

Global United Technology Services Co., Ltd.

Report No.: GTS201911000189F01

TEST REPORT

Applicant: Shenzhen Core Image Co., LTD

Building 2nd Floor, No. 1 Huafeng Hi-tech Park, Yangwu **Address of Applicant:**

Konggang, Dongfang Community, Songgang Street, Bao'an

District, Shenzhen City, Guangdong Province, China

Manufacturer: Shenzhen Core Image Co., LTD

N/A

Address of Building 2nd Floor, No. 1 Huafeng Hi-tech Park, Yangwu Manufacturer: Konggang, Dongfang Community, Songgang Street, Bao'an

District, Shenzhen City, Guangdong Province, China

Equipment Under Test (EUT)

Product Name: Smart Bulb

Model No.: **SB60**

Trade Mark:

FCC ID: 2APQK-SB60

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 2019-11-16

Date of Test: 2019-11-17 to 2019-11-27

Date of report issued: 2019-11-28

PASS * Test Result:

Authorized Signature:

Robinson Lo **Laboratory Manager**

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver. Page 1 of 34

^{*} In the configuration tested, the EUT complied with the standards specified above.

Version

Version No.	Date	Description
00	2019-11-28	Original

Prepared By:	Jankly	Date:	2019-11-28
	Project Engineer	_	
Check By:	Reviewer .	Date:	2019-11-28

2 Contents

			Page
1	CO	VER PAGE	1
VI	ERSION	N	2
2		NTENTS	
3		ST SUMMARY	
4	_	NERAL INFORMATION	
	4.1	GENERAL DESCRIPTION OF EUT	
	4.2	TEST MODE	
	4.3	DESCRIPTION OF SUPPORT UNITS	
	4.4	DEVIATION FROM STANDARDS	
	4.5	ABNORMALITIES FROM STANDARD CONDITIONS	
	4.6	TEST FACILITY	7
	4.7	TEST LOCATION	7
	4.8	Additional Instructions	7
5	TES	ST INSTRUMENTS LIST	8
6	TES	ST RESULTS AND MEASUREMENT DATA	10
	6.1	ANTENNA REQUIREMENT	10
	6.2	CONDUCTED EMISSIONS	
	6.3	CONDUCTED PEAK OUTPUT POWER	
	6.4	CHANNEL BANDWIDTH & 99% OCCUPY BANDWIDTH	
	6.5	Power Spectral Density	
	6.6	BAND EDGES	
	6.6.		
	6.6.		
	6.7	Spurious Emission	
	6.7.		
7	TES	ST SETUP PHOTO	34
8	EUT	CONSTRUCTIONAL DETAILS	34

3 Test Summary

Test Item	Section	Result
Antenna requirement	FCC part 15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	FCC part 15.207	Pass
Conducted Peak Output Power	FCC part 15.247 (b)(3)	Pass
Channel Bandwidth & 99% OCB	FCC part 15.247 (a)(2)	Pass
Power Spectral Density	FCC part 15.247 (e)	Pass
Band Edge	FCC part 15.247(d)	Pass
Spurious Emission	FCC part 15.205/15.209	Pass

Remark: Test according to ANSI C63.10:2013 and RSS-Gen

Pass: The EUT complies with the essential requirements in the standard.

Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes
Radiated Emission	30MHz-200MHz	3.8039dB	(1)
Radiated Emission	200MHz-1GHz	3.9679dB	(1)
Radiated Emission	1GHz-18GHz	4.29dB	(1)
Radiated Emission	18GHz-40GHz	3.30dB	(1)
AC Power Line Conducted Emission	0.15MHz ~ 30MHz	3.44dB	(1)
Note (1): The measurement unce	ertainty is for coverage factor of k	=2 and a level of confidence of 9	95%.

4 General Information

4.1 General Description of EUT

Product Name:	Smart Bulb
Model No.:	SB60
Serial No.:	N/A
Hardware Version:	V1.0
Software Version:	V1.0
Test sample(s) ID:	GTS201911000189-1
Sample(s) Status:	Engineer sample
Sample(s) Status:	Engineer sample
Channel numbers:	802.11b/802.11g /802.11n(HT20): 11
Channel separation:	5MHz
Modulation technology:	802.11b: Direct Sequence Spread Spectrum (DSSS) 802.11g/802.11n(H20): Orthogonal Frequency Division Multiplexing (OFDM)
Antenna Type:	PCB Antenna
Antenna gain:	2dBi
Power supply:	Input: 100V-240V~50/60Hz

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Toot shannel	Frequency (MHz)
Test channel	802.11b/802.11g/802.11n(HT20)
Lowest channel	2412MHz
Middle channel	2437MHz
Highest channel	2462MHz

4.2 Test mode

Transmitting mode Keep the EUT in continuously transmitting mode

Remark: During the test, the dutycycle >98%, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Pre-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	802.11b	802.11g	802.11n(HT20)
Data rate	1Mbps	6Mbps	6.5Mbps

4.3 Description of Support Units

None.

4.4 Deviation from Standards

None.

4.5 Abnormalities from Standard Conditions

None.

4.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC —Registration No.: 381383

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 381383.

• IC —Registration No.: 9079A

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A

• NVLAP (LAB CODE:600179-0)

Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP). LAB CODE:600179-0

4.7 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Tel: 0755-27798480 Fax: 0755-27798960

4.8 Additional Instructions

Test Software Version	ESP Series Modules FCC & CE Test Tool V2.2.3
Power Setting	Power Setting: not applicable, test used software
	default power level.

Global United Technology Services Co., Ltd.

No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone,

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

5 Test Instruments list

Radi	Radiated Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July. 03 2015	July. 02 2020	
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A	
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June. 26 2019	June. 25 2020	
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June. 26 2019	June. 25 2020	
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	June. 26 2019	June. 25 2020	
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	June. 26 2019	June. 25 2020	
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
8	Coaxial Cable	GTS	N/A	GTS213	June. 26 2019	June. 25 2020	
9	Coaxial Cable	GTS	N/A	GTS211	June. 26 2019	June. 25 2020	
10	Coaxial cable	GTS	N/A	GTS210	June. 26 2019	June. 25 2020	
11	Coaxial Cable	GTS	N/A	GTS212	June. 26 2019	June. 25 2020	
12	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June. 26 2019	June. 25 2020	
13	Amplifier(2GHz-20GHz)	HP	84722A	GTS206	June. 26 2019	June. 25 2020	
14	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June. 26 2019	June. 25 2020	
15	Band filter	Amindeon	82346	GTS219	June. 26 2019	June. 25 2020	
16	Power Meter	Anritsu	ML2495A	GTS540	June. 26 2019	June. 25 2020	
17	Power Sensor	Anritsu	MA2411B	GTS541	June. 26 2019	June. 25 2020	
18	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	June. 26 2019	June. 25 2020	
19	Splitter	Agilent	11636B	GTS237	June. 26 2019	June. 25 2020	
20	Loop Antenna	ZHINAN	ZN30900A	GTS534	June. 26 2019	June. 25 2020	
21	Breitband hornantenne	SCHWARZBECK	BBHA 9170	GTS579	Oct. 19 2019	Oct. 18 2020	
22	Amplifier	TDK	PA-02-02	GTS574	Oct. 19 2019	Oct. 18 2020	
23	Amplifier	TDK	PA-02-03	GTS576	Oct. 19 2019	Oct. 18 2020	
24	PSA Series Spectrum Analyzer	Rohde & Schwarz	FSP	GTS578	June. 26 2019	June. 25 2020	

Cond	Conducted Emission							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date		
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May.15 2019	May.14 2022		
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 26 2019	June. 25 2020		
3	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June. 26 2019	June. 25 2020		
4	Artificial Mains Network	SCHWARZBECK MESS	NSLK8127	GTS226	June. 26 2019	June. 25 2020		
5	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A		
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
7	Thermo meter	KTJ	TA328	GTS233	June. 26 2019	June. 25 2020		
8	Absorbing clamp	Elektronik- Feinmechanik	MDS21	GTS229	June. 26 2019	June. 25 2020		
9	ISN	SCHWARZBECK	NTFM 8158	GTD565	June. 26 2019	June. 25 2020		

RF C	onducted Test:					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	June. 26 2019	June. 25 2020
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 26 2019	June. 25 2020
3	Spectrum Analyzer	Agilent	E4440A	GTS533	June. 26 2019	June. 25 2020
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	June. 26 2019	June. 25 2020
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	June. 26 2019	June. 25 2020
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	June. 26 2019	June. 25 2020
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	June. 26 2019	June. 25 2020
8	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	June. 26 2019	June. 25 2020

Gene	ral used equipment:					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	Humidity/ Temperature Indicator	KTJ	TA328	GTS243	June. 26 2019	June. 25 2020
2	Barometer	ChangChun	DYM3	GTS255	June. 26 2019	June. 25 2020

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

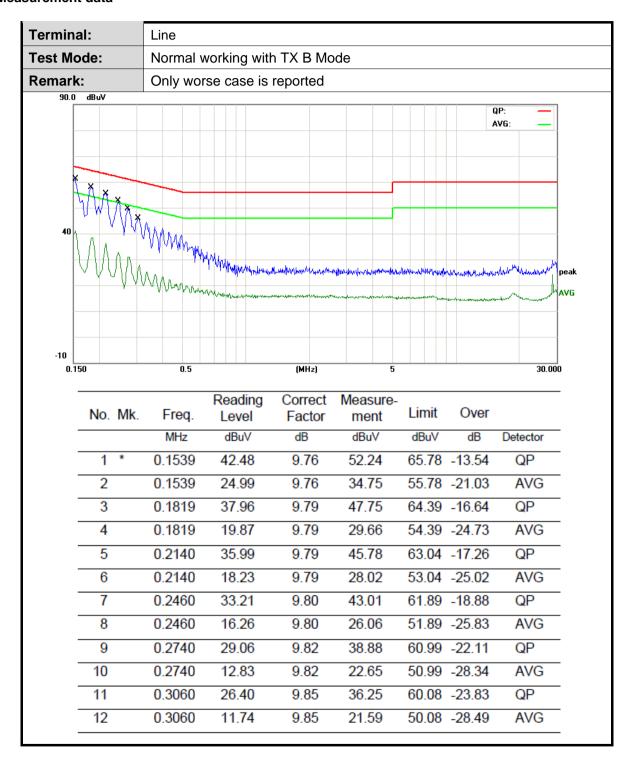
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

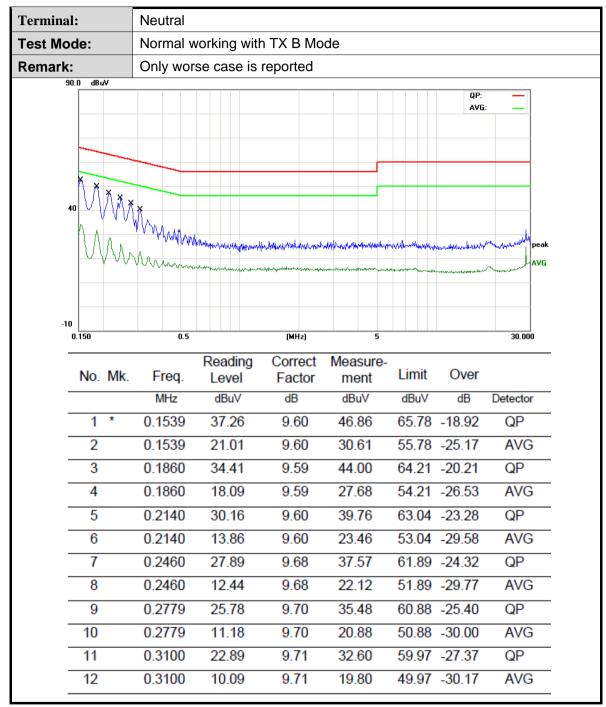
(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

EUT Antenna:

The antennas are pcb antenna, the best case gain of the antennas are 2dBi, reference to the appendix II for details

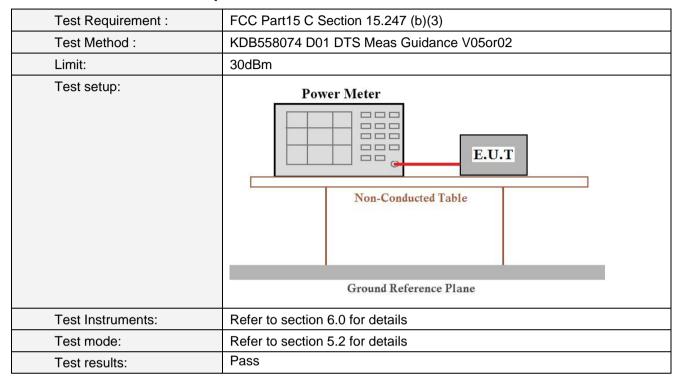

6.2 Conducted Emissions

Test Requirement:	FCC Part15 C Section 15.207						
Test Method:	ANSI C63.10:2013						
Test Frequency Range:	150KHz to 30MHz						
Receiver setup:	RBW=9KHz, VBW=30KHz, Sweep time=auto						
Limit:	- (111)	Limi	t (dBuV)				
	Frequency range (MHz)	Quasi-peak		erage			
	0.15-0.5	66 to 56*	56 t	o 46*			
	0.5-5	56 60		16			
	5-30		50				
	* Decreases with the logarithm of the frequency.						
Test setup:	Reference Plane						
Toet procedure:	AUX Equipment E.U.T Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0.8m	EMI Receiver	power	through a			
Test procedure:	 The E.U.T and simulators a line impedance stabilization 50ohm/50uH coupling impedance are LISN that provides a 50ohn termination. (Please refer to photographs). Both sides of A.C. line are dinterference. In order to find positions of equipment and according to ANSI C63.10:: 	n network (L.I.S.N.). edance for the meas also connected to the n/50uH coupling imported the block diagram checked for maximud the maximum emissall of the interface of	This provide suring equipmed ance with of the test seam conducted ssion, the relicables must be	es a nent. er through a solution 500hm etup and d ative oe changed			
Test Instruments:	Refer to section 6.0 for details						
Test mode:	Refer to section 5.2 for details	i					
Test environment:	Temp.: 25 °C Hum	nid.: 55%	Press.:	1001mbar			
Test voltage:	AC 120V, 60Hz	1		•			
Test results:	Pass						



Measurement data

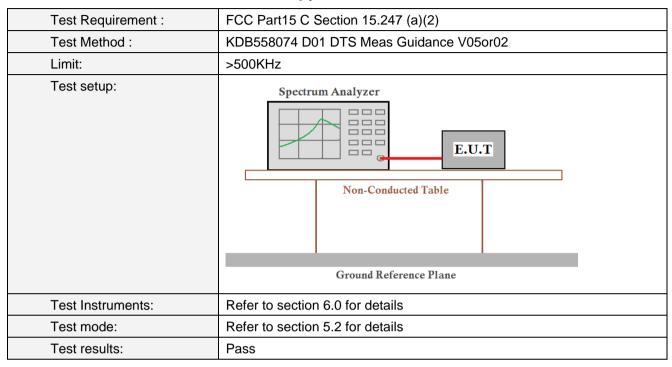
Report No.: GTS201911000189F01



Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Emission Level= Read Level+ Correct Factor
- 4. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

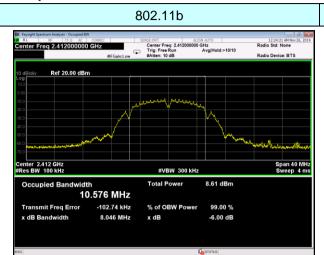
6.3 Conducted Peak Output Power

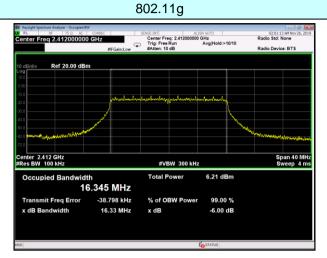


Measurement Data

Test CH		Peak Output Power (dl	Bm)	Limit(dBm)	Result
1631 011	802.11b	802.11g	Limit(abin)	Nosuit	
Lowest	7.46	9.53	9.42		
Middle	7.51	9.02	8.77	30.00	Pass
Highest	7.95	10.30	10.16		

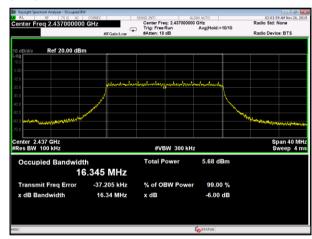
6.4 Channel Bandwidth & 99% Occupy Bandwidth

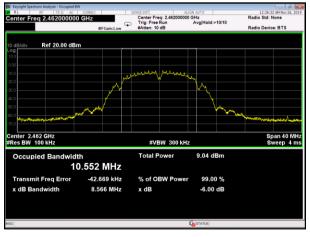

Measurement Data

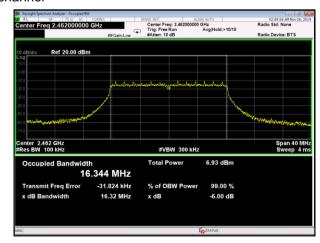

	Test CH		Channel Bandwidth (M	Hz)	Limit(KHz)	Result
Test Off	802.11b	802.11g		Nesuit		
	Lowest	8.046	16.33	16.62		
	Middle	8.083	16.34	16.65	>500	Pass
	Highest	8.566	16.32	16.30		

Test CH	99	% Occupy Bandwidth	(MHz)	Result
reston	802.11b	802.11g	802.11n(HT20)	Resuit
Lowest	10.576	16.345	17.479	
Middle	10.485	16.345	17.477	Pass
Highest	10.552	16.344	17.482	

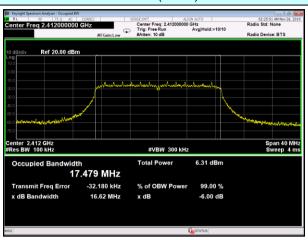


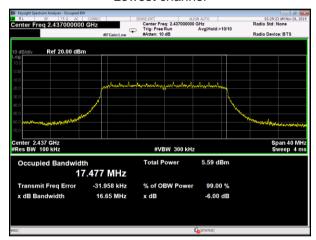

Test plot as follows:

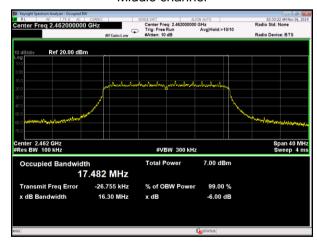



Lowest channel

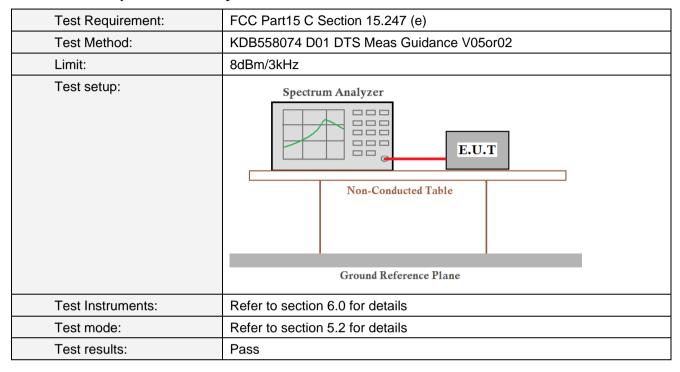
Middle channel




Highest channel


802.11n(HT20)

Lowest channel

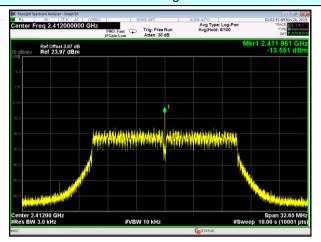

Middle channel

Highest channel

6.5 Power Spectral Density

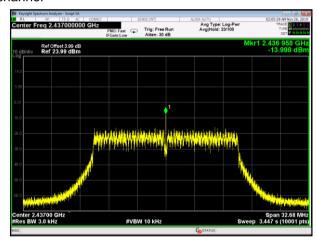
Measurement Data

Test CH	Pow	er Spectral Density (dE	Bm/3kHz)	Limit	Result	
Test Off	802.11b	802.11g	802.11n(HT20)	(dBm/3kHz)	Nesult	
Lowest	-13.226	-13.551	-13.963			
Middle	-13.817	-13.998	-14.097	8.00	Pass	
Highest	-13.985	-14.253	-14.649			

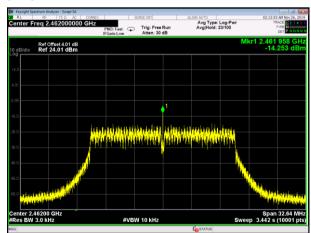

Test plot as follows:

Report No.: GTS201911000189F01

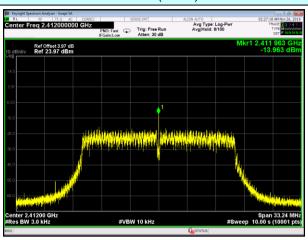


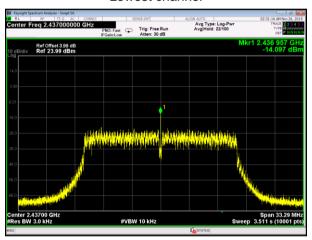


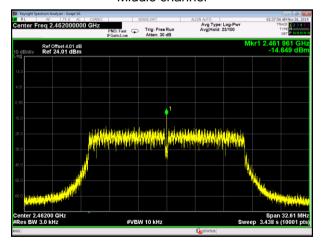
802.11g


Lowest channel

Middle channel




Highest channel


802.11n(HT20)

Lowest channel

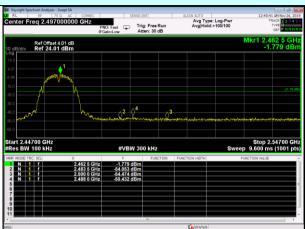
Middle channel

Highest channel

6.6 Band edges

6.6.1 Conducted Emission Method

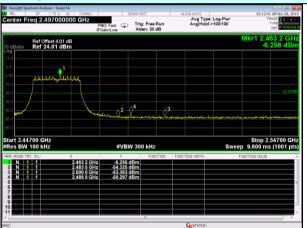
Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	KDB558074 D01 DTS Meas Guidance V05or02
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass


Test plot as follows:

Report No.: GTS201911000189F01

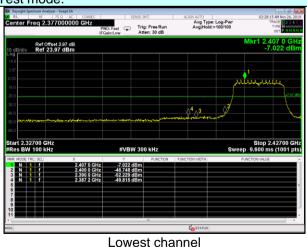
Test mode:

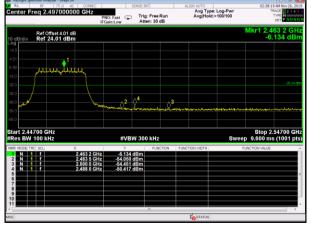
802.11b


Lowest channel

Highest channel

Test mode:


802.11g


Lowest channel

Highest channel

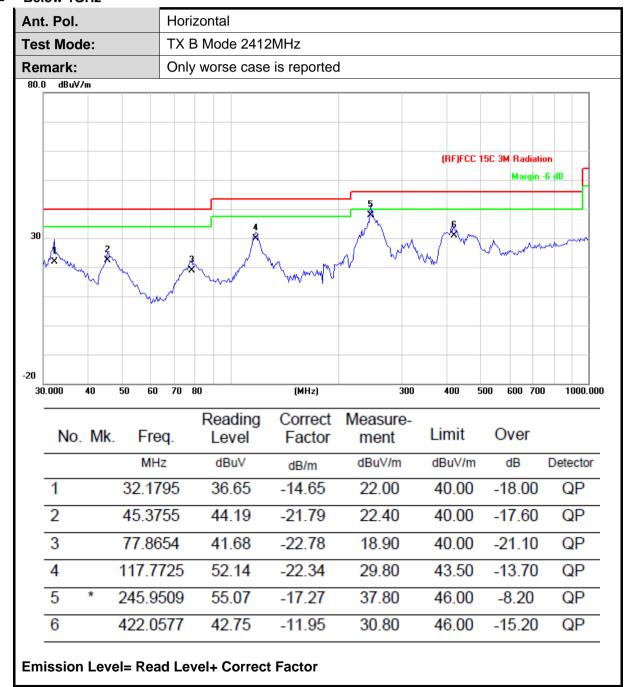
Test mode:

802.11n(HT20)

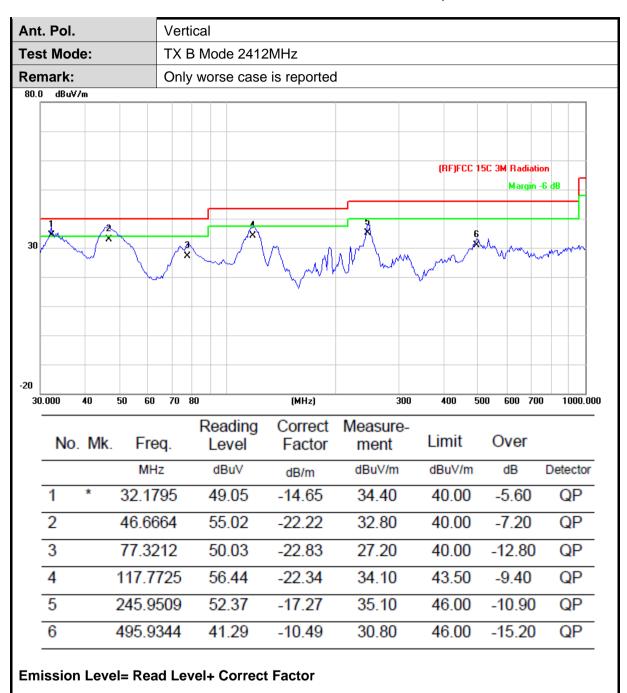
Highest channel

6.6.2 Radiated Emission Method

Test Requirement:	FCC Part15 C S	Section 15.209	and 15.20		
Test Method:	ANSI C63.10: 2				
Test Frequency Range:		t bands were t	tested, only	the worst ba	and's (2310MHz to
Test site:	Measurement D				
Receiver setup:	Frequency	Detector	RBW	VBW	Value
·		Peak	1MHz	3MHz	Peak
	Above 1GHz	Average	1MHz 3MHz		Average
Limit:	Freque		Limit (dBuV		Value
	Above 1	GHz	54.0		Average
Test setup:			74.0	00	Peak
	Tum Table	EUT+	Test Antenna	1	
Test Procedure:	the ground at	s placed on the t a 3 meter can	top of a rotanber. The tal	ating table 1 ble was rota	.5 meters above ted 360 degrees to
	2. The EUT was antenna, whi tower. 3. The antenna ground to de horizontal an measurement. 4. For each sus and then the and the rotal the maximum. 5. The test-rece Specified Bate. 6. If the emission the limit specified bate in the specified bate. 7. The radiation and found the tower.	ch was mounted height is varied termine the mad vertical polar it. pected emission antenna was turned reading. Eviver system was now identified, then testion is could be reported argin would be age method as in measurement.	away from the don the top of from one maximum value izations of the control on, the EUT uned to height from 0 decay aximum Hole EUT in peaking could be ed. Otherwise re-tested of specified are sare performant on the country on the country of the	ne interference of a variable neter to four e of the field ne antenna a was arrange this from 1 n grees to 360 ak Detect Full Mode. mode was 1 stopped and the emissing by one und then reported in X, Y, it is worse care and the arrange of the care to the emissing the stopped and the arrange of the emissing by one und the arrange of the care to the emissing the care to t	meters above the strength. Both are set to make the ed to its worst case neter to 4 meters degrees to find anction and 10dB lower than d the peak values ions that did not sing peak, quasi-
Test Instruments:	Refer to section				
Test mode:	Refer to section	5.2 for details			
Test results:	Pass				


Measurement data:

Report No.: GTS201911000189F01


■ 9kHz~30MHz

The emission from 9 kHz to 30MHz was pre-tested and found the result was 20dB lower than the limit, and according to 15.31(o) & RSS-Gen 6.13, the test result no need to reported.

■ Below 1GHz

Above 1GHz

Report No.: GTS201911000189F01

	OHZ									
Ant	Ant. Pol.			Horiz	zontal					
Test Mode:			TX B	Mode 2412	MHz					
	No. M		. Fre	eq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
,			MH	łz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
,	1 4		4823.	754	48.33	12.54	60.87	74.00	-13.13	peak
,	2	*	4823.	922	39.37	12.54	51.91	54.00	-2.09	AVG

Ant	. Pol.			Vert	ical					
Test Mode:			TX E	TX B Mode 2412MHz						
	No. Mk. Fr		Reading No. Mk. Freq. Level			Correct Factor	Measure- ment	Limit Ove		
			MH	lz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
	1 492		4923.	856	42.64	13.15	55.79	74.00	-18.21	peak
	2	*	4925.	026	28.33	13.17	41.50	54.00	-12.50	AVG

Ant. Pol. Test Mode:			Hoi	rizontal						
				TX	TX B Mode 2437MHz					
	No). N	Иk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
				MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
	1			4873.922	48.54	12.85	61.39	74.00	-12.61	peak
	2	*		4873.922	40.21	12.85	53.06	54.00	-0.94	AVG

Ant	. Pol.			Vert	ical					
Tes	t Mod	e:		TX E	3 Mode 243	7MHz				
	No.	Mk	. Fre	eq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MH	łz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
	1		4872.	548	43.16	12.84	56.00	74.00	-18.00	peak
	2	*	4875.	182	28.48	12.86	41.34	54.00	-12.66	AVG

	Ant	. Pol		Hori	izontal					
Tes	st Mod	le:		TXI	B Mode 2462	2MHz				
	No.	Mk	. Fre	q.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			МН	Z	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
	1	*	4923.9	922	35.33	13.15	48.48	54.00	-5.52	AVG
	2		4924.0	054	46.07	13.15	59.22	74.00	-14.78	peak

Ant	t. Pol	.		Vert	ical					
Tes	st Mo	de:		TX	3 Mode 2462	2MHz				
	No.	o. M	k. F	req.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			N	1Hz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
	1		4924	1.294	41.73	13.15	54.88	74.00	-19.12	peak
	2	*	4924	1.294	28.30	13.15	41.45	54.00	-12.55	AVG

An	t. Pol.			Horizontal					
Tes	st Moc	le:	-	TX G Mode 24	12MHz				
	No.	Mk	. Freq	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
	1		4825.12	22 46.75	12.55	59.30	74.00	-14.70	peak
	2	*	4825.12	22 29.43	12.55	41.98	54.00	-12.02	AVG

Ant.	Pol.			Vertic	cal					
Tes	t Mod	e:		TX G	Mode 2412	2MHz				
	No.	Mk	. Fre	eq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
-			MH	lz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
-	1	*	4823.	610	28.61	12.54	41.15	54.00	-12.85	AVG
-	2		4825.	074	42.89	12.55	55.44	74.00	-18.56	peak
-										

Δn	t. Po	ı ı	Horizontal			- 1		
		-						
Test Mo	de:		X G Mode 243	B7MHz				
No	. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4874.07	8 31.57	12.85	44.42	54.00	-9.58	AVG
2		4874.27	6 48.83	12.85	61.68	74.00	-12.32	peak

Ant	. Pol.			Verti	ical					
Tes	t Mod	le:		TX C	G Mode 243	7MHz				
	No.	Mk	. Fre	eq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
,			MH	Z	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
,	1		4872.	626	43.02	12.84	55.86	74.00	-18.14	peak
	2	*	4875.	182	28.35	12.86	41.21	54.00	-12.79	AVG
	·		·	·	·					

Ant	i. Pol				Hori	zontal					
Tes	st Mo	de:			TX (G Mode 246	S2MHz				
	No. Mk.	Fre	q.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
				MH	Z	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
	1			4924.5	558	43.65	13.15	56.80	74.00	-17.20	peak
	2	*		4925.	182	29.16	13.17	42.33	54.00	-11.67	AVG

Ant. Po			Vertica	al					
Test Mo	st Mode:		TX G	TX G Mode 2462MHz					
	No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
	1	*	4922.500	28.34	13.15	41.49	54.00	-12.51	AVG
	2		4922.680	42.59	13.15	55.74	74.00	-18.26	peak

Ant	. Pol.		Hori	izontal					
Tes	t Mod	e:	TXI	N(HT20) Mod	de 2412MH	Z			
			. Freq.	Reading Correct Measure- Freq. Level Factor ment		Limit	Over		
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
	1	*	4822.662	28.33	12.54	40.87	54.00	-13.13	AVG
	2		4823.760	42.98	12.54	55.52	74.00	-18.48	peak

An	t. Pol	•		Ver	tical					
Tes	st Mo	de:		TX	N(HT20) Mo	de 2412MF	Ηz			
	No	Mk	. Fre	q.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MH	Z	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
	1		4824.7	708	40.36	12.54	52.90	74.00	-21.10	peak
	2	*	4824.7	708	28.45	12.54	40.99	54.00	-13.01	AVG

Ant.	Pol.		H	Horizontal					
Test	Mod	e:	-	TX N(HT20)	Mode 2437M	Hz			
			. Fred	Read q. Lev		ct Measure r ment	- Limit	Over	
			MHz	dBu	V dB/m	dBuV/m	dBuV/m	dB	Detector
	1		4874.4	68 42.8	12.85	55.74	74.00	-18.26	peak
	2	*	4875.5	00 28.2	9 12.86	41.15	54.00	-12.85	AVG

An	t. Pol.			Vertical							
Tes	st Mo	de:		TXI	TX N(HT20) Mode 2437MHz						
	No. Mk.		. Fre	q.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
			MH	Z	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	
	1		4874.6	636	43.03	12.85	55.88	74.00	-18.12	peak	
	2	*	4874.	708	28.50	12.85	41.35	54.00	-12.65	AVG	

An	t. Pol			Horizontal							
Test Mode:				TX	TX N(HT20) Mode 2462MHz						
	No	. Mk	Mk. Fre		Reading Level	Correct Factor	Measure- ment	Limit	Over	1	
			MH	Z	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	
	1		4924.5	540	40.56	13.15	53.71	74.00	-20.29	peak	
	2	*	4925.5	500	28.36	13.17	41.53	54.00	-12.47	AVG	
											_

An	t. Pol.	Ī		Vei	Vertical						
Tes	st Mo	de:		TX	TX N(HT20) Mode 2462MHz						
	No	No. Mk. Fr		Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
				MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	
	1		49	25.380	43.51	13.17	56.68	74.00	-17.32	peak	
	2	*	49	25.380	28.30	13.17	41.47	54.00	-12.53	AVG	

Remark:

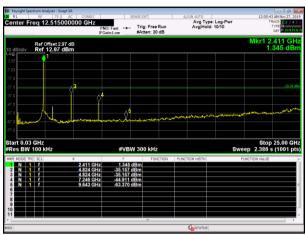
- 1.No report for the emission which more than 10 dB below the prescribed limit.
- 2.Emission Level= Read Level+ Correct Factor

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 31 of 34

6.7 Spurious Emission

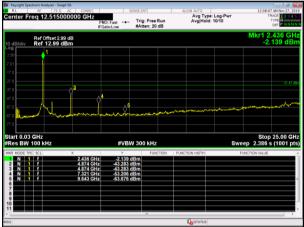
6.7.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)						
Test Method:	KDB558074 D01 DTS Meas Guidance V05or02						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 6.0 for details						
Test mode:	Refer to section 5.2 for details						
Test results:	Pass						

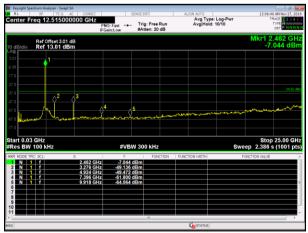


Test plot as follows:

Report No.: GTS201911000189F01


802.11b(Only worse case is reported)

Lowest channel


30MHz~25GHz

Middle channel

Highest channel

30MHz~25GHz

30MHz~25GHz

7 Test Setup Photo

Reference to the appendix I for details.

8 EUT Constructional Details

Reference to the appendix II for details.

-----End-----