

CFR 47 FCC PART 15 SUBPART C ISED RSS-210 ISSUE 10

CERTIFICATION TEST REPORT

For

Whole House Fan Hub

MODEL NUMBER: IT-AC-HUB-01

FCC ID: 2APQIIT-AC-HUB-01

REPORT NUMBER: 4790273902-1

ISSUE DATE: August 5, 2022

Prepared for

QC Manufacturing Inc. 26040 Ynez rd. Temecula, California 92591, United States

Prepared by

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch

Building 10, Innovation Technology Park, No. 1, Li Bin Road, Song Shan Lake Hi-Tech Development Zone Dongguan, 523808, People's Republic of China

> Tel: +86 769 22038881 Fax: +86 769 33244054 Website: www.ul.com

Revision History

Rev.	Issue Date	Revisions	Revised By
V0	08/05/2022	Initial Issue	

Summary of Test Results				
Clause	Test Items	FCC Rules	Test Results	
1	Transmitter Timeout	CFR 47 FCC §15.231 (a) (1) ISED RSS-210 Annex A.1.1	Pass	
2	20 dB Bandwidth and 99 % Occupied Bandwidth	CFR 47 FCC §15.231 (c) ISED RSS-210 Annex A.1.3	Pass	
3	Radiated Emission	CFR 47 FCC §15.231 (b)(e) CFR 47 FCC §15.205 and §15.209 RSS-210 Annex A.1.2 RSS-GEN Clause 8.9 RSS-GEN Clause 8.10	Pass	
4	Conducted Emission Test for AC Power Port	CFR 47 FCC §15.207 RSS-GEN Clause 8.8	Pass	
5	Antenna Requirement	CFR 47 FCC §15.203 ISED RSS-Gen Clause 6.3	Pass	
Note 1: This test report is only published to and used by the applicant, and it is not for evidence purpose in China. Note 2: The measurement result for the sample received is <pass> according to < CFR 47</pass>				

Note 2: The measurement result for the sample received is <Pass> according to < CFR 47 FCC PART 15 SUBPART C and ISED RSS-210 Issue 10> when <Accuracy Method> decision rule is applied.

TABLE OF CONTENTS

1.	Α	TTEST	ATION OF TEST RESULTS	5
2.	т	EST M	ETHODOLOGY	6
3.	F.	ACILIT	IES AND ACCREDITATION	5
4.	С		ATION AND UNCERTAINTY	7
	4.1.	MEA	ASURING INSTRUMENT CALIBRATION	7
	4.2.	MEA	ASUREMENT UNCERTAINTY	7
5.	Е	QUIPM	IENT UNDER TEST	3
	5.1.	DES	SCRIPTION OF EUT	8
	5.2.	. MAX	XIMUM FIELD STRENGTH	8
	5.3.	DES	SCRIPTION OF AVAILABLE ANTENNAS	8
	5.4.	TES	ST ENVIRONMENT	8
	5.5.	DES	SCRIPTION OF TEST SETUP	9
	5.6.	. MEA	ASURING INSTRUMENT AND SOFTWARE USED10	0
6.	Α	NTENN	NA PORT TEST RESULTS1'	1
	6.1.	. ON	TIME AND DUTY CYCLE1	1
	6.2.	TRA	NSMITTER TIMEOUT14	4
	6.3.	. 20 c	IB BANDWIDTH AND 99 % OCCUPIED BANDWIDTH10	5
	3	.4.1. 0 MHz		
	-	.4.2. .4.3.	SPURIOUS EMISSIONS ABOVE 1 GHz	
7.	•		/ER LINE CONDUCTED EMISSIONS	
8.	Α	NTENN	A REQUIREMENTS	3

1. ATTESTATION OF TEST RESULTS

Applicant Information

Company Name: Address:	QC Manufacturing Inc. 26040 Ynez rd. Temecula, California 92591, United States
Audress.	20040 Thez Tu. Terriecula, Camornia 92391, Onited States
Manufacturer Information	
Company Name:	Shenzhen Asia Bright Co., Ltd
Address:	Building E, North Area No.2 of Shangxue Science Park, Bantian, Shenzhen, China
EUT Information	
EUT Name:	Whole House Fan Hub
Model:	IT-AC-HUB-01
Serial Model:	/
Brand:	/
Sample Received Date:	April 27, 2022
Sample Status:	Normal
Sample ID:	4907628
Date of Tested:	July 25, 2022 ~ August 1, 2022

APPLICABLE STANDARDS			
STANDARD	TEST RESULTS		
CFR 47 FCC PART 15 SUBPART C	PASS		
ISED RSS-210 Issue 10	PASS		
ISED RSS-GEN Issue 5	PASS		

Prepared By:

Kebo. zhang.

Kebo Zhang Senior Project Engineer Approved By:

Sephenbus

Darry Brang

Checked By:

Denny Huang Senior Project Engineer

Stephen Guo Laboratory Manager

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with KDB 414788 D01 Radiated Test Site v01r01, FCC CFR 47 Part 2, FCC CFR 47 Part 15, ANSI C63.10-2013, ISED RSS-210 Issue 10 and RSS-GEN Issue 5.

3. FACILITIES AND ACCREDITATION

	A2LA (Certificate No.: 4102.01) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been assessed and proved to be in compliance with A2LA. FCC (FCC Designation No.: CN1187) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
Accreditation Certificate	 Has been recognized to perform compliance testing on equipment subject to the Commission's Declaration of Conformity (DoC) and Certification rules ISED (Company No.: 21320) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been registered and fully described in a report filed with Industry Canada. The Company Number is 21320. VCCI (Registration No.: G-20019, R-20004, C-20012 and T-20011) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been assessed and proved to be in compliance with VCCI, the Membership No. is 3793. Facility Name: Chamber D, the VCCI registration No. is G-20019 and R-20004 Shielding Room B, the VCCI registration No. is C-20012 and T-20011

Note 1: All tests measurement facilities use to collect the measurement data are located at Building 10, Innovation Technology Park, Song Shan Lake Hi tech Development Zone, Dongguan, 523808, China

Note 2: The test anechoic chamber in UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch had been calibrated and compared to the open field sites and the test anechoic chamber is shown to be equivalent to or worst case from the open field site.

Note 3: For below 30 MHz, lab had performed measurements at test anechoic chamber and comparing to measurements obtained on an open field site. And these measurements below 30MHz had been correlated to measurements performed on an OFS.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations and is traceable to recognize national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Item	Uncertainty	
Conduction emission	3.62 dB	
Radiation Emission test (include Fundamental emission) (9 kHz-30 MHz)	2.2 dB	
Radiation Emission test (include Fundamental emission) (30 MHz-1 GHz)	4.00 dB	
Radiation Emission test	5.78 dB (1 GHz-18 GHz)	
(1 GHz to 26GHz) (include Fundamental emission)	5.23 dB (18 GHz-26 GHz)	
Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.		

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

EUT Name	Whole House Fan Hub		
Model	IT-AC-HUB-01		
Product Description Operation Frequency		433.92 MHz	
Power Supply	AC 120 V, 60 Hz		

5.2. MAXIMUM FIELD STRENGTH

Frequency (MHz)	Maximum Peak Field Strength (dBµV/m)
433.92	79.28

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

Frequency (MHz)	Antenna Type	Antenna Gain (dBi)	
433.92	Wire antenna	0	

Note: The value of the antenna gain was declared by customer.

5.4. TEST ENVIRONMENT

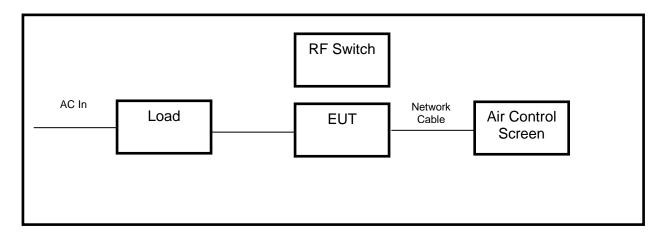
Environment Parameter	Selected Values During Tests		
Relative Humidity	55 ~ 65 %		
Atmospheric Pressure:	1025 Pa		
Temperature TN		23 ~ 28 °C	
	VL	/	
Voltage:	VN	AC 120 V, 60 Hz	
	VH	/	

Note: VL= Lower Extreme Test Voltage VN= Nominal Voltage VH= Upper Extreme Test Voltage TN= Normal Temperature

5.5. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Item	Equipment	Brand Name	Model Name	P/N
1	Load	/	/	/
2	RF Switch	/	IT-RFSWITCH-01	/
3	Air Control Screen	/	IT-AC-SCREEN	/


I/O CABLES

Cable No	Port	Connector Type	Cable Type	Cable Length(m)	Remarks
1	AC	/	Unshielded	1.0	/
2	Network	RJ45	Unshielded	10.0	/

ACCESSORY

Item	Accessory	Brand Name	Model Name	Description
1	/	/	/	/

SETUP DIAGRAM FOR TEST

5.6.	MEASURING INSTRUMENT AND SOFTWARE USED
------	--

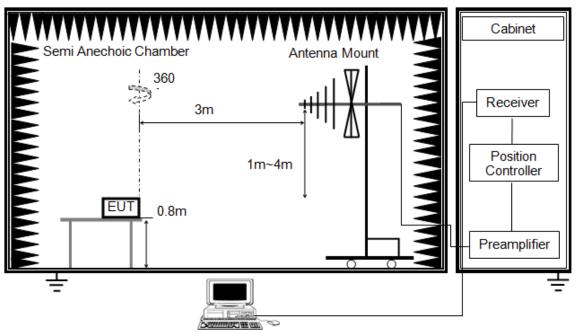
		Conducte	d Emissions		
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date
EMI Test Receiver	R&S	ESR3	101961	Oct.30, 2021	Oct.29, 2022
Two-Line V- Network	R&S	ENV216	101983	Oct.30, 2021	Oct.29, 2022
		So	ftware		
	Description		Manufacturer	Name	Version
Test Software	for Conducted	Emissions	Farad	EZ-EMC	Ver. UL-3A1

		Radiated	Emissions		
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date
MXE EMI Receiver	KESIGHT	N9038A	MY56400036	Oct.30, 2021	Oct.29, 2022
Hybrid Log Periodic Antenna	TDK	HLP-3003C	130959	Aug.02, 2021	Aug.01, 2024
Preamplifier	HP	8447D	2944A09099	Oct.30, 2021	Oct.29, 2022
EMI Measurement Receiver	R&S	ESR26	101377	Oct.30, 2021	Oct.29, 2022
Horn Antenna	TDK	HRN-0118	130940	July 20, 2021	July 19, 2024
Preamplifier	TDK	PA-02-0118	TRS-305- 00067	Oct.30, 2021	Oct.29, 2022
Loop antenna	Schwarzbeck	1519B	00008	Dec.14, 2021	Dec.13, 2024
Preamplifier	TDK	PA-02-001- 3000	TRS-302- 00050	Oct.31, 2021	Oct.30, 2022
		So	ftware		
[Description		Manufacturer	Name	Version
Test Software	for Radiated E	missions	Farad	EZ-EMC	Ver. UL-3A1

		C	ther instrume	ents		
Used	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
\checkmark	Spectrum Analyzer	Keysight	N9010A	MY55150514	Oct.30, 2021	Oct.29, 2022

6. ANTENNA PORT TEST RESULTS

6.1. ON TIME AND DUTY CYCLE


LIMITS

None; for reporting purposes only

PROCEDURE

FCC Reference:	CFR 47 §15.35(c)
Test Method Used:	ANSI C63.10 Section 7.5

TEST SETUP

- a. Set RBW of spectrum analyzer to 3 MHz and VBW to 3 MHz.
- b. Use a video trigger with the trigger level set to enable triggering only on full pulses.
- c. Sweep Time is at least a 100 ms.
- d. Set the center frequency on any frequency would be measure and set the frequency span to zero span.
- e. Measure the maximum time duration of one single pulse.

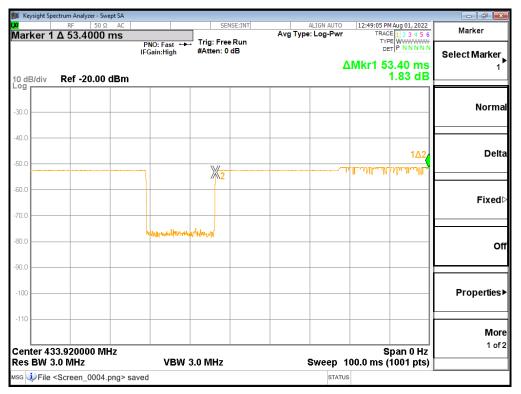
TEST ENVIRONMENT

Temperature	22.6 °C	Relative Humidity	57.3 %
Atmosphere Pressure	101 kPa	Test Voltage	AC 120 V, 60 Hz

RESULTS

Total Ton times	Period	Duty Cycle	Duty Cycle
(ms)	(ms)	(Linear)	Correction Factor
82.3	100	0.823	-1.69

Note: Total Ton times= Ton1+Ton2 Duty Cycle Correction Factor=20log(x). Where: x is Duty Cycle


Test Plot-1

🎉 Keysight Spectrum Analyzer - Swept SA					
RF 50 Ω AC		SENSE:INT	ALIGN AUTO	12:47:15 PM Aug 01, 2022	Marker
	PNO: Fast ↔ → IFGain:High	Trig: Free Run #Atten: 0 dB	Avg Type: Log-Pwr	TRACE 1 2 3 4 5 6 TYPE WWWWWW DET P N N N N N	Select Marker
10 dB/div Ref -20.00 dBm	<u>)</u>				
-30.0					Norma
-40.0					Delta
-60.0					Fixed
80.0	Washman	aralyal kan shi kan a			Of
-100					Properties
Center 433.920000 MHz Res BW 3.0 MHz	VBW 3	0 MHz	Sween 1	Span 0 Hz 05.0 ms (1001 pts)	Mor 1 of:
ASG	12110		STATUS	· · · /	

Test	Plot-2-7	on1
------	----------	-----

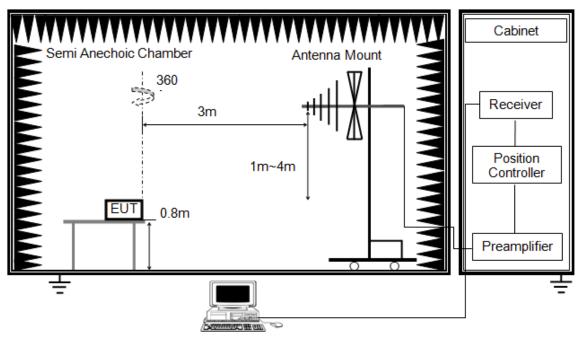
					ctrum Analyzer - Swept SA	
Marker	12:48:39 PM Aug 01, 2022 TRACE 1 2 3 4 5 6	ALIGN AUTO Avg Type: Log-Pwr	SENSE:INT		RF 50 Ω AC	lean d
	TYPE WWWWWW	Avg Type. Log-Pwr	Trig: Free Run	PNO: Fast ↔	Δ 28.9000 ms	Ker 1
ColootMorks	DET P N N N N N		#Atten: 0 dB	IFGain:High		
Select Marke				. ou ling.		
	Mkr1 28.90 ms	Δ				
	-0.20 dB				Ref -20.00 dBm	B/div
Norm						
						<u> </u>
De						
De				<u>_</u> 1∆2		
	<u>հետմիսմին միսմիս</u>	·····/m	·····			<u> </u>
						^{~2}
						<u> </u>
Fixe						
-				all and a state of the state of		
			menal	until works with		
C						
						<u> </u>
Propertie						
Figherine						
						<u> </u>
Mo						
1 0	Span 0 Hz		1		3.920000 MHz	tor 13'
		Swoon 10	0 MH-7	VBW 3.	.0 MHz	
	00.0 ms (1001 pts)	Sweep 10		VDVV J.		DVV J.
		STATUS				

Test Plot-3-Ton2

Note: All the modes had been tested, only the worst data was recorded in the report.

6.2. TRANSMITTER TIMEOUT

LIMITS


CFR 47 §15.231(a):

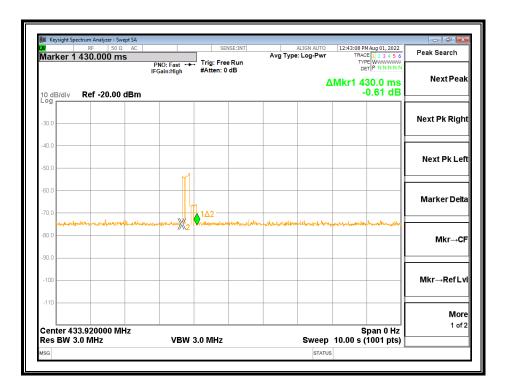
A transmitter activated automatically shall cease transmission within 5 seconds after activation.

TEST PROCEDURE

FCC Reference:	CFR 47 FCC §15.231(a)
Test Method Used:	The EUT transmitter was activated and monitored using a spectrum analyser for a period of 10 seconds.

TEST SETUP

For CFR 47 Part 15.231(a):


- a. Set RBW of spectrum analyzer to 3 MHz and VBW to 3 MHz.
- b. Use a video trigger with the trigger level set to enable triggering only on full pulses.
- c. Sew Sweep Time to 10 s.
- d. Set the center frequency on any frequency would be measure and set the frequency span to zero span.
- e. Measure the maximum time duration of one single pulse.

TEST ENVIRONMENT

Temperature	22.6 °C	Relative Humidity	57.3 %
Atmosphere Pressure	101 kPa	Test Voltage	AC 120 V, 60 Hz

RESULTS

Manually transmitting mode			
Deactivation Time (seconds)	Limit (seconds)	Margin (seconds)	Result
0.43	5.000	4.57	PASS

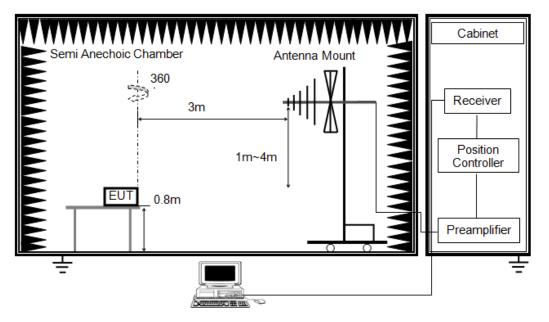
Note: All the modes had been tested, only the worst data record in the report.

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

6.3. 20 dB BANDWIDTH AND 99 % OCCUPIED BANDWIDTH

LIMITS

CFR 47 FCC §15.231 (c)


The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. For devices operating above 900 MHz, the emission shall be no wider than 0.5% of the center frequency. Bandwidth is determined at the points 20 dB down from the modulated carrier.

So, the limit calculated as: 0.0025 * 433.92 MHz = 1.0848 MHz

TEST PROCEDURE

FCC Reference:	CFR 47 Part 15.231(c)
Test Method Used:	ANSI C63.10 Section 6.9.2

TEST SETUP

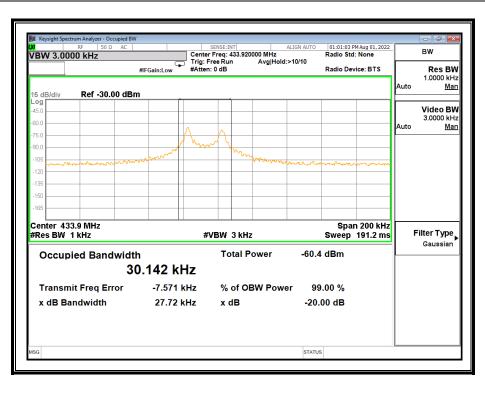
1. The EUT was arranged to its worst case and then turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level.

2. The EUT was placed on a turntable with 0.8 meter above ground.

3. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower

4. Set the spectrum analyzer in the following setting as:

RBW is set to 1% to 5% of the OBW and VBW is set 3 * RBW.


TEST ENVIRONMENT

Temperature	22.6 °C	Relative Humidity	57.3 %
Atmosphere Pressure	101 kPa	Test Voltage	AC 120 V, 60 Hz

<u>RESULTS</u>

20 dB Bandwidth (kHz)	99 % Occupied Bandwidth (kHz)	Limit (MHz)	Result
27.72	30.142	1.0848	Pass

Note: All the modes had been tested, only the worst data was recorded in the report.

6.4. RADIATED TEST RESULTS

<u>LIMITS</u>

CFR 47 FCC §15.231 (b)(e)

CFR 47 FCC §15.205 and §15.209

1. In addition to the provisions of §15.205, the field strength of emissions from intentional radiators operated under this section shall not exceed the following:

Fundamental frequency (MHz)	Field strength of fundamental (microvolts/meter)	Field strength of spurious emissions (microvolts/meter)
40.66-40.70	2,250	225
70-130	1,250	125
130-174	11,250 to 3,750	¹ 125 to 375
174-260	3,750	375
260-470	¹ 3,750 to 12,500	¹ 375 to 1,250
Above 470	12,500	1,250

Note:

1. To obtain the average limit at the test frequency the values given in the table of FCC part 15.231(b) have to be linear interpolated and then converted to dB μ V/m. The limit at 260 MHz is 3750 μ V/m and at 470 MHz it is 12500 μ V/m. Limit at 433.92 MHz is calculated as shown in ANSI C63.10 Section 7.6.2:

Limit [μ V/m] = Limlower + Δ F [(Limupper – Limlower) / (fupper – flower)] where Δ F = fc – flower = 433.92 – 260 = 173.92

Limit = 3750 + 173.92 * [(12500 - 3750) / (470 - 260)]= 3750 + 173.92 * [8750 / 210]= $10996.7 \mu V/m$

dBµV/m = 20 * log (µV/m) = 20 * log (10996.7)

Average Limit at 433.92 MHz = 80.8 dBµV/m

2. If the average limit is specified for the EUT, the peak limit is 20 dB above the average limit as specified in FCC 15.35 (b)

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009~0.490	2400/F(kHz)	300
0.490~1.705	24000/F(kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

2. Radiation Disturbance Test Limit for FCC (Class B) (9 kHz-1 GHz)

Note: (1) At frequencies at or above 30 MHz, measurements may be performed at a distance other than what is specified provided: measurements are not made in the near field except where it can be shown that near field measurements are appropriate due to the characteristics of the device; and it can be demonstrated that the signal levels needed to be measured at the distance employed can be detected by the measurement equipment. Measurements shall not be performed at a distance greater than 30 meters unless it can be further demonstrated that measurements at a distance of 30 meters or less are impractical. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse linear-distance for field strength measurements; inverse-linear-distance-squared for power density measurements). Note: (2) At frequencies below 30 MHz, measurements may be performed at a distance closer than that specified in the regulations; however, an attempt should be made to avoid making measurements in the near field. Pending the development of an appropriate measurement procedure for measurements performed below 30 MHz, when performing measurements at a closer distance than specified, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade). This paragraph (f) shall not apply to Access BPL devices operating below 30 MHz.

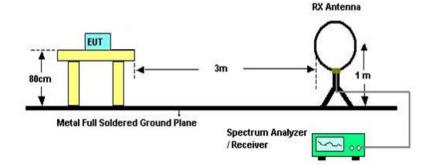
Restricted bands of operation

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(2)
13.36-13.41			

Note: ¹Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. ²Above 38.6c

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

IC Restricted bands please refer to ISED RSS-GEN Clause 8.10


Number Numer Numer Numer <th>GHz</th>	GHz
0.495 - 0.505 156 52475 - 156 52525 9 2.1735 - 2.1905 156.7 - 156.9 14 3.020 - 3.026 162.0125 - 167.17 13 4.125 - 4.128 167.72 - 173.2 14 4.17725 - 4.17775 240 - 285 11 4.0725 - 4.20775 322 - 335.4 12 5.677 - 5.683 399.9 - 410 23 6.215 - 6.218 608 - 614 23 6.215 - 6.28825 960 - 1427 31 8.291 - 8.294 1645 5 - 1646.5 34 8.392 - 8.38675 1718.8 - 1722.2 34 8.37625 - 8.38675 1718.8 - 1722.2 34 8.41425 - 8.41475 2200 - 2300 12 12.57675 - 12.57025 2455 - 2500 12 12.57675 - 12.57725 2655 - 2900 12 13.36 - 13.41 3200 - 3267 1 16.69475 - 16.69525 3345.8 - 3358 1 16.89475 - 16.80475 3500 - 4400 1 16.89475 - 16.80475 5150 1 16.89475 - 16.80475 5150 1 <td>9.0 - 9.2</td>	9.0 - 9.2
2.1735 - 2.1905 156.7 - 156.9 14 3.020 - 3.026 162.0125 - 167.17 13 4.125 - 4.128 167.72 - 173.2 14 4.17725 - 4.17775 240 - 285 15 4.20725 - 4.20775 322 - 335.4 13 5.677 - 5.683 399 9 - 410 23 5.677 - 5.683 960 - 1427 31 5.677 - 5.6825 960 - 1427 31 5.26775 - 6.26825 960 - 1427 31 5.31175 - 6.31225 1435 - 1626.5 34 3.362 - 8.366 1660 - 1710 31 3.3725 - 8.38675 1718.8 - 1722.2 31 3.41425 - 8.41475 2200 - 2300 31 12.29 - 12.293 2310 - 2390 31 12.57675 - 12.57725 2655 - 2900 31 13.36 - 13.41 3290 - 3267 31 16.69475 - 16.69525 345.8 - 3358 31 16.69475 - 16.69525 3500 - 4400 31 16.69475 - 16.69475 5500 - 5150 31 37.5 - 38.25 5500 - 5460 31 37.5 - 38.25 5500 - 5460 31	
3.020 - 3.026 162.0125 - 167.17 11 4.125 - 4.128 167.72 - 173.2 14 4.17725 - 4.17775 240 - 285 11 4.20725 - 4.20775 322 - 335.4 12 5.677 - 5.683 399.9 - 410 22 5.215 - 6.218 608 - 614 23 6.26775 - 6.26825 960 - 1427 31 6.31175 - 6.31225 1435 - 1626.5 34 8.291 - 8.294 1645.5 - 1646.5 34 8.37625 - 8.38675 1718.8 - 1722.2 34 8.41425 - 8.41475 2200 - 2300 34 12.5975 - 12.57725 2455 - 2500 32 13.36 - 13.41 3260 - 3267 33 16.69475 - 16.69525 345.8 - 3358 339 16.69475 - 16.69525 345.8 - 3358 336 16.89475 - 16.69525 3500 - 4400 33 37.5 - 38.25 5350 - 5460 34 37.5 - 38.25 5350 - 5460 34	9.3 - 9.5
4.125 - 4.128 167.72 - 173.2 14 4.17725 - 4.17775 240 - 285 11 4.20725 - 4.20775 322 - 335.4 11 5.677 - 5.683 399 9 - 410 21 6.215 - 6.218 608 - 614 21 6.26775 - 6.26825 960 - 1427 31 6.31175 - 6.31225 1435 - 1626.5 31 8.392 - 8.366 1660 - 1710 31 8.37525 - 8.38675 1718.8 - 1722.2 31 8.37525 - 8.38675 1718.8 - 1722.2 31 8.37525 - 8.38675 2310 - 2390 31 12.29 - 12.293 2310 - 2390 31 12.57675 - 12.57725 2655 - 2900 31 13.36 - 13.41 3260 - 3267 31 16.80475 - 16.69525 3345.8 - 3358 31 16.80475 - 16.69525 3345.8 - 3358 31 16.80475 - 16.69525 3500 - 4400 31 25.5 - 25.67 4500 - 5150 31 37.5 - 38.25 5350 - 5460 31 37.5 - 38.25 5350 - 5460 31	10.6 - 12.7
4.17725 - 4.17775 240 - 285 11 4.20725 - 4.20775 322 - 335.4 12 5.677 - 5.683 399.9 - 410 22 6.215 - 6.218 608 - 614 23 6.26775 - 6.26825 960 - 1427 31 6.31175 - 6.31225 1435 - 1626.5 34 8.291 - 8.294 1645.5 - 1646.5 44 8.362 - 8.38675 1718.8 - 1722.2 43 8.41425 - 8.41475 2200 - 2300 44 12.29 - 12.293 2310 - 2380 4 12.57675 - 12.52025 2655 - 2900 4 13.36 - 13.41 3260 - 3267 4 16.89475 - 16.69525 3345.8 - 3358 4 16.89475 - 16.69525 3500 - 4400 4 25.5 - 25.67 4500 - 5150 4 37.5 - 38.25 5350 - 5460 4	13.25 - 13.4
4.20725 - 4.20775 322 - 335.4 11 5.677 - 5.683 399.9 - 410 22 6.215 - 6.218 608 - 614 23 6.26775 - 6.26825 960 - 1427 31 6.31175 - 6.31225 1435 - 1626.5 34 8.291 - 8.294 1645.5 - 1646.5 34 8.362 - 8.366 1660 - 1710 32 8.37625 - 8.38675 1718.8 - 1722.2 34 8.41425 - 8.41475 2200 - 2300 34 12.29 - 12.293 2310 - 2390 32 12.57675 - 12.57725 2655 - 2900 31 13.36 - 13.41 3260 - 3267 3332 - 3339 16.69475 - 16.69525 345.8 - 3358 345.8 - 3358 16.80425 - 16.80475 3500 - 4400 3332 - 3339 16.80425 - 16.80475 3500 - 5150 345.8 - 3358 16.80425 - 16.80475 3500 - 5460 3450 - 5150 37.5 - 38.25 5350 - 5460 3450 - 5150	14.47 - 14.5
5.677 • 5.683 399.9 • 410 22 5.215 • 6.218 608 • 614 23 6.26775 • 6.26825 960 • 1427 34 6.3175 • 6.31225 1435 • 1626.5 34 8.291 • 8.294 1645.5 • 1646.5 A4 8.362 • 8.366 1660 • 1710 4 8.37525 • 8.38675 1718.8 • 1722.2 4 8.41425 • 8.41475 2200 • 2300 4 12.29 • 12.293 2310 • 2390 4 12.57675 • 12.57725 2655 • 2900 4 13.36 • 13.41 3260 – 3267 4 16.80475 • 16.69525 3345.8 • 3358 4 16.80475 • 16.69525 3500 • 4400 4 16.80475 • 16.69525 3500 • 4400 4 17.5 • 38.25 5350 • 5460 4	15.35 - 16.2
6.215 - 6.218 608 - 614 21 6.26775 - 6.26825 960 - 1427 31 6.31175 - 6.31225 1435 - 1626.5 34 8.291 - 8.294 1645 5 - 1646.5 44 8.362 - 8.38675 1718.8 - 1722.2 44 8.37625 - 8.38675 1718.8 - 1722.2 44 8.41425 - 8.41475 2200 - 2300 44 12.29 - 12.293 2310 - 2380 44 12.51975 - 12.52025 2483.5 - 2500 44 13.36 - 13.41 3260 - 3267 45 16.89475 - 16.69525 3345.8 - 3358 45 16.89475 - 16.69525 3500 - 4400 45 16.80425 - 16.80475 5500 - 5150 4500 - 5150 37.5 - 38.25 5350 - 5460 4500 - 5150	17.7 - 21.4
6.26775 - 6.26825 960 - 1427 31 6.31175 - 6.31225 1435 - 1626.5 34 8.291 - 8.294 1645 5 - 1646.5 A4 8.362 - 8.366 1660 - 1710 44 8.37625 - 8.38675 1718.8 - 1722.2 44 8.41425 - 8.41475 2200 - 2300 44 12.29 - 12.293 2310 - 2390 44 12.57675 - 12.57725 2655 - 2900 44 13.36 - 13.41 3260 - 3267 44 16.89475 - 16.89525 3345.8 - 3358 4500 18.80425 - 16.80475 3500 - 4400 4500 - 5150 37.5 - 38.25 5350 - 5460 4500 - 5150 37.5 - 38.25 5350 - 5460 4500 - 5150	22.01 • 23.12
6.3175 - 6.31225 1435 - 1626.5 34 8.291 - 8.294 1645.5 - 1646.5 A4 8.362 - 8.366 1660 - 1710 4 8.37625 - 8.38675 1718.8 - 1722.2 4 8.41425 - 8.41475 2200 - 2300 4 12.29 - 12.293 2310 - 2390 4 12.51975 - 12.62025 2483 5 - 2500 4 13.36 - 13.41 3260 - 3267 4 18.49475 - 16.69525 3345.8 - 3358 4 16.80425 - 16.80475 3500 - 4400 4 16.80425 - 16.80475 5350 - 5460 4 37.5 - 38.25 5350 - 5460 4	23.6 - 24.0
8.291 - 8.294 1645 5 - 1646.5 A 8.362 - 8.366 1660 - 1710 A 8.37625 - 8.38675 1718.8 - 1722.2 A 8.41425 - 8.41475 2200 - 2300 A 12.29 - 12.293 2310 - 2390 A 12.51975 - 12.52025 2483.5 - 2500 A 13.36 - 13.41 3260 - 3267 A 18.422 - 16.423 3332 - 3339 A 18.69475 - 16.69525 345.8 - 3358 A 18.69475 - 16.69525 3500 - 4400 A 18.80425 - 16.80475 5350 - 5460 A 37.5 - 38.25 5350 - 5460 A	31.2 - 31.8
8.362 · 8.366 1660 · 1710 8.37625 · 8.38675 1718.8 · 1722.2 8.41425 · 8.41475 2200 · 2300 12.29 · 12.293 2310 · 2360 12.51975 · 12.52025 2483.5 · 2500 12.57675 · 12.5725 2655 · 2900 13.36 · 13.41 3260 - 3267 16.69475 · 16.69525 3345.8 · 3358 16.69475 · 16.69525 3500 · 4400 25.5 · 25.67 4500 · 5150 37.5 · 38.25 5350 · 5460 73 · 74.6 7250 · 7750	36.43 - 36.5
8.37625 - 8.38675 1718.8 - 1722.2 8.41425 - 8.41475 2200 - 2300 12.29 - 12.293 2310 - 2390 12.51975 - 12.52025 2483.5 - 2500 12.57675 - 12.57725 2655 - 2900 13.36 - 13.41 3260 - 3267 18.69475 - 16.69525 3345.8 - 3358 18.69475 - 16.89525 3500 - 4400 18.69475 - 16.80475 5500 - 5150 37.5 - 38.25 5350 - 5460 73 - 74.6 7250 - 7750	Above 38.6
8.41425 - 8.41475 2200 - 2300 12.29 - 12.293 2310 - 2390 12.51975 - 12.52025 2483.5 - 2500 12.57675 - 12.57725 2655 - 2900 13.36 - 13.41 3260 - 3267 16.422 - 16.423 3332 - 3339 16.89475 - 16.69525 345.8 - 3358 16.80425 - 16.80475 3500 - 4400 25.5 - 25.67 4500 - 5150 37.5 - 38.25 5350 - 5460 73 - 74.6 7250 - 7750	
12.29 · 12.293 2310 · 2390 12.51975 · 12.52025 2483 5 · 2500 12.57675 · 12.57725 2655 · 2900 13.36 · 13.41 3260 - 3267 16.42 · 16.423 3332 · 3339 16.69475 · 16.69525 3345 8 · 3358 18.80425 · 16.80475 3500 · 4400 25.5 · 25.67 4500 · 5150 37.5 · 38.25 5350 · 5460 73 · 74.6 7250 · 7750	
12.51975 - 12.52025 2483.5 - 2500 12.57675 - 12.57725 2655 - 2900 13.36 - 13.41 3260 - 3267 16.42 - 16.423 3332 - 3339 18.69475 - 16.69525 3345.8 - 3358 16.80425 - 16.80475 3500 - 4400 25.5 - 25.67 4500 - 5150 37.5 - 38.25 5350 - 5460 73 - 74.6 7250 - 7750	
12.57675 · 12.57725 2655 · 2900 13.36 · 13.41 3260 - 3267 16.42 · 16.423 3332 · 3339 16.69475 · 16.69525 3345.8 · 3358 18.80425 · 16.80475 3500 · 4400 25.5 · 25.67 4500 · 5150 37.5 · 38.25 5350 · 5460 73 · 74.6 7250 · 7750	
13.36 · 13.41 3260 – 3267 16.42 · 16.423 3332 · 3339 16.69475 · 16.69525 3345.8 · 3358 16.80425 · 16.80475 3500 · 4400 25.5 · 25.67 4500 · 5150 37.5 · 38.25 5350 · 5460 73 · 74.6 7250 · 7750	
16.42 · 16.423 3332 · 3339 16.69475 · 16.69525 3345.8 · 3358 16.69425 · 16.80475 3500 · 4400 25.5 · 25.67 4500 · 5150 37.5 · 38.25 5350 · 5460 73 · 74.6 7250 · 7750	
16.69475 · 16.89525 3345.8 · 3358 18.80425 · 16.80475 3500 · 4400 25.5 · 25.67 4500 · 5150 37.5 · 38.25 5350 · 5460 73 · 74.6 7250 · 7750	
16.80425 - 16.80475 3500 - 4400 25.5 - 25.67 4500 - 5150 37.5 - 38.25 5350 - 5460 73 - 74.6 7250 - 7750	
25.5 - 25.67 4500 - 5150 37.5 - 38.25 5350 - 5460 73 - 74.6 7250 - 7750	
37.5 - 38.25 5350 - 5460 73 - 74.6 7250 - 7750	
73 - 74.6 7250 - 7750	
74.8 = 75.2 8025 - 8500	

Note 1: Certain frequency bands listed in table 7 and in bands above 38.6 GHz are designated for licence-exempt applications. These frequency bands and the requirements that apply to related devices are set out in the 200 and 300 series of RSSs.

TEST SETUP AND PROCEDURE

Below 30 MHz

The setting of the spectrum analyser

RBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
VBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
Sweep	Auto
Trace	Max hold

1. The testing follows the guidelines in ANSI C63.10-2013 clause 11.11 and 11.12.

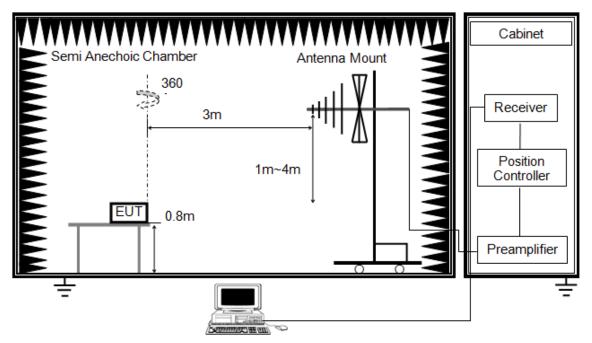
2. The EUT was arranged to its worst case and then turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both Horizontal, Face-on and Face-off polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 80 cm above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a 1 m height antenna tower.

5. The radiated emission limits are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.

6. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak and average detector mode remeasured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak and average detector and reported.


7. Although these tests were performed other than open field site, adequate comparison measurements were confirmed against 30m open field site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field site based on KDB 414788.

8. The limits in CFR 47, Part 15, Subpart C, paragraph 15.209 (a), are identical to those in RSS-GEN Section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of 377Ω ; For example, the measurement frequency X kHz resulted in a level of Y dBuV/m, which is equivalent to Y-51.5 = Z dBuA/m, which has the same

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM NO.: 10-SL-F0057 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

Below 1 GHz

The setting of the spectrum analyser

RBW	120 kHz
VBW	300 kHz
Sweep	Auto
Detector	Peak/QP
Trace	Max hold

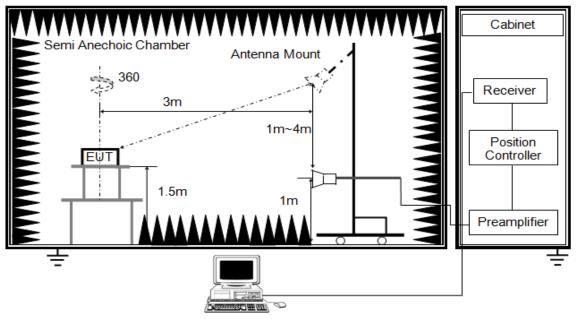
1. The testing follows the guidelines in ANSI C63.10-2013.

2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 80 cm above ground.

4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

5. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.


6. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

7. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

Above 1 GHz

The setting of the spectrum analyser

RBW	1 MHz
IVRW	PEAK: 3 MHz AVG: see note 6
Sweep	Auto
Detector	Peak
Trace	Max hold

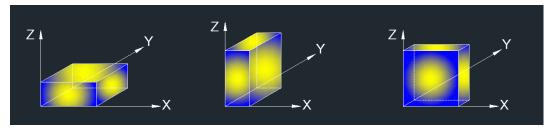
1. The testing follows the guidelines in ANSI C63.10-2013.

2. The EUT was arranged to its worst case and then tune the antenna tower (1.5 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter or band reject filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 1.5 m above ground.

4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

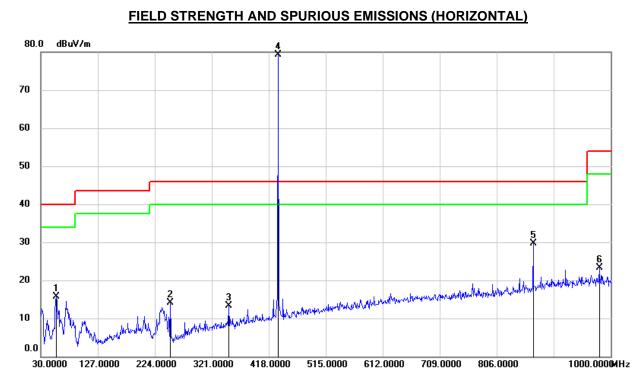
5. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.


4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

6. For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements. Where necessary, average emission are determined by applying the Duty Cycle Correction Factor to the peak measurements. For the Duty Cycle and Correction Factor please refer to clause 6.1. ON TIME AND DUTY CYCLE.

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM NO.: 10-SL-F0057 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

X axis, Y axis, Z axis positions:


Note: For all radiated test, EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

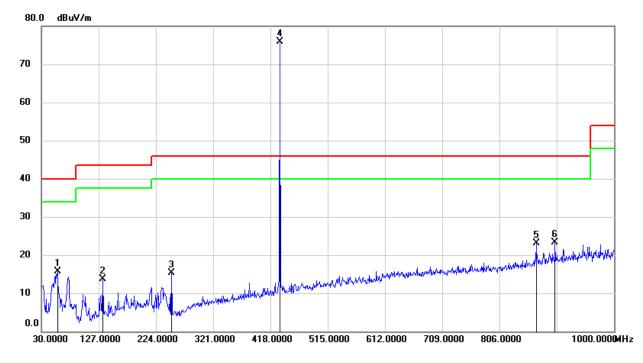
TEST ENVIRONMENT

Radiated Emissio	ns - Below 1 GHz	Radiated Emission	s - Above 1 GHz
Temperature:	22.1 °C	Temperature:	24.3 °C
Humidity:	56 %	Humidity:	61 %
Atmosphere Pressure	101 kPa	Atmosphere Pressure	101 kPa

RESULTS

6.4.1. FIELD STRENGTH AND SPURIOUS EMISSIONS BELOW 1 GHz AND ABOVE 30 MHz

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/	(dBuV/m)	(dB)	
				m)			
1	56.1900	36.24	-20.61	15.63	40.00	-24.37	QP
2	250.1900	32.99	-18.91	14.08	46.00	-31.92	QP
3	350.1000	27.68	-14.32	13.36	46.00	-32.64	QP
4(Fundamental)	433.92	91.95	-12.67	79.28	100.80	-21.52	Peak
5 (2th Harmonic)	867.84	35.55	-5.80	29.75	80.80	-51.05	Peak
6	980.6000	27.66	-4.34	23.32	54.00	-30.68	QP


Note: 1. Result Level = Read Level + Correct Factor.

2. Peak: Peak detector.

- 3. Average Result = Peak Result + Duty Correction Factor.
- 4. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 5. Mark 4 is the fundamental frequency, Mark 5 is 2th harmonic.

FIELD STRENGTH HARMONICS AND SPURIOUS EMISSIONS (VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/	(dBuV/m)	(dB)	
				m)			
1	57.1600	36.26	-20.58	15.68	40.00	-24.32	QP
2	133.7899	32.91	-19.16	13.75	43.50	-29.75	QP
3	250.1900	34.16	-18.91	15.25	46.00	-30.75	QP
4(Fundamental)	433.92	88.56	-12.67	75.89	100.80	-24.91	Peak
5 (2th Harmonic)	867.84	28.83	-5.80	23.03	80.80	-57.77	Peak
6	900.0900	28.56	-5.21	23.35	46.00	-22.65	QP

Note: 1. Result Level = Read Level + Correct Factor.

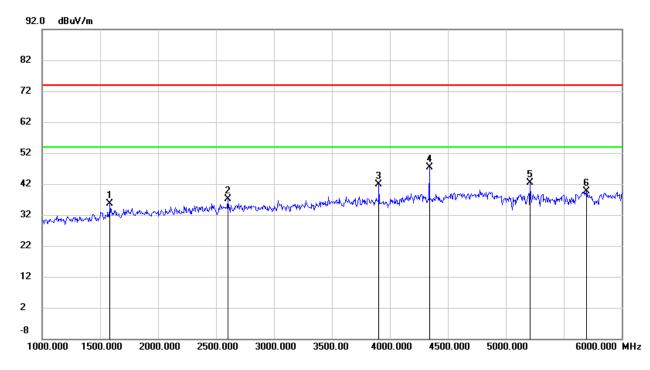
- 2. Peak: Peak detector.
- 3. Average Result = Peak Result + Duty Correction Factor.
- 4. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 5. Mark 4 is the fundamental frequency, Mark 5 is 2th harmonic.

Note: All the modes had been tested, only the worst data was recorded in the report.

6.4.2. SPURIOUS EMISSIONS ABOVE 1 GHz

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1 (6th Harmonic)	2603.520	46.10	-8.57	37.53	80.80	-43.27	peak
2 (9th Harmonic)	3905.280	48.43	-4.51	43.92	80.80	-36.88	peak
3 (10th Harmonic)	4339.200	51.98	-3.02	48.96	80.80	-31.84	peak
4	4775.000	44.07	-1.25	42.82	74.00	-31.18	peak
5	5210.000	44.03	0.19	44.22	74.00	-29.78	peak
6	5650.000	39.01	0.68	39.69	74.00	-34.31	peak

Note: 1. Result Level = Read Level + Correct Factor.


2. Peak: Peak detector.

3. The average limit for harmonic is 60.8 dBuV/m, the average limit for other bands is 54 dBuV/m.

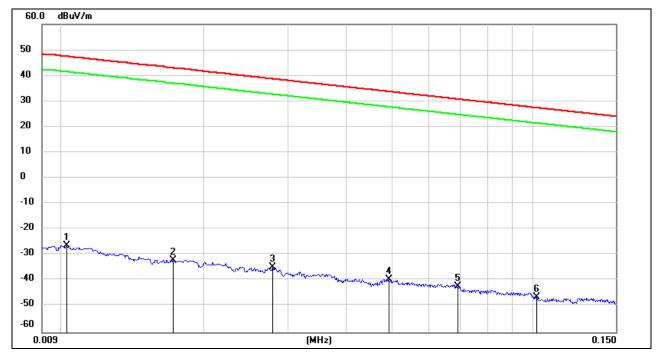
4. If peak result complies with average limit, the average result is deemed to comply with average limit.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1585.000	47.61	-11.94	35.67	74.00	-38.33	peak
2 (6th Harmonic)	2603.520	45.71	-8.57	37.14	80.80	-43.66	peak
3 (9th Harmonic)	3905.280	46.33	-4.51	41.82	80.80	-38.98	peak
4 (10th Harmonic)	4339.200	50.36	-3.02	47.34	80.80	-33.46	peak
5	5210.000	42.25	0.19	42.44	74.00	-31.56	peak
6	5695.000	38.89	0.68	39.57	74.00	-34.43	peak

Note: 1. Result Level = Read Level + Correct Factor.

2. Peak: Peak detector.

3. The average limit for harmonic is 60.8 dBuV/m, the average limit for other bands is 54 dBuV/m.

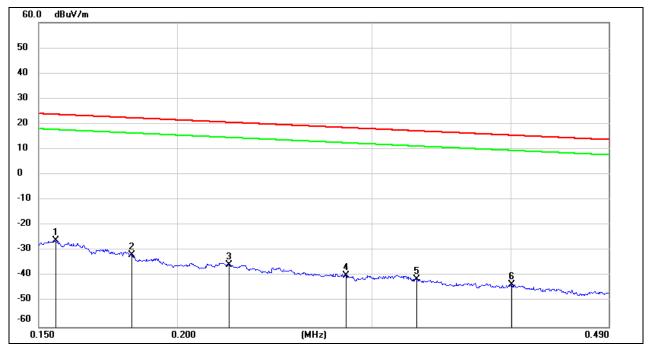

4. If peak result complies with average limit, the average result is deemed to comply with average limit.

Note: All the modes had been tested, only the worst data was recorded in the report.

6.4.3. SPURIOUS EMISSIONS BELOW 30 MHz

SPURIOUS EMISSIONS (LOOP ANTENNA FACE ON TO THE EUT)

<u>0.09 kHz ~ 150 kHz</u>


No.	Frequency	Reading	Correct	Result	Result	Limit	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuA/m)	(dBuV/m)	(dBuA/m)	(dB)	
1	0.0102	75.05	-101.4	-26.35	-77.85	47.43	-4.07	-73.78	peak
2	0.0171	69.38	-101.36	-31.98	-83.48	42.94	-8.56	-74.92	peak
3	0.0279	66.67	-101.38	-34.71	-86.21	38.69	-12.81	-73.40	peak
4	0.0492	62.05	-101.47	-39.42	-90.92	33.76	-17.74	-73.18	peak
5	0.0693	59.27	-101.56	-42.29	-93.79	30.79	-20.71	-73.08	peak
6	0.1019	55.35	-101.79	-46.44	-97.94	27.44	-24.06	-73.88	peak

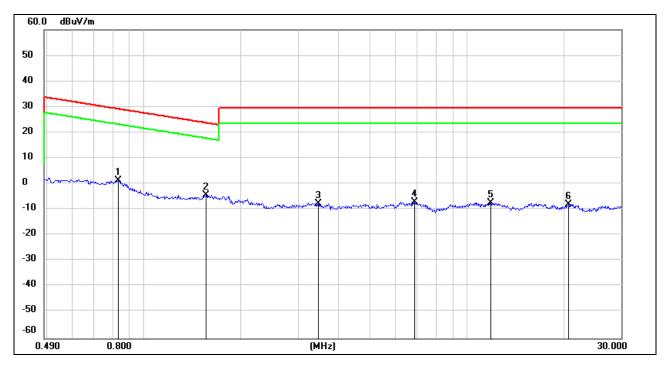
Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.

3. All 3 polarizations (Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

<u>150 kHz ~ 490 kHz</u>

No.	Frequency	Reading	Correct	Result	Result	Limit	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuA/m)	(dBuV/m)	(dBuA/m)	(dB)	
1	0.1554	75.77	-101.65	-25.88	-77.38	23.77	-27.73	-49.65	peak
2	0.1819	69.99	-101.68	-31.69	-83.19	22.41	-29.09	-54.10	peak
3	0.2227	66.15	-101.75	-35.6	-87.10	20.65	-30.85	-56.25	peak
4	0.2837	62.22	-101.83	-39.61	-91.11	18.54	-32.96	-58.15	peak
5	0.3286	60.71	-101.88	-41.17	-92.67	17.27	-34.23	-58.44	peak
6	0.4007	58.56	-101.96	-43.4	-94.90	15.54	-35.96	-58.94	peak


Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.

3. All 3 polarizations (Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

<u>490 kHz ~ 30 MHz</u>

No.	Frequency	Reading	Correct	Result	Result	Limit	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuA/m)	(dBuV/m)	(dBuA/m)	(dB)	
1	0.8296	63.44	-62.17	1.27	-50.23	29.23	-22.27	-27.96	peak
2	1.5564	57.68	-62.02	-4.34	-55.84	23.76	-27.74	-28.10	peak
3	3.4704	53.85	-61.46	-7.61	-59.11	29.54	-21.96	-37.15	peak
4	6.8936	54.09	-61.22	-7.13	-58.63	29.54	-21.96	-36.67	peak
5	11.8513	53.56	-60.88	-7.32	-58.82	29.54	-21.96	-36.86	peak
6	20.6748	52.81	-60.79	-7.98	-59.48	29.54	-21.96	-37.52	peak

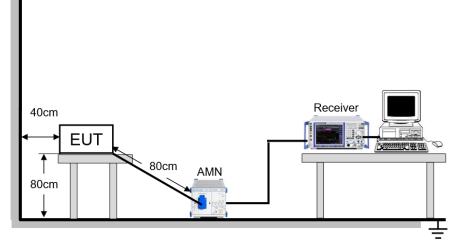
Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.

3. All 3 polarizations (Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

Note: All the modes had been tested, only the worst data was recorded in the report.

7. AC POWER LINE CONDUCTED EMISSIONS


<u>LIMITS</u>

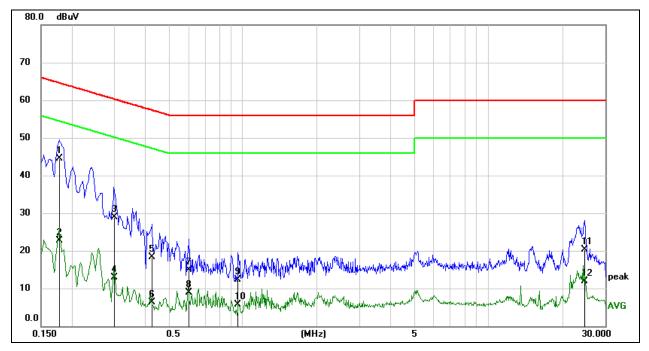
Please refer to CFR 47 FCC §15.207 (a) and ISED RSS-Gen Clause 8.8

FREQUENCY (MHz)	Quasi-peak	Average
0.15 -0.5	66 - 56 *	56 - 46 *
0.50 -5.0	56.00	46.00
5.0 -30.0	60.00	50.00

TEST SETUP AND PROCEDURE

Refer to ANSI C63.10-2013 clause 6.2.

The EUT is put on a table of non-conducting material that is 80 cm high. The vertical conducting wall of shielding is located 40 cm to the rear of the EUT. The power line of the EUT is connected to the AC mains through a Artificial Mains Network (A.M.N.). A EMI Measurement Receiver (R&S Test Receiver ESR3) is used to test the emissions from both sides of AC line. According to the requirements in Section 6.2 of ANSI C63.10-2013.Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode. The bandwidth of EMI test receiver is set at 9 kHz.


The arrangement of the equipment is installed to meet the standards and operating in a manner, which tends to maximize its emission characteristics in a normal application.

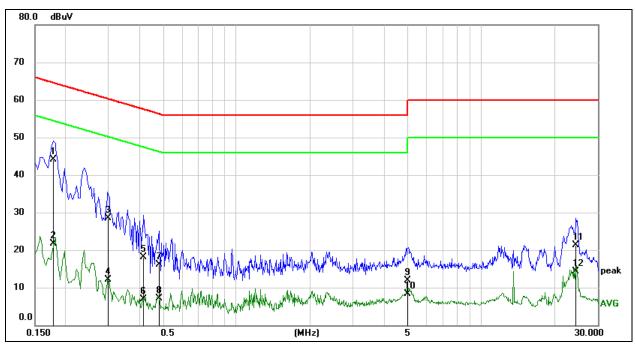
TEST ENVIRONMENT

Temperature	23.6 °C	Relative Humidity	54.9 %
Atmosphere Pressure	101 kPa	Test Voltage	AC 120 V, 60 Hz

RESULTS

LINE L RESULTS (LOW CHANNEL, WORST-CASE CONFIGURATION)
--

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1787	34.88	9.59	44.47	64.55	-20.08	QP
2	0.1787	13.06	9.59	22.65	54.55	-31.90	AVG
3	0.2990	19.49	9.49	28.98	60.27	-31.29	QP
4	0.2990	3.43	9.49	12.92	50.27	-37.35	AVG
5	0.4245	8.99	9.38	18.37	57.36	-38.99	QP
6	0.4245	-3.05	9.38	6.33	47.36	-41.03	AVG
7	0.5998	5.50	9.45	14.95	56.00	-41.05	QP
8	0.5998	-0.45	9.45	9.00	46.00	-37.00	AVG
9	0.9579	2.69	9.61	12.30	56.00	-43.70	QP
10	0.9579	-3.93	9.61	5.68	46.00	-40.32	AVG
11	24.6554	10.57	9.70	20.27	60.00	-39.73	QP
12	24.6554	2.26	9.70	11.96	50.00	-38.04	AVG


Note: 1. Result = Reading + Correct Factor.

2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Test setup: RBW: 200 Hz (9 kHz ~ 150 kHz), 9 kHz (150 kHz ~ 30 MHz).

4. Step size: 80 Hz (0.009 MHz ~ 0.15 MHz), 4 kHz (0.15 MHz ~ 30 MHz), Scan time: auto.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1791	34.46	9.59	44.05	64.53	-20.48	QP
2	0.1791	12.18	9.59	21.77	54.53	-32.76	AVG
3	0.2995	19.03	9.49	28.52	60.26	-31.74	QP
4	0.2995	2.64	9.49	12.13	50.26	-38.13	AVG
5	0.4166	8.81	9.38	18.19	57.52	-39.33	QP
6	0.4166	-2.49	9.38	6.89	47.52	-40.63	AVG
7	0.4832	6.72	9.32	16.04	56.28	-40.24	QP
8	0.4832	-2.20	9.32	7.12	46.28	-39.16	AVG
9	5.0174	2.24	9.62	11.86	60.00	-48.14	QP
10	5.0174	-1.29	9.62	8.33	50.00	-41.67	AVG
11	24.5328	11.51	9.70	21.21	60.00	-38.79	QP
12	24.5328	4.52	9.70	14.22	50.00	-35.78	AVG

Note: 1. Result = Reading + Correct Factor.

2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Test setup: RBW: 200 Hz (9 kHz ~ 150 kHz), 9 kHz (150 kHz ~ 30 MHz).

4. Step size: 80 Hz (0.009 MHz ~ 0.15 MHz), 4 kHz (0.15 MHz ~ 30 MHz), Scan time: auto.

Note: All the modes have been tested, only the worst data was recorded in the report.

8. ANTENNA REQUIREMENTS

APPLICABLE REQUIREMENTS

Please refer to FCC §15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Please refer to FCC §15.247(b)(4)

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

RESULTS

Complies

END OF REPORT