

MEASUREMENT REPORT FCC PART 15.231(a) / RSS-210 Issue 9 – Annex A

- FCC ID: 2APP3RF433M
- IC: 23874-RF433M
- **APPLICANT:** Meko Lighting Company Limited
- **Application Type:** Certification

Product: LED Strip Light Remote Control

RF 433M Model No.:

- FCC Part 15 Security/Remote Control Transmitter FCC Classification: (DSC)
- FCC Rule Part(s): Part 15.231(a)

IC Rule(s): RSS-210 Issue 9 – Annex A

Test Procedure(s): ANSI C63.10-2013

Test Date: May 02 ~ June 01, 2018

Approved By

Reviewed By : Kevin Guo) Marlinchen (Marlin Chen)

The test results relate only to the samples tested.

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C63.10-2013. Test results reported herein relate only to the item(s) tested.

The test report shall not be reproduced except in full without the written approval of MRT Technology (Suzhou) Co., Ltd.

Revision History

Report No.	Version	Description	Issue Date	Note
1804RSU022-U1	Rev. 01	Initial report	06-01-2018	Valid

CONTENTS

Des	scriptio	n Pa	ige
1.	INTRO	DDUCTION	6
	1.1.	Scope	6
	1.2.	MRT Test Location	6
2.	PROD	OUCT INFORMATION	7
	2.1. 2.2. 2.3. 2.4.	Equipment Description Test Standards Test Methodology EUT Setup and Test Mode	7 7 7 8
3.	ANTE	NNA REQUIREMENTS	9
4.	TEST	EQUIPMENT CALIBRATION DATA	. 10
5.	MEAS	SUREMENT UNCERTAINTY	.11
6.	TEST	RESULT	. 12
	6.1.6.2.6.2.1.6.2.2.6.2.3.	Summary Radiated Emissions Standard Applicable Test Procedure Test Setup	12 13 13 13 13 13
	6.2.4.6.3.6.3.1.	Test Results	15 19 19
	6.3.2.6.3.3.6.3.4.6.4.	Test Procedure Test Setup Test Result Release Time	19 19 20 21
	6.4.1.6.4.2.6.4.3.	Standard Applicable Test Procedure Test Setup	21 21 21 21
	6.4.4. 6.5. 6.5.1	Test Result Duty Cycle Standard Applicable	22 23 23
	6.5.2.6.5.3.6.5.4.	Test Procedure Test Setup Test Result.	23 23 23 24

ONCLUSION	5
,	ONCLUSION

Applicant:	Meko Lighting Company Limited
Applicant Address:	No.2, Songlin East Road, Zeng Tian Village, Xin An District, Chang An
	Town, Dongguan City, Guangdong Province, 523883, China
Manufacturer:	MEKO LIGHTING COMPANY LIMITED
Manufacturer Address:	No.2, Songlin East Road, Zeng Tian Village, Xin An District, Chang An
	Town, Dongguan City, Guangdong Province, 523883, China
Test Site:	MRT Technology (Suzhou) Co., Ltd
Test Site Address:	D8 Building, Youxin Industrial Park, No.2 Tian'edang Rd., Wuzhong
	Economic Development Zone, Suzhou, China
MRT Registration No.:	893164
Test Device Serial No.:	N/A Production Pre-Production Engineering

§2.1033 General Information

Test Facility / Accreditations

Measurements were performed at MRT Laboratory located in Tian'edang Rd., Suzhou, China.

- MRT facility is a FCC registered (MRT Reg. No. 893164) test facility with the site description report on file and has met all the requirements specified in Section 2.948 of the FCC Rules.
- MRT facility is an IC registered (MRT Reg. No. 11384A-1) test laboratory with the site description on file at Industry Canada.
- MRT facility is a VCCI registered (R-4179, G-814, C-4664, T-2206) test laboratory with the site description on file at VCCI Council.
- MRT Lab is accredited to ISO 17025 by the American Association for Laboratory Accreditation (A2LA) under the American Association for Laboratory Accreditation Program (A2LA Cert. No. 3628.01) in EMC, Telecommunications and Radio testing for FCC, Industry Canada, EU and TELEC Rules.

1. INTRODUCTION

1.1. Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Industry Canada Certification and Engineering Bureau.

1.2. MRT Test Location

The map below shows the location of the MRT LABORATORY, its proximity to the Taihu Lake. These measurement tests were conducted at the MRT Technology (Suzhou) Co., Ltd. Facility located at D8 Building, No.2 Tian'edang Rd., Wuzhong Economic Development Zone, Suzhou, China. The detailed description of the measurement facility was found to be in compliance with the requirements of § 2.948 according to ANSI C63.4-2009 on September 30, 2013.

2. PRODUCT INFORMATION

2.1. Equipment Description

Product Name	LED Strip Light Remote Control	
Model No.	RF 433M	
Frequency Range	433.92 MHz	
Type of modulation	ASK	
Antenna Type	Integral Antenna	
Antenna Gain	0 dBi	
Device Category	Portable Device	

2.2. Test Standards

The following report is prepared on behalf of the device in accordance with FCC Part 15, Subpart C, and section 15.231, 15.203, 15.205 and 15.209 of the Federal Communication Commission rules, and RSS-210 Issue 9 & RSS-Gen Issue 4 rules of IC rules.

The objective is to determine compliance with FCC Part 15, Subpart C, and section 15.231, 15.203, 15.205 and 15.209 of the Federal Communication Commission rules, and RSS-210 Issue 9 & RSS-Gen Issue 4 rules of IC rules.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product, which results in lowering the emission/immunity, should be checked to ensure compliance has been maintained.

2.3. Test Methodology

The measurement procedures described in the American National Standard for Testing Unlicensed Wireless Devices (ANSI C63.10-2013).

Deviation from measurement procedure.....None

2.4. EUT Setup and Test Mode

The EUT was operated at continuous transmitting mode that was for the purpose of the measurements. All testing shall be performed under maximum output power condition, and to measure its highest possible emissions level, more detailed description as follows:

Test Mode		
Test Mode	Description	Remark
Mode 1	Transmitting	With modulation

3. ANTENNA REQUIREMENTS

Excerpt from §15.203 of the FCC Rules/Regulations:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

- The antenna of the device is permanently attached.
- There are no provisions for connection to an external antenna.

Conclusion:

The device unit complies with the requirement of §15.203.

4. TEST EQUIPMENT CALIBRATION DATA

Radiated Disturbance – AC2

Instrument	Manufacturer	Type No.	Asset No.	Cali. Interval	Cali. Due Date
Spectrum Analyzer	Keysight	N9038A	MRTSUE06125	1 year	2018/08/18
Loop Antenna	Schwarzbeck	FMZB 1519	MRTSUE06025	1 year	2018/11/20
Bilog Period Antenna	Schwarzbeck	VULB 9162	MRTSUE06022	1 year	2018/10/21
Horn Antenna	Schwarzbeck	BBHA9120D	MRTSUE06171	1 year	2018/11/18
Broadband Horn Antenna	Schwarzbeck	BBHA9170	MRTSUE06024	1 year	2018/12/14
Broadband Coaxial Preamplifi	Schwarzbeck	BBV 9718	MRTSUE06176	1 year	2018/11/17
Preamplifier	Schwarzbeck	BBV 9721	MRTSUE06121	1 year	2018/06/14
Temperature/Humidity Meter	Testo	608-H1	MRTSUE06404	1 year	2018/08/14
Anechoic Chamber	RIKEN	Chamber-AC2	MRTSUE06213	1 year	2019/04/30

20dB Bandwidth – AC2

Instrument	Manufacturer	Туре No.	Asset No.	Cali. Interval	Cal. Due Date
Spectrum Analyzer	Keysight	N9038A	MRTSUE06125	1 year	2018/08/18
Bilog Period Antenna	Schwarzbeck	VULB 9162	MRTSUE06022	1 year	2018/10/21
Temperature/Humidity Meter	Testo	608-H1	MRTSUE06404	1 year	2018/08/14
Anechoic Chamber	RIKEN	Chamber-AC2	MRTSUE06213	1 year	2019/04/30

Release Time – AC2

Instrument	Manufacturer	Туре No.	Asset No.	Cali. Interval	Cal. Due Date
Spectrum Analyzer	Keysight	N9038A	MRTSUE06125	1 year	2018/08/18
Bilog Period Antenna	Schwarzbeck	VULB 9162	MRTSUE06022	1 year	2018/10/21
Temperature/Humidity Meter	Testo	608-H1	MRTSUE06404	1 year	2018/08/14
Anechoic Chamber	RIKEN	Chamber-AC2	MRTSUE06213	1 year	2019/04/30

Duty Cycle – AC2

Instrument	Manufacturer	Type No.	Asset No.	Cali. Interval	Cal. Due Date
Spectrum Analyzer	Keysight	N9038A	MRTSUE06125	1 year	2018/08/18
Bilog Period Antenna	Schwarzbeck	VULB 9162	MRTSUE06022	1 year	2018/10/21
Temperature/Humidity Meter	Testo	608-H1	MRTSUE06404	1 year	2018/08/14
Anechoic Chamber	RIKEN	Chamber-AC2	MRTSUE06213	1 year	2019/04/30

Software	Version	Function
e3	V8.3.5	EMI Test Software

5. MEASUREMENT UNCERTAINTY

Where relevant, the following test uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Radiated Emission Measurement – AC2
Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)):
9kHz ~ 1GHz: 4.18dB
1GHz ~ 18GHz: 4.76dB
Release Time Measurement – AC2
Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)):
0.09ms

6. TEST RESULT

6.1. Summary

Company Name:	MEKO LIGHTING COMPANY LIMITED
FCC ID:	2APP3RF433M
IC:	23874-RF433M

FCC Part Section(s)	IC Section(s)	Test Description	Test Limit	Test Condition	Test Result	Reference
15.205	RSS-210,	Padiated Emissions	Pefer to 6.2.1		Pass	Section 6.2
15.231(b)	A1.2				F 855	Section 0.2
15 231(0)	RSS-210,	20dB Bandwidth	Pofor to 6.3.1		Pass	Section 6.3
15.231(0)	A1.3			Padiatod	F 855	Section 0.5
15.231(a)(1)	RSS-210,	Poloaso Timo	Pofor to 6.4.1	Raulaleu	Pass	Section 6.4
15.251(a)(1)	A1.1(a)		Refer to 0.4.1		F 855	Section 0.4
15 001/b)	RSS-Gen,	Duty Cycle	Defer to 6 5 1		Deee	Section 6 F
15.231(0)	6.10		Reiei 10 0.3. I		r d\$\$	Section 0.5

Notes:

1) The radiation measurements are performed in X, Y, Z axis positioning. Only the worst case is shown in the report.

2) The analyzer plots shown in this section were all taken with a correction table loaded into the analyzer.

6.2. Radiated Emissions

6.2.1.Standard Applicable

According to §15.231(b), the field strength of emissions from intentional radiators operated under this section shall not exceed the following:

Fundamental Frequency	Field Strength of Fundamental	Field Strength of Spurious Emissions
(MHz)	(microvolts/meter)	(microvolts/meter)
40.66 - 40.70	2250	225
70 - 130	1250	125
130 - 174	¹ 1250 to 3750	¹ 125 to 375
174 - 260	3750	375
260 - 470	¹ 3750 to 12500	¹ 375 to 1250
Above 470	12500	1250

The limits on the field strength of the spurious emissions in the above table are based on the fundamental frequency of the intentional radiator. Spurious emissions shall be attenuated to the average (or, alternatively, CISPR quasi-peak) limits shown in this table or to the general limits shown in §15.209, whichever limit permits a higher field strength.

The emission limit in this paragraph is based on measurement instrumentation employing an average detector. The provisions in §15.35 for limiting peak emissions apply. Spurious Radiated Emissions measurements start below or at the lowest crystal frequency.

Compliance with the provisions of §15.205 shall be demonstrated using the measurement instrumentation specified in that section.

6.2.2.Test Procedure

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.231(b) and FCC Part 15.209 Limit.

6.2.3.Test Setup

9kHz ~ 30MHz Test Setup:

6.2.4.Test Results

Site:	AC2			Time	Time: 2018/05/26 - 00:58				
Limit	: FCC 15.231(b)		Engir	Engineer: Bruce Wang				
Prob	Probe: VULB9162_0.03-8GHz				ity: Horizontal				
EUT: LED Strip Light Remote Control					er: By Battery				
Test	Mode: Transmit	at channel 4	33.92MHz						
	90								
	80								
	70		_		4	4			
	60					*		2	
Ê	50								
dBuV/	40								
evel(c	30								
_	20						and the second	a the second	
	10	man	mananan	internet and the second	wanter and the state of the sta	Jour and the second			
	10								
	0								
	30		100			da di si		1000	
2		1		Frequency(N	lHz)	1	1		
No	Frequency	Reading	Factor	Duty Cycle	Measure	Limit	Over	Туре	
	(MHz)	Level	(dB)	Factor	Level	(dBuV/m)	Limit		
		(dBuV)		(dB)	(dBuV/m)		(dB)		
1	434.005	43.416	17.508	N/A	60.924	100.825	-39.901	PK	
	434.005	43.416	17.508	-6.595	54.329	80.825	-26.496	AV	
2	868.080	34.592	23.972	N/A	57.376	80.825	-23.449	PK	
	868.080	34.592	23.972	-6.595	50.781	60.825	-10.044	AV	

Note 1: Testing is carried out with frequency rang 9 kHz to the tenth harmonics. There is the ambient noise within frequency range 9 kHz ~ 30 MHz, the permissible value is not show in the report.

Note 2: The fundamental frequency is 433.92MHz, so the fundamental and spurious emissions radiated limit base on the operating frequency 433.92MHz.

Note 3: Peak Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB).

AV Measure Level = Peak Measure Level + Duty Cycle Factor.

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m).

Site:	AC2			Time	Time: 2018/05/26 - 01:03				
Limit	: FCC 15.231(b)		Engir	Engineer: Bruce Wang				
Prob	e: VULB9162_0).03-8GHz		Polar	ity: Vertical				
EUT: LED Strip Light Remote Control				Powe	er: By Battery				
Test	Mode: Transmit	t at channel 4	33.92MHz						
	90	N V I					T I I		
	80								
	70					1		2	
	60							*	
Ê	50								
BuV/r	40								
evel(d	20								
-	30						Handreich and	Minne	
	20	nummun	manunan	and the second states and the second s	Humandermeterstanderbran	wantifullified			
	10								
	0								
	-10 30		100					1000	
3	T	1		Frequency(N	lHz)	1	1		
No	Frequency	Reading	Factor	Duty Cycle	Measure	Limit	Over	Туре	
	(MHz)	Level	(dB)	Factor	Level	(dBuV/m)	Limit		
		(dBuV)		(dB)	(dBuV/m)		(dB)		
1	434.005	51.585	17.508	N/A	69.093	100.825	-31.732	PK	
	434.005	51.585	17.508	-6.595	62.498	80.825	-18.327	AV	
2	868.080	38.954	23.972	N/A	60.459	80.825	-20.366	PK	
	868.080	38.954	23.972	-6.595	53.864	60.825	-6.961	AV	

Note 1: Testing is carried out with frequency rang 9 kHz to the tenth harmonics. There is the ambient noise within frequency range 9 kHz \sim 30 MHz, the permissible value is not show in the report.

Note 2: The fundamental frequency is 433.92MHz, so the fundamental and spurious emissions radiated limit base on the operating frequency 433.92MHz.

Note 3: Peak Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB).

AV Measure Level = Peak Measure Level + Duty Cycle Factor.

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m).

Site: AC2					Time: 2018/05/26 - 04:43				
Limit: FCC 15.231(b)					Engineer: Bruce Wang				
Probe: BBHA9120D_1-18GHz					arity: Horizontal				
EUT:	LED Strip Light	t Remote Cor	ntrol	Pow	ver: By Battery				
Test	Mode: Transmit	at channel 4	33.92MHz						
100 80 70 60 1 2 30 20 10 10 10 10 10 10 10 10 10 1				3 dente and the second second					
	0 1000			Frequency	(MII-)			6000	
No	Frequency	Reading	Factor	Duty Cycle	Measure	Limit	Over	Type	
	(MHz)	Level	(dB)	Factor	Level	(dBuV/m)	Limit	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	(···· —)	(dBuV)	(,	(dB)	(dBuV/m)	(,	(dB)		
1	1300.000	56.898	-4.116	N/A	52.782	80.825	-28.043	PK	
	1300.000	56.89	-4.116	-6.595	46.187	60.825	-14.638	AV	
2	1735.000	50.087	-4.025	N/A	46.062	80.825	-34.763	PK	
	1735.000	50.087	-4.025	-6.595	39.467	60.825	-21.358	AV	
3	2170.000	45.084	-0.940	N/A	44.144	80.825	-36.681	PK	
	2170.000	45.084	-0.940	-6.595	37.549	60.825	-23.276	AV	

Note 1: Testing is carried out with frequency rang 9 kHz to the tenth harmonics. There is the ambient noise

within frequency range 9 kHz \sim 30 MHz, the permissible value is not show in the report.

Note 2: The fundamental frequency is 433.92MHz, so the fundamental and spurious emissions radiated limit base on the operating frequency 433.92MHz.

Note 3: Peak Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB).

AV Measure Level = Peak Measure Level + Duty Cycle Factor.

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m) – Pre_Amplifier Gain (dB).

one.	AC2			Time	Time: 2018/05/26 - 04:45				
Limit	: FCC 15.231(I	o)		Engi	Engineer: Bruce Wang				
Prob	e: BBHA9120E	0_1-18GHz		Pola	rity: Vertical				
EUT:	LED Strip Ligh	nt Remote Co	ntrol	Pow	er: By Battery	1			
Test	Mode: Transm	it at channel 4	433.92MHz	·					
	100								
	80								
	70								
Ē	60	1 *							
BuV/r	50		2	2					
evel(d	50		*			المتحمد والمحمد والم	an and the manufactures and the second	utur dialoutor	
Ľ	40 mmm	mann	error provided by the second	many water and water the states and the	the state of the	Waspend Barren and State			
	30								
	20								
	10				1				
	0	- L	J.	14 23				6000	
	0 1000	L.	L.	Frequency(MHz)			6000	
No	0 1000 Frequency	Reading	Factor	Frequency(MHz) Measure	Limit	Over	6000 Type	
No	0 1000 Frequency (MHz)	Reading	Factor (dB)	Frequency(Duty Cycle Factor	MHz) Measure Level	Limit (dBuV/m)	Over Limit	боос	
No	0 1000 Frequency (MHz)	Reading Level (dBuV)	Factor (dB)	Frequency(Duty Cycle Factor (dB)	MHz) Measure Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	боос	
No 1	0 1000 Frequency (MHz) 1300.000	Reading Level (dBuV) 65.578	Factor (dB) -4.116	Frequency(Duty Cycle Factor (dB) N/A	MHz) Measure Level (dBuV/m) 61.462	Limit (dBuV/m) 80.825	Over Limit (dB) -19.363	Type PK	
No 1	0 1000 Frequency (MHz) 1300.000 1300.000	Reading Level (dBuV) 65.578 65.578	Factor (dB) -4.116 -4.116	Frequency(Duty Cycle Factor (dB) N/A -6.595	MHz) Measure Level (dBuV/m) 61.462 54.867	Limit (dBuV/m) 80.825 60.825	Over Limit (dB) -19.363 -5.958	Type PK AV	
No 1	0 1000 Frequency (MHz) 1300.000 1300.000 1735.000	Reading Level (dBuV) 65.578 65.578 50.720	Factor (dB) -4.116 -4.025	Frequency(Duty Cycle Factor (dB) N/A -6.595 N/A	MHz) Measure Level (dBuV/m) 61.462 54.867 46.695	Limit (dBuV/m) 80.825 60.825 80.825	Over Limit (dB) -19.363 -5.958 -34.130	Type PK AV PK	
No 1 2	0 1000 Frequency (MHz) 1300.000 1300.000 1735.000 1735.000	Reading Level (dBuV) 65.578 65.578 50.720 50.720	Factor (dB) -4.116 -4.025 -4.025	Frequency(Duty Cycle Factor (dB) N/A -6.595 N/A -6.595	MHz) Measure Level (dBuV/m) 61.462 54.867 46.695 40.100	Limit (dBuV/m) 80.825 60.825 80.825 60.825	Over Limit (dB) -19.363 -5.958 -34.130 -20.725	Type PK AV PK AV	
No 1 2 3	0 1000 Frequency (MHz) 1300.000 1300.000 1735.000 1735.000 2170.000	Reading Level (dBuV) 65.578 65.578 50.720 50.720 45.318	Factor (dB) -4.116 -4.116 -4.025 -4.025 -0.940	Frequency(Duty Cycle Factor (dB) N/A -6.595 N/A -6.595 N/A	MHz) Measure Level (dBuV/m) 61.462 54.867 46.695 40.100 44.378	Limit (dBuV/m) 80.825 60.825 80.825 60.825 80.825 80.825	Over Limit (dB) -19.363 -5.958 -34.130 -20.725 -36.447	Figure 6000 Type PK AV PK AV PK	

Note 1: Testing is carried out with frequency rang 9 kHz to the tenth harmonics. There is the ambient noise within frequency range 9 kHz ~ 30 MHz, the permissible value is not show in the report.

Note 2: The fundamental frequency is 433.92MHz, so the fundamental and spurious emissions radiated limit base on the operating frequency 433.92MHz.

Note 3: Peak Measure Level $(dB\mu V/m)$ = Reading Level $(dB\mu V)$ + Factor (dB).

AV Measure Level = Peak Measure Level + Duty Cycle Factor.

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m) – Pre_Amplifier Gain (dB).

6.3. 20dB Bandwidth

6.3.1.Standard Applicable

According to FCC Part 15.231(c), the bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70MHz and below 900MHz. Bandwidth is determined at the points 20 dB down from the modulated carrier.

6.3.2.Test Procedure

With the EUT's antenna attached, the EUT's 20dB Bandwidth power was received by the test antenna, which was connected to the spectrum analyzer with the START, and STOP frequencies set to the EUT's operation band.

6.3.3.Test Setup

6.3.4.Test Result

Test Frequency	20dB Bandwidth	99% Bandwidth	Limit	Result
(MHz)	(KHz)	(KHz)	(KHz)	
433.92	379.70	715.42	≤ 1084.8	Pass

Limit = Fundamental Frequency * 0.25% = 433.92MHz * 0.25% = 1084.8KHz

20dB Bandwidth Test Plot

6.4. Release Time

6.4.1.Standard Applicable

According to FCC 15.231(a), (1) A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.

6.4.2.Test Procedure

With the EUT's antenna attached, the EUT's output signal was received by the test antenna, which was connected to the spectrum analyzer. Set the center frequency to 433.92MHz, than set the spectrum analyzer to Zero Span for the release time reading. During the testing, the switch was released then the EUT automatically deactivated.

6.4.3.Test Setup

6.4.4.Test Result

Item	Measured Value	Limit	Result
Release Time	0.2225 s	≤ 5 s	Pass

Measure Value = Release_(on time) = 222.5ms

Release Time

🎉 Agi	ilent Spect	rum An	alyzer - Sw	ept SA									- 0 💌
	tor Er	RF	33 02	Ω AC	MHZ		SENSE:INT	Ava Tv	ALIGN AUTO	07:42:00 A	May 26, 2018	Fre	quency
Gen		cy 4	JJ.32	0000	PNO: Fas	t +++ Trig: F	ree Run			TYP			
					IFGain:Lo	w Atten:	10 00			Mired Of	00 E		Auto Tune
10.15		Def	0.00 4	Des					2		22.5 ms 0 44 dB		
Log	3/017	Rei	0.00 0	юш									
												С	enter Freq
-10.0												433.	920000 MHz
-20.0													Start From
												433	920000 MHz
-30.0							V	<mark>,</mark> 1∆2 —				400.	320000 Mil 12
							A A A	Ĩ					
-4U.U													Stop Freq
ico o							ì					433.	920000 MHz
-30.0													
-60.0													CF Step
												1. Auto	000000 MHz Man
-70.0					1							Maro	Intern
	al profession of the	ribertic last	(i) in the second of the	No for a state	erer our prises	Announal installation	June migue	Huthadongering	1	erite, to the line half have	free to be an and f		
-80.0												-	req Onset
													0 H2
-90.0													
Cen	ter 43:	3.920	1000 N	1H7						S	pan 0 Hz		
Res	BW 1.	0 MH	z		#	/BW 3.0 MH	z		Sweep	5.000 s (2001 pts)		
MSG									STATUS	5			

6.5. Duty Cycle

6.5.1.Standard Applicable

According to FCC Part 15.231(b) and 15.35(c), for pulse operation transmitter, the averaging pulsed emissions are calculated by peak value of measured emission plus duty cycle factor.

6.5.2.Test Procedure

With the EUT's antenna attached, the EUT's output signal was received by the test antenna, which was connected to the spectrum analyzer. Set the center frequency to 433.92MHz, than set the spectrum analyzer to Zero Span for the release time reading. During the testing, the switch was released then the EUT automatically deactivated.

6.5.3.Test Setup

6.5.4. Test Result

Test Frequency	Total Time (Ton)	The duration of one	Duty Cycle	Duty Cycle Factor (dB)	
(MHz)	(ms)	cycle(ms)	(%)		
433.92	46.80	100	46.80	-6.595	

Note: Duty Cycle Factor = 20*Log(Duty Cycle).

Total Time $(T_{on})(ms)$ = 0.225*40 + 0.825*24+18.000*1=46.80(ms)

Width of Pulse

7. CONCLUSION

The data collected relate only the item(s) tested and show that the device is in compliance with FCC

Part 15.231(a) of the FCC Rules and RSS-210 Issue 9 – Annex A of IC Rules.

The End