

No. 1 Workshop, M-10, Middle section, Science & Technology Park,

Shenzhen, Guangdong, China 518057
Telephone: +86 (0) 755 2601 2053
Fax: +86 (0) 755 2671 0594
Email: ee.shenzhen@sgs.com

Report No.: HR20188000505

Page: 1 of 48

FCC TEST REPORT

Application No: HR201880005
Applicant: Orion Labs, Inc

Address of Applicant 208 Utah Street Suite 350 San Francisco California United States

Manufacturer: Orion Labs, Inc

Address of Manufacturer 208 Utah Street Suite 350 San Francisco California United States

Factory: Fujian Star-net CommunicationCo.,Ltd

Address of Factory 3F,Bldg 1,Star-Net Science-based Haixi Industrial Pack,No. 9

GaoxinRoad, Minhou County, Fuzhou, China

EUT Description: Orion Sync
Model Name: ROS-001-TM
Trade Mark: Orion Labs

FCC ID: 2APONROS001US

Standards: 47 CFR FCC Part 2, Subpart J

47 CFR Part 15, Subpart C

KDB 558074 D01 DTS Meas Guidance v05

Test Method ANSI C63.4(2014)

ANSI C63.10 (2013)

Date of Receipt: 2018/10/15

Date of Test: 2018/10/16 to 2018/11/22

Date of Issue: 2018/11/22

Test Result: PASS *

Authorized Signature:

Derele yang

Derek Yang

Wireless Laboratory Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sqs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sqs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

Report No.: HR20188000505

Page: 2 of 48

1 Version

Revision Record							
Version Chapter Date Modifier Remark							
00		2018/11/22		Original			

Authorized for issue by:		
Tested By	(Mike Hu) /Project Engineer	2018/11/22 Date
Checked By	David Chen (David Chen) /Reviewer	2018/11/22 Date

Report No.: HR20188000505

Page: 3 of 48

2 Test Summary

Test Item	Test Requirement	Test method	Test Result	Result
AC Power Line Conducted Emission	15.207	ANSI C63.10 2013	Clause 4.2	PASS
Conducted Output Power	15.247 (b)(3)	ANSI C63.10 2013	Clause 4.3	PASS
DTS (6 dB) Bandwidth & OBW	15.247 (a)(2)	ANSI C63.10 2013	Clause 4.4	PASS
Power Spectral Density	15.247 (e)	ANSI C63.10 2013	Clause 4.5	PASS
Band-edge for RF Conducted Emissions	15.247(d)	ANSI C63.10 2013	Clause 4.6	PASS
RF Conducted Spurious Emissions	15.247(d)	ANSI C63.10 2013	Clause 4.7	PASS
Radiated Spurious Emissions	15.205/15.209	ANSI C63.10 2013	Clause 4.8	PASS
Restricted bands around fundamental frequency (Radiated Emission)	15.205/15.209	ANSI C63.10 2013	Clause 4.9	PASS

Report No.: HR20188000505

Page: 4 of 48

Contents

1	٧E	-RSION	2
2	TE	ST SUMMARY	3
3		ENERAL INFORMATION	
3			
	3.1	CLIENT INFORMATION	
	3.2	GENERAL DESCRIPTION OF EUT	
	3.3	TEST ENVIRONMENT	
	3.4 3.5	DESCRIPTION OF SUPPORT UNITS	
	3.6	TEST FACILITY	
	3.7	DEVIATION FROM STANDARDS	
	3.8	ABNORMALITIES FROM STANDARD CONDITIONS	
	3.9	OTHER INFORMATION REQUESTED BY THE CUSTOMER.	
	3.10	MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2)	
	3.11	EQUIPMENT LIST	9
4	TE	ST RESULTS AND MEASUREMENT DATA	10
•			
	4.1	ANTENNA REQUIREMENT	
	4.2	AC POWER LINE CONDUCTED EMISSIONS	
	4.3	DUTY CYCLE	
	4.3 4.3		
	4.4	CONDUCTED OUTPUT POWER	
		4.1 Test plots:	
	4.5	DTS (6 DB) BANDWIDTH & OBW	
	4.5	5.1 Test plots	
	4.6	POWER SPECTRAL DENSITY	
	4.6	6.1 Test plots	23
	4.7	BAND-EDGE FOR RF CONDUCTED EMISSIONS	
	4.7		
	4.8	Spurious RF Conducted Emissions	
	4.8	· F	
	4.9	RADIATED SPURIOUS EMISSION	
	4.9		
	4.10	9.2 Transmitter Emission above 1GHz	
		·	
5	PF	HOTOGRAPHS - EUT CONSTRUCTIONAL DETAILS	48

Report No.: HR20188000505

Page: 5 of 48

3 General Information

3.1 Client Information

Applicant:	Orion Labs, Inc		
Address of Applicant:	208 Utah Street Suite 350 San Francisco California United States		
Manufacturer:	Orion Labs, Inc		
Address of Manufacturer:	208 Utah Street Suite 350 San Francisco California United States		
Factory:	Fujian Star-net CommunicationCo.,Ltd		
Address of Factory:	3F,Bldg 1,Star-Net Science-based Haixi Industrial Pack,No. 9 GaoxinRoad,MinhouCounty,Fuzhou, China		

3.2 General Description of EUT

	•
EUT Description::	Orion Sync
Model Name:	ROS-001-TM
Trade Mark:	Orion Labs
Hardware Version:	RA15_MB P4
Software Version:	7.1.2
Operation Frequency:	2402MHz~2480MHz fc = 2402 MHz + N * 2 MHz, where: -fc = "Operating Frequency" in MHz, -N = "Channel Number" with the range from 0 to 39.
Bluetooth Version:	Bluetooth V4.0
Modulation Type:	GFSK
Number of Channel:	40
Sample Type:	⊠ Portable Device,
Antenna Type:	☐ External, ⊠ Integrated
Antenna Gain:	3.5dBi
Power Supply	□ AC/DC Adapter; □ Battery; □ PoE:; □ Other:

Report No.: HR20188000505

Page: 6 of 48

Operation Frequency of each channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Remark:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel (CH0)	2402MHz
The middle channel (CH19)	2440MHz
The highest channel (CH39)	2480MHz

3.3 Test Environment

Operating Environment				
Temperature:	25.0 °C			
Humidity:	50 % RH			
Atmospheric Pressure:	101.32 KPa			

3.4 Description of Support Units

The EUT has been tested independent unit.

3.5 Test Location

All tests were performed at:

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen Branch

No. 1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, Guangdong, China. 518057.

Tel: +86 755 2601 2053 Fax: +86 755 2671 0594

No tests were sub-contracted.

Report No.: HR20188000505

Page: 7 of 48

3.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• CNAS (No. CNAS L2929)

CNAS has accredited SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

• A2LA (Certificate No. 3816.01)

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 3816.01.

VCCI

The 3m Fully-anechoic chamber for above 1GHz, 10m Semi-anechoic chamber for below 1GHz, Shielded Room for Mains Port Conducted Interference Measurement and Telecommunication Port Conducted Interference Measurement of SGS-CSTC Standards Technical Services Co., Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-20026, R-14188, C-12383 and T-11153 respectively.

• FCC -Designation Number: CN1178

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory has been recognized as an accredited testing laboratory.

Designation Number: CN1178. Test Firm Registration Number: 406779.

• Industry Canada (IC)

Two 3m Semi-anechoic chambers and the 10m Semi-anechoic chamber of SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab have been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 4620C-1, 4620C-2, 4620C-3.

3.7 Deviation from Standards

None.

3.8 Abnormalities from Standard Conditions

None.

3.9 Other Information Requested by the Customer

None.

Report No.: HR20188000505

Page: 8 of 48

3.10 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty	
1	Total RF power, conducted	±0.75dB	
2	RF power density, conducted	±2.84dB	
3	Spurious emissions, conducted	±0.75dB	
4	Radiated Spurious emission test	±4.5dB (30MHz-1GHz)	
4		±4.8dB (1GHz-25GHz)	
5	Conduct emission test	±3.12 dB(9KHz- 30MHz)	
6	Temperature test	±1°C	
7	Humidity test	±3%	
8	DC and low frequency voltages	±0.5%	

Report No.: HR20188000505

Page: 9 of 48

3.11 Equipment List

Conducted Emission							
Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. date	Cal.Duedate		
rest Equipment	Wallulacturei	Model No.	inventory No.	(yyyy-mm-dd)	(yyyy-mm-dd)		
Shielding Room	ZhongYu Electron	GB-88	SEM001-06	2017/5/10	2020/5/9		
LISN	Rohde & Schwarz	ENV216	SEM007-01	2018/9/2	2019/9/2		
LISN	ETS-LINDGREN	Feb-16	SEM007-02	2018/4/2	2019/4/1		
Measurement Software	AUDIX	e3 V5.4.1221d	N/A	N/A	N/A		
Coaxial Cable	SGS	N/A	SEM024-01	2018/7/12	2019/7/11		
2 Line ISN	Fischer Custom	FCC-TLISN-T2-02	EMC0122	2018/2/14	2019/2/13		
	Communications Inc.			, -,	, -, -,		
EMI Test Receiver	Rohde & Schwarz	ESCI	SEM004-02	2018/4/2	2019/4/1		

RF conducted test							
Test Equipment	Manufacturer	Model No. Inventory No. Cal. d	Cal. date	Cal.Duedate			
	Manuacturer	woder No.	Inventory No.	(yyyy-mm-dd)	(yyyy-mm-dd)		
DC Power Supply	Agilent Technologies Inc	66311B	W009-09	2018/9/15	2019/9/15		
Signal Analyzer	Rohde & Schwarz	FSV	W025-05	2018/3/13	2019/3/12		
Coaxial Cable	SGS	N/A	SEM031-01	2018/7/13	2019/7/12		
Attenuator	Weinschel Associates	WA41	SEM021-09	N/A	N/A		
Signal Generator	KEYSIGHT	N5173B	SEM006-05	2018/9/2	2019/9/2		
Power Meter	Rohde & Schwarz	NRVS	SEM014-02	2018/9/2	2019/9/2		
	RE	in Chamber					
Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. date	Cal.Due date		
rest Equipment	Wandacture	Wiodel No.	inventory No.	(yyyy-mm-dd)	(yyyy-mm-dd)		
3m Semi-Anechoic Chamber	ETS-LINDGREN	N/A	SEM001-01	2017/8/5	2020/8/4		
Measurement Software	AUDIX	e3 V8.2014-6-27	N/A	N/A	N/A		
Coaxial Cable	SGS	N/A	SEM025-01	2018/7/12	2019/7/11		
MXE EMI Receiver (20Hz- 8.4GHz)	Agilent Technologies	N9038A	SEM004-05	2018/9/2	2019/9/2		
BiConiLog Antenna (26- 3000MHz)	ETS-LINDGREN	3142C	SEM003-01	2017/6/27	2020/6/26		
Pre-amplifier (0.1-1.3GHz)	Agilent Technologies	8447D	SEM005-01	2018/4/2	2019/4/1		

	RE in Chamber				
Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (yyyy-mm-dd)	Cal. Due date (yyyy-mm-dd)
10m Semi-Anechoic Chamber	SAEMC	FSAC1018	SEM001-03	2018/3/31	2021/3/30
EMI Test Receiver (9k-7GHz)	Rohde & Schwarz	ESR	SEM004-03	2018/4/2	2019/4/1
Trilog-Broadband Antenna(25M-2GHz)	Schwarzbeck	VULB9168	SEM003-18	2016/6/29	2019/6/28
Pre-amplifier (9k-1GHz)	Sonoma	310N	SEM005-03	2018/4/13	2019/4/12
Loop Antenna (9kHz-30MHz)	ETS-Lindgren	6502	SEM003-08	2017/8/22	2020/8/21
Measurement Software	AUDIX	e3 V8.2014-6-27	N/A	N/A	N/A
Coaxial Cable	SGS	N/A	SEM029-01	2018/7/12	2019/7/11

Report No.: HR20188000505

Page: 10 of 48

4 Test results and Measurement Data

4.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 3.5dBi.

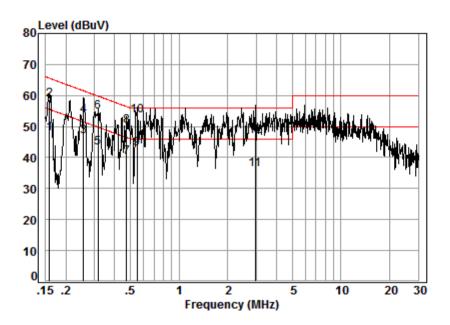
Report No.: HR20188000505

Page: 11 of 48

4.2 AC Power Line Conducted Emissions

Test Requirement:	47 CFR Part 15C Section 15.207		
Test Method:	ANSI C63.10: 2013	·	
Test Frequency Range:			
The state of the s		Limit (dBuV)	
	Frequency range (MHz)	Quasi-peak	Average
1.59	0.15-0.5	66 to 56*	56 to 46*
Limit:	0.5-5	56	46
	5-30	60	50
	* Decreases with the logarith	nm of the frequency.	
Test Procedure:	 The EUT was connected Stabilization Network) we power cables of all other which was bonded to the for the unit being measur multiple power cables to exceeded. The tabletop EUT was perference plane. And for horizontal ground reference Plane was bonded EUT shall be 0.4 m from reference plane was bonded was placed 0.8 m from ground reference plane. This distance was between units of the EUT and assisted. In order to find the maxing the was placed to find the maxing the power of the euther was between the euthe	with a vertical ground reference the vertical ground reference ded to the horizontal ground the boundary of the unit useful to the closest points of the LI ociated equipment was at leasum emission, the relative points be changed according to	a LISN 1 (Line Impedance $^{\circ}$ 5Ω linear impedance. The nected to a second LISN 2, he same way as the LISN 1 t strip was used to connect rating of the LISN was not able 0.8m above the ground the EUT was placed on the ence plane. The rear of the e plane. The vertical ground reference plane. The LISN 1 nder test and bonded to a the ground reference plane. ISN 1 and the EUT. All other st 0.8 m from the LISN 2. positions of equipment and all
Test Setup:	Shielding Room EUT AC Mains LISN1		st Receiver
Test Mode:	Transmitting with GFSK mode		
Instruments Used:	Refer to section 5.10 for det		
Test Results:	Pass		

Report No.: HR20188000505


Page: 12 of 48

Measurement Data

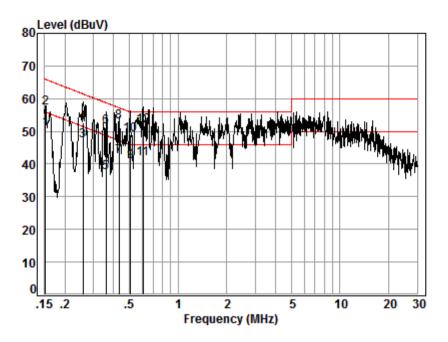
An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Live line:

Site : Shielding Room

Condition: Line Job No. : 80005 Test mode: c


		Cable	LISN	Read		Limit	0ver	
	Freq	Loss	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB	dBuV	dBuV	dBuV	dB	
1	0.16	0.01	9.66	38.11	47.78	55.56	-7.78	Average
2	0.16	0.01	9.66	49.12	58.79	65.56	-6.77	QP
3	0.26	0.03	9.67	37.19	46.89	51.51	-4.62	Average
4	0.26	0.03	9.67	43.80	53.50	61.51	-8.01	QP
5	0.31	0.04	9.67	33.50	43.21	49.84	-6.63	Average
6	0.31	0.04	9.67	45.19	54.90	59.84	-4.94	QP
7	0.47	0.06	9.67	30.38	40.11	46.45	-6.34	Average
8	0.47	0.06	9.67	40.35	50.08	56.45	-6.37	QP
9	0.55	0.06	9.67	33.26	42.99	46.00	-3.01	Average
10	0.55	0.06	9.67	43.74	53.47	56.00	-2.53	QP
11	2.95	0.16	9.71	26.45	36.32	46.00	-9.68	Average
12	2.95	0.16	9.71	36.95	46.82	56.00	-9.18	QP

Report No.: HR20188000505

Page: 13 of 48

Neutral line:

Site : Shielding Room

Condition: Neutral Job No. : 80005

Test mode: c

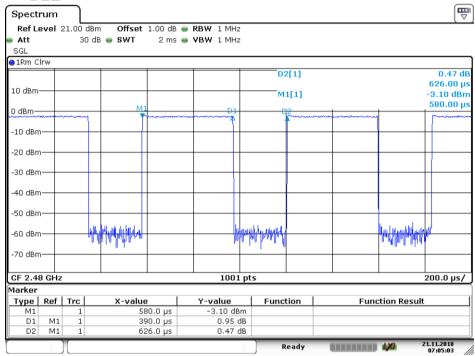
		Cable	LISN	Read		Limit	0ver	
	Freq	Loss	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB	dBuV	dBuV	dBuV	dB	
1	0.15	0.01	9.63	41.05	50.69	55.91	-5.22	Average
2	0.15	0.01	9.63	47.48	57.12	65.91	-8.79	QP
3	0.26	0.03	9.64	37.49	47.16	51.47	-4.31	Average
4	0.26	0.03	9.64	42.96	52.63	61.47	-8.84	QP
5	0.36	0.05	9.64	27.65	37.34	48.74	-11.40	Average
6	0.36	0.05	9.64	41.69	51.38	58.74	-7.36	QP
7	0.43	0.05	9.65	32.69	42.39	47.20	-4.81	Average
8	0.43	0.05	9.65	43.08	52.78	57.20	-4.42	QP
9	0.51	0.06	9.64	31.04	40.74	46.00	-5.26	Average
10	0.51	0.06	9.64	39.34	49.04	56.00	-6.96	QP
11	0.61	0.07	9.64	31.99	41.70	46.00	-4.30	Average
12	0.61	0.07	9.64	42.07	51.78	56.00	-4.22	QP

Remarks:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Report No.: HR20188000505

Page: 14 of 48

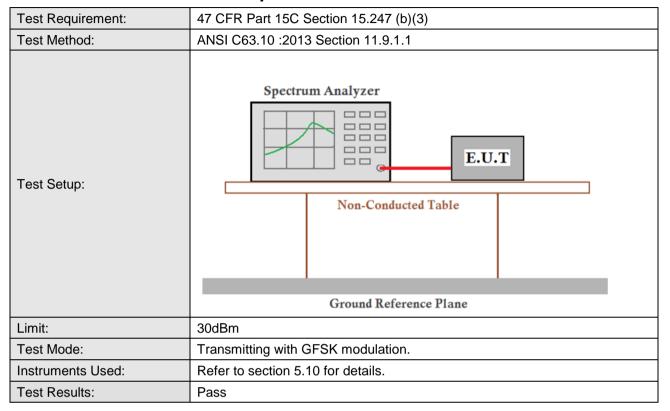

4.3 Duty Cycle

4.3.1 Test Results

Test Mode	TX Freq. [MHz]	Duty cycle [%]
BLE	CH0,CH19,CH39	62.30

4.3.1 Test Plots

4.3.1.1 BLE


Date: 21.NOV.2018 07:05:03

Report No.: HR20188000505

Page: 15 of 48

4.4 Conducted Output Power

Measurement Data of Average Power

	3			
GFSK mode				
Test channel	Average Output Power (dBm)	Result		
Lowest	5.00	Report purpose only		
Middle	4.96	Report purpose only		
Highest	3.86	Report purpose only		

Measurement Data of Peak Power

Wieasurement Data Or Feak	I OWEI				
	GFSK mode				
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result		
Lowest	7.20	30.00	Pass		
Middle	7.16	30.00	Pass		
Highest	6.04	30.00	Pass		



Report No.: HR20188000505

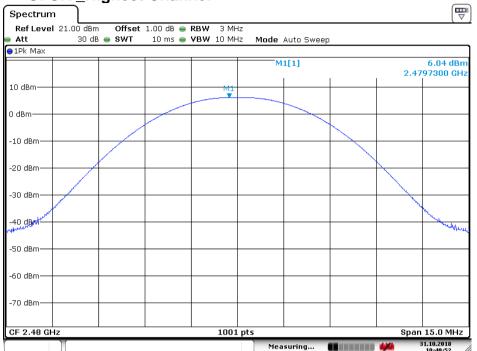
Page: 16 of 48

4.4.1 Test plots:

4.4.1.1 GFSK Lowest Channel

Date: 31.0 CT.2018 10:48:24

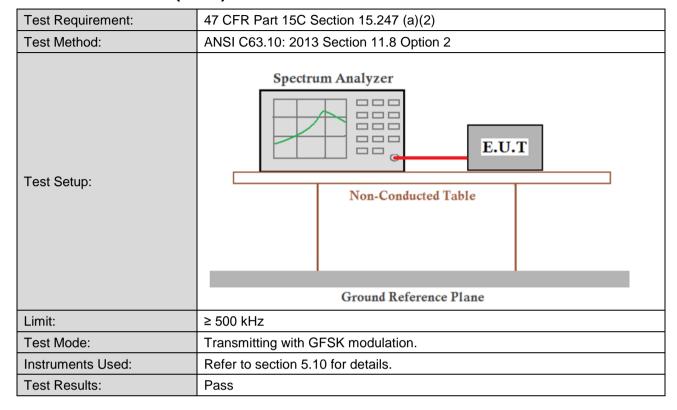
4.4.1.2 GFSK Middle Channel


Date: 31.0 CT.2018 10:48:54

Report No.: HR20188000505

Page: 17 of 48

4.4.1.3 GFSK _Highest Channel

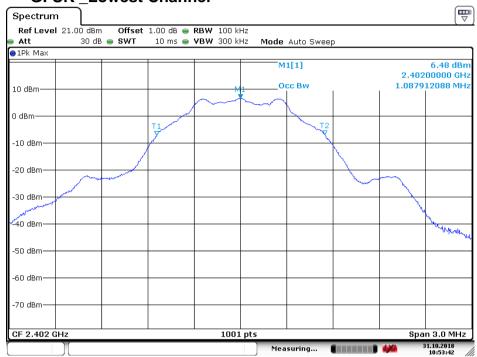

Date: 31.0 CT.2018 10:49:52

Report No.: HR20188000505

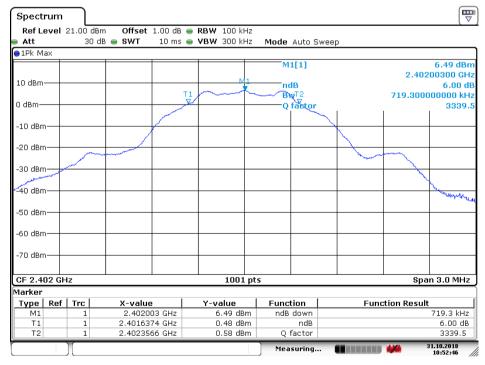
Page: 18 of 48

4.5 DTS (6 dB) Bandwidth & OBW

Mode	Test Channel	Occupied Bandwidth (MHz)	6dB Emission Bandwidth (MHz)	Limit (kHz)	Result
	Lowest	1.088	0.719	≥500	Pass
GFSK	Middle	1.088	0.716	≥500	Pass
	Highest	1.090	0.722	≥500	Pass



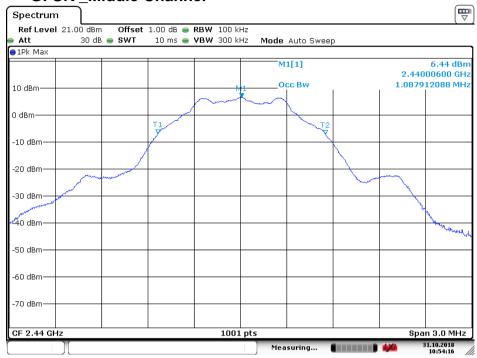
Report No.: HR20188000505

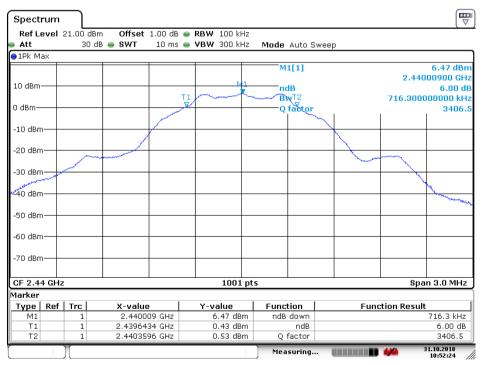

Page: 19 of 48

4.5.1 Test plots

4.5.1.1 GFSK Lowest Channel

Date: 31 OCT 2018 10:53:43

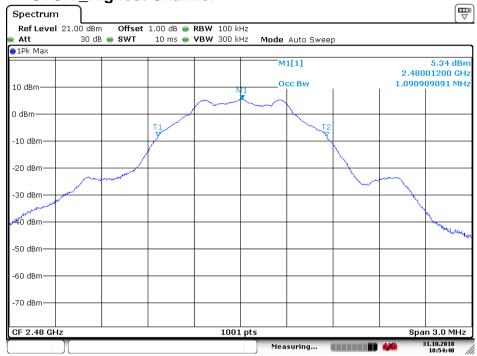

Date: 31.0 CT.2018 10:52:46

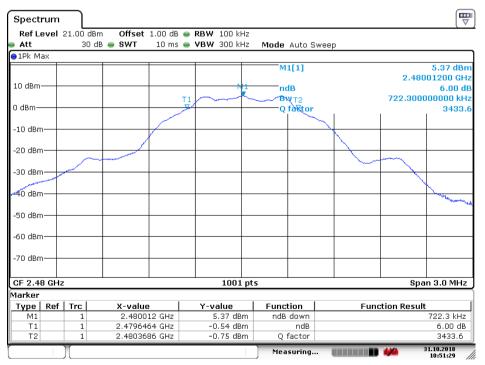

Report No.: HR20188000505

Page: 20 of 48

4.5.1.2 GFSK Middle Channel

Date: 31.0 CT.2018 10:54:16

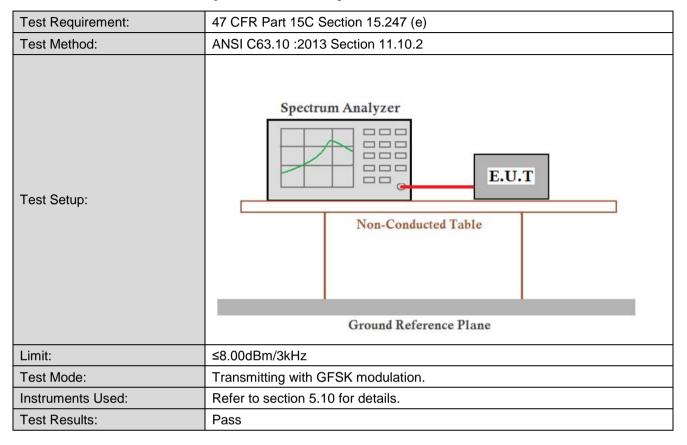

Date: 31.0 CT.2018 10:52:25


Report No.: HR20188000505

Page: 21 of 48

4.5.1.3 GFSK _Highest Channel

Date: 31.0 CT.2018 10:54:40

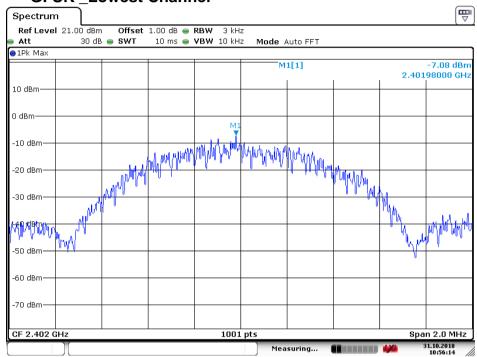

Date: 31.0 CT.2018 10:51:29

Report No.: HR20188000505

Page: 22 of 48

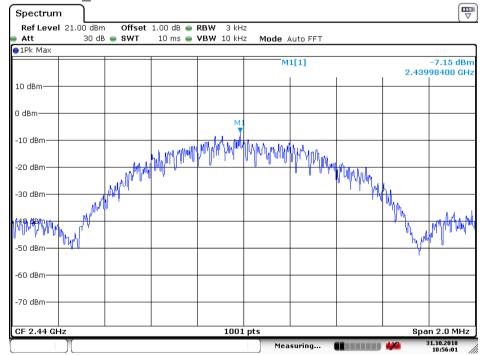
4.6 Power Spectral Density

Mode	Test Channel	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)	Result
	Lowest	-7.08	≤8.00	Pass
GFSK	Middle	-7.15	≤8.00	Pass
	Highest	-8.27	≤8.00	Pass



Report No.: HR20188000505

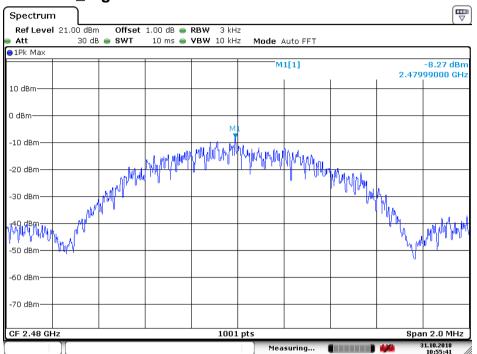
Page: 23 of 48


4.6.1 Test plots

4.6.1.1 GFSK Lowest Channel

Date: 31.0 CT.2018 10:56:15

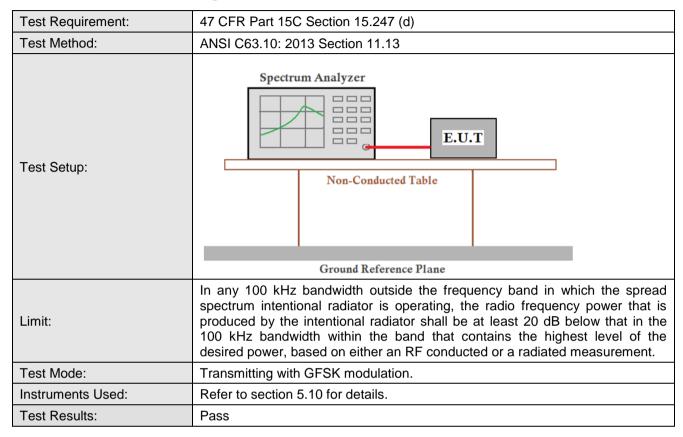
4.6.1.2 GFSK Middle Channel


Date: 31.0 CT.2018 10:56:02

Report No.: HR20188000505

Page: 24 of 48

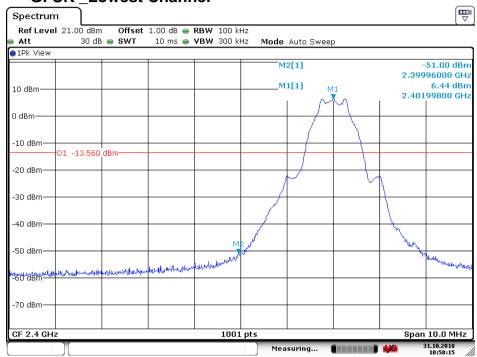
4.6.1.3 GFSK _Highest Channel


Date: 31 OCT 2018 10:55:42

Report No.: HR20188000505

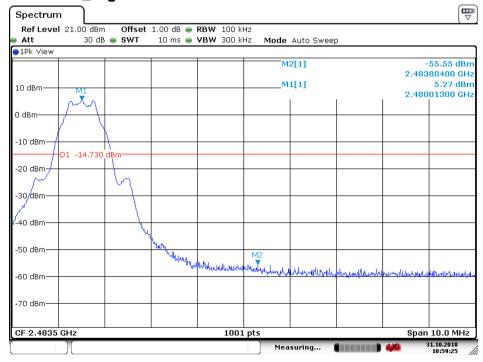
Page: 25 of 48

4.7 Band-edge for RF Conducted Emissions



Report No.: HR20188000505

Page: 26 of 48


4.7.1 Test plots

4.7.1.1 GFSK Lowest Channel

Date: 31.0 CT.2018 10:58:15

4.7.1.2 GFSK _Highest Channel

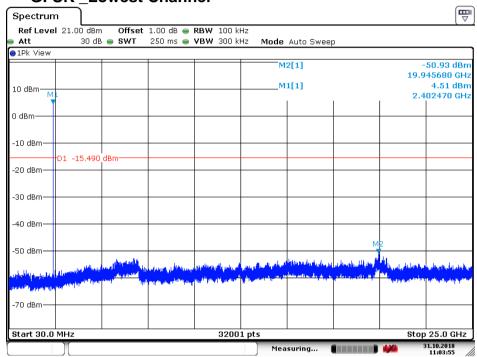
Date: 31.0 CT.2018 10:59:26

Report No.: HR20188000505

Page: 27 of 48

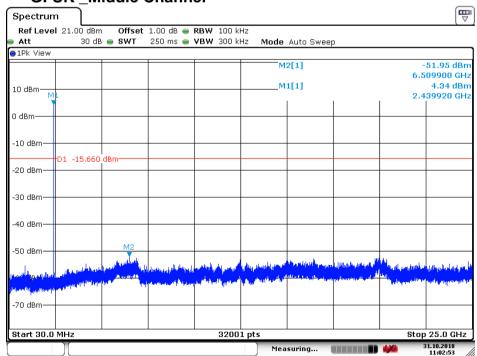
4.8 Spurious RF Conducted Emissions

Test Requirement:	47 CFR Part 15C Section 15.247 (d)	
Test Method:	ANSI C63.10: 2013 Section 11.11	
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.	
Test Mode:	Transmitting with GFSK modulation.	
Instruments Used:	Refer to section 5.10 for details.	
Test Results:	Pass	



Report No.: HR20188000505

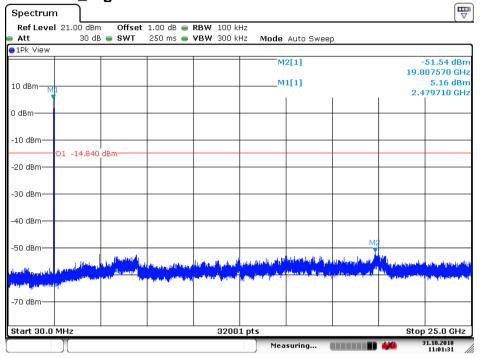
Page: 28 of 48


4.8.1 Test plots:

4.8.1.1 GFSK Lowest Channel

Date: 31.0 CT.2018 11:03:55

4.8.1.2 GFSK Middle Channel


Date: 31.0 CT.2018 11:02:53

Report No.: HR20188000505

Page: 29 of 48

4.8.1.3 GFSK _Highest Channel

Date: 31.0 CT.2018 11:01:31

Remark:

Scan from 9kHz to 25GHz, the disturbance between 9KHz to 30MHz was very low, and the above harmonics were the highest point could be found when testing, The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

Report No.: HR20188000505

Page: 30 of 48

4.9 Radiated Spurious Emission

Test Requirement:	47 CFR Part 15C Section 15.209 and 15.205					
Test Method:	ANSI C63.10 :2013 Sec	tion 11.12				
Test Site:	Measurement Distance:	Measurement Distance: 3m or 10m (Semi-Anechoic Chamber)				
	Frequency	Detector	RBW	VBW	Remark	
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
Possiver Setup	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	
Receiver Setup:	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	30MHz-1GHz	Quasi-peak	100 kHz	300kHz	Quasi-peak	
	Above 1GHz	Peak	1MHz	3MHz	Peak	
	Above 1GHZ	Peak	1MHz	10Hz	Average	
	Frequency	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)	
	0.009MHz-0.490MHz	2400/F(kHz)	-	-	300	
	0.490MHz-1.705MHz	24000/F(kHz)	-	-	30	
	1.705MHz-30MHz	30	-	-	30	
	30MHz-88MHz	100	40.0	Quasi-peak	3	
Limit:	88MHz-216MHz	150	43.5	Quasi-peak	3	
	216MHz-960MHz	200	46.0	Quasi-peak	3	
	960MHz-1GHz	500	54.0	Quasi-peak	3	
	Above 1GHz	500	54.0	Average	3	
	Remark: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.					

Report No.: HR20188000505

Page: 31 of 48

Test Setup: Antenna Tower Antenna Tower Ground Reference Plane Test Receiver Test Receiver

Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

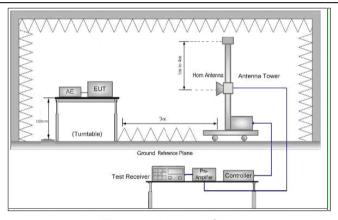


Figure 3. Above 1 GHz

- a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the

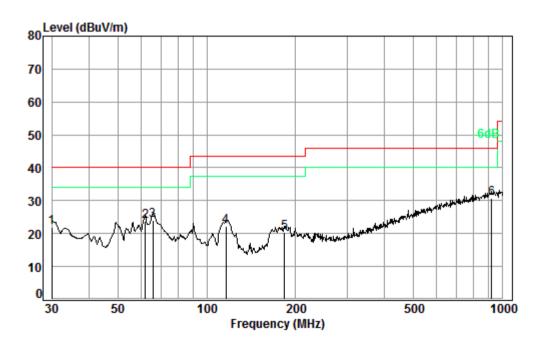
Test Procedure:

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility to its Client and this document does not exonerate parties to a transaction form exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) are retained for 30 days only.

Report No.: HR20188000505

Page: 32 of 48

	EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.		
	h. Test the EUT in the lowest channel (2402MHz),the middle channel (2440MHz),the Highest channel (2480MHz)		
	i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.		
	j. Repeat above procedures until all frequencies measured was complete.		
Exploratory Test Mode:	Transmitting with GFSK modulation.		
Exploratory rest wode.	Charge + Transmitting mode.		
	Transmitting with GFSK modulation.		
Final Test Mode:	Pretest the EUT at Charge + Transmitting mode,		
Tillal Test Mode.	For below 1GHz part, through pre-scan, the worst case is the lowest channel. Only the worst case is recorded in the report.		
Instruments Used:	Refer to section 5.10 for details.		
Test Results:	Pass		



Report No.: HR20188000505

Page: 33 of 48

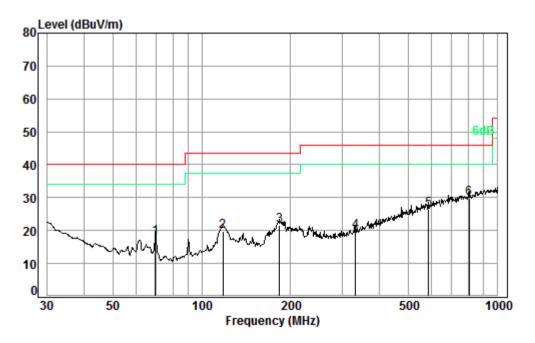
4.9.1 Radiated Emission below 1GHz

30MHz~1GHz (QP)		
Test mode:	Charge + Transmitting	Vertical

Condition: 3m VERTICAL

Job No. : 80005

Test mode: c


	Freq			Preamp Factor				
-	MHz	dB	dB/m	——dB	dBuV	dBuV/m	dBuV/m	dB
1	30.00	0.60	22.50	27.67	26.35	21.78	40.00	-18.22
2	62.00	0.80	13.12	27.55	37.36	23.73	40.00	-16.27
3	65.80	0.80	12.96	27.54	37.83	24.05	40.00	-15.95
4	116.13	1.24	13.26	27.51	35.17	22.16	43.50	-21.34
5	183.20	1.37	16.00	27.53	30.42	20.26	43.50	-23.24
6 pp	919.29	3.62	29.90	27.02	24.36	30.86	46.00	-15.14

Report No.: HR20188000505

Page: 34 of 48

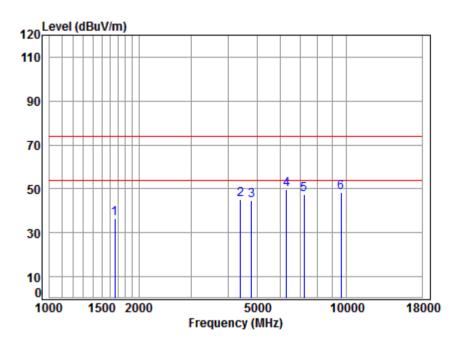
Test mode: Charge + Transmitting Horizontal

Condition: 3m HORIZONTAL

Job No. : 80005

Test mode: c

		Cable		Ant Preamp		Read		0ver
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1	69.84	0.80	12.81	27.53	31.72	17.80	40.00	-22.20
2	118.19	1.25	13.18	27.51	32.91	19.83	43.50	-23.67
3	183.20	1.37	16.00	27.53	31.67	21.51	43.50	-21.99
4	331.35	2.00	20.57	27.61	24.73	19.69	46.00	-26.31
5	584.79	2.69	26.32	27.73	25.22	26.50	46.00	-19.50
6 рр	801.79	3.21	28.52	27.41	25.48	29.80	46.00	-16.20



Report No.: HR20188000505

Page: 35 of 48

4.9.2 Transmitter Emission above 1GHz

Test mode: GFSK Test channel: Lowest Remark: Peak Ver

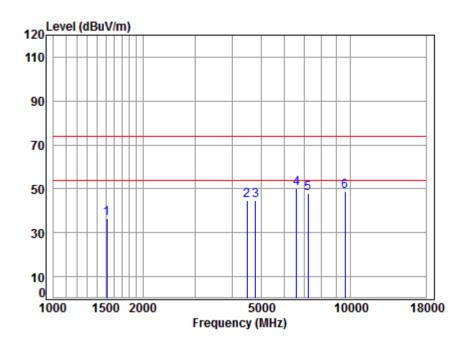
Site : chamber

Condition: 3m VERTICAL

Job No : 80005

Mode : 2402 TX RSE

Note : BLE


		_								
		Cable	Ant	Preamp	Read		Limit	0ver		
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark	
										_
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1	1663.137	5.27	26.52	40.81	45.68	36.66	74.00	-37.34	peak	
2	4405.090	7.46	33.44	43.20	47.52	45.22	74.00	-28.78	peak	
3	4804.000	7.89	33.97	43.61	46.65	44.90	74.00	-29.10	peak	
4	6303.890	11.17	35.41	42.57	45.92	49.93	74.00	-24.07	peak	
5	7206.000	10.08	36.07	41.86	43.04	47.33	74.00	-26.67	peak	
6	9608.000	10.75	37.67	38.43	38.42	48.41	74.00	-25.59	peak	

Report No.: HR20188000505

Page: 36 of 48

Test mode: GFSK Test channel: Lowest Remark: Peak Horizontal

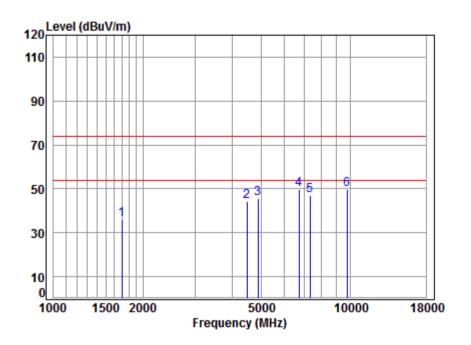
Site : chamber

Condition: 3m HORIZONTAL

Job No : 80005

Mode : 2402 TX RSE

Note : BLE


		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1511.833	5.46	25.85	40.71	45.74	36.34	74.00	-37.66	peak
2	4495.125	7.55	33.59	43.30	47.06	44.90	74.00	-29.10	peak
3	4804.000	7.89	33.97	43.61	46.49	44.74	74.00	-29.26	peak
4	6602.265	11.24	35.66	42.32	45.71	50.29	74.00	-23.71	peak
5	7206.000	10.08	36.07	41.86	43.41	47.70	74.00	-26.30	peak
6	9608.000	10.75	37.67	38.43	38.84	48.83	74.00	-25.17	peak

Report No.: HR20188000505

Page: 37 of 48

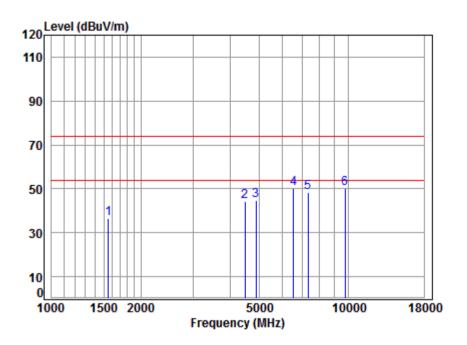
Test mode: GFSK Test channel: Middle Remark: Peak Vertical

Site : chamber

Condition: 3m VERTICAL

Job No : 80005

Mode : 2440 TX RSE


		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1702.042	5.23	26.68	40.83	45.14	36.22	/4.00	-3/./8	peak
2	4495.125	7.55	33.59	43.30	46.29	44.13	74.00	-29.87	peak
3	4880.000	7.97	34.06	43.69	47.43	45.77	74.00	-28.23	peak
4	6717.762	10.91	35.73	42.23	45.38	49.79	74.00	-24.21	peak
5	7320.000	10.05	36.16	41.77	42.69	47.13	74.00	-26.87	peak
6	9760.000	10.82	37.76	38.18	39.26	49.66	74.00	-24.34	peak

Report No.: HR20188000505

Page: 38 of 48

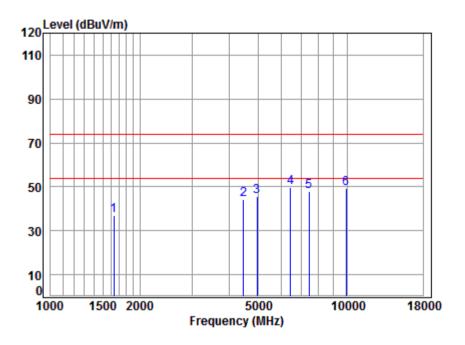
Test mode: GFSK Test channel: Middle Remark: Peak Horizontal

Site : chamber

Condition: 3m HORIZONTAL

Job No : 80005

Mode : 2440 TX RSE


		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1556.169	5.41	26.06	40.74	45.61	36.34	74.00	-37.66	peak
2	4482.150	7.54	33.57	43.29	46.47	44.29	74.00	-29.71	peak
3	4880.000	7.97	34.06	43.69	46.59	44.93	74.00	-29.07	peak
4	6545.263	11.41	35.63	42.37	45.45	50.12	74.00	-23.88	peak
5	7320.000	10.05	36.16	41.77	43.86	48.30	74.00	-25.70	peak
6	9760.000	10.82	37.76	38.18	39.78	50.18	74.00	-23.82	peak

Report No.: HR20188000505

Page: 39 of 48

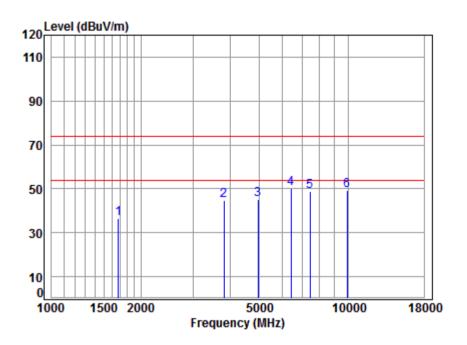
Test mode: GFSK Test channel: Highest Remark: Peak Vertical

Site : chamber

Condition: 3m VERTICAL

Job No : 80005

Mode : 2480 TX RSE


		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1634.543	5.31	26.40	40.79	46.19	37.11	74.00	-36.89	peak
2	4469.214								•
3	4960.000								•
4	6451.353	11.45	35.55	42.44	45.02	49.58	74.00	-24.42	peak
5	7440.000	10.02	36.25	41.69	43.46	48.04	74.00	-25.96	peak
6	9920.000	10.90	37.85	37.93	38.26	49.08	74.00	-24.92	peak

Report No.: HR20188000505

Page: 40 of 48

Test mode: GFSK Test channel: Highest Remark: Peak Horizontal

Site : chamber

Condition: 3m HORIZONTAL

Job No : 80005

Mode : 2480 TX RSE

		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
_	4677 604		06.50		45.35	26.26	74.00		
1	1677.621	5.25	26.58	40.82	45.35	36.36	/4.00	-3/.64	peak
2	3812.336	6.79	32.34	42.53	48.03	44.63	74.00	-29.37	peak
3	4960.000	8.05	34.15	43.76	46.80	45.24	74.00	-28.76	peak
4	6414.167	11.38	35.52	42.48	45.98	50.40	74.00	-23.60	peak
5	7440.000	10.02	36.25	41.69	44.30	48.88	74.00	-25.12	peak
6	9920.000	10.90	37.85	37.93	38.54	49.36	74.00	-24.64	peak

Report No.: HR20188000505

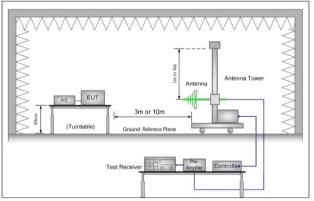
Page: 41 of 48

Remark:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

- 2) Scan from 9kHz to 25GHz, the disturbance between 9KHz to 30MHz was very low, and the above harmonics were the highest point could be found when testing, The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3) As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.
- 4) All Modes have been tested, but only the worst case data displayed in this report.


Report No.: HR20188000505

Page: 42 of 48

4.10 Restricted bands around fundamental frequency

Test Requirement:	47 CFR Part 15C Section	n 15.209 and 15.205		
Test Method:	ANSI C63.10: 2013 Sec	tion 11.12		
Test Site:	Measurement Distance:	3m or 10m (Semi-Anechoic	Chamber)	
	Frequency	Limit (dBuV/m @3m)	Remark	
	30MHz-88MHz	40.0	Quasi-peak Value	
	88MHz-216MHz	43.5	Quasi-peak Value	
Limit:	216MHz-960MHz	46.0	Quasi-peak Value	
	960MHz-1GHz	54.0	Quasi-peak Value	
	Above 1GHz	54.0	Average Value	
	Above IGHZ	74.0	Peak Value	
Test Setup:		•	•	

Test Setup:

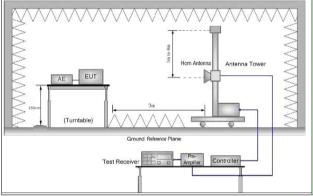


Figure 1. 30MHz to 1GHz

Figure 2. Above 1 GHz

- a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

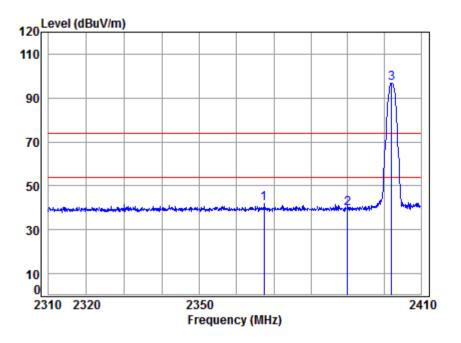
Test Procedure:

- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands. Save the spectrum analyzer plot. Repeat for each power and modulation for lowest and highest channel
- h. Test the EUT in the lowest channel, the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- . Repeat above procedures until all frequencies measured was complete.

Report No.: HR20188000505

Page: 43 of 48

Exploratory Test Mode:	Transmitting with GFSK modulation. Charge + Transmitting mode.
Final Test Mode:	Transmitting with GFSK modulation. Pretest the EUT at Charge + Transmitting mode. Only the worst case is recorded in the report.
Instruments Used:	Refer to section 5.10 for details.
Test Results:	Pass


Test plot as follows:

Report No.: HR20188000505

Page: 44 of 48

Worse case mode: **GFSK** Test channel: Remark: Peak Vertical Lowest

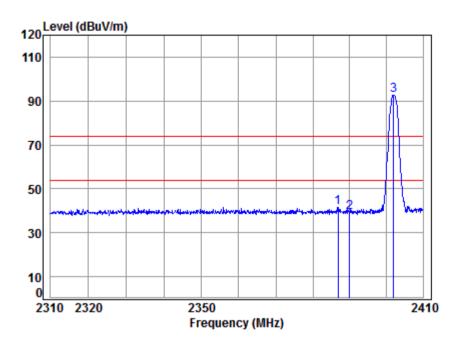
Site : chamber

Condition: 3m VERTICAL

: 80005 Job No

: 2402 Band edge Mode

Note : BLE


	Freq				Read Level				Remark
-	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
	2367.383								•
	2390.000 2402.000								•

Report No.: HR20188000505

Page: 45 of 48

Worse case mode: GFSK Test channel: Lowest Remark: Peak Horizontal

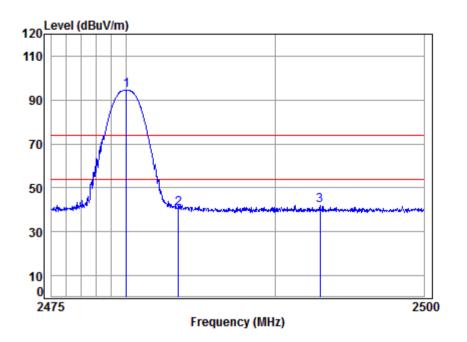
Site : chamber

Condition: 3m HORIZONTAL

Job No : 80005

Mode : 2402 Band edge

Note : BLE


		_							
	Freq			Preamp Factor					Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
	2386.826	5.47	28.51	41.17	48.60	41.41	74.00	-32.59	peak
2	2390.000	5.47	28.52	41.17	46.45	39.27	74.00	-34.73	peak
*	2/02 000	5 //9	28 5/	/11 12	99 68	92 53	7/ 00	18 53	neak

Report No.: HR20188000505

Page: 46 of 48

Worse case mode: GFSK Test channel: Highest Remark: Peak Vertical

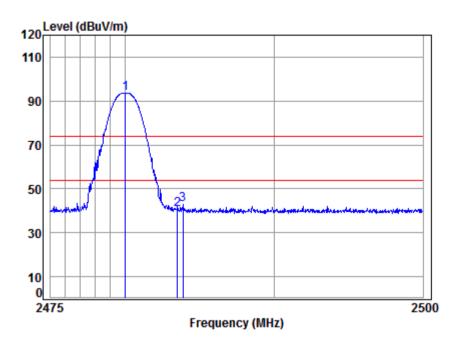
Site : chamber

Condition: 3m VERTICAL

Job No : 80005

Mode : 2480 Band edge

Note : BLE


_		_								
		Cable	Ant	Preamp	Read		Limit	0ver		
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark	
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
*	2480.000	5.59	28.67	41.21	101.36	94.41	74.00	20.41	peak	
	2483.500	5.60	28.67	41.21	47.68	40.74	74.00	-33.26	peak	
	2493 000	5 61	28 69	41 21	48 71	41 80	74 99	-32 20	neak	

Report No.: HR20188000505

Page: 47 of 48

Worse case mode: GFSK Test channel: Highest Remark: Peak Horizontal

Site : chamber

Condition: 3m HORIZONTAL

Job No : 80005

Mode : 2480 Band edge

Note : BLE

_		_								
					Read					
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark	
-	MII-					JD. 377-	JD. 377-			_
	MHZ	ав	ab/m	ав	dBuV	abuv/m	abuv/m	ав		
*	2480.000	5.59	28.67	41.21	100.49	93.54	74.00	19.54	peak	
	2483.500	5.60	28.67	41.21	47.58	40.64	74.00	-33.36	peak	
	2483 846	5 60	28 67	/11 21	19 66	12 72	7/ 00	_31 28	neak	

Report No.: HR20188000505

Page: 48 of 48

Remark:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor All Modes have been tested, but only the worst case data displayed in this report.

5 Photographs - EUT Constructional Details

Refer to Appendix A - Photographs of EUT Constructional Details for HR201880005.

The End