

Report No.: TB-FCC159564 Page: 1 of 78

FCC Radio Test Report FCC ID: 2APQK-AT-UP001

Original Grant

Report No.	:	TB-FCC159564		
Applicant	:	Shenzhen Core Image Co.,LTD		
Equipment Under T	est	EUT)		
EUT Name	:	WiFi Smart Plug		
Model No.	:	AT-UP001		
Series Model No.	:	N/A		
Brand Name	:	N/A		
Receipt Date	:	2018-05-03		
Test Date	:	2018-05-04 to 2018-05-21		
Issue Date	:	2018-05-23		
Standards	:	FCC Part 15, Subpart C (15.247: 2017)		
Test Method	:	ANSI C63.10: 2013		
Conclusions	:	PASS		
		In the configuration tested, the EUT complied with the standards specified above, The EUT technically complies with the FCC and IC requirements		
Test/Witness Engineer		: Jason Xu		
Test/Witness Engin	eer	: JURN SU : fug da. Ray Lai		
Approved& Authorized		: fogda. Ray Lai		

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

Contents

CON	NTENTS	2
1.	GENERAL INFORMATION ABOUT EUT	5
	1.1 Client Information	5
	1.2 General Description of EUT (Equipment Under Test)	5
	1.3 Block Diagram Showing the Configuration of System Tested	7
	1.4 Description of Support Units	7
	1.5 Description of Test Mode	7
	1.6 Description of Test Software Setting	9
	1.7 Measurement Uncertainty	9
	1.8 Test Facility	10
2.	TEST SUMMARY	11
3.	TEST EQUIPMENT	12
4.	CONDUCTED EMISSION TEST	13
	4.1 Test Standard and Limit	13
	4.2 Test Setup	13
	4.3 Test Procedure	
	4.4 EUT Operating Mode	14
	4.5 Test Data	14
5.	RADIATED EMISSION TEST	15
	5.1 Test Standard and Limit	15
	5.2 Test Setup	16
	5.3 Test Procedure	17
	5.4 EUT Operating Condition	
	5.5 Test Data	
6.	RESTRICTED BANDS REQUIREMENT	19
	6.1 Test Standard and Limit	19
	6.2 Test Setup	19
	6.3 Test Procedure	19
	6.4 EUT Operating Condition	20
	6.5 Test Data	20
7.	BANDWIDTH TEST	21
	7.1 Test Standard and Limit	21
	7.2 Test Setup	21
	7.3 Test Procedure	21
	7.4 EUT Operating Condition	21
	7.5 Test Data	
8.	PEAK OUTPUT POWER TEST	22
	8.1 Test Standard and Limit	22

	8.2 Test Setup	22
	8.3 Test Procedure	22
	8.4 EUT Operating Condition	
	8.5 Test Data	
9.	POWER SPECTRAL DENSITY TEST	
	9.1 Test Standard and Limit	23
	9.2 Test Setup	
	9.3 Test Procedure	
	9.4 EUT Operating Condition	
	9.5 Test Data	
10.	ANTENNA REQUIREMENT	
	10.1 Standard Requirement	24
	10.2 Antenna Connected Construction	
ΑΤΤ	ACHMENT A CONDUCTED EMISSION TEST DATA	25
ATT	ACHMENT B RADIATED EMISSION TEST DATA	29
ΑΤΤ	ACHMENT C RESTRICTED BANDS REQUIREMENT TEST DATA	49
ATT	ACHMENT D BANDWIDTH TEST DATA	64
ΑΤΤ	ACHMENT E PEAK OUTPUT POWER TEST DATA	70
ΑΤΤ	ACHMENT F POWER SPECTRAL DENSITY TEST DATA	73

Revision History

Report No.	Version	Description	Issued Date
TB-FCC159564	Rev.01	Initial issue of report	2018-05-23

1. General Information about EUT

1.1 Client Information

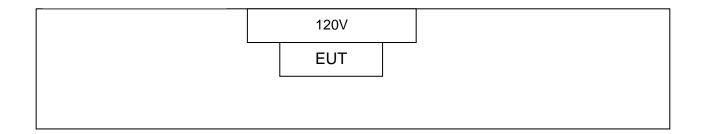
Applicant	:	Shenzhen Core Image Co., LTD	
Address	:	Building 2nd Floor, No. 1 Huafeng Hi-tech Park, Yangwu Konggang, Dongfang Community, Songgang Street, Bao'an District, Shenzhen City, Guangdong Province, China	
Manufacturer	: Shenzhen Core Image Co.,LTD		
		Building 2nd Floor, No. 1 Huafeng Hi-tech Park, Yangwu Konggang, Dongfang Community, Songgang Street, Bao'an District, Shenzhen City, Guangdong Province, China	

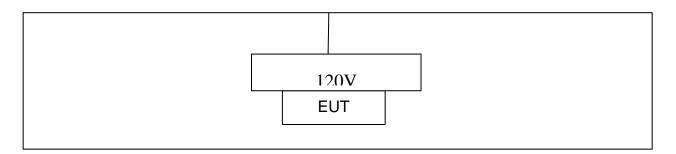
1.2 General Description of EUT (Equipment Under Test)

EUT Name	:	WiFi Smart Plug			
Models No.	:	AT-UP001			
Model Different	:	N/A			
		Operation Frequency:	802.11b/g/n(HT20): 2412MHz~2462MHz		
		Number of Channel:	802.11b/g/n(HT20):11 channels see note(3)		
	:	RF Output Power:	802.11b: 15.97dBm 802.11g: 15.45dBm 802.11n (HT20): 14.48dBm		
Product		Antenna Gain:	1dBi PCB Antenna		
Description		Modulation Type:	802.11b: DSSS(CCK, DQPSK, DBPSK) 802.11g/n: OFDM(BPSK,QPSK,16QAM, 64QAM)		
		Bit Rate of Transmitter:	802.11b:11/5.5/2/1 Mbps 802.11g:54/48/36/24/18/12/9/6 Mbps 802.11n:up to 150Mbps		
Power Supply	:	AC Voltage supplied			
Power Rating	:	Input: AC 120V, 60Hz,	10A		
Software Version	•	N/A			
Hardware Version	:	N/A			
Connecting I/O Port(S)	:	Please refer to the User's Manual			

Note:

- (1) This Test Report is FCC Part 15.247 for 802.11b/g/n, the test procedure follows the FCC KDB 558074 D01 DTS Meas Guidance v04.
- (2) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.




(3) Channel List:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
01	2412	05	2432	09	2452
02	2417	06	2437	10	2457
03	2422	07	2442	11	2462
04	2427	08	2447		
Note: CH 01~CH 11 for 802.11b/g/n(HT20)					

(4) The Antenna information about the equipment is provided by the applicant.

1.3 Block Diagram Showing the Configuration of System Tested

1.4 Description of Support Units

The EUT has been tested as an independent unit.

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

For Conducted Test			
Final Test Mode Description			
Mode 1 Normal Working with TX B Mode			

For Radiated Test			
Final Test Mode Description			
Mode 2	TX Mode B Mode Channel 01/06/11		
Mode 3	TX Mode G Mode Channel 01/06/11		
Mode 4 TX Mode N(HT20) Mode Channel 01/06			

Note:

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate.

According to ANSI C63.10 standards, the measurements are performed at the highest, Middle, lowest available channels, and the worst case data rate as follows:

802.11b Mode: CCK (1 Mbps)

802.11g Mode: OFDM (6 Mbps)

802.11n (HT20) Mode: MCS 0 (6.5 Mbps)

- (2) During the testing procedure, the continuously transmitting with the maximum power mode was programmed by the customer.
- (3) The EUT is considered a portable unit; in normal use it was positioned on X-plane. The worst case was found positioned on X-plane. Therefore only the test data of this X-plane was used for radiated emission measurement test.

1.6 Description of Test Software Setting

During testing channel & Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of WLAN.

Test Software Version	SecureCRT.exe			
Channel	CH 01	CH 06	CH 11	
IEEE 802.11b DSSS	20	20	20	
IEEE 802.11g OFDM	40	40	40	
IEEE 802.11n (HT20)	45	45	45	

1.7 Measurement Uncertainty

The reported uncertainty of measurement y \pm U, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test Item	Parameters Expanded Uncertaint		
	Level Accuracy:		
Conducted Emission	9kHz~150kHz	±3.42 dB	
	150kHz to 30MHz	±3.42 dB	
Dedicted Emission	Level Accuracy:		
Radiated Emission	9kHz to 30 MHz	±4.60 dB	
Dedicted Emission	Level Accuracy:		
Radiated Emission	30MHz to 1000 MHz	±4.40 dB	
Radiated Emission	Level Accuracy:	±4.20 dB	
Radiated Emission	Above 1000MHz	±4.20 0B	

1.8 Test Facility

The testing report were performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at 1A/F., Bldg.6, Yusheng Industrial Zone, The National Road No.107 Xixiang Section 467, Xixiang, Bao'an, Shenzhen, Guangdong, China. At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01.

IC Registration No.: (11950A-1)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A-1.

2. Test Summary

FCC Part 15 Subpart C(15.247)/ RSS 247 Issue 2					
Standard Section		Test Item	ludament	Domork	
FCC	IC	Test item	Judgment	Remark	
15.203	/	Antenna Requirement	PASS	N/A	
15.207	RSS-GEN 7.2.4	Conducted Emission	PASS	N/A	
15.205	RSS-GEN 7.2.2	Restricted Bands	PASS	N/A	
15.247(a)(2)	RSS 247 5.2 (1)	6dB Bandwidth	PASS	N/A	
15.247(b)	RSS 247 5.4 (4)	Peak Output Power	PASS	N/A	
15.247(e)	RSS 247 5.2 (2)	Power Spectral Density	PASS	N/A	
15.247(d)	RSS 247 5.5	Band Edge	PASS	N/A	
15.247(d)&	RSS 247	Transmitter Radiated Spurious	PASS	N/A	
15.209	15.209 5.5 Emission FASS N/A				
Note: "/" for no requirement for this test item. N/A is an abbreviation for Not Applicable.					

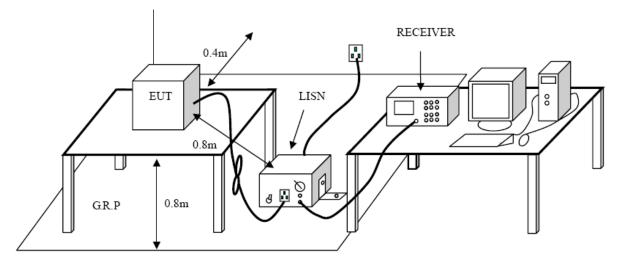
3. Test Equipment

Conducted Emission Test					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
EMI Test Receiver	Rohde & Schwarz	ESCI	100321	Jul. 20, 2017	Jul. 19, 2018
RF Switching Unit	Compliance Direction Systems Inc	RSU-A4	34403	Jul. 20, 2017	Jul. 19, 2018
AMN	SCHWARZBECK	NNBL 8226-2	8226-2/164	Jul. 20, 2017	Jul. 19, 2018
LISN	Rohde & Schwarz	ENV216	101131	Jul. 20, 2017	Jul. 19, 2018
Radiation Emissio	on Test	-	-	-	-
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 20, 2017	Jul. 19, 2018
EMI Test Receiver	Rohde & Schwarz	ESPI	100010/007	Jul. 20, 2017	Jul. 19, 2018
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Mar.16, 2018	Mar. 15, 2019
Bilog Antenna	ETS-LINDGREN	3142E	00117542	Mar.16, 2018	Mar. 15, 2019
Horn Antenna	ETS-LINDGREN	3117	00143207	Mar.16, 2018	Mar. 15, 2019
Horn Antenna	ETS-LINDGREN	3117	00143209	Mar.16, 2018	Mar. 15, 2019
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Jul. 03, 2017	Jul. 02, 2018
Pre-amplifier	Sonoma	310N	185903	Mar.16, 2018	Mar. 15, 2019
Pre-amplifier	HP	8449B	3008A00849	Mar.16, 2018	Mar. 15, 2019
Cable	HUBER+SUHNER	100	SUCOFLEX	Mar.16, 2018	Mar. 15, 2019
Positioning Controller	ETS-LINDGREN	2090	N/A	N/A	N/A
Antenna Conducte	ed Emission				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 20, 2017	Jul. 19, 2018
Spectrum Analyzer	Rohde & Schwarz	ESCI	100010/007	Jul. 20, 2017	Jul. 19, 2018
MXA Signal Analyzer	Agilent	N9020A	MY49100060	Oct. 26, 2017	Oct. 25, 2018
Vector Signal Generator	Agilent	N5182A	MY50141294	Oct. 26, 2017	Oct. 25, 2018
Analog Signal Generator	Agilent	N5181A	MY50141953	Oct. 26, 2017	Oct. 25, 2018
RF Power Sensor	DARE!! Instruments	RadiPowerRPR3006W	17100015SNO26	Oct. 26, 2017	Oct. 25, 2018
	DARE!! Instruments	RadiPowerRPR3006W	17100015SNO29	Oct. 26, 2017	Oct. 25, 2018
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO31	Oct. 26, 2017	Oct. 25, 2018
	DARE!! Instruments	RadiPowerRPR3006W	17100015SNO33	Oct. 26, 2017	Oct. 25, 2018

4. Conducted Emission Test

- 4.1 Test Standard and Limit
 - 4.1.1Test Standard FCC Part 15.207
 - 4.1.2 Test Limit

Frequency	Maximum RF Line Voltage (dBμV)		
Frequency	Quasi-peak Level	Average Level	
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *	
500kHz~5MHz	56	46	
5MHz~30MHz	60	50	


Notes:

(1) *Decreasing linearly with logarithm of the frequency.

(2) The lower limit shall apply at the transition frequencies.

(3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

4.2 Test Setup

4.3 Test Procedure

The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.

Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

LISN at least 80 cm from nearest part of EUT chassis.

The bandwidth of EMI test receiver is set at 9kHz, and the test frequency band is from 0.15MHz to 30MHz.

4.4 EUT Operating Mode

Please refer to the description of test mode.

4.5 Test Data

Please refer to the Attachment A.

5. Radiated Emission Test

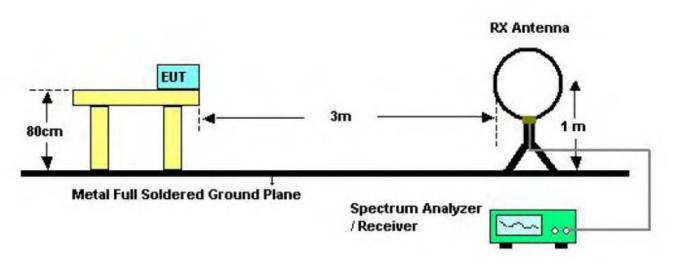
- 5.1 Test Standard and Limit
 - 5.1.1 Test Standard
 - FCC Part 15.209
 - 5.1.2 Test Limit

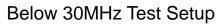
Radiated Emission Limits (9 kHz~1000 MHz)

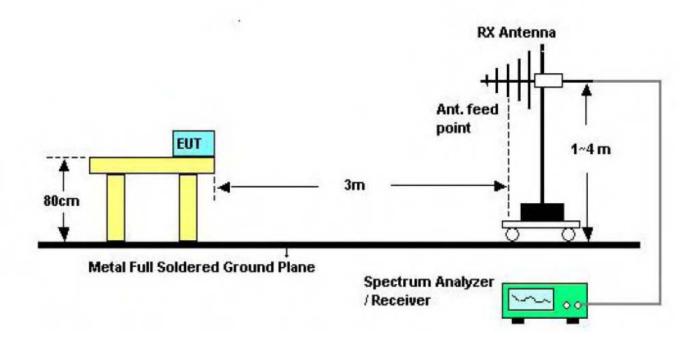
Frequency (MHz	Field Strength (microvolt/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

Radiated Emission Limit (Above 1000MHz)

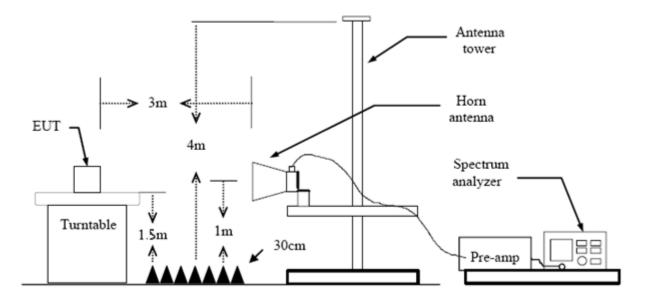
Frequency	Distance of 3m (dBuV/m)		
(MHz)	Peak	Average	
Above 1000	74	54	


Note:


(1) The tighter limit applies at the band edges.


(2) Emission Level(dBuV/m)=20log Emission Level(uV/m)

5.2 Test Setup



Below 1000MHz Test Setup

Above 1GHz Test Setup

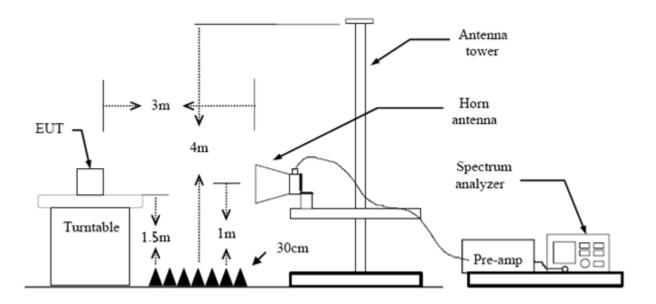
5.3 Test Procedure

- (1) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency Below 1GHz. The EUT was placed on a rotating 0.8m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.

- (8) For the actual test configuration, please see the test setup photo.
- 5.4 EUT Operating Condition
- The Equipment Under Test was set to Continual Transmitting in maximum power.

5.5 Test Data

- Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- Please refer to the Attachment B.



6. Restricted Bands Requirement

- 6.1 Test Standard and Limit
 - 6.1.1 Test Standard FCC Part 15.247(d) FCC Part 15.209 FCC Part 15.205
 - 6.1.2 Test Limit

Restricted Frequency	Distance of 3m (dBuV/m)		
Band (MHz)	Peak	Average	
2310 ~2390	74	54	
2483.5 ~2500	74	54	

6.2 Test Setup

6.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency Below 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.

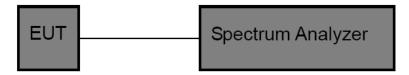
- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

6.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

6.5 Test Data

Please refer to the Attachment C.



7. Bandwidth Test

- 7.1 Test Standard and Limit
 - 7.1.1 Test Standard
 - FCC Part 15.247 (a)(2)
 - 7.1.2 Test Limit

FCC Part 15 Subpart C(15.247)				
Test Item Limit		Frequency Range(MHz)		
Bandwidth	>=500 KHz (6dB bandwidth)	2400~2483.5		

7.2 Test Setup

7.3 Test Procedure

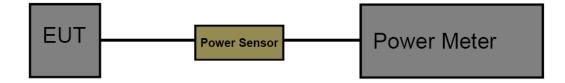
- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) The bandwidth is measured at an amplitude level reduced 6dB from the reference level. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency. Once the reference level is established, the equipment is conditioned with typical modulating signal to produce the worst –case (i.e the widest) bandwidth.
- (3)Measure the channel separation the spectrum analyzer was set to Resolution Bandwidth:100 kHz, and Video Bandwidth:300 kHz, Detector: Peak, Sweep Time set auto.

7.4 EUT Operating Condition

The EUT was set to continuously transmitting in each mode and low, Digital photo framesdle and high channel for the test.

7.5 Test Data

Please refer to the Attachment D.



8. Peak Output Power Test

- 8.1 Test Standard and Limit
 - 8.1.1 Test Standard
 - FCC Part 15.247 (b)
 - 8.1.2 Test Limit

FCC Part 15 Subpart C(15.247)				
Test Item Limit Frequency Range(N				
Peak Output Power	1 Watt or 30 dBm	2400~2483.5		

8.2 Test Setup

8.3 Test Procedure

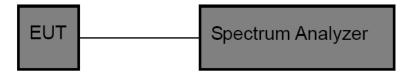
The measurement is according to section 9.1.2 of KDB 558074 D01 DTS Meas Guidance v04. The EUT was connected to RF power meter via a broadband power sensor as show the block above. The power sensor video bandwidth is greater than or equal to the DTS bandwidth of the equipment.

8.4 EUT Operating Condition

The EUT was set to continuously transmitting in the max power during the test.

8.5 Test Data

Please refer to the Attachment E.



9. Power Spectral Density Test

- 9.1 Test Standard and Limit
 - 9.1.1 Test Standard
 - FCC Part 15.247 (e)
 - 9.1.2 Test Limit

FCC Part 15 Subpart C(15.247)				
Test Item	Limit	Frequency Range(MHz)		
Power Spectral Density	8dBm(in any 3 kHz)	2400~2483.5		

9.2 Test Setup

9.3 Test Procedure

The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement according to section 10.2 of KDB 558074 D01 DTS Meas Guidance v04.

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Set analyser center frequency to DTS channel center frequency.
- (3) Set the span to 1.5 times the DTS bandwidth.
- (4) Set the RBW to: 3 kHz
- (5) Set the VBW to: 10 kHz
- (6) Detector: peak
- (7) Sweep time: auto
- (8) Allow trace to fully stabilize. Then use the peak marker function to determine the maximum amplitude level.

9.4 EUT Operating Condition

The EUT was set to continuously transmitting in each mode and low, Digital photo framesdle and high channel for the test.

9.5 Test Data

Please refer to the Attachment F.

10. Antenna Requirement

10.1 Standard Requirement

10.1.1 Standard

FCC Part 15.203

10.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

10.2 Antenna Connected Construction

The gains of the antenna used for transmitting is 1dBi, and the antenna de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

Result

The EUT antenna is a PCB Antenna. It complies with the standard requirement.

Antenna Type
Permanent attached antenna
Unique connector antenna
Professional installation antenna

Attachment A-- Conducted Emission Test Data

Temperature:	25 ℃	Relative Humidity:	55%			
Test Voltage:	AC 120V/60Hz					
Terminal:	Line	Line				
Test Mode:	Normal working with T>	K B Mode				
Remark:	Only worse case is rep	orted				
60.0 dBuV 30 -20 0.150		Mar 5	QP: AVG: peak AVG AVG 30.000			
No. Mk. Fra	Reading Correct eq. Level Factor		Ver			
M	•		dB Detector			
1 0.57	00 34.99 9.60	44.59 56.00 -11	.41 QP			
2 0.57	00 26.05 9.60	35.65 46.00 -10	.35 AVG			
3 0.63	40 39.32 9.61	48.93 56.00 -7.	.07 QP			
4 * 0.63	40 30.27 9.61	39.88 46.00 -6.	.12 AVG			
5 0.77	80 31.46 9.61	41.07 56.00 -14	4.93 QP			
6 0.77	80 20.87 9.61	30.48 46.00 -15	5.52 AVG			
7 1.27	40 34.69 9.60	44.29 56.00 -11	.71 QP			
8 1.27	40 21.79 9.60	31.39 46.00 -14	.61 AVG			
9 1.47	80 32.10 9.60	41.70 56.00 -14	1.30 QP			
10 1.47	80 19.95 9.60	29.55 46.00 -16	6.45 AVG			
11 1.90	60 32.13 9.61	41.74 56.00 -14	.26 QP			
12 1.90	60 19.34 9.61	28.95 46.00 -17	.05 AVG			
Emission Leve	I= Read Level+ Correct I	Factor				

Temperature:	25 ℃	Relativ	ve Humidity: 5	55%	
Test Voltage:	AC 120V/60Hz				
Terminal:	Neutral				
Test Mode:	Normal working	with TX B Mode			
Remark:	Only worse case	is reported			
80.0 dBuV 30 -20 0.150	0.5	(MHz)		L nosk	
No Mic Ero	9	Correct Measure	e- Limit Over		
No. Mk. Fre		Factor ment	dBuV dB	Detector	
1 0.562		9.60 42.04	56.00 -13.96	QP	
2 0.562		9.60 35.22	46.00 -10.78	AVG	
3 0.646		9.61 47.72	56.00 -8.28	QP	
4 * 0.646		9.61 40.80	46.00 -5.20	AVG	
5 0.718		9.61 43.65	56.00 -12.35	QP	
6 0.718		9.61 37.10	46.00 -8.90	AVG	
7 1.106		9.60 42.64	56.00 -13.36	QP	
8 1.106		9.60 35.44	46.00 -10.56	AVG	
9 1.638		9.61 41.96	56.00 -14.04	QP	
10 1.638		9.61 34.79	46.00 -11.21	AVG	
11 2.074	40 32.70	9.61 42.31	56.00 -13.69	QP	
12 2.074	40 25.71	9.61 35.32	46.00 -10.68	AVG	
Emission Level	= Read Level+ Co	prrect Factor			

Temperature:	25 ℃	Relative Humidity	: 55%
Test Voltage:	AC 240V/50Hz		
Terminal:	Line		
Test Mode:	Normal working with TX B M	lode	
Remark:	Only worse case is reported		
30.0 dBuV 30 -20 0.150	0.5 (MHz)		QP: AVG:
No. Mk. Fr	Reading Correct eq. Level Factor	Measure- ment Limit	Over
M	Hz dBuV dB	dBuV dBuV	dB Detector
1 0.57	00 37.95 9.60	47.55 56.00	-8.45 QP
2 0.57	00 26.05 9.60	35.65 46.00 -	10.35 AVG
3 * 0.63	40 42.55 9.61	52.16 56.00	-3.84 QP
4 0.63	340 30.27 9.61	39.88 46.00	-6.12 AVG
5 0.77	80 35.61 9.61	45.22 56.00 -	10.78 QP
6 0.77	80 20.87 9.61	30.48 46.00 -	15.52 AVG
7 1.27	40 39.04 9.60	48.64 56.00	-7.36 QP
8 1.27	40 21.79 9.60	31.39 46.00 -	14.61 AVG
9 1.47	80 36.36 9.60	45.96 56.00 -	10.04 QP
10 1.47	80 19.95 9.60	29.55 46.00 -	16.45 AVG
11 1.90	60 36.01 9.61	45.62 56.00 -	10.38 QP
12 1.90	060 19.34 9.61	28.95 46.00 -	17.05 AVG
Emission Level	- Read Level+ Correct Facto	Dr	

Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	AC 240V/50Hz		
Terminal:	Neutral		
Test Mode:	Normal working with TX	B Mode	
Remark:	Only worse case is repo	rted	
80.0 dBuV			
30 AAAAAA			QP: AVG: MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM
-20 0.150	0.5 ()	/Hz) 5	30.000
No. Mk. Fre	Reading Correc q. Level Factor	1 C	Over
MH	z dBuV dB	dBuV dBuV	dB Detector
1 0.56	20 36.30 9.60	45.90 56.00 -1	10.10 QP
2 0.56	20 25.62 9.60	35.22 46.00 -1	10.78 AVG
3 * 0.64	60 41.61 9.61	51.22 56.00 -	4.78 QP
4 0.64	60 31.19 9.61	40.80 46.00 -	5.20 AVG
5 0.71	80 37.81 9.61	47.42 56.00 -	8.58 QP
6 0.71	80 27.49 9.61	37.10 46.00 -	8.90 AVG
7 1.10	60 37.64 9.60	47.24 56.00 -	8.76 peak
8 1.10	60 25.84 9.60	35.44 46.00 -1	10.56 AVG
9 1.63	80 37.30 9.61	46.91 56.00 -	9.09 peak
10 1.63	80 25.18 9.61	34.79 46.00 -1	11.21 AVG
11 2.07	40 37.72 9.61	47.33 56.00 -	8.67 peak
12 2.07	40 25.71 9.61	35.32 46.00 -1	10.68 AVG
Emission Level	= Read Level+ Correct Fa	actor	

Attachment B-- Radiated Emission Test Data

9KHz~30MHz

From 9KHz to 30MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

30MHz~1GHz

Ten	npera	ture:	2	25 °	С				Relative	e Humi	dity:	55	5%		
Tes	t Volt	age:	ŀ	\C 1	120	V/6	0HZ	2							
Ant	. Pol.		ŀ	Hori	zon	tal									
Tes	t Moc	le:	٦	ΓX Ε	B M	ode	24 ⁻	12MHz							
Rer	nark:		(Only	wc	orse	cas	se is reported	ł						
80. C) dBuV	/m													
											(RF)FC	C 15C 3I	M Rac	liation	
													Mar	ain -6 d	B
						Ļ	3	4 ×				6			
30 ³	4	2				7	m	\sim	5			×			
	han	×.	Υ.		J	/		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	n Male						hul
		went	~	ha	N			٢.	a ma	$\sqrt{M_{m}}$	MMM	have	www	- And a	
						-				1 1					
													_		
-20															
30	.000	40	50	60	70	80		(MHz)		300	400	500	600	700	1000.000
					_		-								
					Re	ad	ing	Correct	Measure	-					
No	. Mk	. F	Freq	-	Re L	eve		Correct Factor	Measure- ment	Lim	it	Ove	r		
No	. Mk		Freq	-	L		el					Ove dB		Dete	ctor
No 1					L.	eve	el V	Factor	ment	Lim	m			Deteo QP	
1		30.	мнz 211	1	د د 4	eve IBu 4.0	el V 19	Factor dB -13.16	ment dBuV/m 30.93	Lim dB/ 40.0	m 0	dB -9.07	7	QP	
1	2	30.: 45.	MHz 211 058	1 3	4 4	eve 1Bu 4.0 7.3	el V 19 62	Factor dB -13.16 -21.59	ment dBuV/m 30.93 25.73	Lim dB/ 40.0	m 0 0	dB -9.07 -14.2	7 27	QP QP	•
1	2	30. 45. 89.	мнz 211 058 589	1 3 9	4 4 5	eve 1Bu 4.0 7.3 8.0	el V 19 20 16	Factor dB -13.16 -21.59 -22.00	ment dBuV/m 30.93 25.73 36.06	Lim dB/ 40.0 40.0 43.5	m 0 0	dB -9.07 -14.2 -7.44	7 27 4	QP QP QP	, , ,
1 2 3 4	*	30.1 45.1 89.1 126.1	MHz 211 058 589 328	1 3 9 6	4 4 5 6	eve 1Bu 4.0 7.3 8.0 0.6	2 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Factor dB -13.16 -21.59 -22.00 -22.39	ment dBuV/m 30.93 25.73 36.06 38.25	Lim dB/ 40.0 40.0 43.5 43.5	m 0 0 0	dB -9.07 -14.2 -7.44 -5.2	7 27 4 5	QP QP QP	
1	*	30. 45. 89.	MHz 211 058 589 328	1 3 9 6	4 4 5 6	eve 1Bu 4.0 7.3 8.0	2 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Factor dB -13.16 -21.59 -22.00	ment dBuV/m 30.93 25.73 36.06	Lim dB/ 40.0 40.0 43.5	m 0 0 0	dB -9.07 -14.2 -7.44	7 27 4 5	QP QP QP	

*:Maximum data x:Over limit !:over margin

Emission Level= Read Level+ Correct Factor

Tem	npera	ature		25	°C				Re	lative H	umidity	y :	55%		
Test	t Vol	tage:		AC	; 12	0V/	60F	ΗZ							
Ant	. Pol	•		Ve	rtica	al									
Test	t Mo	de:		ТΧ	BN	Nod	le 2	412MHz							
Ren	nark:			On	ıly w	vors	e c	ase is repoi	rted						
80.	0 dBu	V/m													
												(RF)F	CC 15C 3I	A Radiati	on
				_										Margin	6 dB
	<u>1,</u> 2 X X.∕	, a	4 X 3	-				ь Х							
30		γ	(·· ~>				a Y	m)					_		
					w	\sim		n n n n n n n n n n n n n n n n n n n		the Albert			1. m	lin	mpull
								h	h. A	m M M	Mar	m	white	W	
									W	'V					
						_									
-20	0.000	40	50	60	70	80		A .1			300	400	500	600 700	0 1000.00
	0.000	40	50	60	70	80		(MI	12]		300	400	500	600 700	
No.	Mk.	F	Freq		Rea Le	adir evel		Correct Factor		easure- ment	Limit	t	Over		
		I	MHz		d	BuV		dB	dE	BuV/m	dB/m	ı	dB	Det	ector
1	İ	30.	0000)	50).70)	-13.00	3	7.70	40.00)	-2.30	Q	Р
2	İ	33.	5624	1	52	2.57	7	-15.68	3	6.89	40.00)	-3.11	Q	P
3	ļ	44.	7433	3	57	7.85	5	-21.45	3	6.40	40.00)	-3.60	Q	P
4	*	46	6664	1	60).13	3	-22.13	3	8.00	40.00)	-2.00	Q	P
5	ļ		8348).24		-23.79		5.45	40.00		-4.55		
6	Į.	124	5690	J	61	1.20)	-22.36	- 3	8.84	43.50)	-4.66	Q	۲

Emission Level= Read Level+ Correct Factor

Above 1GHz

Temperatur	e:	25 ℃			Relativ	e Humidi	ty:	55%	
Test Voltage	e:	AC 120V/	60HZ						
Ant. Pol.		Horizonta							
Test Mode:		TX B Moo	de 2412N	ЛНz					
Remark:		-	for the e	mission	which m	ore than 1	0 dB l	below tl	ne prescribed
		limit.							
90.0 dBu¥/m									
							0000000		
							(RFJ FC)	C PART 150	IPEAKJ
	2								
	×						(RF) F	E PART 1	E (AVG)
	1 X								
40									
-10									
1000.000 3550.0	00 61	00.00 8650).00 1120	0.00 137	0.00 1630	0.00 18850.0	10 214	100.00	26500.00 MHz
		Rea	dina C	orrect	Measure	<u>.</u>			
No. Mk.	Freq			actor	ment	Limit	0	ver	
	MHz	dB	υV	dB/m	dBuV/m	dBuV/r	n (dB D	etector
1 * 4	824.9	80 29.	17 1	4.55	43.72	54.00) -1	0.28	AVG
2 4	823.4	04 43.	14 1	4.55	57.69	74.00) -1	6.31	peak
Emission L	evel=	Read Lev	/el+ Cor	rect Fac	tor				

ſem	perat	ure:	25 °C			Relative	Humidity:	55%				
Test	t Volta	age:	AC 120V/60HZ									
۹nt.	. Pol.		Vertical									
Test	t Mod	e:	TX B Mode 2412MHz									
Ren	nark:		No report for the emission which more than 10 dB below the prescribed limit.									
90.0	dBu₩/r	n										
							(RF) FCC	: PART 15C (PEAK)			
		1 ×					(RF) FC	C PART 150	(AVG)			
		3										
40		2 X										
-												
-												
0												
100)0.000 <u>3</u> !	550.00 61	00.00 8	650.00 112	00.00 13750.01	0 16300.00	18850.00 214	00.00	26500.00 MI			
-	No.	Mk. F	req.	Reading Level	Correct Factor	Measure- ment	Limit	Over				
-		Ν	ИНz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector			
-	1	482	4.356	43.86	14.55	58.41	74.00	-15.59	peak			
	2	* 482	4.776	29.19	14.55	43.74	54.00	-10.26	AVG			
īmi	ssion	Level=	Read Lo	evel+ Cor	rect Facto	r						

Tem	nperatu	re:	25 °C			Relat	ive Hum	nidity:	55%				
Test Voltage: AC 120V/60HZ Ant. Pol. Horizontal													
Ant	. Pol.		Horizon	al									
Tes	t Mode:		TX B Mo	ode 243	7MHz								
Ren	nark:			No report for the emission which more than 10 dB below the									
			prescrib	ed limit.									
90.0	dBu¥∕m												
-								(RFJ FLU	PART 15C (PEAKJ			
		1											
		×						(RF) FC	C PART 15C	(AVG)			
		2 X											
40													
-													
-10													
	00.000 3550).00 61	00.00 865	0.00 11	200.00 1375	0.00 1630	00.00 1889	50.00 214	DD. 00	26500.00 MHz			
			Rea	dina (Correct I	Measure	<u></u>						
No	o. Mk.	Freq			Factor	ment	Lim	it O	/er				
		MHz	dB	.N	dB/m	dBuV/m	dBu	V/m d	IB De	tector			
1	4	873.46	68 43.	60	14.86	58.46	74.	00 -1	5.54 p	eak			
2	* 4	874.91	16 29.	06	14.86	43.92	54.	00 -10	0.08 A	VG			
Emi	ission L	_evel=	Read Lev	/el+ Co	rrect Fact	or							

Tempe	erature:	25 °C			Relati	ive Hu	midity:	55%				
Test V	oltage:	AC 120\	//60HZ									
Ant. P	ol.	Vertical										
Test M	ode:	TX B Mo	de 2437	7MHz								
Remar	'k:	-	No report for the emission which more than 10 dB below the prescribed limit.									
90.0 d	BuV/m	•										
										7		
							(RF) F	CC PART 15	C (PEAK)			
	2 X						(RF)	FCC PART 1	5C (AVG)	-		
	1									-		
40	×									_		
										1		
										-		
-10	00 3550.00 6	100.00 865	0.00 112	200.00 13750	00 1630	0.00 18	8850.00 2	1400.00	26500.0	 30 MHz		
No	Mk. Fre		ading	Correct Factor	Measu		imit	Over				
	MH		BuV	dB/m	dBuV/		lBuV/m	dB	Detector			
1	* 4874.		9.06	14.86	43.9		54.00	-10.08	AVG			
2	4874.	928 43	3.72	14.86	58.5	8	74.00	-15.42	peak			
Emiss	ion Level=	Read Lev	∕el+ Cor	rect Fact	or							

Terr	peratur	e:	25 ℃			Relat	ive Hum	idity:	55%		
Tes	t Voltage	: :	AC 120	//60HZ							
Ant	. Pol.		Horizon	tal							
Tes	t Mode:		TX B Mo	ode 246	2MHz						
Ren	nark:		No report for the emission which more than 10 dB below the prescribed limit.								
90.0	dBu¥∕m										
								(RF) FCC	PART 15C (PEAK)	
-											
		2 X						(RF) FC	C PART 15C	(AVG)	
		1									
40		×									
-10 10	00.000 3550.	00 61	100.00 865	0.00 11	200.00 137	0.00 163	0.00 1885	0.00 214	00.00	26500.00 MHz	
			Read	ling (Correct	Measure					
No	o. Mk.	Freq.			Factor	ment	Limi	t Ov	er		
		MHz	dBu	N	dB/m	dBuV/m	dBuV	/m d	B Det	ector	
1	* 49	24.86	60 29.	49	15.18	44.67	54.0	0 -9	.33 A	VG	
2	49	24.76	60 43.	91	15.18	59.09	74.0	0 -14	l.91 pe	eak	
Emi	ission Le	evel=	Read Lev	/el+ Co	rrect Fac	tor					

Tem	peratu	re:	25 ℃			Relat	ive Hum	idity:	55%		
Test	t Voltag	e:	AC 120	//60HZ							
Ant	. Pol.		Vertical								
Test	t Mode:		TX B Mo	ode 246	2MHz						
Ren	nark:		No report for the emission which more than 10 dB below the prescribed limit.								
90.0	dBu¥∕m										
								(RF) FCC	PART 15C	(PEAK)	
		1 X						(RF) FC	C PART 150	(AVG)	
		2									
40		×									
-											
-											
-10	0.000 3550	100 61	00.00 865	0.00 11	200.00 1375	0.00 1630	00.00 1885	0.00 21.4	00.00	26500.00 MHz	
			Read	dina (Correct 1	Measure	<u>-</u>				
No	o. Mk.	Freq			Factor	ment	Limi	t Ov	/er		
		MHz	dBi	N	dB/m	dBuV/m	dBuV	//m d	B De	tector	
1	4	923.13	36 43.	85	15.17	59.02	74.0	0 -14	1.98 p	eak	
2	* 4	924.90	0 29.	54	15.18	44.72	54.0)0 -9	.28 A	VG	
Emi	ssion L	.evel=	Read Lev	/el+ Co	rrect Fac	tor					

Tem	peratu	re:	25 °C			Relati	ive Humi	dity:	55%				
Test	t Voltag	e:	AC 120	//60HZ									
Ant	. Pol.		Horizon	al									
Test	t Mode:		TX G M	ode 2412	2MHz								
Ren	nark:		-	No report for the emission which more than 10 dB below the prescribed limit.									
90.0) dBu¥/m												
								(RF) FCC	PART 150	(PEAK)			
		1 X						(RF) FC	C PART 15	C (AVG)			
		2											
40		×											
-10	00.000 355	0.00 6	100.00 86	50.00 112	200.00 137	50.00 1630	0.00 18850	0.00 214	00.00	26500.00 MH			
No). Mk.	Freq	Read	<u> </u>	orrect Factor	Measure ment	ہے۔ Limit	Ov	er				
		MHz	dBu	N (dB/m	dBuV/m	dBuV/	m d	B De	etector			
1	4	824.88	4 43.	37 1	4.55	57.92	74.0	0 -16	6.08 p	eak			
2	* 4	823.97	2 29.	15 1	4.55	43.70	54.0	0 -10).30 /	AVG			
Emi	ssion L	.evel=	Read Lev	/el+ Cor	rect Fac	tor							

Temperature:	25 ℃	Relative Humidity:	55%								
Test Voltage:	AC 120V/60HZ										
Ant. Pol.	Vertical										
Test Mode:	TX G Mode 2412MHz										
Remark:	No report for the emission prescribed limit.	No report for the emission which more than 10 dB below the prescribed limit.									
90.0 dBu¥/m											
		(RF) FCC	PART 15C (PEAK)								
2 ×		(RF) FC	C PART 15C (AVG)								
1											
40 ×											
-10 1000.000 3550.00 61	100.00 8650.00 11200.00 13750	00 16300.00 18850.00 214	00.00 26500.00 MHz								
	Reading Correct M	leasure-									
No. Mk. Free			ver								
MHz	dBuV dB/m	dBuV/m dBuV/m	dB Detector								
1 * 4824.9	60 29.17 14.55	43.72 54.00 -1	0.28 AVG								
2 4823.1	92 43.79 14.55	58.34 74.00 -1	5.66 peak								
			-								
Emission Level=	Read Level+ Correct Factor	or									

Tem	perature	:	25 °C			Relat	ive Hum	nidity:	55%				
Test	Voltage:		AC 120\	//60HZ									
Ant.	Pol.		Horizont	al									
Test	Mode:		TX G Mo	ode 243	7MHz								
Rem	nark:		No report for the emission which more than 10 dB below the										
			prescrib	prescribed limit.									
90.0 [dBu¥∕m												
-								(RF) FCC	PART 15C	(PEAK)			
		2											
		x						(RF) FC	C PART 150	(AVG)			
		1 X											
40		~											
-													
-10													
L	00.000 3550.00	D 6	100.00 865	0.00 112	200.00 137	60.00 1630	0.00 188	50.00 214	00.00	26500.00 MHz			
No). Mk. F	Freq	Read		Correct Factor	Measure	- Lim	it Ov	/er				
		MHz	dBu		dB/m	dBuV/m	dBu	V/m d	IB De	tector			
1		4.88			14.86	43.90	54.			AVG			
2	487	4.17	6 42.	72 1	14.86	57.58	74.	00 -10	6. 4 2 p	eak			
Emi	ssion Lev	/el=	Read Lev	vel+ Coi	rrect Fac	tor							

Temperature:	25 ℃	Relative Humidity: 55%
Test Voltage:	AC 120V/60HZ	
Ant. Pol.	Vertical	
Test Mode:	TX G Mode 2437MHz	
Remark:	No report for the emission prescribed limit.	which more than 10 dB below the
90.0 dBuV/m		
		(RF) FCC PART 15C (PEAK)
1 X		(RF) FCC PART 15C (AVG)
2		
40 ×		
-10	00.00 8650.00 11200.00 13750.	00 16300.00 18850.00 21400.00 26500.00 MHz
	Deading Correct N	1000000
No. Mk. Freq	<u> </u>	leasure- ment Limit Over
MHz	dBuV dB/m	dBuV/m dBuV/m dB Detector
1 4873.24		58.12 74.00 -15.88 peak
2 * 4874.90		43.93 54.00 -10.07 AVG
Emission Level=	Read Level+ Correct Facto	or

Ten	nperatu	re:	25 ℃			Relat	ive Hum	nidity:	55%	
Tes	t Voltag	e:	AC 120	V/60HZ						
Ant	. Pol.		Horizon	tal						
Tes	t Mode:		TX G M	ode 246	2MHz					
Rer	nark:		No repo prescrib		e emissior	n which	more tha	an 10 dB	below t	he
90. O	dBu¥∕m									
								(RF) FCC	PART 15C (PEAK)
		1								
-		×						(RF) FC	C PART 150	(AVG)
		2 X								
40		^								
-10 10	00.000 3550).00	00.00 865	0.00 11	200.00 1375	0.00 163	00.00 188	50.00 214	DD. 00	26500.00 MHz
N	o. Mk.	Freq	Rea . Lev		Correct I Factor	Measure	e- Lim	it Ov	ver	
		MHz	dB	uV	dB/m	dBuV/m	dBu\	√/m d	IB Det	tector
1	4	923.03	36 44.	19	15.17	59.36	74.	00 -14	4.64 p	eak
2	* 4	924.74	40 29.	48	15.18	44.66	54.	00 -9	.34 A	VG
Em	ission L	.evel=	Read Lev	vel+ Co	rrect Fac	tor				

Ten	nperatur	e:	25 °C			Relat	ive Hum	nidity:	55%				
Tes	t Voltage	e :	AC 120	//60HZ									
Ant	. Pol.		Vertical										
Tes	t Mode:		TX G M	ode 246	62MHz								
Rer	nark:		-	No report for the emission which more than 10 dB below the prescribed limit.									
90.0) dBu¥/m												
								(RF) FCC	PART 15C (PEAK)			
		3											
		2 X						(RF) FC	C PART 150	(AVG)			
		1											
40		×											
-10 10	00.000 3550	.00 61	100.00 865	0.00 1	1200.00 137	50.00 163	00.00 1889	50.00 214	DD. 00	26500.00 MHz			
			Baa	ling	Corroct	Measure							
N	o. Mk.	Freq	Read		Correct Factor	ment	e- Limi	it Ov	/er				
		MHz	dBi	N	dB/m	dBuV/m	dBu\	//m d	B Det	tector			
1	* 4	924.15	52 29.	54	15.17	44.71	54.0	00 -9	.29 A	VG			
2	49	923.20)4 43.	80	15.17	58.97	74.	00 -15	5.03 p	eak			
Em	ission L	evel=	Read Lev	/el+ Co	orrect Fac	tor							
L													

Ter	npera	ture:	25 ℃			Relat	ive Hum	idity:	55%			
Tes	st Volt	age:	AC 120	V/60HZ	2			-				
An	t. Pol.	•	Horizon	tal								
Tes	st Moo	de:	TX N(H	T20) M	ode 2412N	/IHz						
Re	mark:		No report for the emission which more than 10 dB below the									
			prescrib	ed limi	t.							
90.0	l dBu¥∕	' m										
-								(RFJ FLL	PART 15C	(PEAK)		
		2										
		2 X						(RF) FC	C PART 150	(AVG)		
-		1 X										
40		Ŷ										
10												
	00.000 3	3550.00 61	0.00 865	0.00 1	1200.00 1375	0.00 1630	00.00 1885	0.00 214	DD. 00	26500.00 MHz		
			Rea	ding	Correct	Measure	e_					
Ν	lo. Mi	k. Freq			Factor	ment	Limi	t Ov	/er			
		MHz	dB	uV	dB/m	dBuV/m	n dBu\	//m d	IB De	tector		
1	*	4825.00	0 29	.14	14.55	43.69	54.0	00 -10	0.31 A	AVG		
2		4824.3	6 43	.28	14.55	57.83	74.(00 -10	6.1 7 p	eak		
Em	nissio	n Level=	Read Le	vel+ Co	orrect Fac	tor						

Tem	peratu	ire:	25 °C			Relati	ve Humid	ity:	55%	
Test	t Volta	ge:	AC 120	//60HZ						
Ant.	Pol.		Vertical							
Test	t Mode	:	TX N(H	Г20) Мс	de 2412	ЛНz				
Rem	nark:		No repo	rt for the	e emissio	n which r	nore than	10 dB	below	the
			prescrib	ed limit.						
90.0	dBu¥∕m	1								
								(RF) FCC	PART 15C	(PEAK)
		1								
		×						(RF) FC	C PART 15	C (AVG)
		2 X								
40		~								
_										
_										
-10	0.000 355	50.00 G1	00.00 865	0.00 11	200.00 137	50.00 1630	0.00 18850.0	0 214	00.00	26500.00 MH:
			Read	ling (Correct	Measure	_			
No	. Mk.	Freq.			Factor	ment	Limit	Ov	er	
		MHz	dBu	N	dB/m	dBuV/m	dBuV/m	d	B De	tector
1	4	1824.36	0 43.		14.55	58.11	74.00	-15	.89 p	eak
2	* 4	1824.98	0 29.	16	14.55	43.71	54.00	-10		VG
									_	
Emi	ssion	Level=	Read Lev	/el+ C∩	rrect Fac	tor				

Tem	perature:		25 ℃			Relati	ive Hum	idity:	55%	
	t Voltage:		AC 120	V/60HZ				•		
	. Pol.		Horizon	tal						
Test	t Mode:		TX N(H	T20) M	ode 2437M	Hz				
Ren	nark:		No repo	rt for th	e emission	which r	nore tha	in 10 dB	below	the
			prescrib	ed limi	t.					
90.0	dBuV∕m									
								(RF) FCC	PART 15C	(PEAK)
		-								
		2 X						(RF) FC	C PART 15	C (AVG)
		1								
40		x								
-10	00.000 3550.00	61	100.00 86	50.0D 1	1200.00 1375	1.00 1630	0.00 1885	50.00 214	00.00	26500.00 MHz
			Pop	dina	Correct	Neasure				
No	o. Mk. F	req	. Le	ding vel	Factor	ment	=- Limi	it Ov	ver	
		MHz		uV	dB/m	dBuV/m	dBu	//m d	B D	etector
1	487	3.80	04 43	.60	14.86	58.46	74.	00 -1	5.54	peak
2	* 487	4.98	30 29	.06	14.86	43.92	54.	00 -10	0.08	AVG
Emi	ssion Lev	el=	Read Le [,]	vel+ Co	orrect Fact	or				

Tem	peratur	e:	25 °C			Relat	ive Hum	idity:	55%			
Test	t Voltage):	AC 120	V/60HZ	Z				1			
Ant.	Pol.		Vertical									
Test	t Mode:		TX N(H	T20) M	lode 2437	MHz						
Rem	nark:		No report for the emission which more than 10 dB below the									
			prescribed limit.									
90.0) dBu¥/m											
								(BE) ECC	PART 15			
								(in j r c c		. (
		2										
		×						(RF) FC	C PART 1	SC (AVG)	-	
		1 X										
40												
-10												
No	. Mk.	Freq.	Read		Correct Factor	Measure	- Limit	O	/er			
		MHz	dBu	N	dB/m	dBuV/m	dBuV/	'm d	BC	Detector		
1	* 48	874.92	0 29.	07	14.86	43.93	54.0	0 -1(0.07	AVG		
2	48	74.95	2 42.	86	14.86	57.72	74.0	0 -10	5.28	peak		
Emi	ssion L	evel=	Read Le	vel+ C	orrect Fa	ctor						

Ten	nperature	: :	25 °C			Rela	ative Hur	nidity:	55%	
Tes	t Voltage	:	AC 120\	//60HZ						
Ant	. Pol.		Horizont	al						
Tes	t Mode:		TX N(H	Г20) Мо	de 2462	MHz				
Rer	nark:		No repo	rt for the	emissio	on which r	more tha	n 10 dB	below	the
			prescrib	ed limit.						
90.0	0 dBu¥∕m				1				1	
								(RF) FCC	PART 15C	(PEAK)
		2								
		x						(RF) FC	C PART 150	(AVG)
		1 X								
40		~								
10										
-10 10	00.000 3550.0	00 6	100.00 865	0.00 112	200.00 13.	750.00 1630	0.00 1885	0.00 214	00.00	26500.00 MHz
No	o. Mk.	Freq	Read Lev	<u> </u>	orrect Factor	Measure ment	Limit	Ov	er	
		MHz	dBu	N (dB/m	dBuV/m	dBuV	/m d	B De	tector
1	* 49	24.85	6 29.4	48 1	5.18	44.66	54.0	0 -9	.34 A	VG
2	49	24.07	2 43.	71 1	5.17	58.88	74.0	0 -15	i.12 p	eak
Em	ission Le	evel=	Read Lev	/el+ Cor	rect Fa	ctor				

Ten	nperatu	ure:	25 ℃			Rela	ative Hu	midity:	55%				
Tes	t Volta	ge:	AC 120	V/60HZ									
Ant	t. Pol.		Vertical										
Tes	t Mode):	TX N(H	T20) M	ode 2462	MHz							
Rer	mark:		No report for the emission which more than 10 dB below the										
			prescrib	ed limi	t.								
90.0) dBu¥∕m				1								
								(RF) FCC	PART 15C (PEAKJ			
		1											
		×						(RF) FC	C PART 150	(AVG)			
		2 X											
40													
-10													
	00.000 35	50.00 61	00.00 865	0.00 1	1200.00 137	50.00 1630	0.00 1885	50.00 2140	DD. 00	26500.00 MHz			
				_	Correct	Measure							
N	o. Mk.	Freq			Factor	ment	Lim		ver				
		MHz	dB		dB/m	dBuV/m				etector			
1		4923.66	58 43.	75	15.17	58.92	74.	.00 -1	5.08 p	beak			
2	*	4924.05	52 29	51	15.17	44.68	54.	.00 -9).32 <i>I</i>	AVG			
Em	ission	Level=	Read Le	vel+ Co	orrect Fa	ctor							

Attachment C-- Restricted Bands Requirement Test Data

Temp	eratur	re:	25 °	С				Rela	ativ	e Humi	dity:	55%)
Test \	/oltag	e:	AC	120V	′/60HZ								
Ant. F	ol.		Hori	zonta	al								
Test N	/lode:		TX E	3 Mo	de 241	2MHz							
Rema	rk:		N/A										
110.0	dBu¥∕m												E
													4
												1	×
											(RF) FC	C PART 150	: (PEAK)
						_							
60						_				1 X	(RF) F	CC/PART 1	SC (AVG)
									\sim	2 ~X	~	/	
			-							\sim			
10.0													
2322	.000 233	2.00 23	342.00	2352	2.00 2	362.00	2372.0	0 2382	2.00	2392.00	24	02.00	2422.1
				Re	ading	Cor	rect	Meas	ure	-			
N	o. Mk	. Fre	eq.	Le	evel	Fac	ctor	mer	nt	Limi	t	Over	
		MH	łz		BuV	dB/	m	dBuV	//m	dBu\	//m	dB	Detecto
1		2390.	000	5	5.85	2.2	28	58.1	13	74.(00	-15.87	peak
2		2390.	000	4	5.84	2.2	28	48.1	12	54.(00	-5.88	AVG
3	Х	2411.	000	10)5.75	2.3	9	108.	14	Fundame	ntal Fr	requency	peak
4	*	2411.	200	94	4.73	2.3	9	97.1	12	Fundame	ntal Fr	equency	AVG

Temp	eratur	e:	25	°C				Rela	ative	Hum	idity:	55%	
lest V	/oltag	e:	AC	120V	/60H	Z							
Ant. P	ol.		Vert	tical									
lest N	lode:		TX	B Moo	de 24	112MH	z						
Rema	rk:		N/A										
110.0	Bu¥∕m												
												3	
												×	
												×	
										IBEI	FCC PART 150	IPEAKI	
												1	
60													
									X	(RF	FC PART 15		
									2 X			1	
								~		~	_~~		
10.0													
2324.0	100 2334	.00	2344.00	2354	00	2364.00	2374	.00 2	384.00	239	4.00	2404.00	2424.00
					ading	, Cor	rect	Mea	sure-				
No	o. Mk	. Fi	req.	Le	vel	Fa	ctor	me	ent	Li	mit	Over	
		М	IHz	dE	BuV	dB	/m	dBu	ıV/m	d	BuV/m	dB	Detector
1		2390	0.000	52	.83	2.3	28	55	.11	7	4.00	-18.89	peak
2		2390	0.000	41	.10	2.3	28	43	.38	5	4.00	-10.62	AVG
3	Х	2410	0.600	96	.59	2.3	39	98	.98	 Fun	damenta	al Frequency	peak
4	*	2411	1.200	86	.86	2.	39	89	.25		damenta	al Frequency	AVG

Tempera	ture:	25 °	°C		Relati	ve H	umidity	: 55%	
Fest Volt	age:	AC	120V/60H	IZ					
Ant. Pol.		Hori	zontal						
est Mod	le:	TX E	3 Mode 2	462MHz					
Remark:		N/A							
110.0 dBuV									
60	× 2		3 X 4					F) FCC PART 150	
10.0	2460.00	2470.00	2480.00	2490.00 2500	1.00 2510	. 00	2520.00	2530.00	2550.0
No. N	Ale En		Reading		Measu		Limit	Over	
No. N	/IK. FT MI	eq.	Level dBuV	Factor	dBuV/		dBuV/m		Dotostar
1 X			авич 104.42	dB/m 2.61					Detector
					107.0			al Frequency	peak
2	2461		95.45	2.62	98.0			al Frequency	AVG
3	2483		59.61	2.71	62.3		74.00	-11.68	peak
4	2483	.500	48.71	2.71	51.4	2	54.00	-2.58	AVG

Femperatu	ire:	25 °C			Relativ	e Humidity:	55%	
Fest Voltag	ge:	AC 120	V/60HZ					
Ant. Pol.		Vertical						
lest Mode	:	TX B M	ode 246	2MHz				
Remark:		N/A						
110.0 dBu∀/m								
50	1 2 7 7		3 × 4				C PART 15	
10.0 2446.000 249	55.00 24		76.00 24 ading	35.00 2496 Correct	oo 2506.00 Measure		26.00	2546.00
No. Mk	. Free		evel	Factor	ment		Over	
	MHz	z d	BuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1 X	2460.6	00 9	9.72	2.61	102.33		quency	peak
2 *	2461.2	00 9	1.65	2.62	94.27	Fundamental Fre	equency	AVG
3	2483.5	00 5	6.28	2.71	58.99	74.00 -	15.01	peak
4	2483.5	00 4	5.32	2.71	48.03	54.00	-5.97	AVG

emp	eratur	e:	25 °	С			R	elativ	/e Hum	nidity	: 55%	
Test V	/oltag	e:	AC ²	120V/6	50HZ							
Ant. P	ol.		Hori	zontal								
Test N	lode:		ТХ С	G Mod	e 241	2MHz						
Rema	rk:		N/A									
110.0	dBuV/m											
											3 X	
										·	4 ×	
										(BE	FCC PART 1	50 (PEAK)
								1				
60								×				
-								-	(R	F) FCC PART	15C (AVG)	
						6		2 X				
			_	-								
10.0	.000 234	2.00	2353.00	2363.0	0 3	373.00 2	2383.00	2393.	00 340	3.00	2413.00	2433.00
2333	.000 2.34	3.00	2333.00	2363.1	JU Z:	57 5.UU 2	2363.00	2355.	.00 240	3.00	2413.00	2433.00
N	M	Г.		Read		Corre		easu		mit	Over	
INC	. Mk		eq.	Lev		Facto		ment				
_			Hz	dBu		dB/m		lBuV/r		BuV/m		Detector
1		2390		62.		2.28		64.77		4.00	-9.23	· ·
2		2390		42.	49	2.28		44.77		4.00	-9.23	AVG
3	Х	2410	.600	100	.01	2.39		02.4	0		Frequency	peak
4	*	2410	.600	84.	14	2.39		86.53	Funda	mental I	requency	AVG

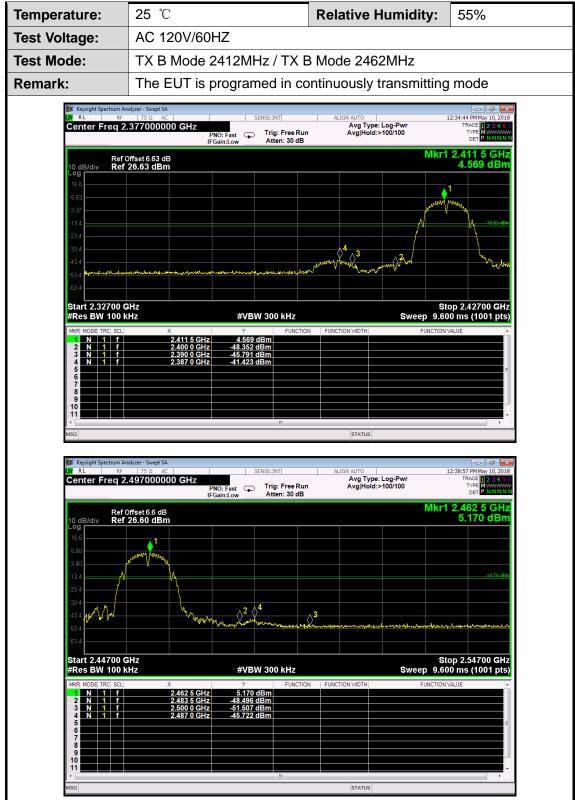
ēm	peratu	ure:	25	°C				Rel	ativ	/e Hu	midi	ty:	55%	/o	
est	Volta	ge:	AC	120V	/60HZ	Ζ									
۸nt.	Pol.		Ver	tical											
est	Mode):	ТХ	G Mo	de 24	12MH	z								
Rem	nark:		N/A	۱											
110.0) dBu¥∕i	m													
													3 X		ĺ
											(RI	JFCC	PART 15	IC (PEAK)	
											1				
60								1	į		1				
									-		/ •	ւլւ	U PAK I	15C (AVG)	
							_	; ,							M
10.0 23	31.000 2	341.00	2351.00	236	1.00	2371.00	2381	.00 23	91.00	240	1.00	2411	.00	2431	.00 M
															_
N		- En			ding	Corr		Measu		Lin	nit	0	ver		
	lo. Mk		eq.		vel	Fac		men						Detector	_
4		M			uV	dB/n		dBuV/			uV/m		dB	Detector	_
1		2390.			.92	2.2		58.2			.00		5.80	peak	_
2		2390.			.84	2.2		42.1		_	.00		1.88	AVG	_
3	Х	2417.	.600	91	.95	2.42		94.3		Funda _			-	peak	_
4	*	2419	.400	76	.77	2.4	2	79.1	9	Funda	mental	Freq	uency	AVG	_

Temperature:	25 ℃			Relativ	ve Humidi	ty: 55%	
Test Voltage:	AC 120	V/60HZ					
Ant. Pol.	Horizon	tal					
Test Mode:	TX G M	ode 246	2MHz				
Remark:	N/A						
110.0 dBu¥/m	1 X						
\int	X					RF] FCC PART 15	: (PEAK)
50			3 ×			(RF) FCC PART 1	5C (AVG)
			*				
10.0 2441.000 2451.00	2461.00 24	71.00 24	31.00 2491	.00 2501.	00 2511.00	2521.00	2541.00 MHz
No. Mk. F		eading _evel	Correct Factor	Measu ment		Over	
	MHz	dBuV	dB/m	dBuV/	m dBuV	/m dB	Detector
1 X 246	7.400	99.52	2.64	102.1	6 Fundame	ental Frequency	peak
2 * 246	9.200	34.81	2.65	87.4	6 Fundame	ental Frequency	AVG
3 248	3.500 (64.19	2.71	66.9	0 74.0	0 -7.10	peak
4 248	3.500 4	42.43	2.71	45.1	4 54.0	-8.86	AVG
Emission Level	= Read Le	vel+ Co	rrect Fact	tor			

Temperatu	ire:	25 ℃			Rela	tive Humid	lity: 55	%
Test Voltag	ge:	AC 120)V/60⊢	IZ			· · · ·	
Ant. Pol.		Vertica	I					
Test Mode	:	TX G N	lode 2	462MHz				
Remark:		N/A						
110.0 dBuV/m								
		1 X						
		Â						
		2 	_					
	[Ð	RF) FCC PART	15E (PEAK)
				3 X				
60			(Î			(RF) FCC PART	15C (AVG)
			\mathbf{h}					
				4 *	_			
10.0								
2444.000 245	54.00 24	6 4 .00 24	174.00	2484.00 2	2494.00 2504.	00 2514.00	2524.00	2544.00
		Re	ading	Correc	t Measur	a		
No. Mk.	Free		evel	Facto		Limit	Over	
	MHz	(lBuV	dB/m	dBuV/m	n dBuV/m	n dB	Detector
1 X	2467.4	00 9	6.98	2.64	99.62	— Fundamenta	Frequency	peak
2 *	2469.2	00 8	1.71	2.65	84.36	Fundamenta	Frequency	AVG
3	2483.5	00 6	1.91	2.71	64.62	74.00	-9.38	peak
4	2483.5	00 3	9.92	2.71	42.63	54.00	-11.37	AVG

Temp	peratur	e:	25 °	С				Rela	ative	e Hu	midity	/: 55%)
Test	Voltag	e:	AC ²	120V/6	50HZ								
Ant.	Pol.		Hori	zontal									
Test	Mode:		TXT	N(HT2	D) Mc	de 24	412M	lHz					
Rema	ark:		N/A										
110.0	dBu₩/m												
												4 ×	
												3 -×,	~
											(RF)	FCC PART 15	C (PEAK)
								1					
60								x		_]	Æ) FCC PART 1	
								2	/				
							\rightarrow	×					
10.0 2332	.000 2342	2.00 21	352.00	2362.0	0 23	872.00	2382	.00 239	2.00	240	2.00	2412.00	2432.00
N	o. Mk	En	eq.	Read			rect ctor	Measu men		Li	mit	Over	
	0. mix	. Mł	· ·	dBu				dBuV			uV/m	dB	Detector
1		2390		60.		dB/ 2.2		63.0			4.00	-10.91	peak
2		2390		42.		2.2		44.7			4.00	-9.22	AVG
2	*							85.4		_		-9.22	
		2410		83.		2.3				_			AVG
4	Х	2414.	.800	97.	89	2.4	1 0	100.:	29	Fund	lamenta	Frequency	peak

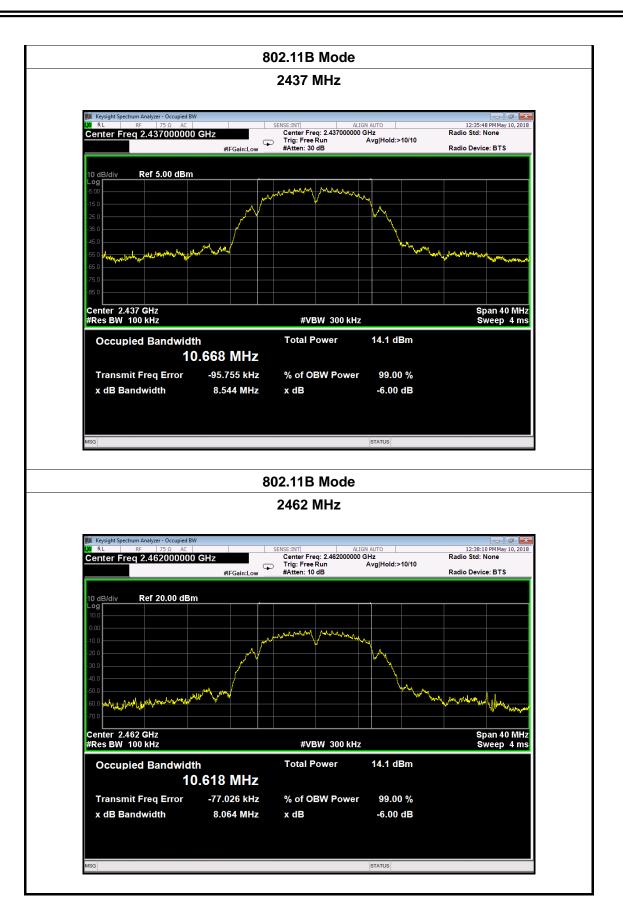
Tem	peratu	re:	25 °	С			Relati	ve Hu	nidity	: 55%	
Test	t Voltag	je:	AC	120V/	60HZ						
Ant	Pol.		Vert	ical							
Test	t Mode:	:	TXI	N(HT2	:0) Moo	de 2412N	1Hz				
Ren	nark:		N/A								
110.0) dBu∀/m										
											3 X
											4
									/[RF]	PCC PART 15	
									+		\rightarrow
60							1 X			F) FCC PART 1	50 (4)(6)
										,	
							2 X				h
10.0											
	31.000 23	41.00	2351.00	236 1.	00 237	1.00 2381	.00 2391	.00 24	.01.00	2411.00	2431.00
				Read	lina	Correct	Measu	re-			
Ν	lo. Mk	. Fre	eq.	Lev		Factor	ment		imit	Over	
		Mł	Ηz	dBu	N	dB/m	dBuV/	m d	BuV/m	dB	Detector
1		2390	.000	54.	93	2.28	57.2	1 7	74.00	-16.79	peak
2		2390	.000	39.	39	2.28	41.6	7 (54.00	-12.33	AVG
3	Х	2419	.400	92.	06	2.42	94.4	8 Fun	damental	Frequency	peak
4	*	2419	600	76.	54	2.42	78.9	6 Fun	damental	Frequency	AVG


Tempera	tur	e:	25 °	С				Rela	ativ	e Hu	midit	: y: 55	%
Test Volt	age	e:	AC 1	20V/60	OHZ							·	
Ant. Pol.	1		Hori	zontal									
Test Mod	de:		TXN	I(HT20) Mo	de 2462	MHz						
Remark:			N/A										
110.0 dBuV/	/m												1
				2 X									
				×									
				1 ×									
	1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~									(RF)	FCC PART 1	15E (PEAK)
	+			+		3 X							
60	\mathcal{F}			- f		Î					(8)	F) FCC PART	15C (AVG)
	-				$\overline{\}$								
					~	*					~		
10.0													
2443.000 2	2453.	00 240	63.00	2473.00	248	3.00 249	93.00	250	3.00	251	3.00	2523.00	2543.
				Readi	na	Correct	t M	easi	ire-				
No. N	٨k.	Fre	q.	Leve		Factor		men			mit	Over	
		MH	z	dBu\	/	dB/m		dBuV	/m	dE	8uV/m	dB	Detector
1 *		2469.4	400	78.3	0	2.65		80.9	5	– Fund	amenta	I Frequenc	AVG
2 X	(2469.6	600	93.7	8	2.65		96.4	3	– Fund	amenta	I Frequency	peak
3		2483.	500	61.1	6	2.71		63.8	7	7	4.00	-10.13	3 peak
4		2483.	500	40.1	0	2.71		42.8	1	5	4.00	-11.19	9 AVG

Temperatu	re:	25	°C				R	elativ	e Hun	nidity	/: 55%	
Fest Voltag	ge:	AC	120\	//60H	Z							
Ant. Pol.		Ver	tical									
Test Mode	:	ТΧ	N(HT	20) N	/lode	2462	MHz					
Remark:		N/A	۱									
110.0 dBuV/m												
		2 X										
		^										
		1 ×								ſßF) FCC PART 1	5C (PEAK)
-												
60					3							
			+		×					(F	IF) FCC PART	15C (AVG)
			~		4							
					*		-					
10.0												
2447.000 249	57.00 24	467.00	247	7.00	2487.00	249	97.00	2507.0	10 251	7.00	2527.00	2547.
	-			ding		rrect		asure			Over	
No. Mk.		·		vel	Fa	actor		ent	Lir		Over	
	MHz			luV		3/m		8uV/m	dB	uV/m	dB	Detector
1 *	2467.8	800	74	.30	2.	64	7	6.94	Funda	mental	Frequency	AVG
2 X	2469.4	-00	89	.78	2.	65	9	2.43	Funda	mental	Frequency	peak
3	2483.5	00	55	.72	2.	71	5	8.43	74	.00	-15.57	peak
4	2483.5	00	38	.25	2.	71	4	0.96	54	.00	-13.04	AVG

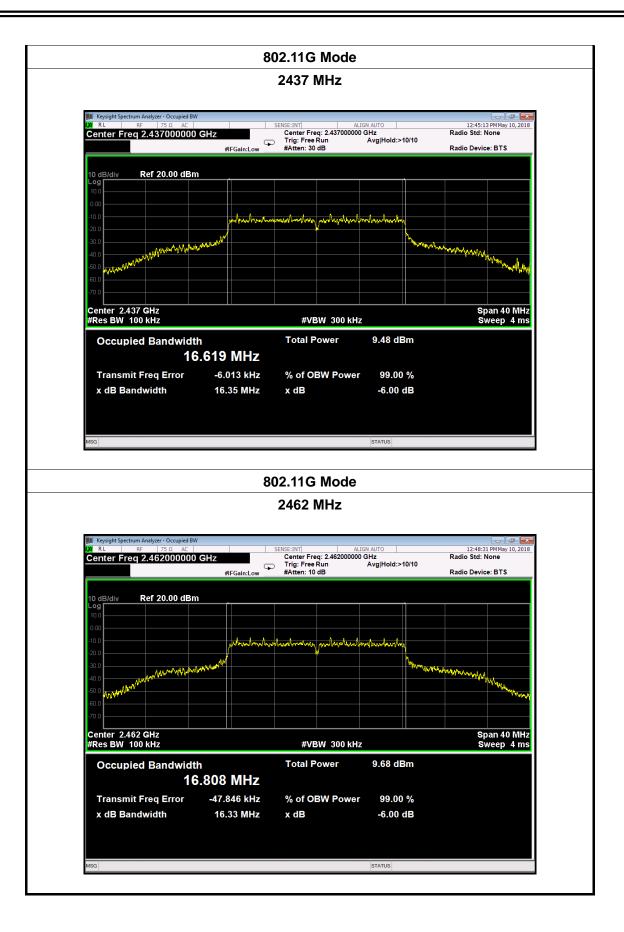
(2) Conducted Test

Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	AC 120V/60HZ		
Test Mode:	TX G Mode 2412MHz / TX C	Mode 2462MHz	
Remark:	The EUT is programed in co		mode
			mode
Keysight Spectrum A (X) RL RF Center Freq 2		ALIGN AUTO Avg Type: Log-Pwr Avg Hoid:>100/100	2:43:39 PM May 10, 2018 TRACE 12:43:50 TYPE MAANANANANANANANANANANANANANANANANANANA
Bef	IFGain:Low Atten: 30 dB		2.405 8 GHz
10 dB/div Ref	2 26.63 dBm		-1.431 dBm
6.63		1	
-3.37		philipping philipping	allerhallerhallerh
-23.4		2/ 	-21.43 dBm
-33.4		Anna Martin Martin	
-63.4 -63.4	hadden fahren hagten far en de vernet fan Arten Aren de arte fan de f		
Start 2.32700			op 2.42700 GHz
#Res BW 100	KHZ #VBW 300 kHz	-	00 ms (1001 pts)
1 N 1 f 2 N 1 f 3 N 1 f	2.405 8 GHz -1.431 dBm 2.400 0 GHz -27.053 dBm 2.390 0 GHz -46.618 dBm		
4 N 1 f	2.390 0 GHz -40.818 dBm 2.378 5 GHz -42.266 dBm		=
6 7 8			
9 10 11			
MSG	m	STATUS	
💓 Keysight Spectrum A	and and Sumak SA		
LXI R L RF	75 Ω AC SENSE:INT	Avg Type: Log-Pwr	L2:49:11 PM May 10, 2018 TRACE 1 2 3 4 5 6
	PNO: Fast Fast Trig: Free Run IFGain:Low Atten: 30 dB	Avg Hold:>100/100	TRACE 123456 TYPE MWWWWW DET P NNNN
10 dB/div Ref	Offset 6.6 dB 26.60 dBm	Mkr1	2.457 0 GHz -0.562 dBm
Log 16.6			
-3.40	T-		
-13.4			-20.49 dBm
-33.4		2	
-43.4	New Start St	3	สราง _{การส} ารที่ในสาราชาวิตยีน/ในประส ^{ารป} ุการ
-63.4			
Start 2.44700 #Res BW 100			op 2.54700 GHz 0 ms (1001 pts)
MKR MODE TRC SCL	X Y FUNCTION 2.457 0 GHz -0.562 dBm	-	
2 N 1 f	2.483 5 GHz -46.226 dBm		
3 N 1 f 4 N 1 f	2.485 0 GHz -44.455 dBm		
3 N 1 f 4 N 1 f 5 6	2.500 0 GHz -48.702 dBm 2.485 0 GHz -44.455 dBm		E
3 N 1 f 4 N 1 f 5 6 7 8 8 9 9 9	2.495 0 GHz -44.455 dBm		
3 N 1 f 4 N 1 f 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	2.485 0 GHz -44.455 dBm		

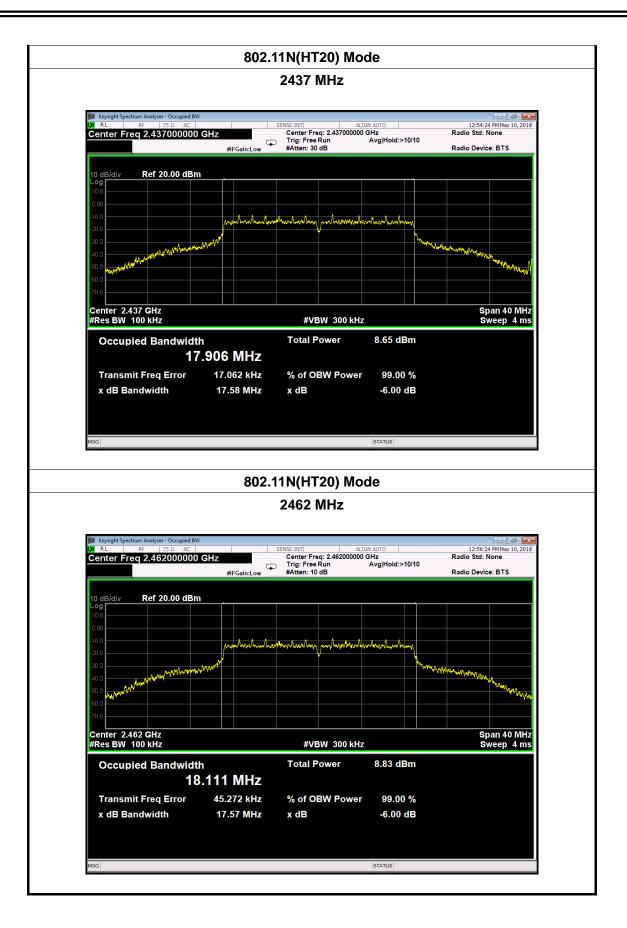

Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	AC 120V/60HZ		
Test Mode:	TX N(HT20) Mode 2412MH	7 / TY N(HT20) Mode 2	462MHz
		. ,	
Remark:	The EUT is programed in co	ntinuousiy transmitting	mode
LXI RL	m Analyzer - Swept SA RF 75 Ω AC SENSE:INT 2.3770000000 GHz	ALIGN AUTO Avg Type: Log-Pwr	
	PNO: Fast Trig: Free R IFGain:Low Atten: 30 d	B	
	ef Offset 6.63 dB ef 26.63 dBm	MKr	1 2.413 3 GHz -2.262 dBm
16.6			
6.63		الداري بالداري	n - International
-13.4			22.40 dBm
-33.4		4 3 and a set of the s	
-43.4 -53.4 *********	Windowenderston and supering and the second and the second s	N. A. Law born and Statement	
-63.4			
Start 2.3270 #Res BW 10			top 2.42700 GHz 600 ms (1001 pts)
MKR MODE TRC S	f 2.413 3 GHz -2.262 dBm	TION FUNCTION WIDTH FUNCTIO	N VALUE
2 N 1 3 N 1 4 N 1	f 2.400 0 GHz -28.857 dBm f 2.390 0 GHz -46.334 dBm		
			E
8			
MSG		STATUS	
	m Analyzer - Swept SA		
Center Fred	RF 75 Ω AC SENSE:INT 2.497000000 GHz PNO: Fast Trig: Free R PNO: Fast		12:57:20 PM May 10, 2018 TRACE 1 2 3 4 5 6 TYPE MWWWW DET P NNNN N
B	IFGain:Low Atten: 30 d		1 2.463 3 GHz
10 dB/div R	ef 26.60 dBm		-1.379 dBm
16.6 6.60	1		
-3.40	ul. I. Andellay Agenta Internet		
-13.4 -23.4	Infilition Infilition		-21.42 dBm
-33.4	$\gamma_{\gamma_{1}} \rangle^{2} \rangle^{4}$	3	
-53.4	Marrie Ma		www.allangtherester
-63.4			
Start 2.4470 #Res BW 10		Sweep 9.6	stop 2.54700 GHz 500 ms (1001 pts)
MKR MODE TRC S 1 N 1 2 N 1	f 2.463 3 GHz -1.379 dBm	TION FUNCTION WIDTH FUNCTIO	N VALUE
3 N 1 4 N 1	f 2.500 0 GHz -48.599 dBm		
5 6 7			
8 9 10			
			F F
MSG		STATUS	

Attachment D-- Bandwidth Test Data

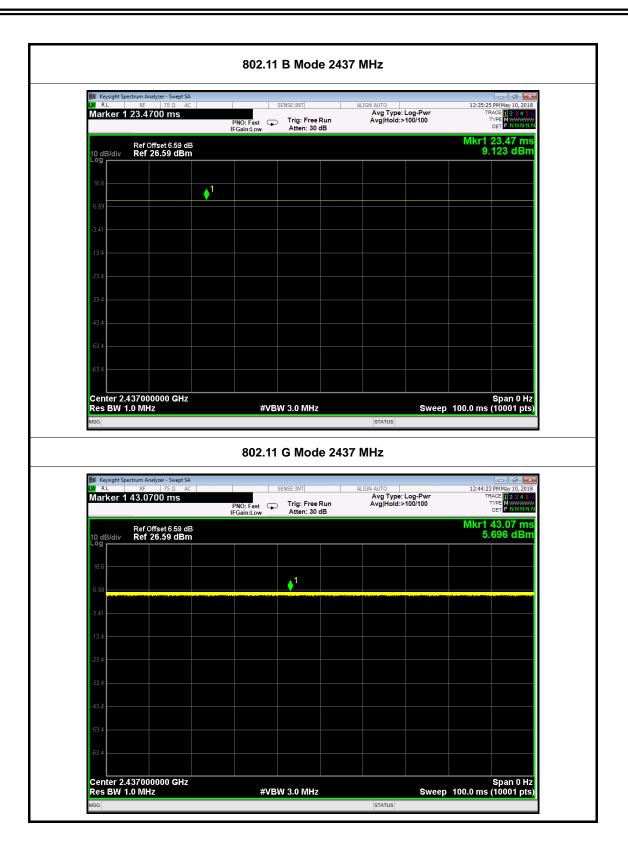
mperature:	25 ℃		Relative Humidity:	55%
st Voltage:	AC 120V	//60HZ		
st Mode:	TX 802.1	1B Mode		
annel frequen	cy 6d	B Bandwidth	99% Bandwidth	Limi
(MHz)		(MHz)	(MHz)	(MHz
2412		8.101	10.707	
2437		8.544	10.668	>=0.5
2462		8.064	10.618	
	i	802.11E	Mode	
🎉 Keysight Spectrum A				
Dd RL RF Center Freq 2 Center Freq 2 10 dB/div R Log	nalyzer - Occupied BW 75 Ω AC .412000000 GH	IZ Center Fr #IFGain:Low #Atten: 3		12:33:57 PM May 10, 2018 Radio Std: None Radio Device: BTS
DV RL PF Center Freq 2 10 dB/div R Log 10.0 -10.0	ef 20.00 dBm	Iz Center Fr #IFGain:Low #Atten: 3	eq: 2.412000000 GHz FRun Avg Hold:>10/10 0 dB	12:33:57 PM May 10, 2018 Radio Std: None
M RL PF Center Freq 2 Center Freq 2 10 dB/div R Log 0.0 10.0 0.00 -10.0 0.00 -20.0	ef 20.00 dBm ef 20.00 dBm sHz kHz Bandwidth 10.7 req Error	Iz Center Fr #IFGain:Low Trig: Free #Atten: 3 #V Total I 07 MHz	ee: 2.412000000 GHz PRun Avg Hold:>10/10 0 dB	12:33:57 PM May 10,2018 Radio Device: BTS



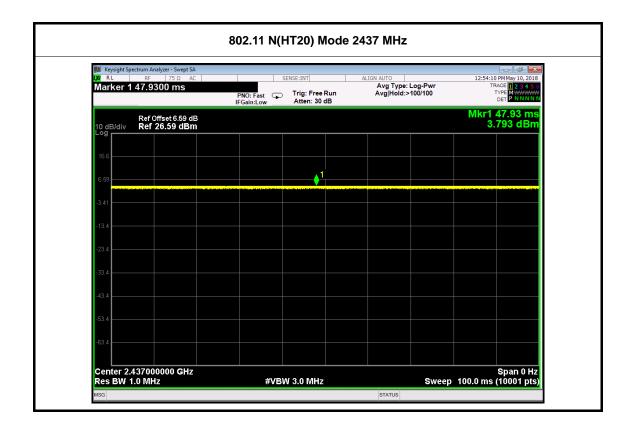
perature:	25 ℃		Relative Humidity:	55%
Voltage:	AC 12	0V/60HZ		
Mode:	TX 802	2.11G Mode		
nnel frequen	су	6dB Bandwidth	99% Bandwidth	Lim
(MHz)		(MHz)	(MHz)	(MH
2412		16.32	16.534	
2437		16.35	16.619	>=0
2462		16.33	16.808	
		802.110	Mode	
		2412	MHz	
Keysight Spectrum A	75 Ω AC .412000000	IGHz SENSE:INT #IFGain:Low HAtten: 30	Run Avg Hold:>10/10	12:42:57 PM May 10, 2018 dio Std: None dio Device: BTS
(X) RL RF Center Freq 2 10 dB/div R Log 10.0 -10.0	75 Ω AC	IGHz SENSE:INT #IFGain:Low HAtten: 30	eg: 2.41200000 GHz Ra SRun Avg Hold:>10/10 Ra 0 dB Ra	12:42:57 PM May 10, 2018 dio Std: None
00 RL RF Center Freq 2 10 dB/div R 10 0 10 0 .00 .00 .00 .00 .00 .00	75 Ω AC .412000000	GHz Center Fr #IFGain:Low Trig: Free #Atten: 30	eg: 2.412000000 GHz Ra SRun Avg Hold:>10/10 Ra 0 dB Ra	12:42:57 PM May 10, 2019 dio Std: None dio Device: BTS
(X) RL PF Center Freq 2 10 dB/div R Log 10 0 -10 0 -20 0 -40 0 -50 0 -50 0 -50 0	ef 20.00 dBn	GHz #IFGain:Low Center Fr #IFGain:Low M	eg: 2.41200000 GHz Ra Run Avg Hold:>10/10 Ra 0 dB Ra	12:42:57 PM May 10, 2018 dio Std: None dio Device: BTS
0// RL PF Center Freq 2 10 10 10 dB/div R 10.0	ef 20.00 dBn	GHz Center Fr #IFGein:Low Center Fr #Atten: 30	eq: 2.41200000 GHz Ra Run Avg Hold:>10/10 Ra 0 dB Ra	12:42:57 PM May 10, 2018 dio Std: None dio Device: BTS
M RL RF Center Freq 2 10 dB/dlv R Log	ef 20.00 dBn	GHz Center Field #FGain:Low Center Field #Atten: 31 n center Field #Atten: 31 n center Field #Atten: 31 n center Field #Atten: 31 n center Field #Atten: 31 n center Field #Atten: 31 n center Field #Atten: 31 center Field #	eq: 2.41200000 GHz Ra Run Avg Hold:>10/10 Ra 0 dB Ra	12:42:57 PM May 10, 2018 dio Std: None dio Device: BTS
M RL PF Center Freq 2 R 10 dB/div R Log 0 10.0 0.00 10.0 0.00 20.0 0 40.0 0 -60.0 0 -70.0 0 Center 2.412 0 #Res BW 100 Occupied 0	ef 20.00 dBn ef 20.00 dBn and and and and and and and and and and	GHz Center Field #FGain:Low Center Field #Atten: 31 n center Field #Atten: 31 n center Field #Atten: 31 n center Field #Atten: 31 n center Field #Atten: 31 n center Field #Atten: 31 n center Field #Atten: 31 center Field #	eq: 2.41200000 GHz Ra Run Avg Hold:>10/10 Ra 3 dB Ra about Avg Hold:>10/10 Ra about Avg Hold:>10/10 Ra Ra Ra Ra Ra Ra Ra Ra Ra Ra Ra Ra Ra R	12:42:57 PM May 10, 2018 dio Std: None dio Device: BTS



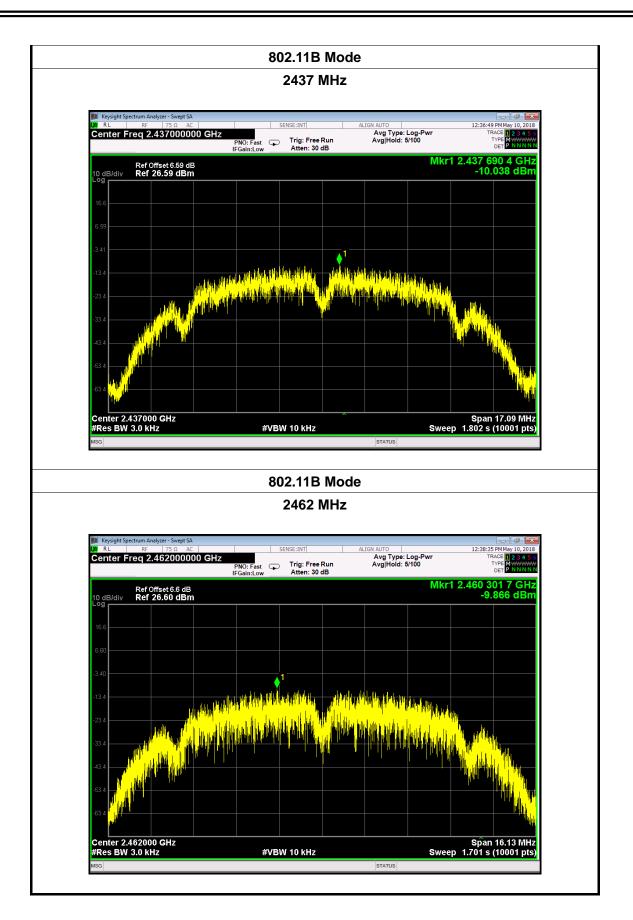
perature:	25 °C			Relative Hu	umidity:	55%
Voltage:	AC 120	0V/60HZ				
Mode:	TX 802	2.11N(HT20)	Mode			
nnel frequenc	;y	6dB Bandwi	dth	99% Ban	dwidth	Liı
(MHz)		(MHz)		(MH	z)	(M
2412		17.58		17.82	26	
2437		17.58		17.90	06	>=
2462		17.57		18.1 [°]	11	
		802.1	1N(HT20) Mode		
in the second second second second second second second second second second second second second second second						
Center Freq 2.	12000000 412000000	GHz #FGain:Low	ENSE:INT Center Freq: 2.4 Trig: Free Run #Atten: 30 dB	ALIGN AUTO	Radio)/10	2:52:20 PM May 10, 2018 Std: None Device: BTS
XX RL RF Center Freq 2. Image: Center Freq 2. Image: Center Freq 2. 10 dB/div Rf Rf Image: Center Freq 2. 10.0	12000000	GHz #FGain:Low	Center Freq: 2. Trig: Free Run #Atten: 30 dB	11200000 GHz Avg Hold:>10	Radio)/10	2:52:20 PM Hay 10, 2018 Std: None Device: BTS
Image: Non-Stress RF RF	12000000 412000000	GHz #FGain:Low	Center Freq: 2. Trig: Free Run #Atten: 30 dB	11200000 GHz Avg Hold:>10	Radio)/10	2:52:20 PM May 10, 2018 Std: None
Image: Non-Section 2000 RF RF Center Freq 2. Image: Non-Section 2000 Re 10 dB/div Re Re 20 dB Re Re 30 dB Re Re 40 dB Re Re 60 dB Re Re 70 dB Re Re Center 2.412 G Re Re	412000000	GHz #FGain:Low	Center Free; 2.4 Trig: Free Run #Atten: 30 dB	11200000 GHz Avg Hold:>10	Radio)/10	2:52:20 PM May 10, 2018 Std: None Device: BTS
XX RL RF Center Freq 2. R R 10 dB/div R 10.0	Hz Hz Bandwidt eq Error	GHz #IFGain:Low	Center Freq: 2. Trig: Free Run #Atten: 30 dB	112000000 GHz Avg Hold:>10 	Madio Radio	2:52:20 PM Hay 10, 2018 Std: None Device: BTS



Attachment E-- Peak Output Power Test Data

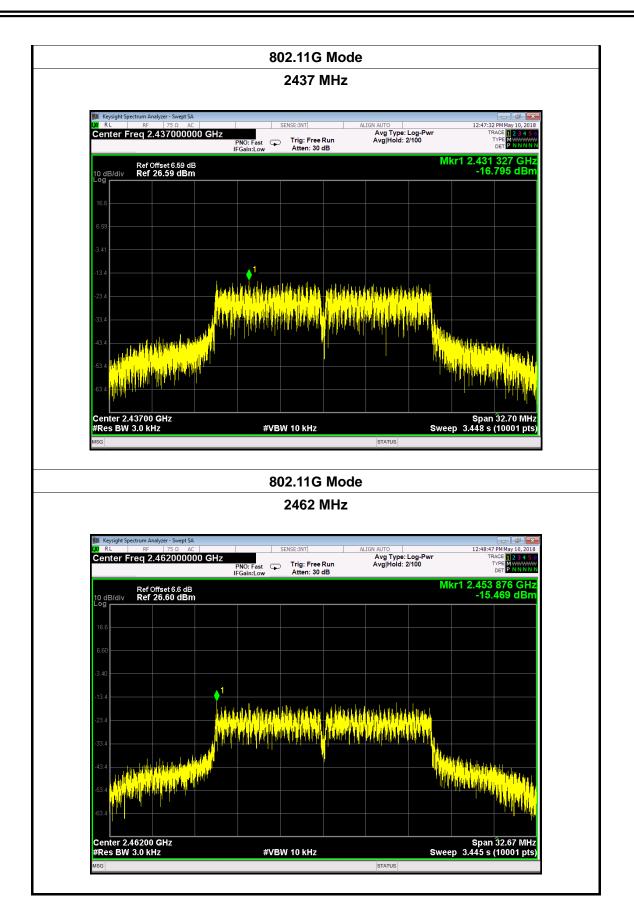

Test Condition	s: Continuous trans	mitting I	Vode	
Temperature:	25 ℃	25 ℃ Relative Humidit		
Test Voltage:	AC 120V/60HZ			
Mode	Channel frequency (MHz)	Tes	st Result (dBm)	Limit (dBm)
	2412		15.39	
802.11b	2437		15.73	
	2462		15.97	
	2412		14.54	
802.11g	2437		15.15	30
	2462		15.45	
000 44 -	2412		13.77	
802.11n (HT20)	2437		14.28	
(1120)	2462		14.48	
	Re	sult: I	PASS	

	Duty Cyc	le
Mode	Channel frequency (MHz)	Test Result
	2412	
802.11b	2437	
	2462	
	2412	
802.11g	2437	>98%
	2462	
000.44	2412	
802.11n (HT20)	2437	
(HT20)	2462	
Please see belo	w plots	

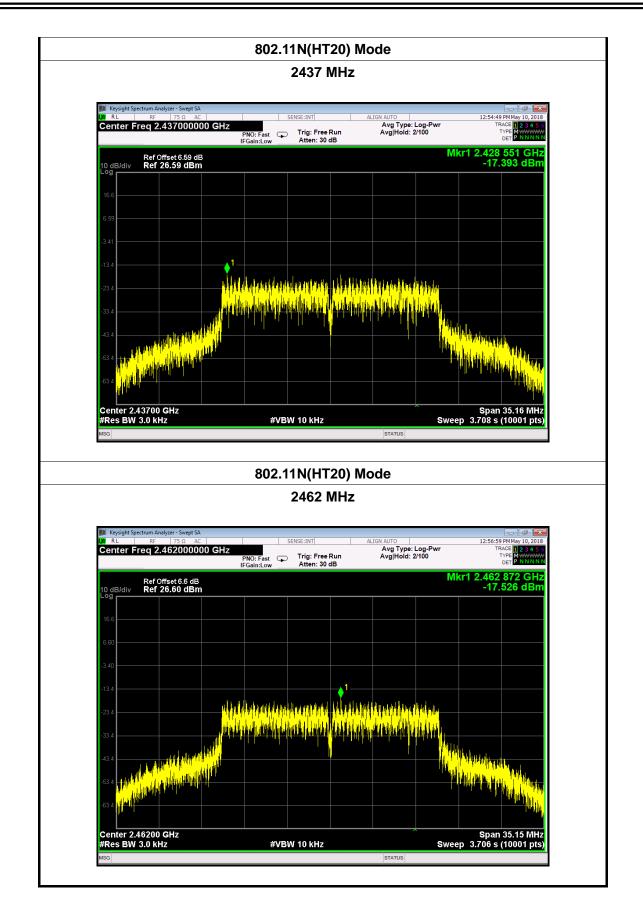


Attachment F-- Power Spectral Density Test Data

mperature:	25 ℃		Relative	Humidity:	55%
st Voltage:	AC 120V/	/60HZ			
st Mode:	TX 802.1	1B Mode			
Channel Freq	uency	Power	Density		Limit
(MHz)		(dBm/	/3 kHz)		(dBm/3kHz
2412		-10	.012		
2437		-10	.038		8
2462		-9.	866		
		802.11	B Mode		
		2412	2 MHz		
Keysight Spectrum A	nalyzer - Swept SA				
	.412000000 GH:	PNO: Fast 🕞 Trig: Fr	ree Run Avg I	Type: Log-Pwr Hold: 5/100	12:34:22 PM May 10, 2018 TRACE 1 2 3 4 5 6 TYPE M WWWWW DET P N N N N N
Ref	Dffset 6.63 dB 26.63 dBm	IFGain:Low Atten:	30 dB	Mkr1 2	2.411 300 1 GHz
10 dB/div Ref	26.63 dBm				-10.012 dBm
16.6					
6.63					
-3.37		1			
-13.4			u a a bha a bha a bha a bha a bh a a bh	High and the second	
-23.4					
-33.4					
-43.4	an and				
-53.4					
-63.4					" <mark>∧</mark> 4₩
-0.5.4					
Center 2.41200 #Res BW 3.0 k	10 GHz Hz	#VBW 10 kH	z	Sweep	
MSG			STAT		



perature:	25 ℃		Т	empera	ture:	25 ℃		
Voltage:	AC 120V/	60HZ						
Mode:	TX 802.11G Mode							
Channel Freq	uency	Powe	r Densit	у		Limit		
(MHz)		(dBı	m/3 kHz)			(dBm/3kH		
2412		-1	6.313					
2437		-1	6.795			8		
2462		-1	5.469					
		802.1	1G Mode	9				
		24 ⁻	12 MHz					
Keysight Spectrum Ar	75 Ω AC	SENSE:IN	л –	ALIGN AUTO		12:46:50 PM May 10, 2018		
Center Freq 2	412000000 GHz	PNO: East Trig	: Free Run en: 30 dB	Avg Type: Avg Hold: 2	Log-Pwr 2/100	TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P NNNN		
Ref C	offset 6.63 dB 26.63 dBm				Mkr	1 2.403 878 GHz -16.313 dBm		
10 dB/div Ref Log	offset 6.63 dB 2 6.63 dBm				Mkr	1 2.403 878 GHz -16.313 dBm		
10 dB/div Ref Log 16.6	offset 6.63 dB 26.63 dBm				Mkr	1 2.403 878 GHz -16.313 dBm		
10 dB/div Ref	iffset 6.63 dB 26.63 dBm				Mkr	1 2.403 878 GHz -16.313 dBm		
10 dB/div Ref	iffset 6.63 dB 26.63 dBm				Mkr	1 2.403 878 GHz -16.313 dBm		
10 dB/div Ref	iffset 6.63 dB 26.63 dBm	1			Mkr	1 2.403 878 GHz -16.313 dBm		
10 dB/div Ref 16.6 6.63	iffset 6.63 dB 26.63 dBm	1			Mkr	1 2.403 878 GHz -16.313 dBm		
10 dB/div Ref 16.6 -3.37 -13.4	iffset6.63 dB 26.63 dBm				Mkr	1 2.403 878 GHz -16.313 dBm		
10 dB/div Ref 16.6 6.63 -3.37 -13.4 -23.4	iffset 6.63 dB 26.63 dBm					1 2.403 878 GHz -16.313 dBm		
10 dB/div Ref 16.6 	iffset 6.63 dB 26.63 dBm					1 2.403 878 GHz -16.313 dBm		
10 dB/div Ref 16.6 6.63 -3.37 -13.4 -23.4 -33.4 -43.4	iffset 6.63 dB 26.63 dBm					1 2.403 878 GHz -16.313 dBm		
10 dB/div Ref 16.6 6.63 -3.37 -13.4 -23.4 -33.4 -33.4 -33.4 -33.4						1 2.403 878 GHz -16.313 dBm		



nperature:	25 ℃			Ten	nperati	ire:	25 °	С	
t Voltage:	AC 120V/	60HZ							
t Mode:	TX 802.11N(HT20) Mode								
Channel Freq	uency	P	ower D	ensity			L	.imit	
(MHz)		(dBm/3	kHz)			(dB	m/3kHz	
2412			-18.2	46					
2437			-17.3	93				8	
2462			-17.5	26					
		802.1	1N(HT	20) Mo	de				
			2412	MHz					
💓 Keysight Spectrum Ar	nalyzer - Swept SA		SENSE:INT	ΔΙ	IGN AUTO		12:52:54	PM May 10, 2018	
Center Freq 2	.412000000 GHz	PNO: Fast G		Run	Avg Type: Avg Hold: 2	Log-Pwr 2/100	TF	ACE 1 2 3 4 5 6 TYPE M	
Ref	Offset 6.63 dB	IFGam:Low	Allen. oo			M	(r1 2.403	550 GHz 246 dBm	
10 dB/div Ref	26.63 dBm						-10.	240 0.011	
16.6									
6.63									
-3.37									
-13.4		1							
-23.4	<mark>/ </mark> ,		Manatania						
-33.4	<mark>//</mark>	all brattle lists bi	hill film for	Lu bladd		hhi ed			
-43.4									
-53.4								h _{hha}	
-63.4								Philip	
M. A.									
Center 2.41200 #Res BW 3.0 kl	l GHz Hz	#VB	W 10 kHz			Swee	Span p 3.707 s	35.15 MHz (10001 pts)	
MSG					STATUS				

-----END OF REPORT-----