

RF Exposure Evaluation

Client Information:

Applicant:	Shenzhen Aodehong Electronic Technology Co.,Ltd.
Applicant add.:	Room 501, Building 2, Gaoya industrial park, No. 8 Liuhe Road, Liuyue,Henggang Street, Longgang District, Shenzhen City, Guangdong Province, China.
Manufacturer:	Shenzhen Aodehong Electronic Technology Co.,Ltd.
Manufacturer add.:	Room 501, Building 2, Gaoya industrial park, No. 8 Liuhe Road, Liuyue,Henggang Street, Longgang District, Shenzhen City, Guangdong Province, China.
Product Information:	
Product Name:	3-in-1 Wireless Charger
Model No.:	F15
Brand Name:	NEWQI
Test samples.:	AITSZ24052905-1
FCC ID:	2APQD-F15
Applicable standards:	FCC CFR 47 PART 1, § 1.1310 KDB 680106 D01 Wireless Power Transfer v04
Prenared By:	

Prepared By:

Guangdong Asia Hongke Test Technology Limited

B1/F, Building 11, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Tel.: +86 0755-230967639 Fax.: +86 0755-230967639

Date of Receipt: Jun. 06, 2024 Date of Test: Jun. 06, 2024 ~ Jun. 18, 2024

Date of Issue: Jun. 18, 2024

This device described above has been tested by Guangdong Asia Hongke Test Technology Limited and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

Test Result:

Pass

Note: This report shall not be reproduced except in full, without the written approval of Guangdong Asia Hongke Test Technology Limited, this document may be altered or revised by Guangdong Asia Hongke Test Technology Limited, personal only, and shall be noted in the revision of the document. This test report must not be used by the client to claim product endorsement.

Jeon Yi

Leon.vi

Sean She

Reviewed by: _____

Approved by: _

Sean She

1 CONTENTS

CO	VER P	AGE	Page
1	CON	NTENTS	2
2	TES	ST FACILITY	4
	2.1	Deviation from standard	4
	2.2	Abnormalities from standard conditions	4
	2.3	Test Location	4
3	GEN	VERAL INFORMATION	5
4	TES	ST METHODOLOGY	6
	4.1	Measuring Standard	6
	4.2	Requirements	6
	4.3	Limits	6
	4.4	Test Setup	7
	4.5	Test Procedure	7
5	Equ	ipment Approval Considerations	8
	5.1	Description of the test mode	9
	5.2	Peripheral List	9
	5.3	Test Instruments list	9
	5.4	Duty Cycle	10
	5.5	Test Result	12
	5.6	Test Setup photo	16

Revision History

Revision	Issue Date	Revisions	Revised By
00	Jun. 18, 2024	Initial Issue	Sean She

2 TEST FACILITY

The test facility is recognized, certified or accredited by the following organizations:

FCC-Registration No.: 251906 Designation Number: CN1376

Guangdong Asia Hongke Test Technology Limited has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

IC — Registration No.: 31737 CAB identifier: CN0165

The 3m Semi-anechoic chamber of Guangdong Asia Hongke Test Technology Limited has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 31737

A2LA-Lab Cert. No.: 7133.01

Guangdong Asia Hongke Test Technology Limited has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

2.1 Deviation from standard

None

2.2 Abnormalities from standard conditions

None

2.3 Test Location

Guangdong Asia Hongke Test Technology Limited

Address: B1/F, Building 11, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Tel.: +86 0755-230967639 Fax.: +86 0755-230967639

3 GENERAL INFORMATION

EUT Name:	3-in-1 Wireless Charger
Model No:	F15
Serial Model:	N/A
Test sample(s) ID:	AITSZ24052905-1
Sample(s) Status:	Engineer sample
	Coil1: For Phone: 113kHz-205kHz
Operation frequency:	Coil2: For Earphone: 113kHz-205kHz
	Coil3: Watch: 300kHz-350kHz
Modulation Technology:	ASK
Antenna Type:	Coil1/Coil2/Coil3: Loop coil Antenna
Antenna gain:	Coil1/Coil2/Coil3: 0dBi
Hardware version .:	N/A
Software version .:	N/A
Power supply:	Input: 5V=3A/9V=3A/12V=2.5A
	Output: 5V-1A/9V-1.1A/9V-1.66A
Model different:	color varies
Note:	For a more detailed features description, please refer to the manufacturer's
	specifications or the User's Manual.

4 TEST METHODOLOGY

4.1 Measuring Standard

According to §1.1307(b)(1), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines. According to §1.1310 and §2.1091 RF exposure is calculated. According KDB680106 D01: KDB 680106 D01 Wireless Power Transfer v04.

4.2 Requirements

According to the item 3 of KDB 680106 D01v04:

Inductive wireless power transfer applications that meet all of the following requirements are excluded from submitting an RF exposure evaluation.

(1) Mobile Device and Portable Device Configurations

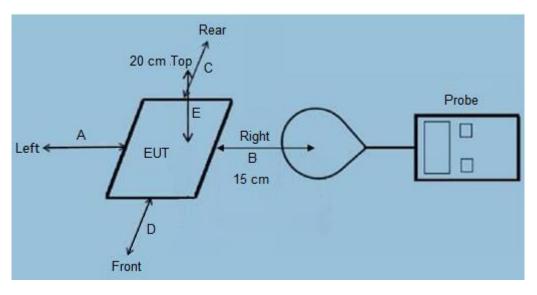
(2) Equipment Authorization Procedures for Devices Operating at Frequencies Below 4 MHz

(3) The aggregate H-field strengths anywhere at or beyond 15 cm surrounding the device, and 20 cm away from the top surface.

4.3 Limits

The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency (RF) radiation as specified in 1.1307(b) Limits for Maximum Permissible Exposure (MPE)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm ²)	Averaging time (minutes)
	(A) Limits for Occ	upational/Controlled Ex	posures	
0.3-3.0	614	1.63	*(100)	6
3.0-30	1842/f	4.89/f	*(900/f ²)	6
30-300	61.4	0.163	1.0	6
300-1500	/	/	f/300	6
1500-100,000	/	1	5	6
	(B) Limits for Genera	Population/Uncontrolle	d Exposure	
0.3-1.34	614	1.63	*(100)	30
1.34-30	824/f	2.19/f	*(180/f ²)	30
30-300	27.5	0.073	0.2	30
300-1500	/	/	f/1500	30
1500-100,000	1	1	1.0	30


F=frequency in MHz

*=Plane-wave equivalent power density

RF exposure compliance will need to be determined with respect to 1.1307(c) and (d) of the FCC rules. The emissions should be within the limits at 300kHz in Table 1 of 1.1310(use the 300kHz limits for 150kHz:614V/m,1.63A/m).

4.4 Test Setup

4.5 Test Procedure

1) The RF exposure test was performed in anechoic chamber.

2) The measurement probe was placed at test distance (15 cm from all sides and 20 cm from the top) which is between the edge of the charger and the geometric center of probe.

3) The highest emission level was recorded and compared with limit as soon as measurement of each points (A, B, C, D, E,F) were completed.

4) The EUT was measured according to the dictates of KDB 680106 D01 Wireless Power Transfer v04.

Remark: The EUT's test position A, B, C, D, E and F is valid for the E and H field measurements.

5 Equipment Approval Considerations

The EUT does comply with KDB 680106 D01 as follow table.

Requirements of section 5 of KDB 680106 D01	Yes / No	Description
Mobile Device and Portable Device Configurations	Yes	Mobile Device
Equipment Authorization Procedures for Devices Operating at Frequencies Below 4 MHz	Yes	The device operate in the frequency range113-205KHz(for mobile phone & earphone) and 300-350KHz(for watch).
RF Exposure compliance may be ensured only for a minimum separation distance that is greater than 20 cm, while use conditions at smaller distances can still be considered unlikely.	Yes	The EUT H-field strengths at 15 cm surrounding the device and 20 cm above the top surface.

5.1 Description of the test mode

Equipment under test was operated during the measurement under the following conditions:

Test Mode	Description				
Mode 1	AC Adapter + EUT + Phone + Earphone + Watch	Record			
Mode 2	AC Adapter + EUT + Phone + Earphone	Pre-tested			
Mode 3	AC Adapter + EUT + Phone + Watch	Pre-tested			
Mode 4	AC Adapter + EUT + Phone	Pre-tested			
Mode 5	AC Adapter + EUT + Earphone + Watch	Pre-tested			
Mode 6	AC Adapter + EUT + Earphone	Pre-tested			
Mode 7	AC Adapter + EUT + Watch	Pre-tested			
Mode 8	Test the EUT in idle mode.	Pre-tested			
Note: 1. All test modes were pre-tested, but we only recorded the worst case in this report.					

5.2 Peripheral List

No.	Equipment	Manufacturer	Model No.	Serial No.	Power cord	signal cable
1	Adapter	HNT	HNT-QC530	N/A	N/A	N/A
2	phone	OSCAL	PILOT2	N/A	N/A	N/A
3	Earphone	PocBuds	K6	N/A	N/A	N/A
4	Watch	Apple	S6	N/A	N/A	N/A

5.3 Test Instruments list

Test Equipment	Manufacturer	Model No.	SN.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
Magnetic Amplitude		MAGPy-8H3D+E3			
and Gradient Probe	SPEAG	D V2	3107 & 3097	03.15.2024	03.14.2025
System		& MAGPy-DAS V2			

5.4 Duty Cycle

Mode	ON Time(ms)	Period(ms)	Duty Cycle(%)
Operating(108.7kHz)	/	/	100
Operating(132.0kHz)	/	/	100
Operating(359.3kHz)	/	/	100

🚥 Key	/sight Spectrum A	nalyzer - Swept SA								
LXI	RF	50 Ω 🧥 DC		SE	NSE:PULSE				10:39:14	AM Jun 18, 2024
Cen	ter Freg 1	08.700 kH					Avg Type:	Log-Pwr	TR	ACE 1 2 3 4 5 6
0011	torrioq	00.700 Mi	1/ F	NO: Wide 🔸	Trig: Free	Run		-	1	
				Gain:Low	Atten: 6 d	в				DET P NNNN
10 dE	Ref	-20.00 dBn	n							
Log		20.00 081								
										l í
-30.0										
-40.0										
-50.0										
-60.0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	- Andrew - and a second	-Mandal Marchardto		share and and a			
-70.0										
-80.0										
-90.0										
100										
-100										
-110										
-110										
Cent	ter 108.700) kHz								Span 0 Hz
	BW 3.0 kH			#\/B	W 10 kHz			Sween	500.0 ms	(1001 pts)
1005	E 1 0.0 MI			#VD	TY IN IZ				00000 1115	(Teo Pis)
MSG								DC Coupled		
_										

	ctrum Analyzer - Swept SA				
× Center Fr	RF 50 Ω ▲ DC eq 132.000 kH		•NSE:PULSE • Trig: Free Run Atten: 6 dB	Avg Type: Log-Pwr	10:41:18 AMJun 18, 2024 TRACE 1 2 3 4 5 6 TYPE WWWWWW DET PNNNN
10 dB/div Log	Ref -20.00 dBm				
-30.0					
-40.0					
-50.0					
60.0	<u>Arthonesestantinettant</u>	zationana and and and and and and and and and	nonacconcoun	and a contraction of the contrac	n
-70.0					
80.0					
90.0					
-100					
-110					
Center 132 Res BW 3.		#VB	W 10 kHz		Span 0 Hz 500.0 ms (1001 pts)
/ISG				🚺 DC Coupled	

		Analyzer - Swept SA								_ d ×
<mark>(X</mark>)	R			SE	NSE:PULSE		A T	Lev Dur		AM Jun 18, 2024
Cen	ter Freq	359.300 kH	P	NO:Wide ↔ Gain:Low	Trig: Free I Atten: 6 dl		Avg Type:	Log-Pwr	1	ACE 1 2 3 4 5 6 YPE WWWWWWW DET P NNNNN
10 dE Log r	Mdiv Re	f -20.00 dBr	n							
-30.0										Ì
-40.0										
-40.0										
-50.0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			1. D D D D D D D D.	non alana	നംനംവ പിഴ്ച്ച	-	an anonanton and		1
-50.0										
-70.0										
-90.0										
-100										
-110										
	er 359.30 BW 3.0 k			#VB	W 10 kHz				500.0 ms	Span 0 Hz (1001 pts)
MSG							🛛 🕼 <mark>status</mark> 🚹	DC Coupled		

5.5 Test Result

Test Mode 1_MPE_Coil 1_Phone							
	MPE						
Test	Pottony lovolo	Probe from EUT Side	E-field	H-field			
distance	Battery levels	Probe from EUT Side	(V/m)	(A/m)			
20cm	< 1%	Тор	15.83	0.53			
15cm	< 1%	Тор	15.62	0.41			
15cm	< 1%	Left	16.20	0.70			
15cm	< 1%	Right	16.06	0.61			
15cm	< 1%	Front	15.59	0.45			
15cm	< 1%	Rear	15.55	0.54			
	614	1.63					
	Margin Limit (%)						

Test Mode 1_MPE_Coil 1_Phone

MPE						
Test	Battery levels	Probe from EUT Side	E-field	H-field		
distance	Dattery levels	Probe from EUT Side	(V/m)	(A/m)		
20cm	< 50%	Тор	14.97	0.39		
15cm	< 50%	Тор	13.82	0.32		
15cm	< 50%	Left	14.21	0.44		
15cm	< 50%	Right	14.12	0.52		
15cm	< 50%	Front	14.13	0.38		
15cm	< 50%	Rear	14.79	0.35		
	614	1.63				
	2.44%	31.90%				

MPE						
Test distance	Battery levels	Probe from EUT Side	E-field (V/m)	H-field (A/m)		
20cm	< 99%	Тор	14.43	0.54		
15cm	< 99%	Тор	13.31	0.48		
15cm	< 99%	Left	13.89	0.62		
15cm	< 99%	Right	13.93	0.53		
15cm	< 99%	Front	13.82	0.56		
15cm	< 99%	Rear	13.77	0.52		
	614	1.63				
	2.35%	38.04%				

	MPE					
Test distance	Battery levels	Probe from EUT Side	E-field (V/m)	H-field (A/m)		
20cm	< 1%	Тор	13.19	0.25		
15cm	< 1%	Тор	13.12	0.36		
15cm	< 1%	Left	13.12	0.18		
15cm	< 1%	Right	13.22	0.24		
15cm	< 1%	Front	12.95	0.31		
15cm	< 1%	Rear	13.34	0.14		
	614	1.63				
	Margin Limit (%)					

Test Mode 1_MPE_Coil 2_ Earphone

MPE						
Test	Battery levels	Probe from EUT Side	E-field	H-field		
distance	Dattery levels		(V/m)	(A/m)		
20cm	< 50%	Тор	12.29	0.23		
15cm	< 50%	Тор	11.25	0.21		
15cm	< 50%	Left	11.82	0.17		
15cm	< 50%	Right	11.85	0.32		
15cm	< 50%	Front	11.70	0.40		
15cm	< 50%	Rear	11.90	0.15		
	614	1.63				
	Margin Limit (%)					

MPE					
Test	Battery levels	Probe from EUT Side	E-field	H-field	
distance	Ballery levels	FIDDE HOITEUT SIDE	(V/m)	(A/m)	
20cm	< 99%	Тор	11.83	0.08	
15cm	< 99%	Тор	11.10	0.17	
15cm	< 99%	Left	11.30	0.13	
15cm	< 99%	Right	11.03	0.08	
15cm	< 99%	Front	11.31	0.03	
15cm	< 99%	Rear	11.32	0.13	
	614	1.63			
	1.93%	10.43%			

	MPE						
Test	Battery levels	Probe from EUT Side	E-field	H-field			
distance	Dattery levels		(V/m)	(A/m)			
20cm	< 1%	Тор	12.89	0.19			
15cm	< 1%	Тор	12.93	0.09			
15cm	< 1%	Left	13.00	0.35			
15cm	< 1%	Right	12.57	0.15			
15cm	< 1%	Front	12.91	0.17			
15cm	< 1%	Rear	12.59	0.10			
	614	1.63					
	Margin Limit (%)						

Test Mode 1 MPE Coil 3 Watch

MPE					
Test	Battery levels	Probe from EUT Side	E-field	H-field	
distance	Ballery levels	FIDE HOITEUT SIDE	(V/m)	(A/m)	
20cm	< 50%	Тор	12.11	0.19	
15cm	< 50%	Тор	11.18	0.13	
15cm	< 50%	Left	11.69	0.21	
15cm	< 50%	Right	11.65	0.33	
15cm	< 50%	Front	11.14	0.22	
15cm	< 50%	Rear	11.46	0.14	
	614	1.63			
	1.97%	20.25%			

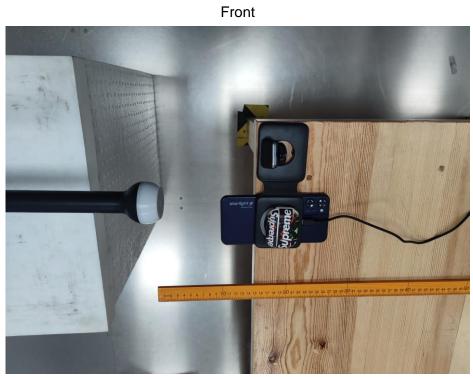
MPE						
Test	Battery levels	Probe from EUT Side	E-field	H-field		
distance	Dattery levels	FIDDE HOITEUT SIDE	(V/m)	(A/m)		
20cm	< 99%	Тор	11.52	0.14		
15cm	< 99%	Тор	10.52	0.13		
15cm	< 99%	Left	11.36	0.05		
15cm	< 99%	Right	10.97	0.13		
15cm	< 99%	Front	11.20	0.07		
15cm	< 99%	Rear	11.22	0.25		
	614	1.63				
	Margin Limit (%)					

Note: All test modes were pre-tested, but we only recorded the worst case in this report.

Total exposure

MPE-based total exposure ratio (Worst case):

E-field:

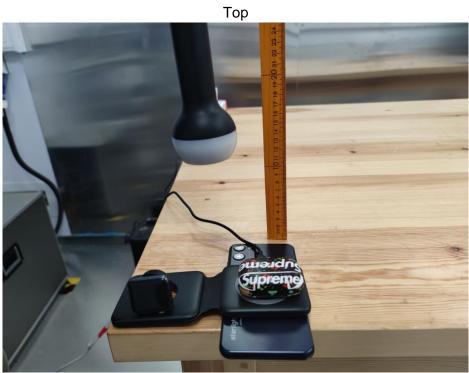

Coil 1+Coil 2+Coil 3 = 0.0264 + 0.0217 + 0.0212 = 0.0693 < 1

H-field:

Coil 1+Coil 2+Coil 3 = 0.4294 + 0.2454 + 0.2147 = 0.8896 < 1

5.6 Test Setup photo

Left



Right

End of report