

TESTING CENTRE TEC	ECHNOLOGY	#4320.01			
	TEST REPORT				
FCC ID	2APP6AMA-30				
Test Report No:	TCT240311E033	$\langle \mathcal{C} \rangle$			
Date of issue:	Mar. 19, 2024				
Testing laboratory:	SHENZHEN TONGCE TESTING LAB				
Testing location/ address:	2101 & 2201, Zhenchang Factory Renshan Industrial Zone Subdistrict, Bao'an District, Shenzhen, Guangdong, 51810 People's Republic of China				
Applicant's name::	Aroma Music Co., Ltd.				
Address:	203, No. 93 Qianjin 2nd Road, Area 81 Hexi Neighbourho Xixiang Town, Baoan District, Shenzhen City, Guangdong 518000 China				
Manufacturer's name :	Aroma Technology Co., Limited				
Address:	Building A, Aroma Park, Guwu Village, Danshui Town, Hu District, Huizhou, Guangdong 516200 China	iyang			
Standard(s):	FCC CFR Title 47 Part 15 Subpart C Section 15.247	Ś			
Product Name::	Monitor Amplifier				
Trade Mark:	N/A				
Model/Type reference :	AMA-30, AMB-30, AMC-30, AMD-30, AME-30, AMF-30, A AMH-30, AMI-30, AMJ-30, AMK-30, AML-30, AMM-30, A AMO-30, AMP-30, AMQ-30, AMR-30, AMS-30, AMT-30				
Rating(s):	Refer to EUT description of page 3				
Date of receipt of test item	Mar. 11, 2024				
Date (s) of performance of test:	f Mar. 11, 2024 ~ Mar. 19, 2024				
Tested by (+signature) :	Yannie ZHONG				
Check by (+signature) :	Beryl ZHAO				
Approved by (+signature):	Tomsin				

General disclaimer:

This report shall not be reproduced except in full, without the written approval of SHENZHEN TONGCE TESTING LAB. This document may be altered or revised by SHENZHEN TONGCE TESTING LAB personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

Table of Contents

TCT 通测检测 TESTING CENTRE TECHNOLOGY

1. General Product Information	
1.1. EUT description	
1.2. Model(s) list	3
1.3. Operation Frequency	4
2. Test Result Summary	
3. General Information	
3.1. Test environment and mode	6
3.2. Description of Support Units	6
4. Facilities and Accreditations	7
4.1. Facilities	7
4.2. Location	7
4.3. Measurement Uncertainty	
5. Test Results and Measurement Data	
5.1. Antenna requirement	8
5.2. Conducted Emission	9
5.3. Conducted Output Power	
5.4. 20dB Occupy Bandwidth	
5.5. Carrier Frequencies Separation	
5.6. Hopping Channel Number	
5.7. Dwell Time	
5.8. Pseudorandom Frequency Hopping Sequence.	
5.9. Conducted Band Edge Measurement	
5.10.Conducted Spurious Emission Measurement	
5.11.Radiated Spurious Emission Measurement	
Appendix A: Test Result of Conducted Test	
Appendix B: Photographs of Test Setup	
Appendix C: Photographs of EUT	

1. General Product Information

1.1. EUT description

Product Name:	Monitor Amplifier	(\mathcal{C})	(\mathbf{c})
Model/Type reference:	AMA-30		
Sample Number:	TCT240311E033-0101		
Bluetooth Version:	V5.0		
Operation Frequency:	2402MHz~2480MHz		
Transfer Rate:	1/2 Mbits/s	(\mathbf{c})	
Number of Channel:	79		
Modulation Type:	GFSK, π/4-DQPSK		
Modulation Technology:	FHSS		
Antenna Type:	PCB Antenna		
Antenna Gain:	-0.58dBi		
Rating(s):	Adapter Information: MODEL: GM53-150250-F INPUT: AC 100-240V, 50/60Hz, 3 OUTPUT: DC 15.0V, 2.5A, 37.5V		

Note: The antenna gain listed in this report is provided by applicant, and the test laboratory is not responsible for this parameter.

1.2. Model(s) list

	Model No.		Tested with
$\left(\overline{\mathcal{S}}\right)$	AMA-30		
AMH-30, A	MI-30, AMJ-30, AMK	(-30, AML-30, AMM-30 Q-30, AMR-30, AMS-3	•
	s AMH-30, A AMN-30, A s tested model, other r	AMB-30, AMC-30, AMD-30, AME-3 AMH-30, AMI-30, AMJ-30, AMK AMN-30, AMO-30, AMP-30, AMC AMT-30 s tested model, other models are derivative mod	AMB-30, AMC-30, AMD-30, AME-30, AMF-30, AMG-30, AMH-30, AMI-30, AMJ-30, AMK-30, AML-30, AMM-30 AMN-30, AMO-30, AMP-30, AMQ-30, AMR-30, AMS-3

Report No.: TCT240311E033

1.3. Operation Frequency

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
G)1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
·						·	
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	1 2453MHz 71 2473		2473MHz
					<u>S</u>		S
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz		- 0

Remark: Channel 0, 39 & 78 have been tested for GFSK, π /4-DQPSK modulation mode.

2. Test Result Summary

Requirement	Requirement CFR 47 Section			
Antenna Requirement	§15.203/§15.247 (c)	PASS		
AC Power Line Conducted Emission	§15.207	PASS		
Conducted Peak Output Power	§15.247 (b)(1)	PASS		
20dB Occupied Bandwidth	§15.247 (a)(1)	PASS		
Carrier Frequencies Separation	§15.247 (a)(1)	PASS		
Hopping Channel Number	§15.247 (a)(1)	PASS		
Dwell Time	§15.247 (a)(1)	PASS		
Radiated Emission	§15.205/§15.209	PASS		
Band Edge	§15.247(d)	PASS		

Note:

1. PASS: Test item meets the requirement.

2. Fail: Test item does not meet the requirement.

3. N/A: Test case does not apply to the test object.

4. The test result judgment is decided by the limit of test standard.

3. General Information

3.1. Test environment and mode

Operating Environment:					
Condition	Conducted Emission	Radiated Emission			
Temperature:	20.6 °C	24.5 °C			
Humidity:	43 % RH	51 % RH			
Atmospheric Pressure:	1010 mbar	1010 mbar			
Test Software:					
Software Information:	FCC Assist 1.0.0.2				
Power Level:	10				
Test Mode:	· · · ·				
Engineering mode:	Keep the EUT in continuous transmitting by select				

The sample was placed 0.8m & 1.5m for the measurement below & above 1GHz above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case (Z axis) are shown in Test Results of the following pages.

DH1 DH3 DH5 all have been tested, only worse case DH1 is reported.

3.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
1	/	/	/	/

Note:

1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.

2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

3. For conducted measurements (Output Power, 20dB Occupied Bandwidth, Carrier Frequencies Separation, Hopping Channel Number, Dwell Time, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

4. Facilities and Accreditations

4.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

SHENZHEN TONGCE TESTING LAB

Designation Number: CN1205

The testing lab has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

- IC Registration No.: 10668A-1
 - SHENZHEN TONGCE TESTING LAB

CAB identifier: CN0031

The testing lab has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing.

4.2. Location

SHENZHEN TONGCE TESTING LAB

Address: 2101 & 2201, Zhenchang Factory, Renshan Industrial Zone, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, 518103, People's Republic of China TEL: +86-755-27673339

4.3. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	MU
1	Conducted Emission	± 3.10 dB
2	RF power, conducted	± 0.12 dB
3	Spurious emissions, conducted	± 0.11 dB
4	All emissions, radiated(<1 GHz)	± 4.56 dB
5	All emissions, radiated(1 GHz - 18 GHz)	± 4.22 dB
6	All emissions, radiated(18 GHz- 40 GHz)	± 4.36 dB

5. Test Results and Measurement Data

5.1. Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

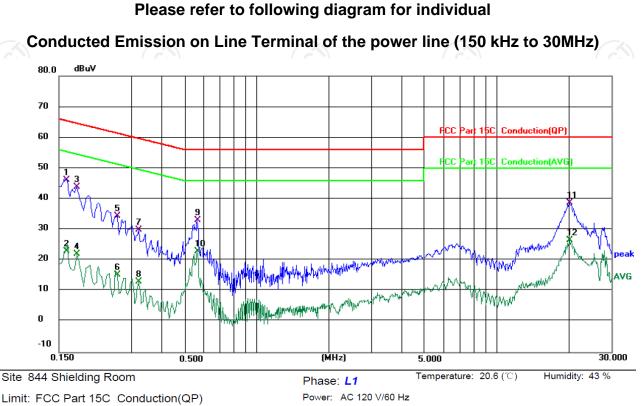
E.U.T Antenna:

The Bluetooth antenna is PCB antenna which permanently attached, and the best case gain of the antenna is -0.58dBi.

5.2. Conducted Emission

5.2.1. Test Specification

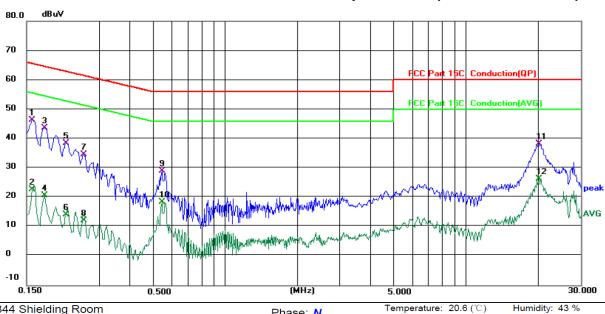
Test Requirement: Test Method: Frequency Range: Receiver setup: Limits:	FCC Part15 C Section ANSI C63.10:2013 150 kHz to 30 MHz RBW=9 kHz, VBW=30 Frequency range (MHz) 0.15-0.5 0.5-5 5-30 Reference	Š)			
Frequency Range: Receiver setup:	150 kHz to 30 MHz RBW=9 kHz, VBW=30 Frequency range (MHz) 0.15-0.5 0.5-5 5-30	Limit (Quasi-peak 66 to 56* 56	dBuV) Average 56 to 46* 46		
Receiver setup:	RBW=9 kHz, VBW=30 Frequency range (MHz) 0.15-0.5 0.5-5 5-30	Limit (Quasi-peak 66 to 56* 56	dBuV) Average 56 to 46* 46		
	Frequency range (MHz) 0.15-0.5 0.5-5 5-30	Limit (Quasi-peak 66 to 56* 56	dBuV) Average 56 to 46* 46		
Limits:	(MHz) 0.15-0.5 0.5-5 5-30	Quasi-peak 66 to 56* 56	Average 56 to 46*		
Limits:	0.15-0.5 0.5-5 5-30	66 to 56* 56	56 to 46* 46		
Limits:	0.5-5 5-30	66 to 56* 56	56 to 46* 46		
	0.5-5 5-30	56	46		
	5-30				
	Reference				
		e Plane			
Test Setup:	40cm E.U.T AC power Test table/Insulation plane Remarkc E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Ne Test table height=0.8m	EMI Receiver	- AC power		
Test Mode:	Transmitting Mode				
Test Procedure:	 The E.U.T is connected to an adapter through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the mair power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum emission, the relative positions of equipment and all o the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement. 				
Test Result:	PASS				


5.2.2. Test Instruments

	Conducted Emission Shielding Room Test Site (843)										
	Equipment	Equipment Manufacturer		Serial Number	Calibration Due						
0	EMI Test Receiver	MI Test Receiver R&S ESCI3 10		100898	Jun. 29, 2024						
	Line Impedance Stabilisation Newtork(LISN)	Schwarzbeck	warzbeck NSLK 8126		Jan. 31, 2025						
	Line-5 TCT		CE-05	/	Jul. 03, 2024						
EMI Test Software Shurple Technology			EZ-EMC	1	1						

Page 10 of 77

5.2.3. Test data


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	*	0.1615	36.12	10.01	46.13	65.39	-19.26	QP	
2		0.1615	12.99	10.01	23.00	55.39	-32.39	AVG	
3		0.1779	33.89	10.01	43.90	64.58	-20.68	QP	
4		0.1779	12.11	10.01	22.12	54.58	-32.46	AVG	
5		0.2620	24.54	9.83	34.37	61.37	-27.00	QP	
6		0.2620	5.53	9.83	15.36	51.37	-36.01	AVG	
7		0.3220	20.41	9.50	29.91	59.66	-29.75	QP	
8		0.3220	3.51	9.50	13.01	49.66	-36.65	AVG	
9		0.5658	23.85	9.25	33.10	56.00	-22.90	QP	
10		0.5658	13.63	9.25	22.88	46.00	-23.12	AVG	
11		20.1179	28.30	10.50	38.80	60.00	-21.20	QP	
12		20.1179	15.97	10.50	26.47	50.00	-23.53	AVG	

Note:

Freq. = Emission frequency in MHz Reading level $(dB\mu V)$ = Receiver reading Corr. Factor (dB) = LISN factor + Cable loss Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)Limit $(dB\mu V)$ = Limit stated in standard Margin (dB) = Measurement $(dB\mu V)$ – Limits $(dB\mu V)$ Q.P. =Quasi-Peak AVG =average * is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Page 11 of 77

Report No.: TCT240311E033

Phase: N

Power: AC 120 V/60 Hz

Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz)

Limit: FCC Part 15C Conduction(QP)

Site 844 Shielding Room

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1 *	0.1580	36.45	10.01	46.46	65.57	-19.11	QP	
2	0.1580	12.63	10.01	22.64	55.57	-32.93	AVG	
3	0.1779	33.73	10.01	43.74	64.58	-20.84	QP	
4	0.1779	10.61	10.01	20.62	54.58	-33.96	AVG	
5	0.2179	28.72	9.82	38.54	62.90	-24.36	QP	
6	0.2179	4.38	9.82	14.20	52.90	-38.70	AVG	
7	0.2580	24.74	9.83	34.57	61.50	-26.93	QP	
8	0.2580	2.33	9.83	12.16	51.50	-39.34	AVG	
9	0.5460	19.75	9.27	29.02	56.00	-26.98	QP	
10	0.5460	9.13	9.27	18.40	46.00	-27.60	AVG	
11	20.1340	27.71	10.50	38.21	60.00	-21.79	QP	
12	20.1340	15.91	10.50	26.41	50.00	-23.59	AVG	

Note1:

Freq. = Emission frequency in MHz Reading level $(dB\mu V) = Receiver reading$ Corr. Factor (dB) = LISN factor + Cable loss Measurement (dBµV) = Reading level (dBµV) + Corr. Factor (dB) Limit $(dB\mu V) = Limit$ stated in standard Margin (dB) = Measurement (dB μ V) – Limits (dB μ V) Q.P. =Quasi-Peak AVG =average

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Note2:

Measurements were conducted in all three channels (high, middle, low) and two modulation (GFSK, Pi/4 DQPSK), and the worst case Mode (Highest channel and Pi/4 DQPSK) was submitted only.

Report No.: TCT240311E033

Humidity: 43 %

5.3. Conducted Output Power

5.3.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (b)(1)	R	
Test Method:	KDB 558074 D01 v05r02		
Limit:	Section 15.247 (b) The maximum peak conducted out power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operatin in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.	ig	
Test Setup:	Spectrum Analyzer EUT		
Test Mode:	Transmitting mode with modulation	S.	
Test Procedure:	Use the following spectrum analyzer settings: Span = approximately 5 times the 20 dB bandwidth centered on a hopping channel RBW > the 20 dB bandwidth of the emission being measured VBW ≥ RBW Sweep = auto Detector function = peak Trace = max hold Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission.		
Test Result:	PASS		

5.3.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 28, 2024
Combiner Box	Ascentest	AT890-RFB	\mathbf{S} 1	

5.4. 20dB Occupy Bandwidth

5.4.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)			
Test Method:	KDB 558074 D01 v05r02			
Limit:	N/A			
Test Setup:	Spectrum Analyzer EUT			
Test Mode:	Transmitting mode with modulation			
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Use the following spectrum analyzer settings for 20dB Bandwidth measurement. Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel; 1%≤RBW≤5% of the 20 dB bandwidth; VBW≥3RBW; Sweep = auto; Detector function = peak; Trace = max hold. Measure and record the results in the test report. 			
Test Result:	PASS			

5.4.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 28, 2024
Combiner Box	Ascentest	AT890-RFB	/	/

5.5. Carrier Frequencies Separation

5.5.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
Test Method:	KDB 558074 D01 v05r02
Limit:	Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz o the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Hopping mode
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels; RBW is set to approximately 30% of the channel spacing, adjust as necessary to best identify the center of each individual channel; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Record the value in report.
Test Result:	PASS

5.5.2. Test Instruments

5.5.2. Test Instru	ments			
Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 28, 2024
Combiner Box	Ascentest	AT890-RFB	/ ~	1

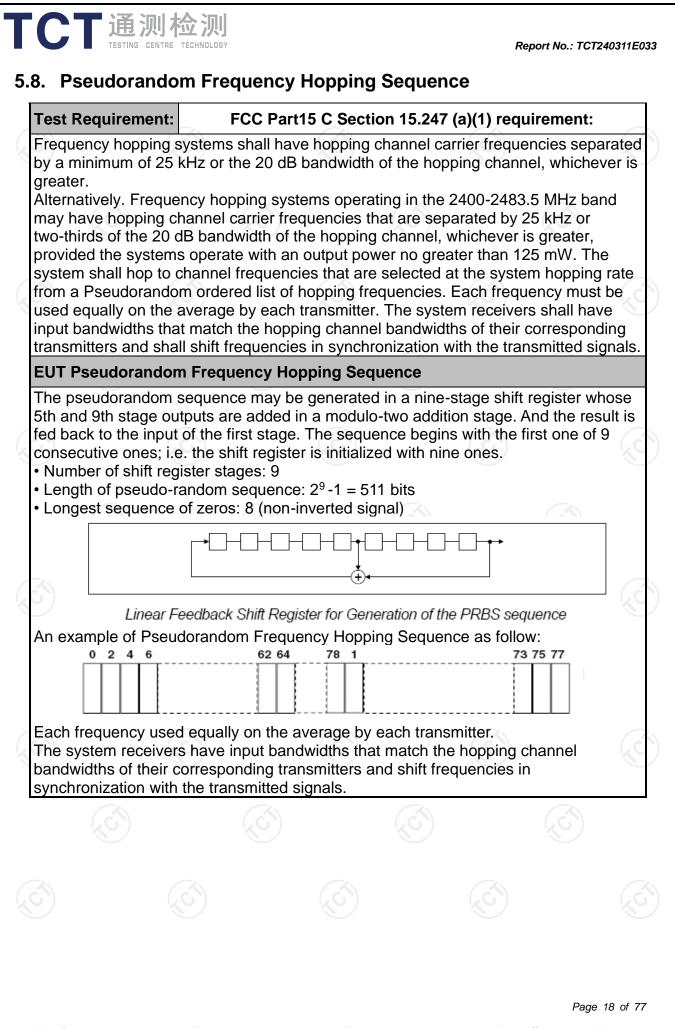
5.6. Hopping Channel Number

5.6.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
Test Method:	KDB 558074 D01 v05r02
Limit:	Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.
Test Setup:	
Test Mode:	Spectrum Analyzer Eur Hopping mode
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = the frequency band of operation; set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. The number of hopping frequency used is defined as the number of total channel. Record the measurement data in report.
Test Result:	PASS
E 6 2 Test Instruments	

5.6.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 28, 2024
Combiner Box	Ascentest	AT890-RFB	/	/


5.7. Dwell Time

5.7.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)			
Test Method:	KDB 558074 D01 v05r02			
Limit:	The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.			
Test Setup:	Spectrum Analyzer EUT			
Test Mode:	Hopping mode			
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel; VBW≥RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold. Measure and record the results in the test report. 			
Test Result:	PASS			

5.7.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 28, 2024
Combiner Box	Ascentest	AT890-RFB		

5.9. Conducted Band Edge Measurement

5.9.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	KDB 558074 D01 v05r02
Limit:	In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fal in the restricted bands must also comply with the radiated emission limits.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz (≥1% span=10MHz), VBW = 300 kHz (≥RBW). Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used. Enable hopping function of the EUT and then repeat step 2 and 3. Measure and record the results in the test report.
Test Result:	PASS

5.9.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 28, 2024
Combiner Box	Ascentest	AT890-RFB	/	/

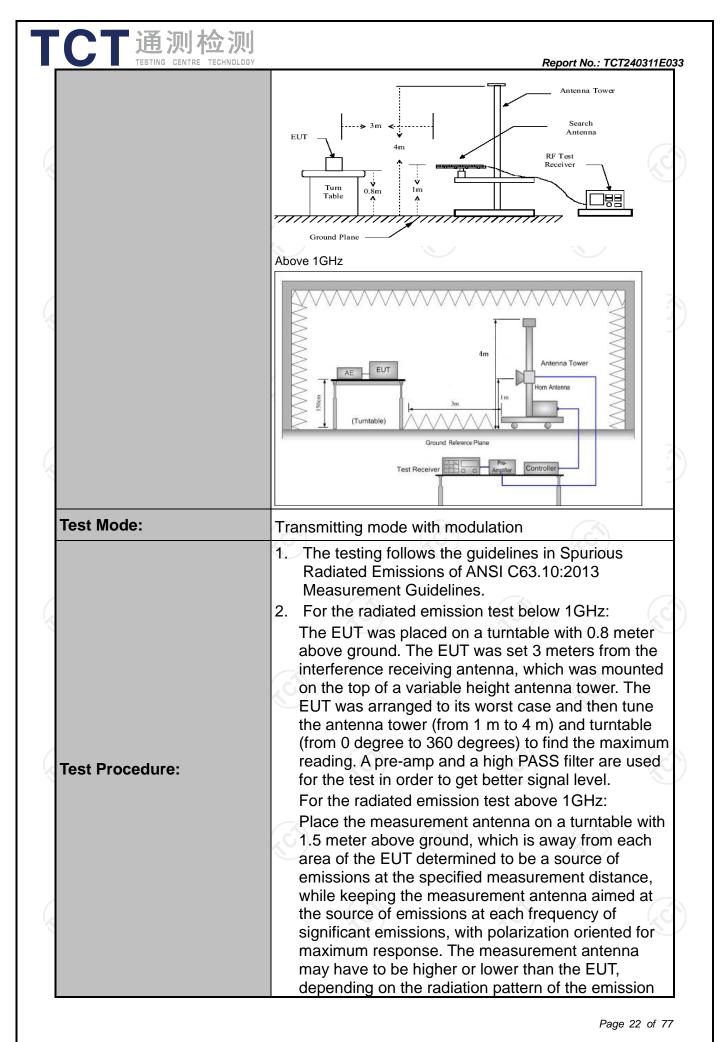
5.10. Conducted Spurious Emission Measurement

5.10.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	KDB 558074 D01 v05r02
Limit:	In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW. Measure and record the results in the test report. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
Test Result:	PASS

5.10.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 28, 2024
Combiner Box	Ascentest	AT890-RFB		



5.11. Radiated Spurious Emission Measurement

5.11.1. Test Specification

TCT 通测检测 TESTING CENTRE TECHNOLOGY

ANSI C63.10):2013						
9 kHz to 25 GHz							
9 KHZ to 25 (GHz				6		
3 m		9		R)		
Horizontal &	Vertical						
Frequency	Detector	RBW	VBW		Remark		
<u>9kHz- 150kHz</u> 150kHz- 30MHz			<u>1kHz</u> 30kHz		si-peak Value si-peak Value		
30MHz-1GHz			300KHz	1	i-peak Value		
Above 1GHz	Peak Peak	1MHz 1MHz	3MHz 10Hz		eak Value erage Value		
				1	asurement		
		(microvolts	/meter)		nce (meters)		
					300		
					<u>30</u> 30		
					3		
88-216	3	150		(ć	3		
					3		
Above 9	60	500			3		
Frequency		-	O Distan	nce Detector			
Above 1GHz	<u>z</u>	500 3		Average			
Dis EUT 0.8m	stance = 3m			Amplifier			
S.		(,	CT)				
	Horizontal & Frequency 9kHz-150kHz 150kHz- 30MHz 30MHz-1GHz Above 1GHz Frequen 0.009-0.4 0.490-1.7 1.705-3 30-88 88-216 216-96 Above 9 Frequency Above 1GHz For radiated emis	Horizontal & Vertical Frequency Detector 9kHz-150kHz Quasi-peak 150kHz- Quasi-peak 30MHz-1GHz Quasi-peak 30MHz-1GHz Quasi-peak 30MHz-1GHz Quasi-peak Above 1GHz Peak Frequency 0.009-0.490 0.490-1.705 1.705-30 1.705-30 30-88 88-216 216-960 216-960 Above 960 Frequency Field (micro Above 1GHz For radiated emissions below Distance = 3m Image: Stance = 3m Image: Stance = 3m Image: Stance = 3m Image: Stanc	Horizontal & Vertical Frequency Detector RBW 9kHz-150kHz Quasi-peak 200Hz 150kHz- Quasi-peak 9kHz 30MHz-1GHz Quasi-peak 120KHz 30MHz-1GHz Quasi-peak 120KHz Above 1GHz Peak 1MHz Peak 1MHz Peak 1MHz 0.009-0.490 2400/F(0.009-0.490 2400/F(0.009-0.490 2400/F(0.490-1.705 24000/F(1.705-30 30 30 30 30-88 100 88-216 150 216-960 200 500 500 Above 960 500 500 500 Frequency Field Strength (microvolts/meter) 500 Above 1GHz 500 5000 For radiated emissions below 30MHz 500 5000 Ustance = 3m Ustance = 3m	Horizontal & Vertical Frequency Detector RBW VBW 9kHz-150kHz Quasi-peak 200Hz 1kHz 150kHz- Quasi-peak 9kHz 30kHz 30MHz-1GHz Quasi-peak 120KHz 300KHz 30MHz-1GHz Quasi-peak 120KHz 300KHz Above 1GHz Peak 11MHz 30MHz 0.009-0.490 2400/F(KHz) 0.490-1.705 2400/F(KHz) 0.490-1.705 2400/F(KHz) 1.705-30 30 30-88 100 88-216 150 216-960 200 Above 960 500 Keasure Frequency Field Strength (microvolts/meter) Distance Measure 500 3 3 3 Above 1GHz 500 3 3 3 For radiated emissions below 30MHz Distance = 3m Measure Distance = 3m Measure 0.3m Ground Plane Image: Counce of the co	Horizontal & Vertical Frequency Detector RBW VBW 9kHz-150kHz Quasi-peak 200Hz 1kHz Quasi- 30KHz 30MHz Quasi-peak 9kHz 30KHz Quasi- 30KHz Quasi- 200KHz 30KHz Quasi- 30KHz Quasi- 200KHz 30KHz Quasi- 30KHz Quasi- 200KHz 30KHz Quasi- 200KHz Quasi- 200KHz 300KHz Quasi- 200KHz Quasi- 200KHz Quasi- 200KHz 30KHz Quasi- 200KHz Quasi- 200KHz Quasi- 200KHz Measurement Distance (meters) Distance (meters) Measurement Distance (meters) Distance (meters) Measurement Distance (meters) Distance (meters) The secure of the secure (meters) Sooo 3 Sooo Soo		

ost rosults:		 and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that maximizes the emissions. The measurement antenna elevation for maximum emissions is restricted to a range of heights of from 1 m t above the ground or reference ground plane 3. Set to the maximum power setting and en EUT transmit continuously. 4. Use the following spectrum analyzer setting (1) Span shall wide enough to fully capture emission being measured; (2) Set RBW=120 kHz for f < 1 GHz, RBW; Sweep = auto; Detector function = pea = max hold for peak (3) For average measurement: use duty concorrection factor method per 15.35(c). Duty cycle = On time/100 milli On time =N1*L1+N2*L2++Nn-1*LNn-Where N1 is number of type 1 pulses, length of type 1 pulses, etc. Average Emission Level = Peak Emission Level + 20*log(Duty cycle) Corrected Reading: Antenna Factor + OL Loss + Read Level - Preamp Factor = L 				
		S	On time =N Where N1 length of ty Average Er Level + 20*	is number of t pe 1 pulses, o nission Level log(Duty cycl eading: Anter	type 1 pul: etc. = Peak E e) nna Factol	ses, L1 is mission r + Cable
Fest results:		S	On time =N Where N1 length of ty Average Er Level + 20*	is number of t pe 1 pulses, o nission Level log(Duty cycl eading: Anter	type 1 pul: etc. = Peak E e) nna Factol	ses, L1 is mission r + Cable
Fest results:		S	On time =N Where N1 length of ty Average Er Level + 20*	is number of t pe 1 pulses, o nission Level log(Duty cycl eading: Anter	type 1 pul: etc. = Peak E e) nna Factol	ses, L1 is mission r + Cable
Fest results:		S	On time =N Where N1 length of ty Average Er Level + 20*	is number of t pe 1 pulses, o nission Level log(Duty cycl eading: Anter	type 1 pul: etc. = Peak E e) nna Factol	ses, L1 is mission r + Cable
Fest results:		S	On time =N Where N1 length of ty Average Er Level + 20*	is number of t pe 1 pulses, o nission Level log(Duty cycl eading: Anter	type 1 pul: etc. = Peak E e) nna Factol	ses, L1 is mission r + Cable

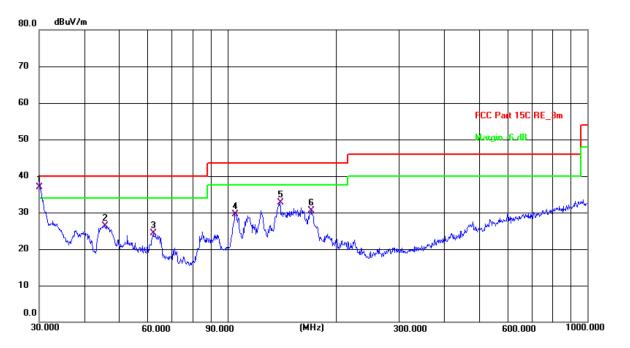
5.11.2. Test Instruments

	Radiated En	nission Test Site	e (966)	
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
EMI Test Receiver	R&S	ESIB7	100197	Jun. 29, 2024
Spectrum Analyzer	R&S	FSQ40	200061	Jun. 29, 2024
Pre-amplifier	SKET	LNPA_0118G- 45	SK2021012 102	Jan. 31, 2025
Pre-amplifier	SKET	LNPA_1840G- 50	SK2021092 03500	Jan. 31, 2025
Pre-amplifier	HP	8447D	2727A05017	Jun. 27, 2024
Loop antenna	Schwarzbeck	FMZB1519B	00191	Jul. 02, 2024
Broadband Antenna	Schwarzbeck	VULB9163	340	Jul. 01, 2024
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Jul. 01, 2024
Horn Antenna	Schwarzbeck	BBHA 9170	00956	Feb. 02, 2025
Antenna Mast	Keleto	RE-AM	/	/
Coaxial cable	SKET	RC-18G-N-M	1	Jan. 31, 2025
Coaxial cable	SKET	RC_40G-K-M	/	Jan. 31, 2025
EMI Test Software	Shurple Technology	EZ-EMC		1

Page 24 of 77

5.11.3. Test Data

Please refer to following diagram for individual



Power: AC 120 V/60 Hz Limit: FCC Part 15C RE_3m Margin Frequency Reading Factor Level Limit Detector P/F No. Remark (dBuV/m) (dBuV/m) (MHz) (dBuV) (dB/m) (dB) 41.8596 6.12 20.07 40.00 -19.93 QP Ρ 1 13.95 64.8865 7.64 20.50 40.00 -19.50 QP Р 2 12.86 107.1337 21.30 43.50 -22.20 Р 9.69 11.61 QP 3 4 171.9946 11.01 14.03 25.04 43.50 -18.46 QP Ρ 11.70 24.33 Ρ 5 226.8936 12.63 46.00 -21.67 QP 11.21 46.00 QP Ρ 6 260.1444 13.21 24.42 -21.58

Market Series
 Market S

Report No.: TCT240311E033

Vertical:

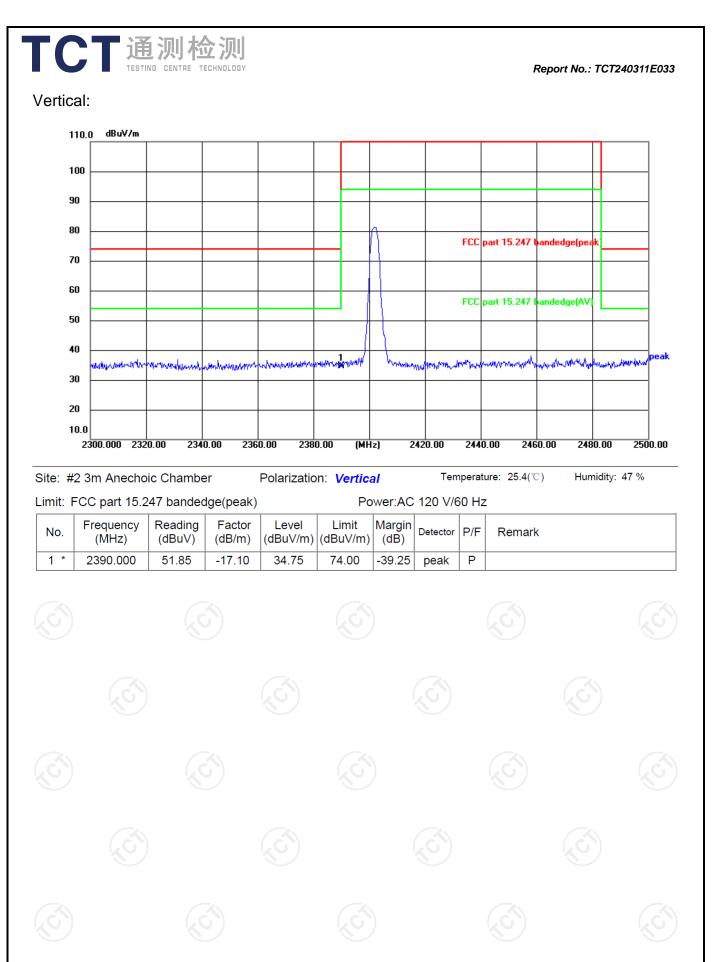
Site #2 3m Anechoic Chamber Polarization: Vertical Temperature: 24.5(C) Humidity: 51 %

Power: AC 120 V/60 Hz

Limit: FCC Part 15C RE_3m

		-							
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	30.0025	23.99	12.96	36.95	40.00	-3.05	QP	Ρ	
2	45.5348	12.55	13.80	26.35	40.00	-13.65	QP	Ρ	
3	62.2128	11.05	13.31	24.36	40.00	-15.64	QP	Р	
4	104.9032	18.09	11.41	29.50	43.50	-14.00	QP	Ρ	
5	139.8508	18.67	14.13	32.80	43.50	-10.70	QP	Ρ	
6	170.7926	16.32	14.24	30.56	43.50	-12.94	QP	Ρ	

Note: 1. The low frequency, which started from 9KHz~30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.


- 2. Measurements were conducted in all three channels (high, middle, low) and two modulation (GFSK, Pi/4 DQPSK) and the worst case Mode (Highest channel and Pi/4 DQPSK) was submitted only.
- 3. Freq. = Emission frequency in MHz
- Measurement ($dB\mu V/m$) = Reading level ($dB\mu V$) + Corr. Factor (dB) Correction Factor= Antenna Factor + Cable loss – Pre-amplifier Limit ($dB\mu V/m$) = Limit stated in standard
- $Over (dB) = Measurement (dB\mu V/m) Limits (dB\mu V/m)$
- * is meaning the worst frequency has been tested in the test frequency range.

Page 26 of 77

Report No.: TCT240311E033

Report No.: TCT240311E033 Test Result of Radiated Spurious at Band edges Lowest channel 2402: Horizontal: 110.0 dBuV/m 100 90 80 FCC part 15.247 bandedge(peal 70 60 FCC part 15.247 bandedge(AV) 50 40 mun many Mundan have marche When monormal Alla washusburde montenedent w.m she was also 30 20 10.0 2300.000 2320.00 2340.00 2360.00 2380.00 (MHz) 2420.00 2440.00 2460.00 2480.00 2500.00 Temperature: 25.4(℃) Humidity: 47 % Site: #2 3m Anechoic Chamber Polarization: Horizontal Power:AC 120 V/60 Hz Limit: FCC part 15.247 bandedge(peak) Reading Factor Level Limit Margin Frequency No. Detector P/F Remark (MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) 1 * 2390.000 53.58 -17.10 74.00 -37.52 36.48 Ρ peak Page 27 of 77

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Report No.: TCT240311E033 Highest channel 2480: Horizontal: 110.0 dBu¥/m 100 90 80 andedge(pea FCC part 15.247 70 60 andedge(AV FCC part 15.247 I 50 40 whenter artal gald mound we have about the port manmutand mola ah unsertified mound harmonia 30 20 10.0 2380.00 2340.00 2420.00 2440.00 2300.000 2320.00 2360.00 (MHz) 2460.00 2480.00 2500.00 Site: #2 3m Anechoic Chamber Polarization: Horizontal Temperature: 25.4(℃) Humidity: 47 % Power:AC 120 V/60 Hz Limit: FCC part 15.247 bandedge(peak) Frequency Reading Factor Level Limit Margin P/F No. Detector Remark (MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) -24.18 1 * 2483.500 66.70 -16.88 49.82 74.00 Ρ peak

Page 29 of 77

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

	: ∩.∩ dBu∀/m												
11	0.0 dBuV/m												
10	0												
90													
80								FCC p	oart 15.247	bandedge	e(peak		
70													
60								FCC p	oart 15.247	bandedge	=(AV		
50											+	*	\neg
40	not realized and a provide	Nerrowenskerekt	mythemation	monthorn	harmon	mound	Manutum	wether	*******	undernalment		* http://www.	MANIP
30													
20													\neg
10	.0 2300.000 232	20.00 234	0.00 236	50.00 238	0.00 (MH	lz) 24	420.00	2440	.00 240	50.00	2480	.00	2500
#2	3m Anecho	oic Chambe	er	Polarizatio	on: Vertic	al	Tem	peratu	ure: 25.4(°	C)	Humi	dity: 47	7 %
			dge(peak)			ower:AC	120 V/6	0 Hz	:				
- 1	CC part 15.₄		- J - (1 /										
	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remar	ĸ			
	Frequency	Reading	Factor	Level			Detector peak	P/F P	Remar	ĸ			
: N	Frequency (MHz) 2483.500 leasurement	Reading (dBuV) 58.66 s were con	Factor (dB/m) -16.88	Level (dBuV/m) 41.78 all two mod	(dBuV/m) 74.00	(dB) -32.22	peak	Ρ			e Mo	ode	
: N	Frequency (MHz) 2483.500	Reading (dBuV) 58.66 s were con	Factor (dB/m) -16.88	Level (dBuV/m) 41.78 all two mod	(dBuV/m) 74.00	(dB) -32.22	peak	Ρ			e Mc	ode	(
: N	Frequency (MHz) 2483.500 leasurement	Reading (dBuV) 58.66 s were con	Factor (dB/m) -16.88	Level (dBuV/m) 41.78 all two mod	(dBuV/m) 74.00	(dB) -32.22	peak	Ρ			e Ma	ode	
: N	Frequency (MHz) 2483.500 leasurement	Reading (dBuV) 58.66 s were con	Factor (dB/m) -16.88	Level (dBuV/m) 41.78 all two mod	(dBuV/m) 74.00	(dB) -32.22	peak	Ρ	nd the wo		e Mo	ode	
: N	Frequency (MHz) 2483.500 leasurement	Reading (dBuV) 58.66 s were con	Factor (dB/m) -16.88	Level (dBuV/m) 41.78 all two mod	(dBuV/m) 74.00	(dB) -32.22	peak	Ρ	nd the wo		e Mo	ode	
: N	Frequency (MHz) 2483.500 leasurement	Reading (dBuV) 58.66 s were con	Factor (dB/m) -16.88	Level (dBuV/m) 41.78 all two mod	(dBuV/m) 74.00	(dB) -32.22	peak	Ρ	nd the wo		e Mc	ode	
: N	Frequency (MHz) 2483.500 leasurement	Reading (dBuV) 58.66 s were con	Factor (dB/m) -16.88	Level (dBuV/m) 41.78 all two mod	(dBuV/m) 74.00	(dB) -32.22	peak	Ρ	nd the wo		e Md	ode	
: N	Frequency (MHz) 2483.500 leasurement	Reading (dBuV) 58.66 s were con	Factor (dB/m) -16.88	Level (dBuV/m) 41.78 all two mod	(dBuV/m) 74.00	(dB) -32.22	peak	Ρ	nd the wo		e Md	ode	
: N	Frequency (MHz) 2483.500 leasurement	Reading (dBuV) 58.66 s were con	Factor (dB/m) -16.88	Level (dBuV/m) 41.78 all two mod	(dBuV/m) 74.00	(dB) -32.22	peak	Ρ	nd the wo		e Ma	ode	
: N	Frequency (MHz) 2483.500 leasurement	Reading (dBuV) 58.66 s were con	Factor (dB/m) -16.88	Level (dBuV/m) 41.78 all two mod	(dBuV/m) 74.00	(dB) -32.22	peak	Ρ	nd the wo		e Ma	ode	
: N	Frequency (MHz) 2483.500 leasurement	Reading (dBuV) 58.66 s were con	Factor (dB/m) -16.88	Level (dBuV/m) 41.78 all two mod	(dBuV/m) 74.00	(dB) -32.22	peak	Ρ	nd the wo		e Ma	ode	
: N	Frequency (MHz) 2483.500 leasurement	Reading (dBuV) 58.66 s were con	Factor (dB/m) -16.88	Level (dBuV/m) 41.78 all two mod	(dBuV/m) 74.00	(dB) -32.22	peak	Ρ	nd the wo		e Mc	ode	
: N	Frequency (MHz) 2483.500 leasurement	Reading (dBuV) 58.66 s were con	Factor (dB/m) -16.88	Level (dBuV/m) 41.78 all two mod	(dBuV/m) 74.00	(dB) -32.22	peak	Ρ	nd the wo		e Ma	ode	

Above 1GHz

N	1odulation	Type: Pi/4	4 DQPSK							
L	ow chann	el: 2402 N	1Hz							
F	requency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Peak	A \ /	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
	4804	Н	46.26		0.66	46.92		74	54	-7.08
	7206	Н	36.47		9.50	45.97		74	54	-8.03
		Н					~~			
		(()		J,		()	· (J)		(\mathcal{O})	
	4804	V	44.68		0.66	45.34		74	54	-8.66
	7206	V	34.92		9.50	44.42		74	54	-9.58
Γ		V								
	2									

Middle cha	nnel: 2441	MHz		K)		(χO)		2
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Peak		Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4882	Н	45.56		0.99	46.55		74	54	-7.45
7323	ζÜĤ)	35.71	N.	9.87	45.58	0	74	54	-8.42
	Ĥ								
4882	V	45.27		0.99	46.26		74	54	-7.74
7323	V	35.09		9.87	44.96		74	54	-9.04
	V			· 'S'	/				'

High channel: 2480 MHz

Frequency	Ant Dol	Peak	AV	Correction	Emissio	on Level	Peak limit	A\/ limit	Margin
(MHz)	H/V	reading (dBµV)	reading (dBµV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
4960	Н	44.83		1.33	46.16		74	54	-7.84
7440	Н	34.04		10.22	44.26		74	54	-9.74
	Н								
G)		(.c.)		(.0			(.c.)		0.)
4960	V	45.31		1.33	46.64		74	54	-7.36
7440	V	35.46		10.22	45.68		74	54	-8.32
	V								

Note:

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss – Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.

5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

6. Measurements were conducted in all two modulation (GFSK, Pi/4 DQPSK), and the worst case Mode (Pi/4 DQPSK) was submitted only.

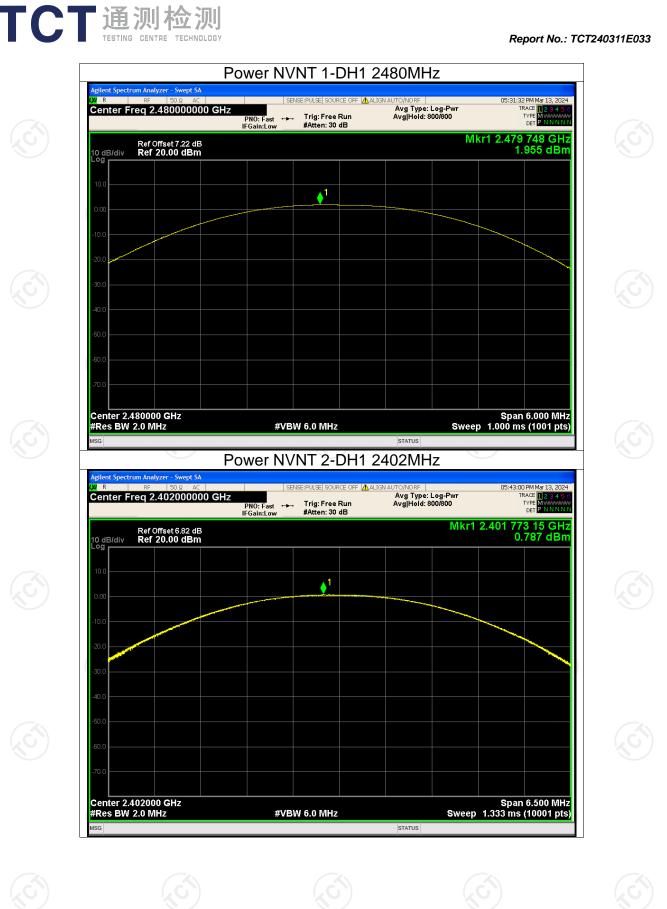
7. All the restriction bands are compliance with the limit of 15.209.

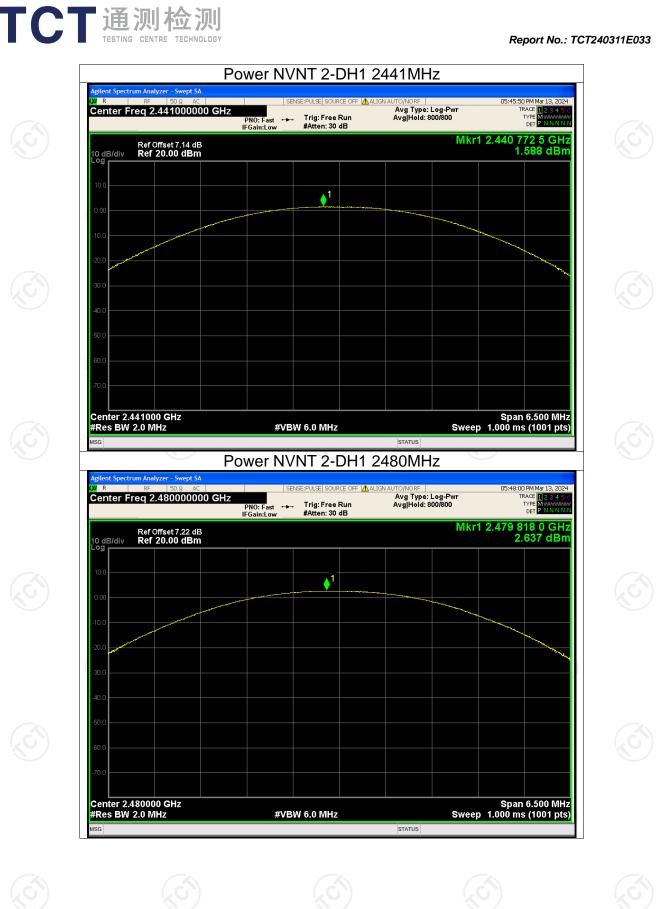
Report No.: TCT240311E033

Maximum Conducted Output Powe	r
-------------------------------	---

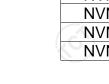
Condition	Mode	Frequency (MHz)	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	1-DH1	2402	0.08	30	Pass
NVNT	1-DH1	2441	0.84	30	Pass
NVNT	1-DH1	2480	1.96	30	Pass
NVNT	2-DH1	2402	0.79	21	Pass
NVNT	2-DH1	2441	1.59	21	Pass
NVNT	2-DH1	2480	2.64	21	Pass
X		N.			

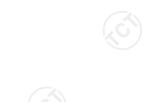
Page 32 of 77


Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com



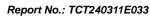
Test Graphs


Report No.: TCT240311E033

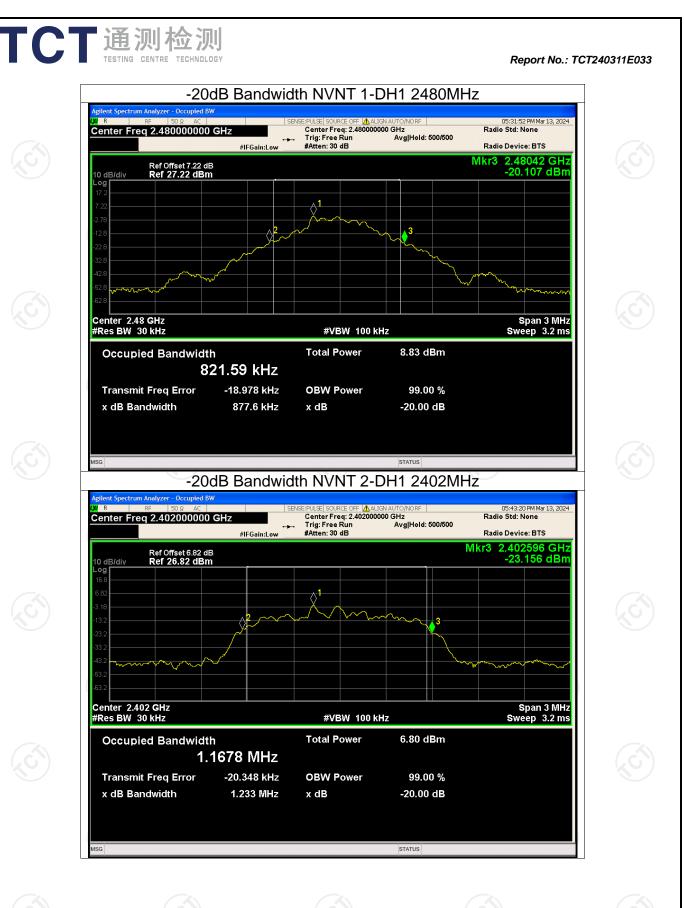


-20dB Bandwidth

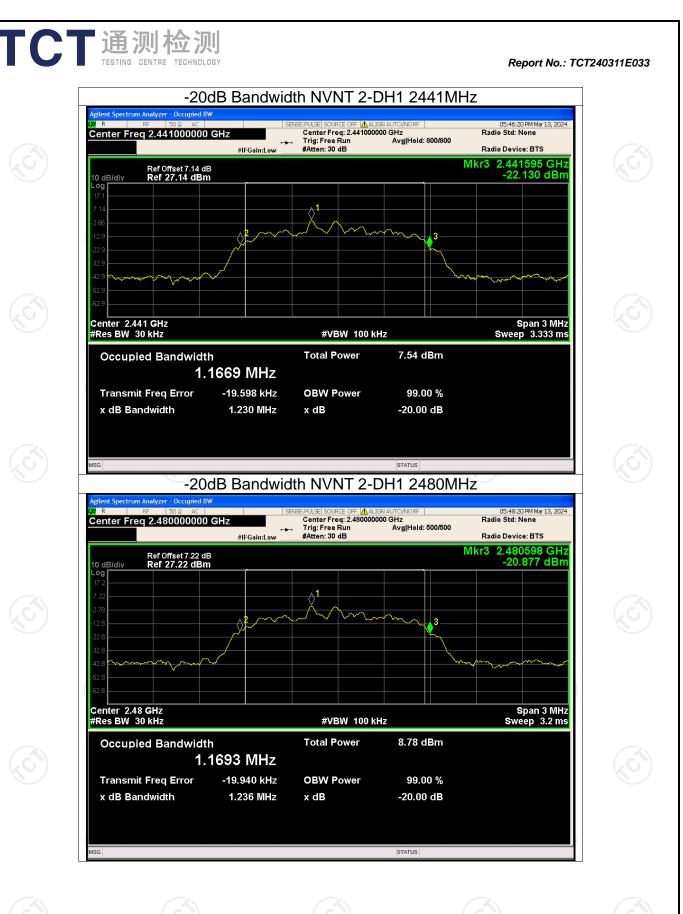
Condition	Mode	Frequency (MHz)	-20 dB Bandwidth (MHz)	Verdict
NVNT	1-DH1	2402	0.875	Pass
NVNT 🚫	1-DH1	2441	0.873	Pass
NVNT	1-DH1	2480	0.878	Pass
NVNT	2-DH1	2402	1.233	Pass
NVNT	2-DH1	2441	1.230	Pass
NVNT	2-DH1	2480	1.236	Pass






Page 36 of 77

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com



Page 38 of 77

Page 39 of 77

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Carrier Frequencies Separation

Report No.: TCT240311E033

Page 40 of 77

≬1⁻ \Diamond^2 m Span 2.000 MHz Sweep 1.000 ms (1001 pts) Center 2.402500 GHz #Res BW 100 kHz #VBW 300 kHz FUNCTION FUNCTION WIDTH 2.401 826 GHz 2.402 828 GHz -0.086 dBm -0.094 dBm STATUS

Test Graphs CFS NVNT 1-DH1 2402MHz

SENSE:PULSE| SOURCE OFF [🚹 ALIGN

PNO: Wide Trig: Free Run IFGain:Low #Atten: 30 dB

Avg Type: Log-Pwi Avg|Hold>100/100

ГСТ通测检测

UR

10 a . og

N 1 f N 1 f

2 3

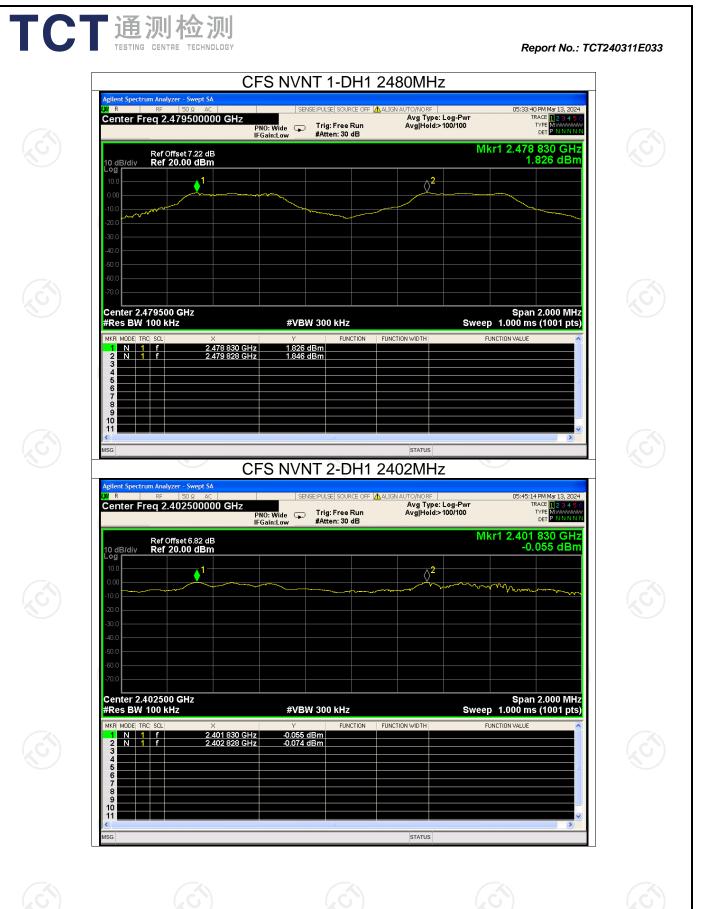
TESTING CENTRE TECHNOLOGY

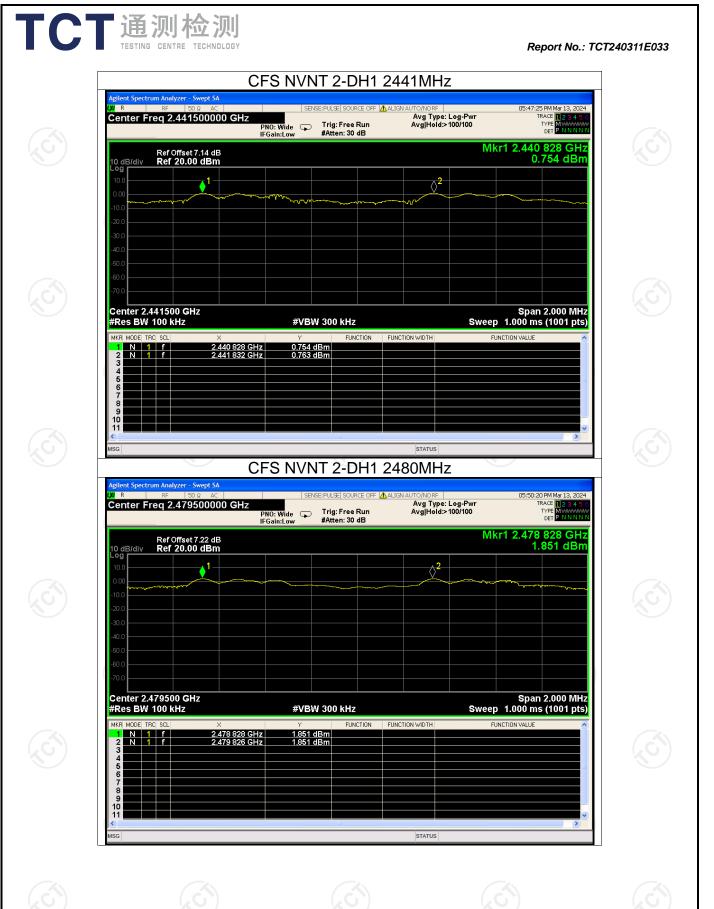
ım Analyzer - Swept SA

Ref Offset 6.82 dB Ref 20.00 dBm

Center Freq 2.402500000 GHz

CFS NVNT 1-DH1 2441MHz


SENSE:PULSE SOURCE OFF A ALIGN AUTO/NO RF AY Type: Log-Pwr Avg Type: Log-Pwr Avg|Hold>100/100 ent Spectrum Analyzer - Swept SA 05:31:01 PM Mar 13, 2024 **U**R Center Freq 2.441500000 GHz TYP TYP DE PNO: Wide Trig: Free Run IFGain:Low #Atten: 30 dB Mkr1 2.440 828 GHz 0.732 dBm Ref Offset 7.14 dB Ref 20.00 dBm 10 dB/div Log **⊘**² **≬**1: Center 2.441500 GHz #Res BW 100 kHz Span 2.000 MHz Sweep 1.000 ms (1001 pts) #VBW 300 kHz FUNCTION WIDTH FUNCTION FUNCTION VALUE 0.732 dBm 0.716 dBm N 1 f N 1 f 2.440 828 GHz 2.441 826 GHz 5 67 8 9 10 11 STATUS


Report No.: TCT240311E033

Page 41 of 77

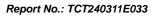
:06 PM Mar 13, 20 TRACE TYPE DET

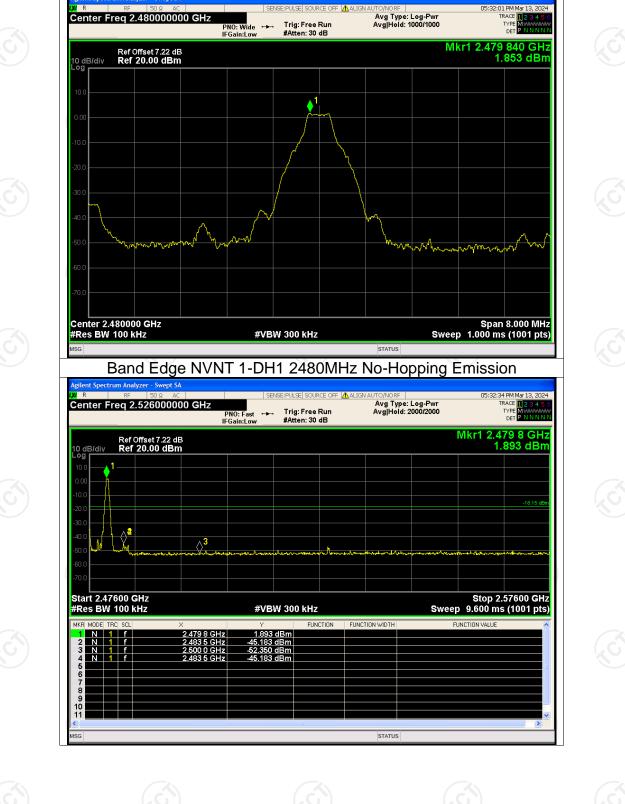
Mkr1 2.401 826 GHz -0.086 dBm

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com	<u>om</u>
--	-----------

Band Edge								
Condition	Mode	Frequency (MHz)	Hopping Mode	Max Value (dBc)	Limit (dBc)	Verdict		
NVNT	1-DH1	2402	No-Hopping	-50.48	-20	Pass		
NVNT	1-DH1	2480	No-Hopping	-47.03	-20	Pass		
NVNT	2-DH1	2402	No-Hopping	-51.25	-20	Pass		
NVNT	2-DH1	2480	No-Hopping	-48.17	-20	Pass		

CT通测检测 TESTING CENTRE TECHNOLOGY

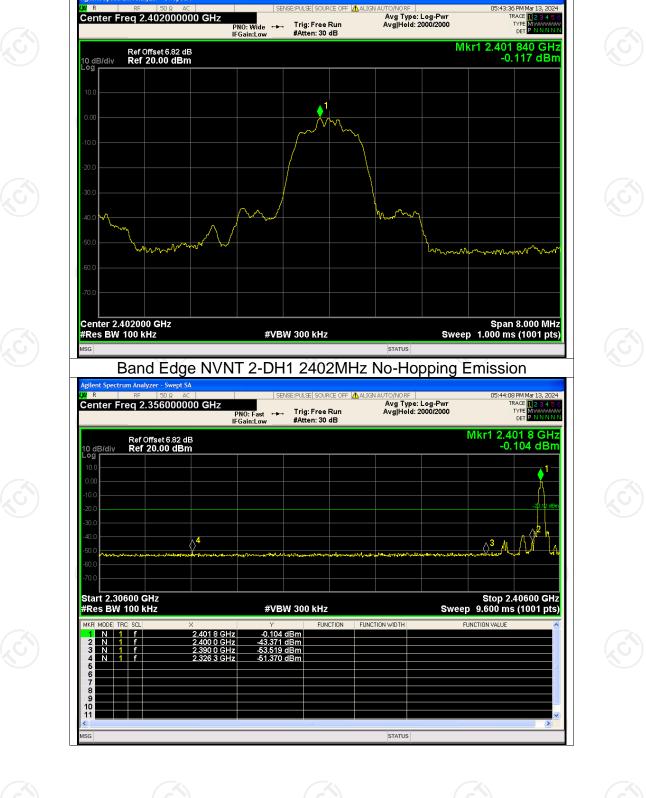

Report No.: TCT240311E033


STATUS

Band Edge NVNT 1-DH1 2402MHz No-Hopping Ref m Analy U R SENSE:PULSE SOURCE OFF 🖪 ALIGN Mar 13. TRACE TYPE DET Center Freq 2.402000000 GHz Avg Type: Log-Pwr Avg|Hold: 2000/2000 PNO: Wide 🔸 Trig: Free Run IFGain:Low #Atten: 30 dB Mkr1 2.401 832 GHz -0.092 dBm Ref Offset 6.82 dB Ref 20.00 dBm 10 dB/div Log ø 1 march . A. Center 2.402000 GHz #Res BW 100 kHz Span 8.000 MHz Sweep 1.000 ms (1001 pts) #VBW 300 kHz STATUS Band Edge NVNT 1-DH1 2402MHz No-Hopping Emission ilent Spectrum Analyzer - Swept SA SENSE:PULSE SOURCE OFF ALIGN AUTO/NORF AVG Type: Log-Pwr Avg Type: Log-Pwr Tela: Free Run Avg|Hold: 2000/2000 21 PM Mar 13, 2024 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N **U**R Center Freq 2.356000000 GHz PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 30 dB Mkr1 2.401 8 GHz -0.072 dBm Ref Offset 6.82 dB Ref 20.00 dBm 10 dB/div Log $\langle \rangle^2$ \Diamond^4 ()³ /∥ Stop 2.40600 GHz Sweep 9.600 ms (1001 pts) Start 2.30600 GHz #Res BW 100 kHz #VBW 300 kHz FUNCTION WIDTH FUNCTION FUNCTION VALUE -0.072 dBm -43.952 dBm -53.846 dBm -50.576 dBm iHz iHz N 5 8 9 10 11

Test Graphs

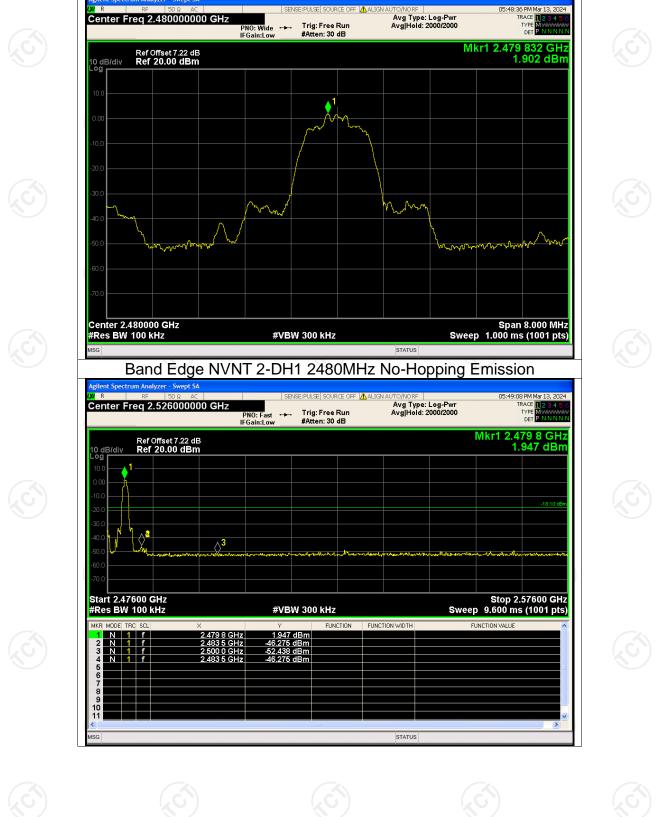
Page 45 of 77



Band Edge NVNT 1-DH1 2480MHz No-Hopping Ref

Report No.: TCT240311E033

Page 46 of 77


Band Edge NVNT 2-DH1 2402MHz No-Hopping Ref

Report No.: TCT240311E033

Page 47 of 77

Report

Band Edge NVNT 2-DH1 2480MHz No-Hopping Ref

UR

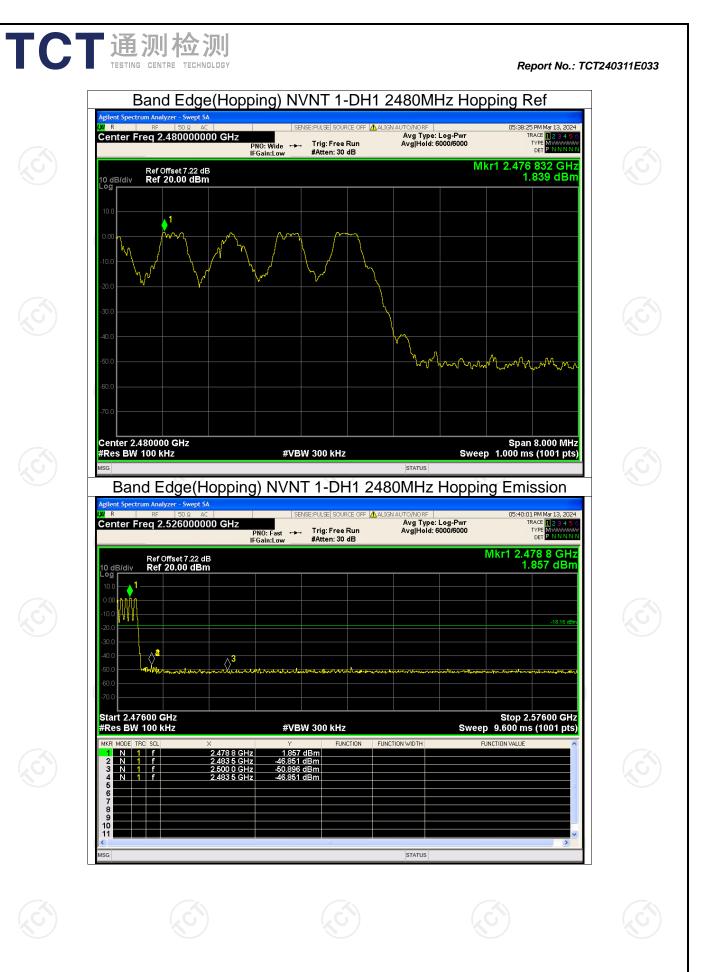
Report No.: TCT240311E033

Condition	Mode	Frequency (MHz)	Hopping Mode	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	1-DH1	2402	Hopping	-50.37	-20	Pass
NVNT	1-DH1	2480	Hopping	-48.69	-20	Pass
NVNT	2-DH1	2402	Hopping	-50.78	-20	Pass
NVNT	2-DH1	2480	Hopping	-50.05	-20	Pass

Band Edge(Hopping)

Report No.: TCT240311E033

Band Edge(Hopping) NVNT 1-DH1 2402MHz Hopping Ref nt Spectrum A :08 PM Mar 13, 2024 TRACE 1 2 3 4 5 6 TYPE MWWWW DET P N N N N **U**R SENSE:PULSE SOURCE OFF 🖪 ALIGN Center Freq 2.402000000 GHz Avg Type: Log-Pwr Avg|Hold: 5000/5000 PNO: Wide ---- Trig: Free Run IFGain:Low #Atten: 30 dB Mkr1 2.404 992 GHz -0.508 dBm Ref Offset 6.82 dB Ref 20.00 dBm 10 dB/div Loa W Center 2.402000 GHz #Res BW 100 kHz Span 8.000 MHz Sweep 1.000 ms (1001 pts) #VBW 300 kHz STATUS Band Edge(Hopping) NVNT 1-DH1 2402MHz Hopping Emission ilent Spectrum Analyzer - Swept SA SENSE:PULSE SOURCE OFF 🛕 ALIGN AUTO/NORF | Avg Type: Log-Pwr Tria: Free Run Avg|Hold: 5000/5000 42:27 PM Mar 13, 2024 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N 1 B Center Freq 2.356000000 GHz PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 30 dB Mkr1 2.401 8 GHz -0.038 dBm Ref Offset 6.82 dB Ref 20.00 dBm 10 dB/div Log $\langle \rangle$ $\Diamond^4 \Diamond^3$ 1/10/11/1 Stop 2.40600 GHz Sweep 9.600 ms (1001 pts) Start 2.30600 GHz #Res BW 100 kHz #VBW 300 kHz FUNCTION WIDTH FUNCTION FUNCTION VALUE -39.596 dBm -51.810 dBm -50.880 dBm iHz iHz N 5 8 9 10 11 STATUS


Test Graphs

TCT 通测检测

TESTING CENTRE TECHNOLOGY

Report No.: TCT240311E033

Page 50 of 77

SENSE: PULSE SOURCE OFF ALIGN 26 PM Mar 13, 2 Avg Type: Log-Pwr Avg|Hold: 6000/6000 Center Freg 2.402000000 GHz TRACE PNO: Wide ↔→→ Trig: Free Run IFGain:Low #Atten: 30 dB TYPE MWWWWW Mkr1 2.401 832 GHz -0.023 dBm Ref Offset 6.82 dB Ref 20.00 dBm 10 dB/div Log Monormy m Mmm mmunpp Center 2.402000 GHz #Res BW 100 kHz Span 8.000 MHz Sweep 1.000 ms (1001 pts) #VBW 300 kHz STATUS Band Edge(Hopping) NVNT 2-DH1 2402MHz Hopping Emission SENSE:PULSE SOURCE OFF ALIGN AUTO/NORF 45 PM Mar 13, 20 TRACE 1 2 3 4 TYPE MWWW DET P N N N Center Freq 2.356000000 GHz PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 30 dB Mkr1 2.405 8 GHz -0.019 dBm Ref Offset 6.82 dB Ref 20.00 dBm 10 dB/div Log sф 02 d 3 How WW $\langle \rangle^4$ Start 2.30600 GHz #Res BW 100 kHz Stop 2.40600 GHz Sweep 9.600 ms (1001 pts) #VBW 300 kHz FUNCTION WIDTH FUNCTION -41.204 dBm -53.046 dBm -50.804 dBm 2.400 0 GHz 2.390 0 GHz 2.321 2 GHz Ň

Band Edge (Hopping) NVNT 2-DH1 2402MHz Hopping Ref

ICT通测检测 TESTING CENTRE TECHNOLOGY

Report No.: TCT240311E033

Page 52 of 77

STATUS

Š)

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Condition	INICUE		wax value (ubc)		VEILICI
NVNT	1-DH1	2402	-35.83	-20	Pass
NVNT	1-DH1	2441	-36.97	-20	Pass
NVNT	1-DH1	2480	-38.24	-20	Pass
NVNT	2-DH1	2402	-39.85	-20	Pass
NVNT	2-DH1	2441	-32.96	-20	Pass
NVNT	2-DH1	2480	-40.46	-20	Pass

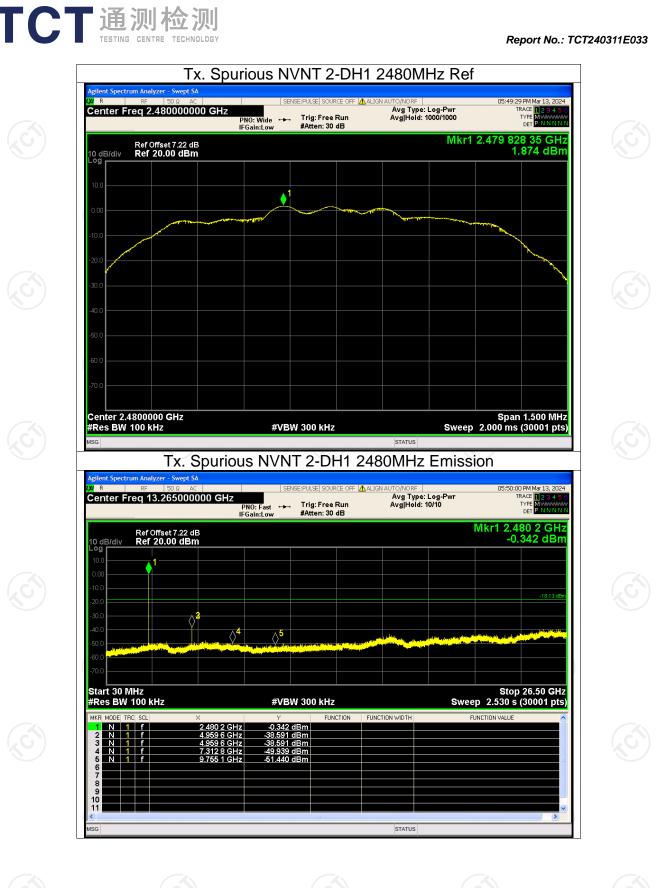
Conducted RF Spurious Emission

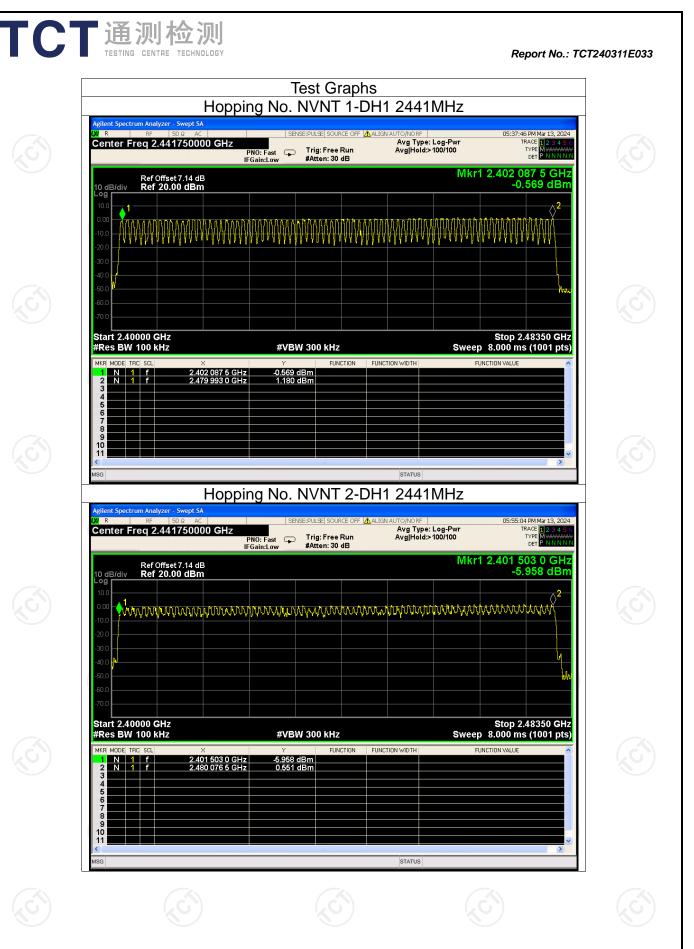
Report No.: TCT240311E033

Page 54 of 77



Page 56 of 77




Page 58 of 77

Page 59 of 77

TC		则检测				Rej	port No.: TCT2	240311E033		
	Condition NVNT	Mode 1-DH1	lumber o	mber of Hopping Channel Hopping Number 79			Verd Pas	S		
E	NVNT	2-DH1		79		15	Pas	SS		
<u>Hotli</u>	Page 61 of 77 <u>Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com</u>									

Page 62 of 77

NVNT	1-DH1	2441	0.38	120.84	318	31600	400	Pass
NVNT	1-DH3	2441	1.63	180.93	111	31600	400	Pass
NVNT	1-DH5	2441	2.88	204.48	71	31600	400	Pass
NVNT	2-DH1	2441	0.39	122.07	313	31600	400	Pass
NVNT	2-DH3	2441	1.64	78.72	48	31600	400	Pass
NVNT	2-DH5	2441	2.89	184.96	64	31600	400	Pass

Dwell Time

Pulse

Time

(ms)

Frequency

(MHz)

Total

Dwell

Time

(ms)

Mode

Condition

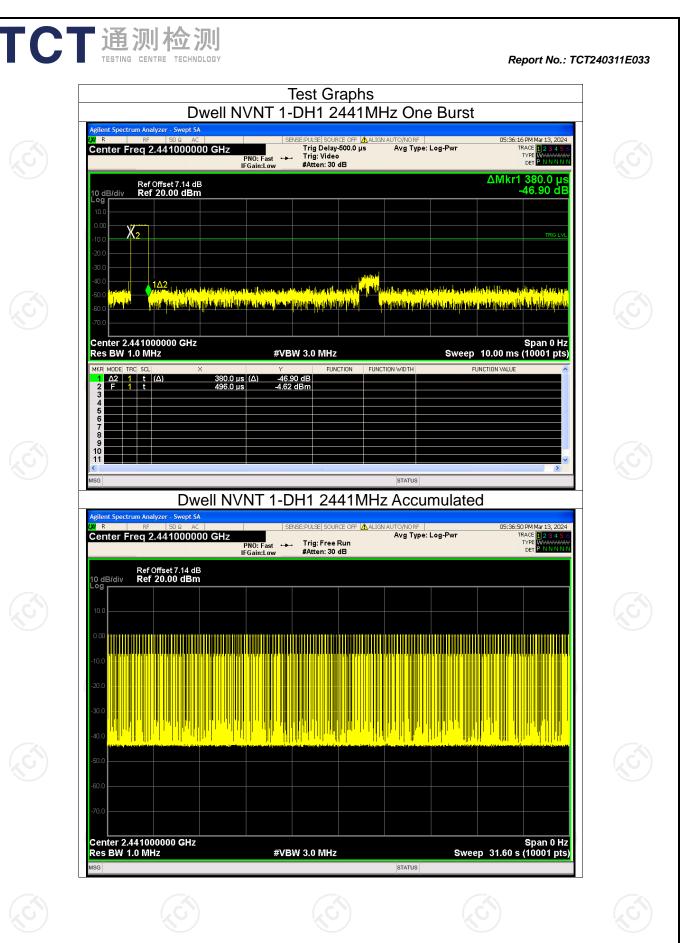
Report No.: TCT240311E033

Limit

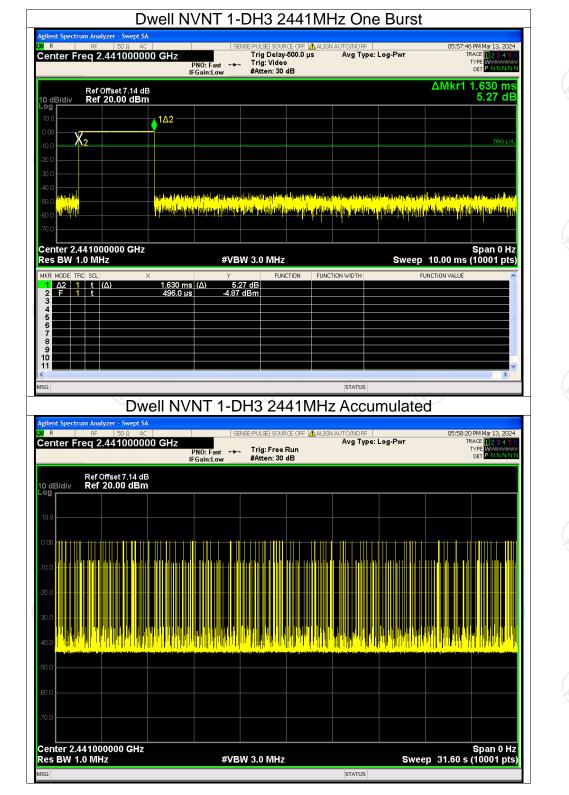
(ms)

Verdict

Period

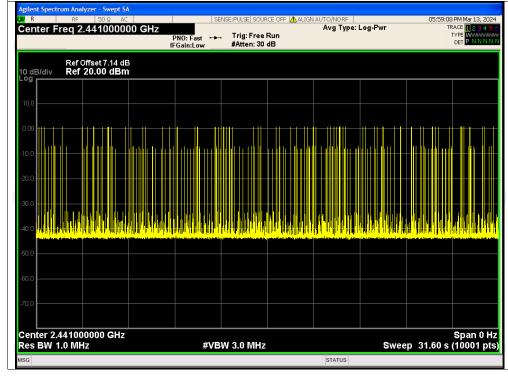

Time

(ms)


Burst

Count

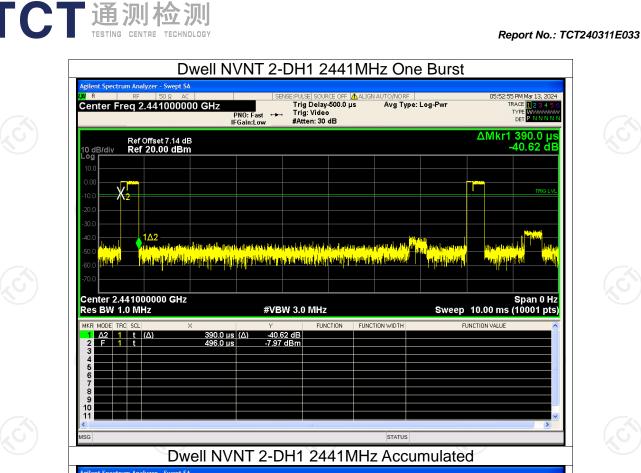
Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

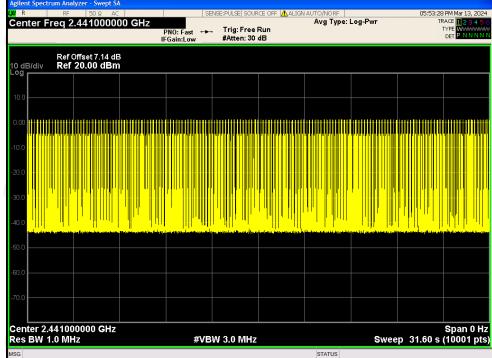

FCT通测检测 TESTING CENTRE TECHNOLOGY

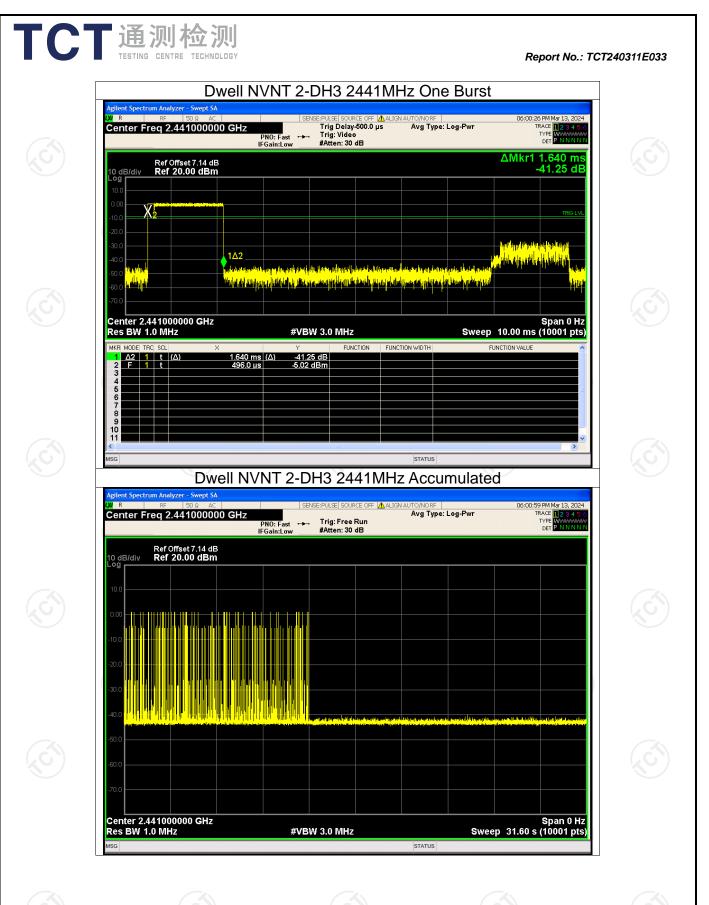
energial de la contracta de la contracta de perpensión de contracta de la contracta de la contracta de la contr te dine the rest of the state of the plate and is suppler down if we had been adopted at a down if such the sector of a log pl Center 2.441000000 GHz Res BW 1.0 MHz Span 0 Hz Sweep 10.00 ms (10001 pts) #VBW 3.0 MHz FUNCTION 2.880 ms (Δ) 497.0 μs Δ2 1 t (Δ) F 1 t -3.22 dB -1.60 dBm 2 3 6 89 10 11

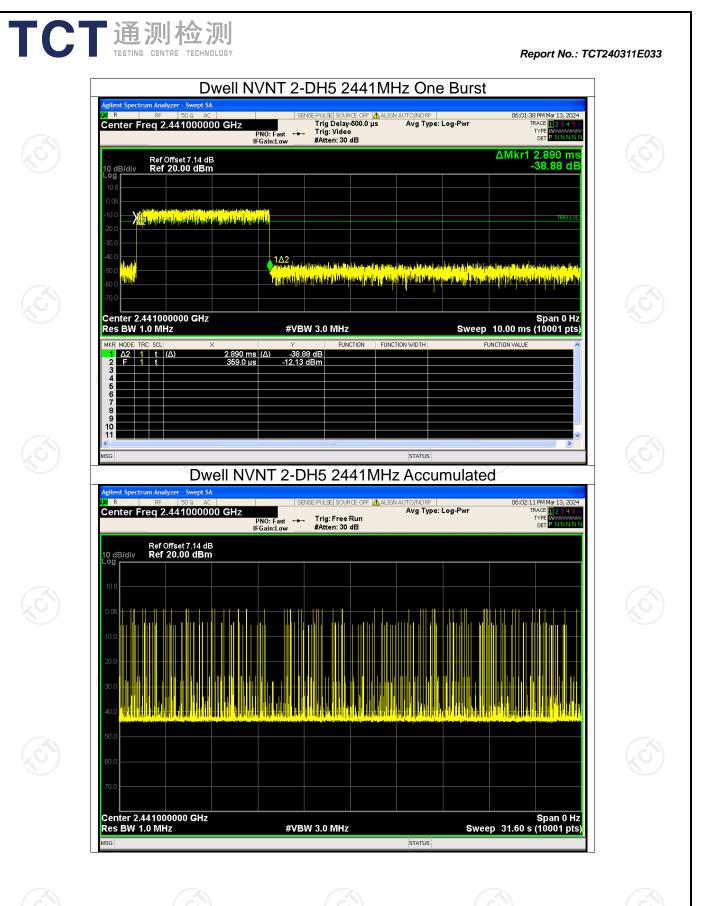
Dwell NVNT 1-DH5 2441MHz Accumulated

MSG




Page 66 of 77


Report No.: TCT240311E033


05:58:35 PM Mar 13, 20 TRACE 1 2 3 4

TYPE WWWWWWW

