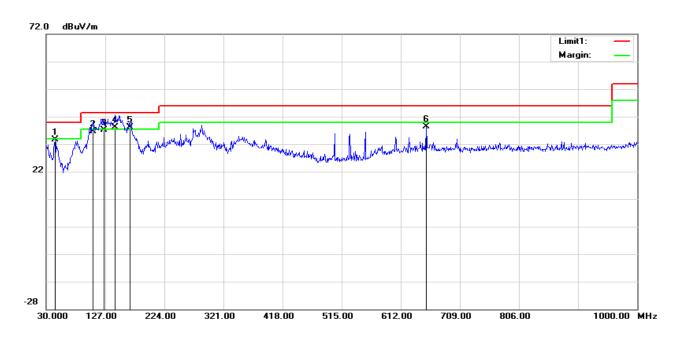

Page 86 of 101

Test Result of Radiated Emission

Below 30MHz and above 18GHz. The measured value have enough margin over 20dB than the limit, therefore they are not reported.

30MHz-1GHz

Operation Mode:	Normal Link	Test Date:	2018-6-20
Temperature:	25°C	Tested by:	Lily.Wang
Humidity:	40% RH	Polarity:	Hor.



No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)	
1	119.2400	20.71	13.90	34.61	43.50	-8.89	200	236	peak
2	144.4600	22.74	14.26	37.00	43.50	-6.50	200	199	peak
3	186.1700	21.01	14.57	35.58	43.50	-7.92	200	112	peak
4	264.7400	20.57	15.70	36.27	46.00	-9.73	100	244	peak
5	339.4300	17.80	18.38	36.18	46.00	-9.82	100	43	peak
6	855.4700	9.89	26.02	35.91	46.00	-10.09	100	24	peak

Page 87 of 101

Operation Mode:	Normal Link	Test Date:	2018-6-20
Temperature:	25°C	Tested by:	Lily.Wang
Humidity:	40% RH	Polarity:	Ver.

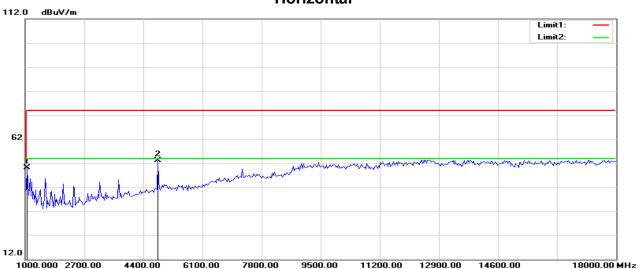
No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)	
1	44.5500	14.96	18.58	33.54	40.00	-6.46	100	228	peak
2	106.6930	22.93	13.73	36.66	43.50	-6.84	100	137	QP
3	124.5560	23.18	13.98	37.16	43.50	-6.34	100	124	QP
4	143.5750	23.92	14.25	38.17	43.50	-5.33	100	119	QP
5	168.0010	23.77	14.46	38.23	43.50	-5.27	100	74	QP
6	653.7100	12.98	25.41	38.39	46.00	-7.61	100	32	peak

Remark:

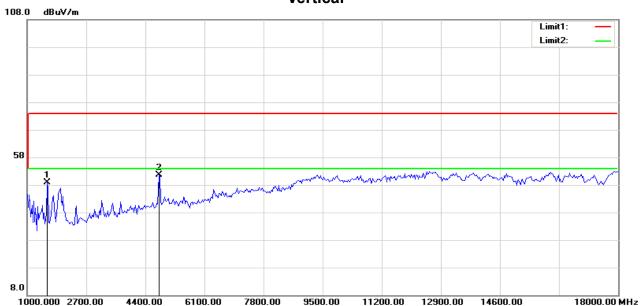
- 1. Measuring frequencies from 30 MHz to the 1GHz (No emission found between lowest internal used/generated frequency to 30 MHz).
- 2. Radiated emissions measured in frequency range from 30 MHz to 1000MHz were made with an instrument using peak/quasi-peak detector mode.
- 3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 4. Margin (dB) = Result (dBuV/m) Limit (dBuV/m).

Test Date: 2018-5-9

Page 88 of 101


Above 1 GHz

Operation Mode: TX / IEEE 802.11b / CH Low


Temperature: 25°C Tested by: Lily.Wang

Humidity: 40 % RH **Polarity:** Ver. / Hor.

Horizontal

Reading No. Frequency Correct Result Limit Margin Height Degree Remark Factor(dB/m) (dBuV/m) (deg.) (MHz) (dBuV) (dBuV/m) (dB) (cm) 1 1054.487 61.62 -11.52 50.10 74.00 -23.90 100 200 peak 2 4814.103 53.54 -0.33 53.21 74.00 -20.79 100 171 peak

No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)	
1	1572.115	58.78	-9.85	48.93	74.00	-25.07	100	305	peak
2	4786.859	52.11	-0.43	51.68	74.00	-22.32	100	145	peak

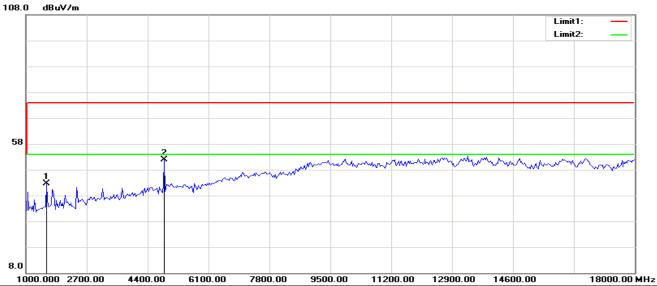
Page 89 of 101

Operation Mode: TX / IEEE 802.11b / CH Mid

Temperature: 25°C


Humidity: 40 % RH

Test Date: 2018-5-9


Tested by: Lily.Wang

Polarity: Ver. / Hor.

Horizontal

No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)	
1	1572.115	57.22	-9.85	47.37	74.00	-26.63	100	298	peak
2	4868.590	52.66	-0.12	52.54	74.00	-21.46	100	330	peak

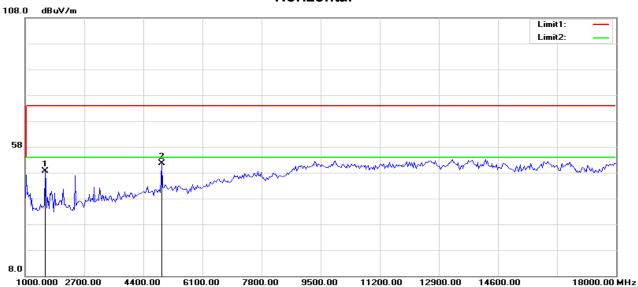
No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)	
1	1572.115	52.50	-9.85	42.65	74.00	-31.35	100	322	peak
2	4868.590	51.96	-0.12	51.84	74.00	-22.16	100	303	peak

Page 90 of 101

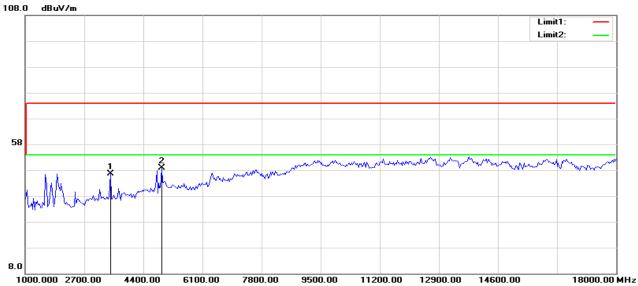
Operation Mode:

TX / IEEE 802.11b / CH High

Temperature: 25°C


Humidity: 40 % RH

Test Date: 2018-5-9


Tested by: Lily. Wang

Polarity: Ver. / Hor.

Horizontal

No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)	
1	1572.115	58.53	-9.85	48.68	74.00	-25.32	100	297	peak
2	4923.077	51.59	0.08	51.67	74.00	-22.33	100	256	peak

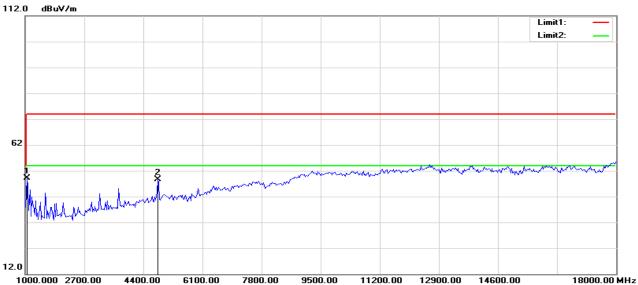
No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)	
1	3451.923	51.73	-5.01	46.72	74.00	-27.28	100	160	peak
2	4923.077	48.87	0.08	48.95	74.00	-25.05	100	237	peak

Page 91 of 101

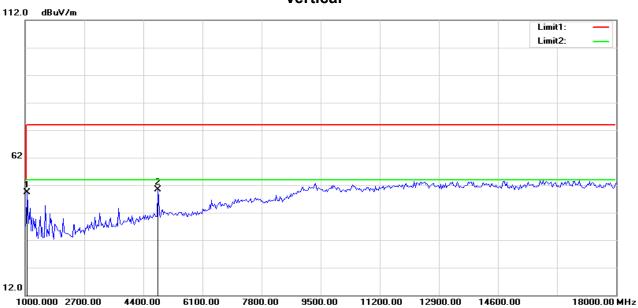
Operation Mode:

TX / IEEE 802.11g / CH Low

Test Date: 2018-5-9


Temperature: 25°C

Tested by: Lily. Wang


Humidity: 40 % RH

Polarity: Ver. / Hor.

Horizontal

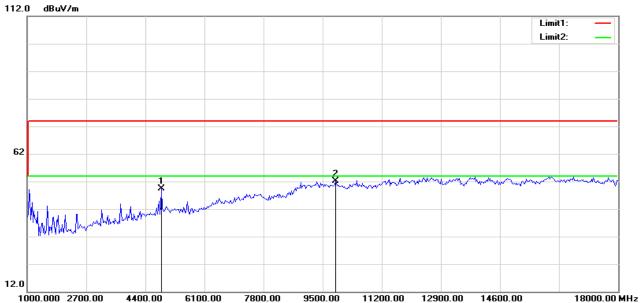
No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)	
1	1054.487	60.65	-11.52	49.13	74.00	-24.87	100	215	peak
2	4814.103	48.92	-0.33	48.59	74.00	-25.41	100	290	peak

No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)	
1	1054.487	60.88	-11.52	49.36	74.00	-24.64	100	202	peak
2	4814.103	50.82	-0.33	50.49	74.00	-23.51	100	283	peak

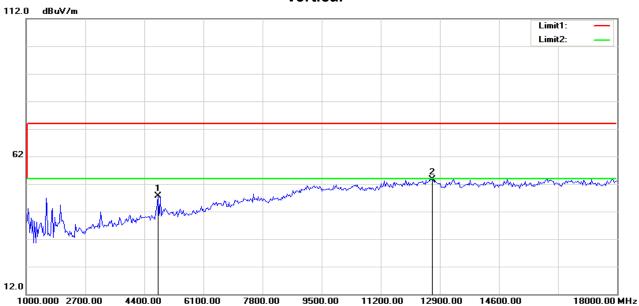
Page 92 of 101

Operation Mode: TX / IEEE 802.11g / CH Mid

Temperature: 25°C


Humidity: 40 % RH

Test Date: 2018-5-9


Tested by: Lily.Wang

Polarity: Ver. / Hor.

Horizontal

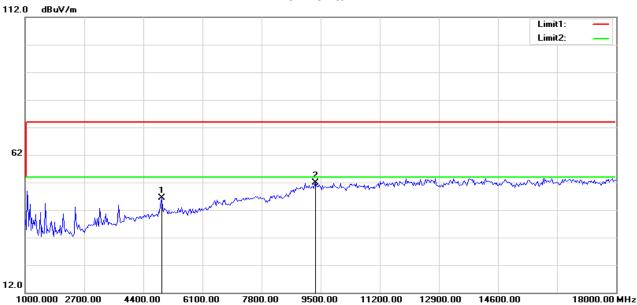
	1000.000 E100.	00 1100.00	0100.00 100	0.00 0000.00	11200.00	12000.00	1 1000.00	1000	0.00 MILE
No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)	
1	4868.590	49.46	-0.12	49.34	74.00	-24.66	100	166	peak
2	9881.410	40.70	11.35	52.05	74.00	-21.95	100	4	peak

No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)	
1	4786.859	48.11	-0.43	47.68	74.00	-26.32	100	169	peak
2	12687.500	38.39	15.25	53.64	74.00	-20.36	100	219	peak

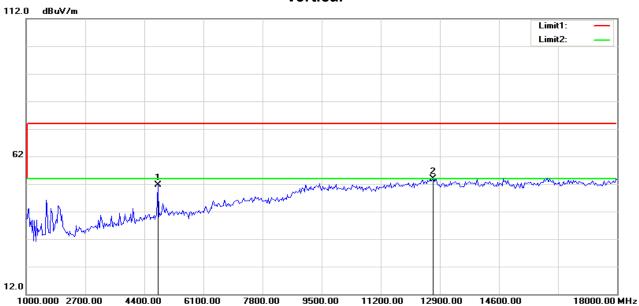
Page 93 of 101

Operation Mode: TX / IEEE 802.11g / CH High

Temperature: 25°C


Humidity: 40 % RH

Test Date: 2018-5-9

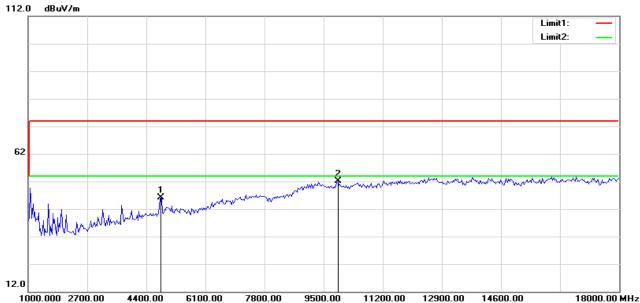

Tested by: Lily.Wang

Polarity: Ver. / Hor.

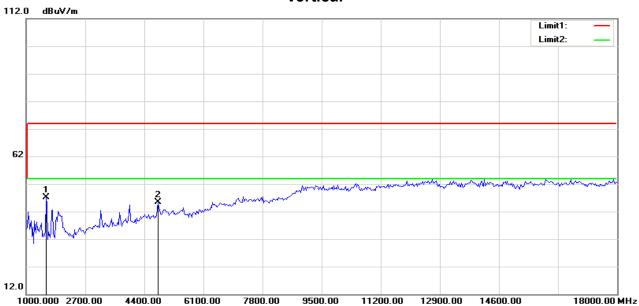
Horizontal

	1000.000 2700.	.00 4400.00	0100.00 700	0.00 3300.00	11200.00	12300.00	14000.00	1000	U. UU MI12
No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)	
1	4923.077	46.41	0.08	46.49	74.00	-27.51	100	293	peak
2	9363.782	40.88	10.98	51.86	74.00	-22.14	100	293	peak

No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)	
1	4786.859	52.15	-0.43	51.72	74.00	-22.28	100	158	peak
2	12714.744	38.69	15.18	53.87	74.00	-20.13	100	233	peak


Page 94 of 101

Operation Mode: TX / IEEE 802.11n HT20 mode / CH Low Test Date: 2018-5-9

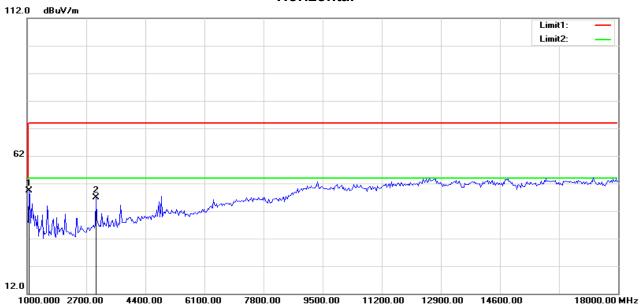

Temperature: 25°C **Tested by:** Lily.Wang

Humidity: 40 % RH **Polarity:** Ver. / Hor.

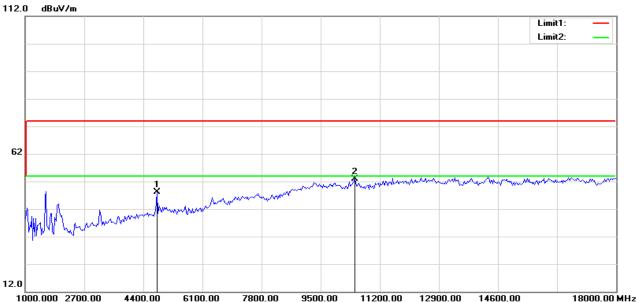
Horizontal

	1000.000 E100.	1100.00	0100.00 100	0.00 0000.00	11200.00	12000.00	1 1000.00	1000	0.00 MILE
No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)	
1	4814.103	46.37	-0.33	46.04	74.00	-27.96	100	288	peak
2	9908.654	40.79	11.36	52.15	74.00	-21.85	100	130	peak

No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)	
1	1572.115	57.04	-9.85	47.19	74.00	-26.81	100	306	peak
2	4786.859	45.90	-0.43	45.47	74.00	-28.53	100	171	peak


Page 95 of 101

Operation Mode: TX / IEEE 802.11n HT20 mode / CH Mid Test Date: 2018-5-9


Temperature: 25°C **Tested by:** Lily.Wang

Humidity: 40 % RH **Polarity:** Ver. / Hor.

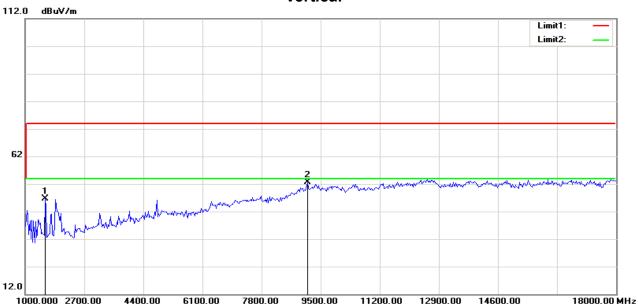
Horizontal

No. Frequency Reading Correct Result Limit Margin Height Degree Remark Factor(dB/m) (dBuV/m) (dBuV/m) (MHz) (dBuV) (dB) (cm) (deg.) 1054.487 60.98 -11.52 49.46 74.00 -24.54 100 200 1 peak 52.83 46.96 74.00 100 354 2 2988.782 -5.87 -27.04 peak

				0.00					0.001
No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)	
1	4786.859	48.66	-0.43	48.23	74.00	-25.77	100	290	peak
2	10480.769	40.94	11.88	52.82	74.00	-21.18	100	261	peak

Page 96 of 101

Operation Mode: TX / IEEE 802.11n HT20 mode / CH High Test Date: 2018-5-9


Temperature: 25°C **Tested by:**Lily.Wang

Humidity: 40 % RH **Polarity:** Ver. / Hor.

Horizontal

	1000.000 2100	.00 4400.00	, 0100.00 100	0.00 3300.00	11200.00	12300.00	14000.00	1000	0.00 1.1112
No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)	
1	1054.487	60.61	-11.52	49.09	74.00	-24.91	100	196	peak
2	12687.500	38.44	15.25	53.69	74.00	-20.31	100	352	peak

No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)	
1	1572.115	56.57	-9.85	46.72	74.00	-27.28	100	308	peak
2	9118.590	42.28	10.45	52.73	74.00	-21.27	100	40	peak

Page 97 of 101

7.6.POWERLINE CONDUCTED EMISSIONS

LIMIT

According to §15.207(a), except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

Frequency Range (MHz)	Limits (dΒμV)				
(WITZ)	Quasi-peak	Average			
0.15 to 0.50	66 to 56*	56 to 46*			
0.50 to 5	56	46			
5 to 30	60	50			

^{*} Decreases with the logarithm of the frequency.

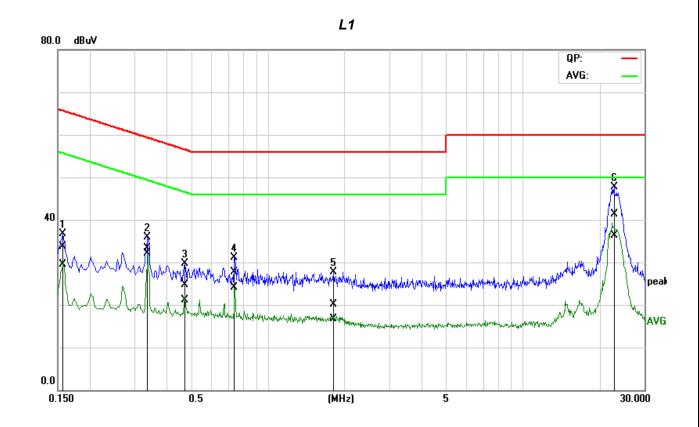
Test Configuration

See test photographs attached in Setup photo for the actual connections between EUT and support equipment.

TEST PROCEDURE

- 1. The EUT was placed on a turntable, which is 0.1m above ground plane.
- 2.Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 3. Repeat above procedures until all frequency measured were complete.

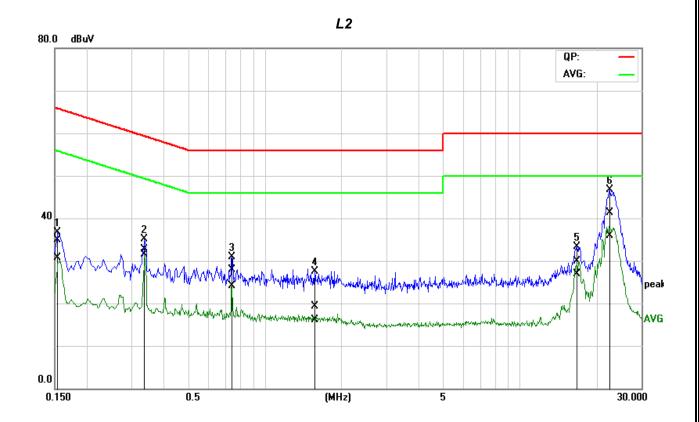
TEST RESULTS


The initial step in collecting conducted data is a spectrum analyzer peak scan of the measurement range. Significant peaks are then marked as shown on the following data page, and these signals are then quasi-peaked.

Page 98 of 101

TEST DATA

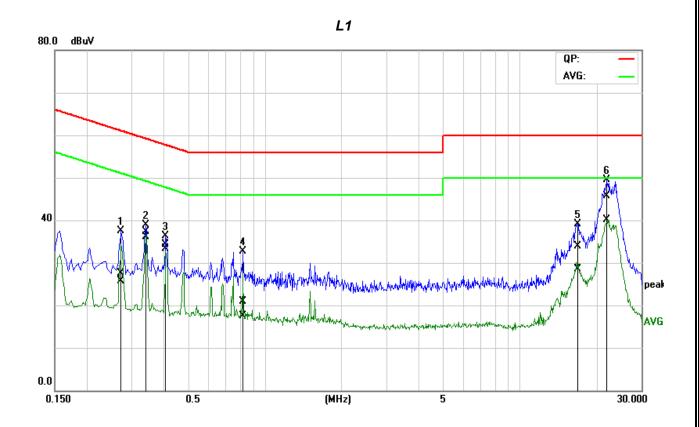
Job No.:	C180629R01	Date:	2018/5/11
Model No.:	Pro2 Plus	Time:	16:00:46
Standard:	FCC Class B	Temp.(C)/Hum.(%):	22(C)/48%
Test item:	Conduction test	Test By:	Lily.Wang
Line:	L1	Test Voltage:	AC 120V/60Hz
Model:		Description:	


No.	Frequency	QuasiPeak reading	Average reading	Correction factor	QuasiPeak result	Average result	QuasiPeak limit	Average limit	QuasiPeak margin	Average margin	Remark
	(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)	
1	0.1578	14.34	10.07	19.43	33.77	29.50	65.57	55.58	-31.80	-26.08	Pass
2	0.3372	13.87	12.60	19.48	33.35	32.08	59.27	49.27	-25.92	-17.19	Pass
3	0.4724	5.29	1.68	19.49	24.78	21.17	56.47	46.47	-31.69	-25.30	Pass
4	0.7429	8.22	4.55	19.54	27.76	24.09	56.00	46.00	-28.24	-21.91	Pass
5	1.7873	0.51	-2.97	19.58	20.09	16.61	56.00	46.00	-35.91	-29.39	Pass
6*	22.8031	21.30	16.22	20.08	41.38	36.30	60.00	50.00	-18.62	-13.70	Pass

Note: 1. L1 = Line One (Live Line) / L2 = Line Two (Neutral Line).

Page 99 of 101

Job No.:	C180629R01	Date:	2018/5/11
Model No.:	Pro2 Plus	Time:	16:07:40
Standard:	FCC Class B	Temp.(C)/Hum.(%):	22(C)/48%
Test item:	Conduction test	Test By:	Lily.Wang
Line:	L2	Test Voltage:	AC 120V/60Hz
Model:		Description:	


No.	Frequency	QuasiPeak reading	Average reading	Correction factor	QuasiPeak result	Average result	QuasiPeak limit	Average limit	QuasiPeak margin	Average margin	Remark
	(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)	
1	0.1554	15.41	11.19	19.43	34.84	30.62	65.70	55.71	-30.86	-25.09	Pass
2	0.3378	13.31	11.93	19.48	32.79	31.41	59.26	49.26	-26.47	-17.85	Pass
3	0.7433	8.27	4.55	19.54	27.81	24.09	56.00	46.00	-28.19	-21.91	Pass
4	1.5708	-0.18	-3.46	19.58	19.40	16.12	56.00	46.00	-36.60	-29.88	Pass
5	16.7850	9.89	6.75	20.06	29.95	26.81	60.00	50.00	-30.05	-23.19	Pass
6*	22.6590	21.20	15.87	20.08	41.28	35.95	60.00	50.00	-18.72	-14.05	Pass

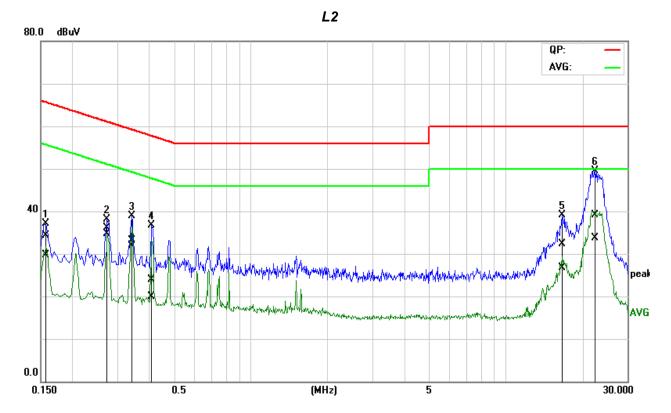
Note: 1. L1 = Line One (Live Line) / L2 = Line Two (Neutral Line).

Page 100 of 101

Job No.:	C180629R01	Date:	2018/5/11
Model No.:	Pro2 Plus	Time:	14:09:46
Standard:	FCC Class B	Temp.(C)/Hum.(%):	22(C)/48%
Test item:	Conduction test	Test By:	Lily.Wang
Line:	L1	Test Voltage:	AC 240V/60Hz
Model:		Description:	

No.	Frequency	QuasiPeak	Average	Correction	QuasiPeak	Average	QuasiPeak	Average	QuasiPeak	Average	Remark
		reading	reading	factor	result	result	limit	limit	margin	margin	
	(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)	
1	0.2741	8.03	6.31	19.46	27.49	25.77	60.99	50.99	-33.50	-25.22	Pass
2	0.3409	17.74	16.73	19.47	37.21	36.20	59.18	49.18	-21.97	-12.98	Pass
3	0.4099	14.83	13.82	19.47	34.30	33.29	57.65	47.65	-23.35	-14.36	Pass
4	0.8277	1.28	-1.98	19.54	20.82	17.56	56.00	46.00	-35.18	-28.44	Pass
5	16.9635	14.00	8.41	20.00	34.00	28.41	60.00	50.00	-26.00	-21.59	Pass
6*	21.9846	25.66	20.18	20.02	45.68	40.20	60.00	50.00	-14.32	-9.80	Pass

Note: 1. L1 = Line One (Live Line) / L2 = Line Two (Neutral Line).



Model:

Reference No.: C180502R02-RPW Report No.:C180629R01-RPW Page 101 of 101

Job No.:	C180629R01	Date:	2018/5/11
Model No.:	Pro2 Plus	Time:	14:16:17
Standard:	FCC Class B	Temp.(C)/Hum.(%):	22(C)/48%
Test item:	Conduction test	Test By:	Lily.Wang
Line:	L2	Test Voltage:	AC 240V/60Hz

Description:

No.	Frequency	QuasiPeak	Average	Correction	QuasiPeak	Average	QuasiPeak	Average	QuasiPeak	Average	Remark
		reading	reading	factor	result	result	limit	limit	margin	margin	
	(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)	
1	0.1558	14.79	10.28	19.42	34.21	29.70	65.68	55.68	-31.47	-25.98	Pass
2*	0.2748	16.64	15.17	19.46	36.10	34.63	60.97	50.97	-24.87	-16.34	Pass
3	0.3373	13.71	12.53	19.47	33.18	32.00	59.27	49.27	-26.09	-17.27	Pass
4	0.4082	4.38	0.37	19.47	23.85	19.84	57.68	47.68	-33.83	-27.84	Pass
5	16.6281	12.40	6.77	20.00	32.40	26.77	60.00	50.00	-27.60	-23.23	Pass
6	22.3402	19.15	13.63	20.03	39.18	33.66	60.00	50.00	-20.82	-16.34	Pass

Note: 1. L1 = Line One (Live Line) / L2 = Line Two (Neutral Line). *Remark*:

- 1. The measuring frequencies range between 0.15 MHz and 30 MHz.
- 2. The emissions measured in the frequency range between 0.15 MHz and 30MHz were made with an instrument using Quasi-peak detector and Average detector.
- 3."---" denotes the emission level was or more than 2dB below the Average limit, and no re-check was made.
- 4.The IF bandwidth of SPA between 0.15MHz and 30MHz was 10KHz. The IF bandwidth of Test Receiver between 0.15MHz and 30MHz was 9kHz.

END OF REPORT