

TEST REPORT

FCC ID: 2APP6ARU-03

Product: Wireless audio transmitter

Model No.: ARU-03T

Additional Model: N/A

Trade Mark: AROMA

Report No.: TCT180419E009

Issued Date: May 05, 2018

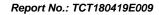
Issued for:

Aroma Music Co., Ltd
Floor 6, Building 56 Baotian Industry Zone, Baotian 3 Road, Bao An District,
Shenzhen, 518102 China

Issued By:

Shenzhen Tongce Testing Lab.

1B/F., Building 1, Yibaolai Industrial Park, Qiaotou, Fuyong, Baoan District, Shenzhen, Guangdong, China


TEL: +86-755-27673339

FAX: +86-755-27673332

Note: This report shall not be reproduced except in full, without the written approval of Shenzhen Tongce Testing Lab.

This document may be altered or revised by Shenzhen Tongce Testing Lab. personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

TABLE OF CONTENTS

1. Te	st Certific	cation						3
2. Te	st Result	Summai	ry					4
	JT Descri							
4. Ge	enera Info	rmation.	<u>(c)</u>		<u>(c)</u>		<u>(c)</u>	6
	Test Enviro							
	Description							
5. Fa	cilities ar	nd Accre	ditations					7
	Facilities							
	Location Measureme							
	st Result							
6.1. 6.2.	Antenna Re Conducted Radiated E	equirement. Emission		(0)		(0)		8
6.4.	20dB Occu	pied Bandw	idth					22
Apper	ndix A: Ph	notograp	hs of Te	st Setup				
Apper	ndix B: Ph	notograp	hs of EU	Т				

1. Test Certification

Product:	Wireless audio transmitter				
Model No.:	ARU-03T				
Additional Model:	N/A				
Trade Mark:	AROMA				
Applicant:	Aroma Music Co., Ltd				
Address:	Floor 6, Building 56 Baotian Industry Zone, Baotian 3 Road, Bao An District, Shenzhen, 518102 China				
Manufacturer:	Aroma Music Co., Ltd				
Address:	Floor 6, Building 56 Baotian Industry Zone, Baotian 3 Road, Bao An District, Shenzhen, 518102 China				
Date of Test:	Apr. 23, 2018 - May 04, 2018				
Applicable Standards:	FCC CFR Title 47 Part 15 Subpart C Section 15.249				

The above equipment has been tested by Shenzhen Tongce Testing Lab. and found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Tested By:	Garen	Date:	May 04, 2018
Reviewed By:	Benyl sharo	Date:	May 05, 2018
Approved By:	Beryl Zhao Tomsin	Date:	May 05, 2018

2. Test Result Summary

Requirement	CFR 47 Section	Result
Antenna Requirement	§15.203	PASS
AC Power Line Conducted Emission	§15.207	N/A
Field Strength of Fundamental	§15.249 (a)	PASS
Spurious Emissions	§2.1053 §15.249 (a) (d)/ §15.209	PASS
Band Edge	§2.1053 §15.249 (d)/ §15.205	PASS
20dB Occupied Bandwidth	§2.1049 §15.215 (c)	PASS

Note:

- 1. Pass: Test item meets the requirement.
- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.

3. EUT Description

Product:	Wireless audio transmitter
Model No.:	ARU-03T
Additional Model:	N/A
Trade Mark:	AROMA
Hardware Version:	Ver20171016
Software Version:	V1.0
Operation Frequency:	920.7MHz-927.7MHz
Number of Channel:	5
Modulation Technology:	2ASK
Antenna Type:	External Antenna
Antenna Gain:	2.5dBi
Power Supply:	Rechargeable Li-ion Battery DC 3.7V
Remark:	All models above are identical in interior structure, electrical circuits and components, and just model names are different for the marketing requirement.

Operation Frequency Each of Channel

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	902.7MHz	2	908.7MHz	3	914.7MHz	4	920.7MHz
5	5 927.7MHz						
Remark: (Remark: Channel 1, 3 and 5 are selected to perform the tests.						

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	902.7MHz
The middle channel	914.7MHz
The Highest channel	927.7MHz

4. Genera Information

4.1. Test Environment and Mode

Operating Environment:						
Temperature:	25.0 °C					
Humidity:	54 % RH					
Atmospheric Pressure:	1010 mbar					
Test Mode:						
Engineering mode:	Keep the EUT in continuous transmitting by select channel					

The sample was placed (0.8m below 1GHz, 1.5m above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

4.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
1 (6)	1 6) /	(6) 1	

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

5. Facilities and Accreditations

5.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

Shenzhen Tongce Testing Lab

The 3m Semi-anechoic chamber has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

IC - Registration No.: 10668A-1

The 3m Semi-anechoic chamber of Shenzhen TCT Testing Technology Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing

5.2.Location

Shenzhen Tongce Testing Lab

Address: 1B/F., Building 1, Yibaolai Industrial Park, Qiaotou, Fuyong, Baoan District,

Shenzhen, Guangdong, China

TEL: +86-755-27673339

5.3. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	MU
	Conducted Emission	±2.56dB
2	RF power, conducted	±0.12dB
3	Spurious emissions, conducted	±0.11dB
4	All emissions, radiated(<1GHz)	±3.92dB
5	All emissions, radiated(>1GHz)	±4.28dB
6	Temperature	±0.1°C
7	Humidity	±1.0%

6. Test Results and Measurement Data

6.1. Antenna Requirement

Standard requirement: FCC Part15 C Section 15.203

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

E.U.T Antenna:

The EUT antenna is external Antenna which permanently attached, and the best case gain of the antenna is 2.5dBi.

6.2.Conducted Emission

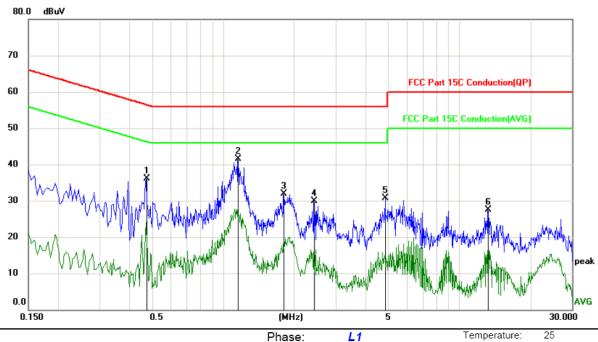
6.2.1. Test Specification

Test Requirement:	FCC Part15 C Section	15.207	No.		
Test Method:	ANSI C63.10:2013				
Frequency Range:	150 kHz to 30 MHz				
Receiver setup:	RBW=9 kHz, VBW=30	kHz, Sweep time	=auto		
	Frequency range (MHz)	Limit (dBuV) Average		
Limits:	0.15-0.5	66 to 56*	56 to 46*		
Lillius.	0.13-0.3	56	46		
	5-30	60	50		
	(50.)	nce Plane	(263)		
Test Setup:	AUX Equipment E.U.T EMI Receiver Remark: E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m				
Test Procedure:	1. The E.U.T and simulation power through a line (L.I.S.N.). This problem impedance for the material device power through a LI coupling impedance refer to the block photographs). 3. Both sides of A.C. conducted interferer emission, the relative the interface cables ANSI C63.10:2013 of	ulators are connected impedance stable impedance stable vides a 500hm leasuring equipment of the stable incomplete incomp	oilization network of 1/50uH coupling ent. ected to the main a 50ohm/50uH nination. (Please test setup and ed for maximum of the maximum ipment and all of ed according to		

6.2.2. Test Instruments

Conducted Emission Shielding Room Test Site (843)						
Equipment	Manufacturer	Model	Serial Number	Calibration Due		
Test Receiver	R&S	ESPI	101401	Jun. 12, 2018		
LISN	Schwarzbeck	NSLK 8126	8126453	Sep. 27, 2018		
Coax cable (9KHz-30MHz)	тст	CE-05	N/A	Sep. 27, 2018		
EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A		

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).



6.2.3. Test data

Please refer to following diagram for individual

Conducted Emission on Line Terminal of the power line (150 kHz to 30MHz)

Limit: FCC Part 15C Conduction(QP) Power: Humidity: 55 %	Limit: FCC Part 15C Conduction(QP)	Power:	Humidity:	55 %
--	------------------------------------	--------	-----------	------

	No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBu∀	dB	Detector	Comment
	1	0.4740	24.83	11.23	36.06	56.44	-20.38	peak	
-	2 *	1.1535	30.42	11.03	41.45	56.00	-14.55	peak	
-	3	1.8060	20.58	11.29	31.87	56.00	-24.13	peak	
-	4	2.4270	18.62	11.21	29.83	56.00	-26.17	peak	
-	5	4.8480	20.40	10.33	30.73	56.00	-25.27	peak	
-	6	13.2000	16.45	11.04	27.49	60.00	-32.51	peak	

Note:

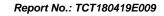
Site

Freq. = Emission frequency in MHz

Reading level $(dB\mu V)$ = Receiver reading

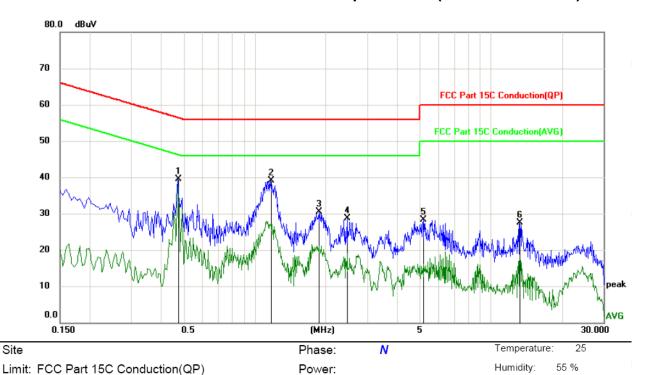
Corr. Factor (dB) = Antenna factor + Cable loss

Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)


 $Limit (dB\mu V) = Limit stated in standard$

 $Margin (dB) = Measurement (dB\mu V) - Limits (dB\mu V)$

Q.P. =Quasi-Peak


AVG =average

^{*} is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz

Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz)

No	o. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBu∀	dB	Detector	Comment
	1 *	0.4740	28.33	11.23	39.56	56.44	-16.88	peak	
	2	1.1670	28.06	11.04	39.10	56.00	-16.90	peak	
- ;	3	1.8735	19.26	11.32	30.58	56.00	-25.42	peak	
-	4	2.4630	17.55	11.20	28.75	56.00	-27.25	peak	
	5	5.1900	17.95	10.30	28.25	60.00	-31.75	peak	
(3	13.2000	16.42	11.04	27.46	60.00	-32.54	peak	

Note1:

Freq. = Emission frequency in MHz

Reading level $(dB\mu V)$ = Receiver reading

Corr. Factor (dB) = Antenna factor + Cable loss

Measurement ($dB\mu V$) = Reading level ($dB\mu V$) + Corr. Factor (dB)

 $Limit (dB\mu V) = Limit stated in standard$

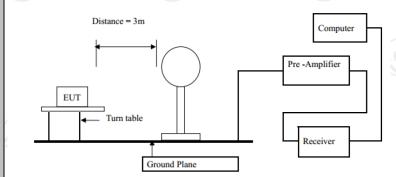
 $Margin (dB) = Measurement (dB\mu V) - Limits (dB\mu V)$

Q.P. =Quasi-Peak AVG =average

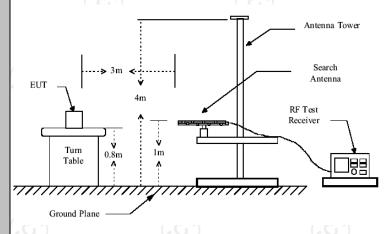
^{*} is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

6.3. Radiated Emission Measurement

6.3.1. Test Specification

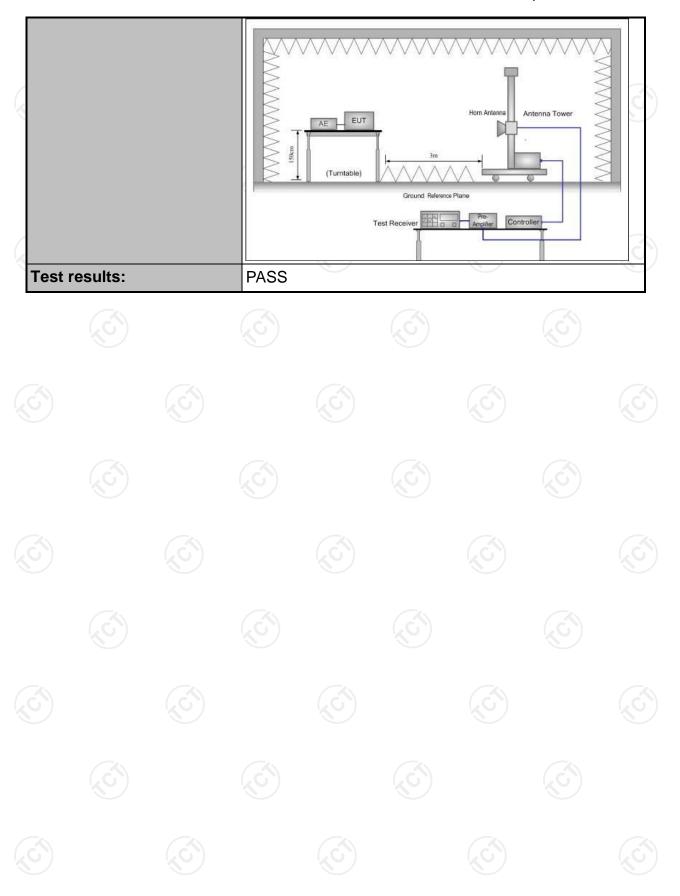

Test Requirement:	FCC Part15	C Section	15 200/	Part 2 I	Section 2.1053				
·			1 13.203/	T alt Z J	Section 2.1033				
Test Method:	ANSI C63.1								
Frequency Range:	9 kHz to 10 GHz 3 m								
Measurement Distance:	Horizontal & Vertical								
Antenna Polarization:	Frequency Detector RBW VBW Remark 9kHz- 150kHz Quasi-peak 200Hz 1kHz Quasi-peak \								
					Remark				
Receiver Setup:	9kHz- 150kHz Quasi-peak 150kHz- Quasi-peak 30MHz		9kHz	30kHz	Quasi-peak Value Quasi-peak Value				
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak Value				
	Above 1GHz	Peak	1MHz	3MHz	Peak Value				
	Above 10112	Peak	1MHz	10Hz	Average Value				
Limit(Field strength of the	Freque	ency	Limit (dBu\	//m_@3m)	Remark				
,	902MHz-9		94.	00	Average Value				
fundamental signal):	902101112-9	220IVITZ	114	.00	Peak Value				
	Freque	encv	Limit (dRu)	//m @3m)	Remark				
	0.009-0		Limit (dBuV/m @3m) 2400/F(KHz)		Quasi-peak Value				
	0.490-1		24000/F(KHz)		Quasi-peak Value				
	1.705		30		Quasi-peak Value				
Limit/Courieus Emissiens).	201117 001117		40.0		Quasi-peak Value				
Limit(Spurious Emissions):	88MHz-216MHz		43	.5	Quasi-peak Value				
	216MHz-960MHz		46	.0	Quasi-peak Value				
	960MHz	-1GHz	54.0		Quasi-peak Value				
	Above 1GHz		54.0		Average Value				
			74		Peak Value				
Limit (band edge) :	bands, excelleast 50 dB	ept for har below the diated em	monics, s level of t ission lir	shall be a he funda nits in S	cified frequency attenuated by at mental or to the Section 15.209,				
Test Procedure:	meters a below 1 1GHz. determing 2. The Element on the to 3. The anteres a value of the second secon	above the IGHz, 1.5 The table the position of a variabove the general table.	ground as made was resisted and antering antering tis varied ground to a strengt	at a 3 m e the grotated 3 e highest neters a nna, which that anten d from or determinent.	away from the ch was mounted				

the measurement.


- 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

For radiated emissions below 30MHz

30MHz to 1GHz


Test setup:

Above 1GHz

(The diagram below shows the test setup that is utilized to make the measurements for emission from 1GHz to the tenth harmonic of the highest fundamental frequency or to 40GHz emissions, whichever is lower.)

6.3.2. Test Instruments

	Radiated Em	ission Test Si	te (966)	
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Test Receiver	ROHDE&SCHW ARZ	ESVD	100008	Sep. 27, 2018
Spectrum Analyzer	ROHDE&SCHW ARZ	FSQ	200061	Sep. 27, 2018
Pre-amplifier	EM Electronics Corporation CO.,LTD	EM30265	07032613	Sep. 27, 2018
Pre-amplifier	HP	8447D	2727A05017	Sep. 27, 2018
Loop antenna	ZHINAN	ZN30900A	12024	Sep. 27, 2018
Broadband Antenna	Schwarzbeck	VULB9163	340	Sep. 27, 2018
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Sep. 27, 2018
Horn Antenna	Schwarzbeck	BBH 9170	582	Jun. 07, 2018
Antenna Mast	Keleto	CC-A-4M	N/A	N/A
Coax cable (9KHz-1GHz)	ТСТ	RE-low-01	N/A	Sep. 27, 2018
Coax cable (9KHz-40GHz)	тст	RE-high-02	N/A	Sep. 27, 2018
Coax cable (9KHz-1GHz)	тст	RE-low-03	N/A	Sep. 27, 2018
Coax cable (9KHz-40GHz)	тст	RE-high-04	N/A	Sep. 27, 2018
EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

6.3.3. Test Data

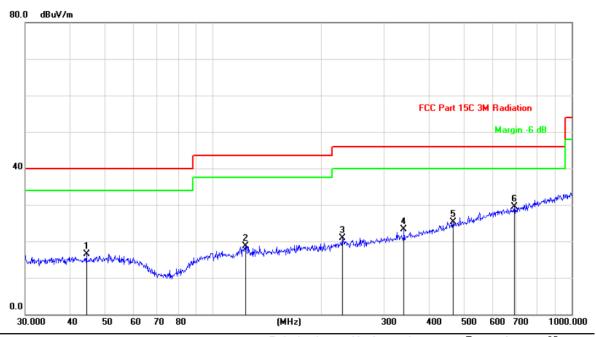
Field Strength of Fundamental

Frequency (MHz)	Emission PK/AV (dBuV/m)	Horizontal /Vertical	Limits PK/AV (dBuV/m)	Margin (dB)
902.7	88.26(PK)	Н	114/94	-25.74
902.7	75.63(AV)	H C	114/94	-18.37
914.7	87.47(PK)	Н	114/94	-26.53
914.7	74.61(AV)	Н	114/94	-19.39
927.7	85.86(PK)	(C)H	114/94	-28.14
927.7	71.73(AV)	Н	114/94	-22.27
902.7	88.37(PK)	V	114/94	-25.63
902.7	76.78(AV)	V	114/94	-17.22
914.7	86.64(PK)	V	114/94	-27.36
914.7	76.55(AV)	V	114/94	-17.45
927.7	87.71(PK)	V	114/94	-26.29
927.7	75.06(AV)	V	114/94	-18.94

Spurious Emissions

Frequency Range (9 kHz-30MHz)

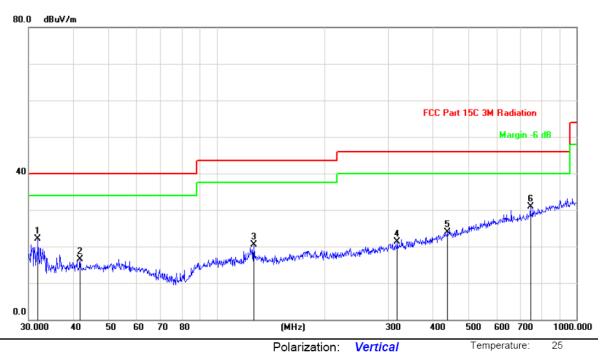
Frequency (MHz)	Level@3m (dBµV/m)	Limit@3m (dBµV/m)
(
<u></u>	C	(1)
(, G) - -	(6) (6)	-(.G)


Note: 1. Emission Level=Reading+ Cable loss-Antenna factor-Amp factor

^{2.} The emission levels are 20 dB below the limit value, which are not reported. It is deemed to comply with the requirement

Frequency Range (30MHz-1GHz)

Horizontal:


Site Polarization: Horizontal Temperature: 25
Limit: FCC Part 15C 3M Radiation Power: Humidity: 55 %

	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
			MHz	dBu∀	dB	dBuV/m	dB/m	dB	Detector	cm	degree	Comment
	1		44.4308	29.22	-12.75	16.47	40.00	-23.53	peak			
_	2		123.2655	33.28	-14.65	18.63	43.50	-24.87	peak			
_	3		230.0985	32.43	-11.58	20.85	46.00	-25.15	peak			
_	4		340.7817	30.77	-7.51	23.26	46.00	-22.74	peak			
	5		467.2349	29.34	-3.98	25.36	46.00	-20.64	peak			
_	6	*	691.9867	29.48	-0.07	29.41	46.00	-16.59	peak			

Vertical:

Site Polarization: Vertical Temperature: 25
Limit: FCC Part 15C 3M Radiation Power: Humidity: 55 %

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector	cm	degree	Comment
1		31.8427	35.71	-13.61	22.10	40.00	-17.90	peak			
2		41.7129	29.34	-12.79	16.55	40.00	-23.45	peak			
3		126.7723	35.58	-15.15	20.43	43.50	-23.07	peak			
4		317.7011	29.56	-8.18	21.38	46.00	-24.62	peak			
5		437.1199	28.68	-4.79	23.89	46.00	-22.11	peak			
6	*	744.8661	30.02	0.84	30.86	46.00	-15.14	peak			

Note: Measurements were conducted in all channels (high, middle, low), and the worst case (low channel) was submitted only.

Above 1GHz

	Low channel: 902.7 MHz												
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Emission Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)				
1805.4	Н	54.61		-4.20	50.41		74.00	54.00	-3.59				
1805.4	Н		48.11	-4.20	<i></i>	43.91	74.00	54.00	-10.09				
2708.1	Н	52.42		-3.94	48.48		74.00	54.00	-5.52				
3610.8	Н	47.61		0.52	48.13		74.00	54.00	-5.87				
	4							7-7					
	(O)		120			$(\mathcal{O}_{\mathcal{O}})$		$(\mathcal{L}_{\mathcal{O}})$					
1805.4	V	51.32		-4.20	47.12	<u></u>	74.00	54.00	-6.88				
1805.4	V		49.43	-4.20		45.23	74.00	54.00	-8.77				
2708.1	V	48.61		-3.94	44.67		74.00	54.00	-9.33				
3610.8	V	45.22		0.52	45.74		74.00	54.00	-8.26				
(2)		(- 2)			?		12 J						

			M	liddle chann	el: 914.7M	lHz			
Frequency	Ant Pol	Peak	AV	Correction	Emissio	on Level	Peak limit	۸\/ limit	Margin
(MHz)	H/V	reading	reading	Factor	Peak	AV		(dBµV/m)	(dB)
(1011-12)	1 1/ V	(dBµV)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	[(αδμ ۷/111)	(ασμ ν/ιιι)	(ub)
2744.1	Н	53.21		-3.98	49.23		74.00	54.00	-4.77
3658.8	Н	48.84		0.57	49.41		74.00	54.00	-4.59
		/K			λ\		-		
()		(,-C, ')		(20	(` ر		(, C+)		_X C
<u> </u>					/				
			Т	1		T	74.00	5400	
2744.1	V	51.02		-3.98	47.04		74.00	54.00	-6.96
3658.8	V	50.31		0.57	50.88		74.00	54.00	-3.12
	ZO)		-140)	-	(O 1-		<u>K</u> 0	

			ŀ	ligh channe	l: 927.7 MI	Hz			
Frequency	Ant Pol	Peak	AV	Correction	Emissio	on Level	Peak	AV limit	Margin
(MHz)	H/V	reading	reading	Factor	Peak	AV.	limit	(dBu\//m)	(dB)
(, .	(dBµV)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(()
1855.4	Н	52.07		-2.38	49.69		74.00	54.00	-4.31
1855.4	Н		42.34	-2.38		39.96	74.00	54.00	-14.04
2783.1	Н	50.25		-3.98	46.27	<u></u>	74.00	54.00	-7.73
3710.8	Н	49.16		0.57	49.73		74.00	54.00	-4.27
					X \				
1855.4	V	50.68		-2.38	48.3		74.00	54.00	-5.7
1855.4	V		43.05	-2.38	/	40.67	74.00	54.00	-13.33
2783.1	V	51.87		-3.98	47.89		74.00	54.00	-6.11
3710.8	V	48.28		0.57	48.85		74.00	54.00	-5.15
	4-1		(3					7	

Note:

- 1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss Pre-amplifier
- 2. $Margin (dB) = Emission Level (Peak) (dB\mu V/m)-Average limit (dB\mu V/m)$
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

Band Edge Requirement

Low channel: 902.7MHz									
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Peak	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
902	Н	49.26	/	-4.2	45.06		74.00		-28.94
902	Н		42.16	-4.2	<u> </u>	37.96		54.00	-16.04
902	V	48.36	(-4.2	44.16		74.00	(-6	-29.84
902	V		39.71	-4.2		35.51		54.00	-18.49

High channel: 927.7 MHz									
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Emission Peak (dBµV/m)	l AV	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
928	H	50.24		-4.2	46.04	(74.00		-27.96
928	(H)		41.61	-4.2		37.41		54.00	-16.59
				<u> </u>					
928	V	49.26		-4.2	45.06		74.00		-28.94
928	V		40.18	-4.2	-	35.98	<i></i>	54.00	-18.02
()		-40	/	'	<i>-</i>		(1 0)		/

Note:

- 1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss Pre-amplifier
- $Margin (dB) = Emission Level (Peak/Average)(dB\mu V/m)-(Peak/Average) limit (dB\mu V/m)$
- The emission levels of other frequencies are very lower than the limit and not show in test report.
- 4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

6.4.20dB Occupied Bandwidth

6.4.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.215(c)/ Part 2 J Section 2.1049				
Test Method:	ANSI C63.10: 2013				
Limit:	N/A				
	 According to the follow Test-setup, keep the relative position between the artificial antenna and the EUT. Set to the maximum power setting and enable the EUT transmit continuously. Use the following spectrum analyzer settings for 20dB Bandwidth measurement. Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel; RBW≥1% of the 20 dB bandwidth; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. Measure and record the results in the test report. 				
Test setup:	Spectrum Analyzer EUT				
Test Mode:	Transmitting mode with modulation				
Test results:	PASS				

6.4.2. Test Instruments

RF Test Room							
Equipment	Manufacturer	Model	Serial Number	Calibration Due			
Spectrum Analyzer	Agilent	N9020A	MY49100060	Sep. 27, 2018			

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

6.4.3. Test data

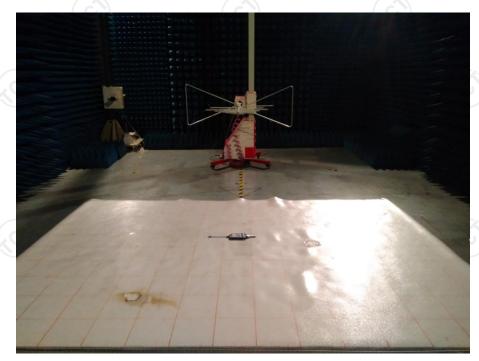
Test Chann	nel 20dB Occupy Bandwidth (kHz		Conclusion
Lowest	35.63	&	PASS
Middle	62.17		PASS
Highest	62.28	(6)	PASS

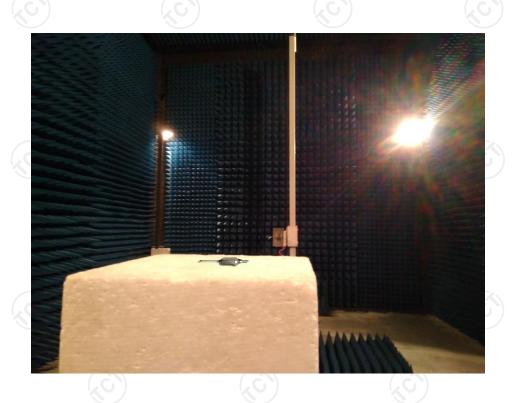

Test plots as follows:

Lowest channel

TCT通测检测
TESTING CENTRE TECHNOLOGY

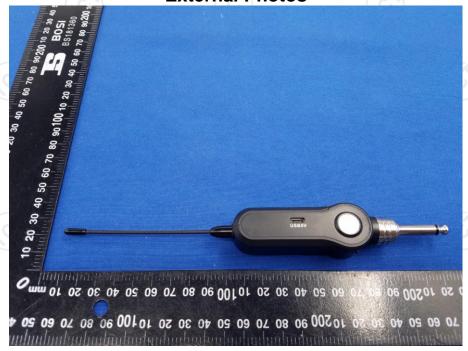
Middle channel

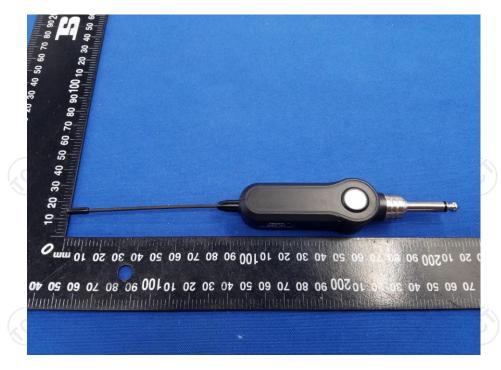

Highest channel



Appendix A: Photographs of Test Setup Product: Wireless audio transmitter

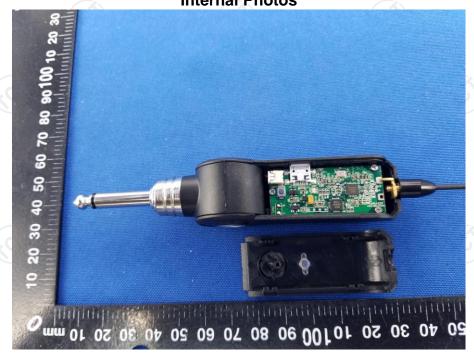
Product: Wireless audio transmitter
Model: ARU-03T
Radiated Emission

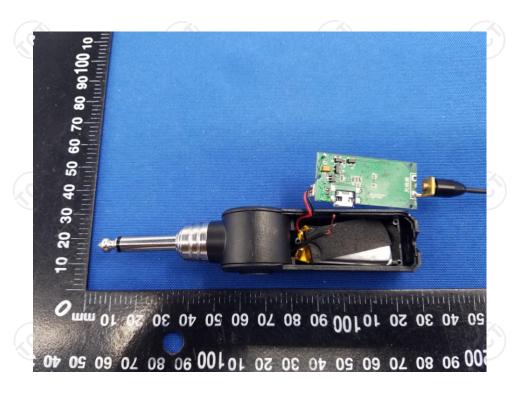

CE

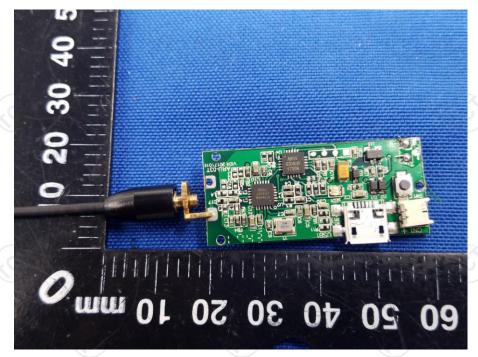

Appendix B: Photographs of EUT Product: Wireless audio transmitter Model: ARU-03T

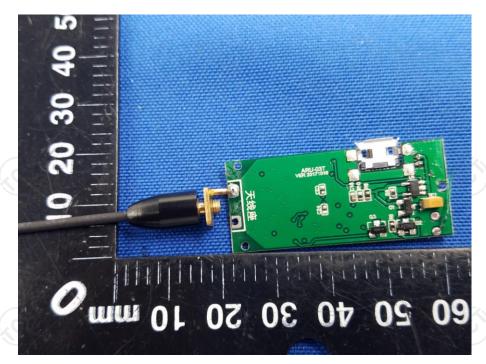
External Photos

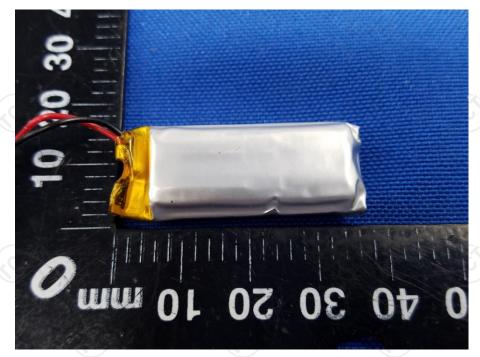
TCT通测检测 TESTING CENTRE TECHNOLOGY




TCT通测检测 TESTING CENTRE TECHNOLOGY


Appendix B: Photographs of EUT Product: Wireless audio transmitter Model: ARU-03T Internal Photos


TCT通测检测



TCT通测检测
TESTING CENTRE TECHNOLOGY

TCT通测检测 testing centre technology

