

APPLICATION CERTIFICATION FCC Part 15C On Behalf of SES-imagotag Deutschland GmbH

Sub-GHz AP module for Lancom Model No.: LANCOM AP MODULE

FCC ID: 2APO5-LANCOM

Prepared for	:	SES-imagotag Deutschland GmbH
Address	:	Bundesstraße 16, D-77955 Ettenheim Germany
Prepared by Address	:	Shenzhen Accurate Technology Co., Ltd. 1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China
		Tel: (0755) 26503290

Fax: (0755) 26503396

Report No.	:	ATE20180285
Date of Test	:	Nov. 15-Nov. 17, 2017
Date of Report	:	March 5, 2018

TABLE OF CONTENTS

Description

Page

1.	GI	ENERAL INFORMATION	5
	1.1.	Description of Device (EUT)	
	1.2.	Accessory and Auxiliary Equipment	
	1.3.	Carrier Frequency of Channels	
	1.4.	Description of Test Facility	7
	1.5.	Measurement Uncertainty	7
2.	M	EASURING DEVICE AND TEST EQUIPMENT	8
3.	OI	PERATION OF EUT DURING TESTING	9
	3.1.	Operating Mode	9
	3.2.	Configuration and peripherals	
4.		EST PROCEDURES AND RESULTS	
5.		OWER LINE CONDUCTED MEASUREMENT	
	5.1.	Block Diagram of Test Setup	
	5.2.	Power Line Conducted Emission Measurement Limits	
	5.3.	Configuration of EUT on Measurement	
	5.4.	Operating Condition of EUT	
	5.5.	Test Procedure	
	5.6.	Data Sample	
	5.7.	Power Line Conducted Emission Measurement Results	
6.	20	DB BANDWIDTH TEST	
	6.1.	Block Diagram of Test Setup	
	6.2.	The Requirement For Section 15.247(a)(1)	
	6.3.	EUT Configuration on Measurement	
	6.4.	Operating Condition of EUT	
	6.5.	Test Procedure	
	6.6.	Test Result	19
7.	CA	ARRIER FREQUENCY SEPARATION TEST	21
	7.1.	Block Diagram of Test Setup	21
	7.2.	The Requirement For Section 15.247(a)(1)	
	7.3.	EUT Configuration on Measurement	21
	7.4.	Operating Condition of EUT	
	7.5.	Test Procedure	
	7.6.	Test Result	22
8.	NU	UMBER OF HOPPING FREQUENCY TEST	25
	8.1.	Block Diagram of Test Setup	
	8.2.	Limit	
	8.3.	EUT Configuration on Measurement	
	8.4.	Operating Condition of EUT	
	8.5.	Test Procedure	
	8.6.	Test Result	
9.	DV	WELL TIME TEST	
	9.1.	Block Diagram of Test Setup	27
	9.2.	Limit	27

9.3.	EUT Configuration on Measurement	27
9.4.	Operating Condition of EUT	27
9.5.	Test Procedure	
9.6.	Photos of Dwell time Measurement	
9.7.	Test Result	
10. MA	XIMUM PEAK OUTPUT POWER TEST	
10.1.	Block Diagram of Test Setup	
10.2.	Limit	
10.3.	EUT Configuration on Measurement	
10.4.	Operating Condition of EUT	
10.5.	Test Procedure	
10.6.	Test Result	
11. RA	DIATED EMISSION TEST	
11.1.	Block Diagram of Test Setup	
11.2.	The Limit For Section 15.247(d)	
11.3.	Restricted bands of operation	
11.4.	Configuration of EUT on Measurement	
11.5.	Operating Condition of EUT	
11.6.	Test Procedure	
11.7.	Data Sample	
11.8.	The Field Strength of Radiation Emission Measurement Results	
12. BA	ND EDGE COMPLIANCE TEST	50
12.1.	Block Diagram of Test Setup	
12.2.	The Requirement For Section 15.247(d)	
12.3.	EUT Configuration on Measurement	
12.4.	Operating Condition of EUT	
12.5.	Test Procedure	51
12.6.	Test Result	51
13. AN	TENNA REQUIREMENT	59
13.1.	The Requirement	
13.2.	Antenna Construction	
14. PH	OTOS	60

Test Report Certification

Applicant	:	SES-imagotag Deutschland GmbH
Manufacturer	:	SES-imagotag Deutschland GmbH
EUT Description	:	Sub-GHz AP module for Lancom
Model No.	:	LANCOM AP MODULE
Trade Mark	:	N/A

Measurement Procedure Used:

FCC Rules and Regulations Part 15 Subpart C Section 15.247 ANSI C63.10: 2013

The device described above is tested by Shenzhen Accurate Technology Co., Ltd. to determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC Part 15 Subpart C Section 15.247 limits. The measurement results are contained in this test report and Shenzhen Accurate Technology Co., Ltd. is assumed full responsibility for the accuracy and completeness of these measurements. Also, this report shows that the Equipment Under Test (EUT) is to be technically compliant with the FCC requirements.

This report applies to above tested sample only. This report shall not be reproduced in part without written approval of Shenzhen Accurate Technology Co., Ltd.

Date of Test :	Nov. 15-Nov. 17, 2017
Date of Report :	March 5, 2018
Prepared by :	Star Yang
Approved & Authorized Signer :	(St APPROVED 5

(Sean Liu, Manager)

1. GENERAL INFORMATION

1.1. Description of Device (EUT)

EUT	:	Sub-GHz AP module for Lancom
Model Number	:	LANCOM AP MODULE
Frequency Range	:	902.75-927.25MHz
Number of Channels	:	99
Antenna Gain	:	0dBi
Antenna type	:	External Antenna
Power Supply	:	DC 3.3V
Modulation mode	:	GFSK
Applicant Address	:	SES-imagotag Deutschland GmbH Bundesstraße 16, D-77955 Ettenheim Germany
Manufacuter Address	:	SES-imagotag Deutschland GmbH Bundesstraße 16, D-77955 Ettenheim Germany

1.2. Accessory and Auxiliary Equipment

AC/DC Power Adapter	:	Model:TEKA006-0501000UKU
(provided by laboratory)		Input: 100-240V~50/60Hz 0.3A
		Output: DC 5V/1A

Base board : (provided by manufacturer)

1.3. Carrier	Frequency	of Channels
--------------	-----------	-------------

Channel	Freq (MHz)	Channel	Freq (MHz)	Channel	Freq (MHz)
1	902,750	35	911,250	69	919,750
2	903,000	36	911,500	70	920,000
3	903,250	37	911,750	71	920,250
4	903,500	38	912,000	72	920,500
5	903,750	39	912,250	73	920,750
6	904,000	40	912,500	74	921,000
7	904,250	41	912,750	75	921,250
8	904,500	42	913,000	76	921,500
9	904,750	43	913,250	77	921,750
10	905,000	44	913,500	78	922,000
11	905,250	45	913,750	79	922,250
12	905,500	46	914,000	80	922,500
13	905,750	47	914,250	81	922,750
14	906,000	48	914,500	82	923,000
15	906,250	49	914,750	83	923,250
16	906,500	50	915,000	84	923,500
17	906,750	51	915,250	85	923,750
18	907,000	52	915,500	86	924,000
19	907,250	53	915,750	87	924,250
20	907,500	54	916,000	88	924,500
21	907,750	55	916,250	89	924,750
22	908,000	56	916,500	90	925,000
23	908,250	57	916,750	91	925,250
24	908,500	58	917,000	92	925,500
25	908,750	59	917,250	93	925,750
26	909,000	60	917,500	94	926,000
27	909,250	61	917,750	95	926,250
28	909,500	62	918,000	96	926,500
29	909,750	63	918,250	97	926,750
30	910,000	64	918,500	98	927,000
31	910,250	65	918,750	99	927,250
32	910,500	66	919,000		
33	910,750	67	919,250		
34	911,000	68	919,500		

1.4. Description of Test Facility

EMC Lab	:	Recognition of accreditation by Federal Communications Commission (FCC) The Designation Number is CN1189 The Registration Number is 708358
		Listed by Innovation, Science and Economic Development Canada (ISEDC) The Registration Number is 5077A-2
		Accredited by China National Accreditation Service for Conformity Assessment (CNAS) The Registration Number is CNAS L3193
		Accredited by American Association for Laboratory Accreditation (A2LA) The Certificate Number is 4297.01
Name of Firm Site Location	:	Shenzhen Accurate Technology Co., Ltd. 1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China

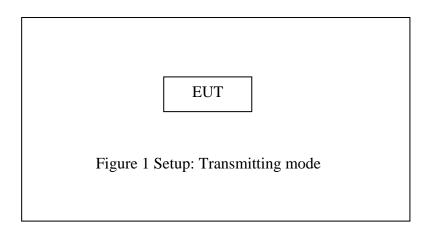
1.5. Measurement Uncertainty

Conducted Emission Expanded Uncertainty	=	2.23dB, k=2
Radiated emission expanded uncertainty (9kHz-30MHz)	=	3.08dB, k=2
Radiated emission expanded uncertainty (30MHz-1000MHz)	=	4.42dB, k=2
Radiated emission expanded uncertainty (Above 1GHz)	=	4.06dB, k=2

2. MEASURING DEVICE AND TEST EQUIPMENT

Table 1: List of Test and Measurement Equipment

Kind of equipment	Manufacturer	Туре	S/N	Calibrated dates	Calibrated until
EMI Test Receiver	Rohde&Schwarz	ESCS30	100307	Jan. 07, 2017	Jan. 06, 2018
EMI Test Receiver	Rohde&Schwarz	ESPI3	101526/003	Jan. 07, 2017	Jan. 06, 2018
Spectrum Analyzer	Agilent	E7405A	MY45115511	Jan. 07, 2017	Jan. 06, 2018
Pre-Amplifier	Rohde&Schwarz	CBLU118354 0-01	3791	Jan. 07, 2017	Jan. 06, 2018
Loop Antenna	Schwarzbeck	FMZB1516	1516131	Jan. 13, 2017	Jan. 12, 2018
Bilog Antenna	Schwarzbeck	VULB9163	9163-323	Jan. 13, 2017	Jan. 12, 2018
Horn Antenna	Schwarzbeck	BBHA9120D	9120D-655	Jan. 13, 2017	Jan. 12, 2018
Horn Antenna	Schwarzbeck	BBHA9170	9170-359	Jan. 13, 2017	Jan. 12, 2018
LISN	Rohde&Schwarz	ESH3-Z5	100305	Jan. 07, 2017	Jan. 06, 2018
LISN	Schwarzbeck	NSLK8126	8126431	Jan. 07, 2017	Jan. 06, 2018
Highpass Filter	Wainwright Instruments	WHKX3.6/18 G-10SS	N/A	Jan. 07, 2017	Jan. 06, 2018
Band Reject Filter	Wainwright Instruments	WRCG2400/2 485-2375/2510 -60/11SS	N/A	Jan. 07, 2017	Jan. 06, 2018



3. OPERATION OF EUT DURING TESTING

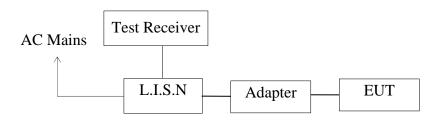
3.1.Operating Mode

The mode is used: Transmitting mode Low Channel: 902.75MHz Middle Channel: 915MHz High Channel: 927.25MHz Hopping Note:The wireless has been tested under continuous transmission mode

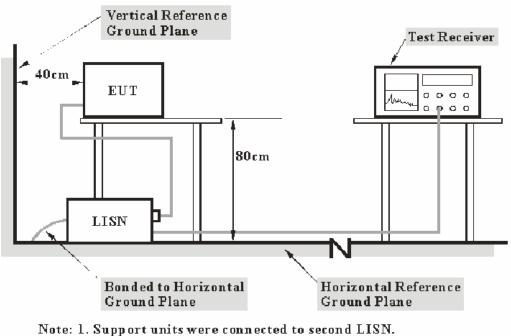
3.2. Configuration and peripherals

(EUT: Sub-GHz AP module for Lancom)

4. TEST PROCEDURES AND RESULTS


FCC Rules	Description of Test	Result
Section 15.207	Conducted Emission Test	Compliant
Section 15.247(a)(1)	20dB Bandwidth Test	Compliant
Section 15.247(a)(1)	Carrier Frequency Separation Test	Compliant
Section 15.247(a)(1)(iii)	Number Of Hopping Frequency Test	Compliant
Section 15.247(a)(1)(iii)	Dwell Time Test	Compliant
Section 15.247(b)(1)	Maximum Peak Output Power Test	Compliant
Section 15.247(d) Section 15.209	Radiated Emission Test	Compliant
Section 15.247(d)	Band Edge Compliance Test	Compliant
Section 15.203	Antenna Requirement	Compliant

5. POWER LINE CONDUCTED MEASUREMENT


5.1.Block Diagram of Test Setup

5.1.1. Block diagram of connection between the EUT and simulators

(EUT: Sub-GHz AP module for Lancom)

5.1.2. Test System Setup

Both of LISNs (AMIN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

Frequency	Limit dB(µV)				
(MHz)	Quasi-peak Level	Average Level			
0.15 - 0.50	66.0 - 56.0 *	56.0 - 46.0 *			
0.50 - 5.00	56.0	46.0			
5.00 - 30.00	60.0	50.0			
NOTE1: The lower limit sh	all apply at the transition freque	ncies.			
NOTE2: The limit decrease	s linearly with the logarithm of	the frequency in the range			
0.15MHz to 0.50	MHz.				

5.2. Power Line Conducted Emission Measurement Limits

5.3.Configuration of EUT on Measurement

The following equipments are installed on Power Line Conducted Emission Measurement to meet the commission requirement and operating regulations in a manner, which tends to maximize its emission characteristics in a normal application.

5.4. Operating Condition of EUT

5.4.1. Setup the EUT and simulator as shown as Section 5.1.

5.4.2. Turn on the power of all equipment.

5.4.3. Let the EUT work in test mode and measure it.

5.5.Test Procedure

The EUT is put on the plane 0.8m high above the ground by insulating support and is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 500hm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC lines are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to ANSI C63.10 on Conducted Emission Measurement.

The bandwidth of test receiver (R & S ESCS30) is set at 9kHz.

The frequency range from 150kHz to 30MHz is checked.

5.6.Data Sample

Frequency	Transducer	QuasiPeak	Average	QuasiPeak	Average	QuasiPeak	Average	Remark
(MHz)	value	Level	Level	Limit	Limit	Margin	Margin	(Pass/Fail)
	(dB)	(dBµV)	(dBµV)	(dBµV)	(dBµV)	(dB)	(dB)	
X.XX	10.5	51.1	34.2	56.0	46.0	4.9	11.8	Pass

$$\label{eq:Frequency} \begin{split} & Frequency(MHz) = Emission \ frequency \ in \ MHz \\ & Transducer \ value(dB) = Insertion \ loss \ of \ LISN + Cable \ Loss \\ & Level(dB\mu V) = Quasi-peak \ Reading/Average \ Reading + Transducer \ value \\ & Limit \ (dB\mu V) = Limit \ stated \ in \ standard \\ & Margin = Limit \ (dB\mu V) - Level \ (dB\mu V) \end{split}$$

Calculation Formula: Margin = Limit ($dB\mu V$) - Level ($dB\mu V$)

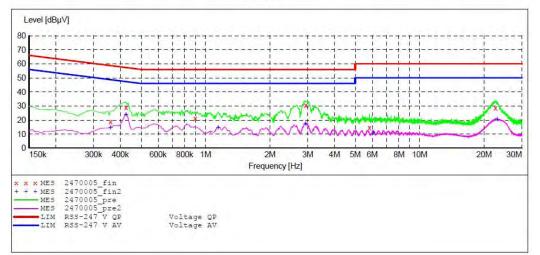
5.7.Power Line Conducted Emission Measurement Results **PASS.**

The frequency range from 150kHz to 30MHz is checked.

Maximizing procedure was performed on the six (6) highest emissions of the EUT. Emissions attenuated more than 20 dB below the permissible value are not reported.

All data was recorded in the Quasi-peak and average detection mode.

The spectral diagrams are attached as below.



CONDUCTED EMISSION STANDARD FCC PART 15C

EUT:	Sub-GHz AP module for Lancom	M/N:LANCOM AP Module	
Manufacturer:	SES-imagotag Deutschland GmbH		
Operating Condition:	TX Communication		
Test Site:	1#Shielding Room		
Operator:	star		
Test Specification:	N 120V/60Hz		
Comment:	Report No.:ATE20180285		
Start of Test:	11/17/2017 / 5:17:19PM		

SCAN TABLE: "V 9K-30MHz fin"

Chaut	cription:	Ch	Deterter	16	IF	Transducer
Start	Stop	Step	Detector	Meas.	11	Transducer
Frequency	Frequency	Width		Time	Bandw.	
9.0 kHz	150.0 kHz	100.0 Hz	QuasiPeak	1.0 s	200 Hz	NSLK8126 2008
			Average			
150.0 kHz	30.0 MHz	5.0 kHz	QuasiPeak	1.0 s	9 kHz	NSLK8126 2008
			Average			

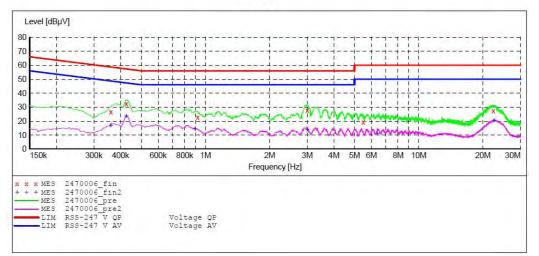
MEASUREMENT RESULT: "2470005 fin"

1	1/17/2017 5:	20PM						
	Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
	0.360000	18.80	10.6	59	39.9	QP	N	GND
	0.425000	28.80	10.7	57	28.5	QP	N	GND
	0.895000	21.20	10.8	56	34.8	QP	N	GND
	2.940000	30.50	11.1	56	25.5	QP	N	GND
	5.830000	14.60	11.2	60	45.4	QP	N	GND
	22.585000	28.70	11.4	60	31.3	QP	N	GND

MEASUREMENT RESULT: "2470005_fin2"

1	./17/2017 5:	20PM						
	Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
	0.360000	14.50	10.6	49	34.2	AV	N	GND
	0.425000	24.00	10.7	47	23.3	AV	N	GND
	1.145000	14.40	10.9	46	31.6	AV	N	GND
	2.930000	17.30	11.1	46	28.7	AV	N	GND
	6.070000	10.70	11.2	50	39.3	AV	N	GND
	23.020000	20.20	11.4	50	29.8	AV	N	GND

1



CONDUCTED EMISSION STANDARD FCC PART 15C

EUT:	Sub-GHz AP module for Lancom	M/N:LANCOM AP Module
Manufacturer:	SES-imagotag Deutschland GmbH	
Operating Condition:	TX Communication	
Test Site:	1#Shielding Room	
Operator:	star	
Test Specification:	L 120V/60Hz	
Comment:	Report No.:ATE20180285	
Start of Test:	11/17/2017 / 5:21:20PM	

SCAN TABLE: "V 9K-30MHz fin"

Stop	Step	Detector	Meas.	IF	Transducer
Frequency	Width		Time	Bandw.	
150.0 kHz	100.0 Hz	~	1.0 s	200 Hz	NSLK8126 2008
30.0 MHz	5.0 kHz		1.0 s	9 kHz	NSLK8126 2008
	Frequency 150.0 kHz	Frequency Width 150.0 kHz 100.0 Hz	Frequency Width 150.0 kHz 100.0 Hz QuasiPeak Average	Frequency Width Time 150.0 kHz 100.0 Hz QuasiPeak 1.0 s Average	Frequency Width Time Bandw. 150.0 kHz 100.0 Hz QuasiPeak 1.0 s 200 Hz Average

MEASUREMENT RESULT: "2470006 fin"

Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.360000	26.60	10.6	59	32.1	QP	L1	GND
0.425000	32.60	10.7	57	24.7	QP	L1	GND
0.920000	22.50	10.8	56	33.5	QP	L1	GND
3.000000	27.70	11.1	56	28.3	QP	L1	GND
5.490000	19.40	11.2	60	40.6	QP	L1	GND
22.360000	27.30	11.4	60	32.7	QP	L1	GND

MEASUREMENT RESULT: "2470006 fin2"

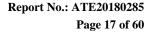
		-				
:24PM						
Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
16.80	10.6	49	31.9	AV	L1	GND
23.30	10.7	47	24.0	AV	L1	GND
14.10	10.8	46	31.9	AV	L1	GND
13.60	11.1	46	32.4	AV	L1	GND
11.10	11.2	50	38.9	AV	L1	GND
20.20	11.4	50	29.8	AV	L1	GND
	dBµV 16.80 23.30 14.10 13.60 11.10	Level Transd dBµV dB 16.80 10.6 23.30 10.7 14.10 10.8 13.60 11.1 11.10 11.2	Level Transd Limit dBµV dB dBµV 16.80 10.6 49 23.30 10.7 47 14.10 10.8 46 13.60 11.1 46 11.10 11.2 50	Level Transd dBµV Limit dBµV Margin dB 16.80 10.6 49 31.9 23.30 10.7 47 24.0 14.10 10.8 46 31.9 13.60 11.1 46 32.4 11.10 11.2 50 38.9	Level Transd Limit Margin Detector dBµV dB dBµV dB 16.80 10.6 49 31.9 AV 23.30 10.7 47 24.0 AV 14.10 10.8 46 31.9 AV 13.60 11.1 46 32.4 AV 11.10 11.2 50 38.9 AV	Level Transd Limit Margin Detector Line dBµV dB dBµV dB dB dB dB dB 16.80 10.6 49 31.9 AV L1 23.30 10.7 47 24.0 AV L1 14.10 10.8 46 31.9 AV L1 13.60 11.1 46 32.4 AV L1 11.10 11.2 50 38.9 AV L1

CONDUCTED EMISSION STANDARD FCC PART 15C

EUT:	Sub-GHz AP module for Lancom	M/N:LANCOM AP Module
Manufacturer:	SES-imagotag Deutschland GmbH	
Operating Condition:	TX Communication	
Test Site:	1#Shielding Room	
Operator:	star	
Test Specification:	L 240V/60Hz	
Comment:	Report No.: ATE20180285	
Start of Test:	11/17/2017 / 5:25:34PM	

SCAN TABLE: "V 9K-30MHz fin"

3	Start	Stop	Step	Detector	Meas.	TF	Transducer
		Frequency		Desessor	Time	Bandw.	TTANOGUOST
4	9.0 kHz	150.0 kHz	100.0 Hz	QuasiPeak Average	1.0 s	200 Hz	NSLK8126 2008
	150.0 kHz	30.0 MHz	5.0 kHz	QuasiPeak Average	1.0 s	9 kHz	NSLK8126 2008

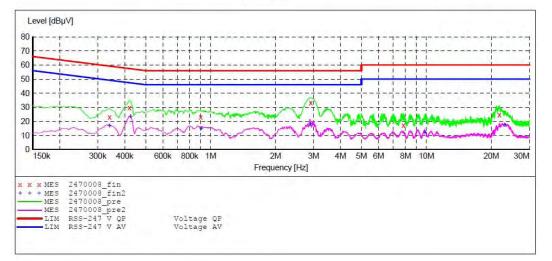


MEASUREMENT RESULT: "2470007_fin"

11/17/2017 5:	29PM							
Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE	
0.345000	28.70	10.6	59	30.4	QP	Ll	GND	
0.425000	34.40	10.7	57	22.9	QP	L1	GND	
0.890000	25.70	10.8	56	30.3	QP	L1	GND	
2.930000	31.40	11.1	56	24.6	QP	L1	GND	
8.420000	22.40	11.3	60	37.6	QP	L1	GND	
22.780000	22.60	11.4	60	37.4	QP	L1	GND	

MEASUREMENT RESULT: "2470007_fin2"

11/17/2017 5:	29PM							
Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE	
0.355000	19.10	10.6	49	29.7	AV	L1	GND	
0.430000	24.80	10.7	47	22.5	AV	L1	GND	
0.880000	16.90	10.8	46	29.1	AV	L1	GND	
2.920000	17.80	11.1	46	28.2	AV	L1	GND	
8.340000	15.90	11.3	50	34.1	AV	L1	GND	
22.825000	17.10	11.4	50	32.9	AV	L1	GND	



CONDUCTED EMISSION STANDARD FCC PART 15C

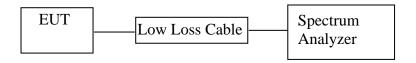
EUT:	Sub-GHz AP module for Lancom	M/N:LANCOM AP Module
Manufacturer:	SES-imagotag Deutschland GmbH	
Operating Condition:	TX Communication	
Test Site:	1#Shielding Room	
Operator:	star	
Test Specification:	N 240V/60Hz	
Comment:	Report No.:ATE20180285	
Start of Test:	11/17/2017 / 5:29:37PM	

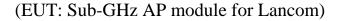
SCAN TABLE: "V 9K-30MHz fin"

Start	Stop	Step	Detector	Meas.	IF	Transducer
	Frequency			Time	Bandw.	
9.0 kHz	150.0 kHz	100.0 Hz	QuasiPeak Average	1.0 s	200 Hz	NSLK8126 2008
150.0 kHz	30.0 MHz	5.0 kHz		1.0 s	9 kHz	NSLK8126 2008

MEASUREMENT RESULT: "2470008_fin"

11/17/2017 5:38PM Level Transd Limit Margin Detector Line PE Frequency dBµV dBµV MHz dB dB 22.90 29.70 36.3 QP 27.7 QP 0.340000 10.6 59 Ν GND 0.420000 57 10.7 QP Ν GND QP QP 0.900000 22.90 10.8 56 33.1 Ν GND 11.0 22.6 2.910000 33.40 56 Ν GND QP QP 7.820000 17.30 60 Ν GND 21.775000 24.70 35.3 11.4 60 GND Ν


MEASUREMENT RESULT: "2470008 fin2"


11	/17/2017 5:	38PM		- - -					
-	Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE	
	0.340000	16.70	10.6	49	32.5	AV	N	GND	
	0.425000	23.30	10.7	47	24.0	AV	N	GND	
	0.905000	15.00	10.8	46	31.0	AV	N	GND	
	2.890000	18.00	11.0	46	28.0	AV	N	GND	
	9.830000	11.80	11.3	50	38.2	AV	N	GND	
	23.095000	17.20	11.4	50	32.8	AV	N	GND	

6. 20DB BANDWIDTH TEST

6.1.Block Diagram of Test Setup

6.2. The Requirement For Section 15.247(a)(1)

Section 15.247(a)(1): Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

6.3.EUT Configuration on Measurement

The equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

6.4. Operating Condition of EUT

- 6.4.1.Setup the EUT and simulator as shown as Section 6.1.
- 6.4.2.Turn on the power of all equipment.
- 6.4.3.Let the EUT work in TX (Hopping off) modes measure it. The transmit frequency are 902.75-927.25MHz. We select 902.75MHz, 915MHz, and 927.25MHz TX frequency to transmit.

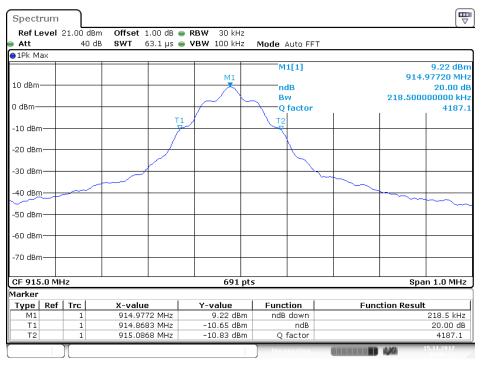
6.5.Test Procedure

- 6.5.1.The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 6.5.2.Set RBW of spectrum analyzer to 30 kHz and VBW to 100 kHz.
- 6.5.3.The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

6.6.Test Result

Channel	Frequency (MHz)	20dB Bandwidth (MHz)		
Low	902.75	0.221		
Middle	915.00	0.219		
High	927.25	0.223		

The spectrum analyzer plots are attached as below.


Specti	rum									
Ref Le	evel			1.00 dB 👄 I	RBW 30 kHz VBW 100 kHz		Auto FF	т		(
1Pk Ma	ax	40	JUB 3141	υσ.1 μs 👅 🤊	YDYY IUU KHZ	Moue	AULU FF	I		
20 dBm-						M	1[1]		002	9.45 dBn 72830 MH:
10 dBm-					M1	n B	dB			20.00 df 20.00 df 200000 kH
							factor			4077.
0 dBm—				Т1 ,		Т				
-10 dBm	-			-		Ŕ				
-20 dBm	-						\land			
-30 dBm				/			$ \rightarrow $	~		
-40 dBm	,	~~~								
-50 dBm										
-60 dBm										
-70 dBm										
CF 902	.75 M	IHz			691 p	ots			Spa	n 1.0 MHz
larker						1 -				
Type M1	Ref	Trc 1	X-valu	83 MHz	<u>Y-value</u> 9.45 dBn	Func	down	Fun	iction Result	: 221.4 kHz
T1		1		69 MHz	-10.59 dBn		ndB			20.00 dB
T2		1		83 MHz	-10.61 dBn		factor			4077.0
][Mea	suring		4,40	16.11.2017

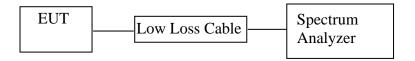
Low channel

Date: 16.NOV.2017 15:49:31

Middle channel

Date: 15.NOV.2017 15:00:17

Spectru	Jm									
Ref Le [.] Att	vel	26.00 d 40		1.00 dB ⊜ 63.1 µs ⊜	RBW 30 kHz VBW 100 kHz	-	uto FFT			
⊖1Pk Ma:	×									
20 dBm—						M1	[1]		927	8.95 dBn .22970 MH:
10 dBm—	_				M1	nd Bw			222.900	20.00 dl 000000 kH
						Q f	actor			4160.
0 dBm				T1		Т2				
-10 dBm-					-					
-20 dBm-	+						7			
-30 dBm-	+			1				\sim		
-40 d8m-	+									
-50 dBm-	_									
-60 dBm-	+									
-70 dBm-	_									
CF 927.	25 M	IHz			691	pts			Sp	an 1.0 MHz
Marker										
	Ref		X-valu		Y-value	Funct		Func	tion Resu	
M1		1		97 MHz	8.95 dB		down			222.9 kHz
T1 T2		1		183 MHz	-10.88 dB -11.19 dB		ndB actor			20.00 dB 4160.5
12			521.0		11.19 00				4/4	16.11.2017 15:55:53


High channel

Date: 16.NOV.2017 15:55:54

7. CARRIER FREQUENCY SEPARATION TEST

7.1.Block Diagram of Test Setup

(EUT: Sub-GHz AP module for Lancom)

7.2. The Requirement For Section 15.247(a)(1)

Section 15.247(a)(1): Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 902-928 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudorandomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

7.3.EUT Configuration on Measurement

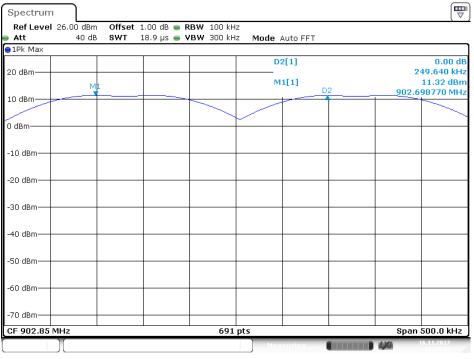
The equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

7.4. Operating Condition of EUT

- 7.4.1.Setup the EUT and simulator as shown as Section 7.1.
- 7.4.2.Turn on the power of all equipment.
- 7.4.3.Let the EUT work in TX (Hopping on) modes measure it. The transmit frequency are 902.75-927.25MHz. We select 902.75MHz, 915MHz, and 927.25MHz TX frequency to transmit.

7.5.Test Procedure

- 7.5.1.The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 7.5.2.Set RBW of spectrum analyzer to 100 kHz and VBW to 300 kHz. Adjust Span to 500kHz.
- 7.5.3.Set the adjacent channel of the EUT maxhold another trace.
- 7.5.4.Measurement the channel separation

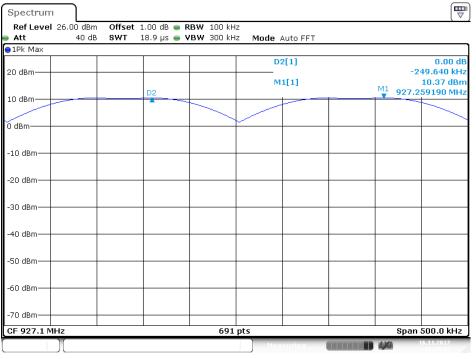

7.6.Test Result

Channel	Frequency (MHz)	Channel Separation(MHz)	Limit (MHz)	Result	
Low	902.75	0.250	25KHz or 20dB	PASS	
LOW	903.00	0.250	bandwidth		
Middle	915.00	0.250	25KHz or 20dB	PASS	
1110010	915.25	0.200	bandwidth	11100	
Uich	927.00	0.250	25KHz or 20dB	PASS	
High	927.25	0.230	bandwidth	r aðð	

The spectrum analyzer plots are attached as below.

Low channel

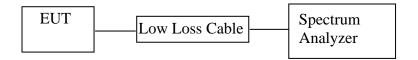
Date: 16.NOV.2017 15:42:34

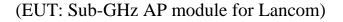

(₩ Spectrum Offset 1.00 dB ● RBW 100 kHz SWT 18.9 µs ● VBW 300 kHz Ref Level 23.00 dBm Att 40 dB Mode Auto FFT ⊖1Pk Max _D2[1] 0.00 dB -250.360 kHz 20 dBm· M1[1] M1 10.77 dBn 10 dBm 915.196960 MH: 0 dBm· -10 dBm -20 dBm -30 dBm--40 dBm -50 dBm -60 dBm -70 dBm-Span 500.0 kHz CF 915.1 MHz 691 pts LXI

Middle channel

Date: 15.NOV.2017 15:45:56

High channel




Date: 16.NOV.2017 15:44:38

8. NUMBER OF HOPPING FREQUENCY TEST

8.1.Block Diagram of Test Setup

8.2.Limit

If the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the sys-tem shall use at least 25 hopping fre-quencies and the average time of occu-pancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

8.3.EUT Configuration on Measurement

The equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

8.4. Operating Condition of EUT

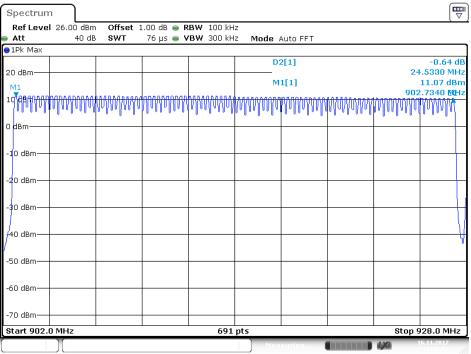
8.4.1.Setup the EUT and simulator as shown as Section 8.1.

8.4.2.Turn on the power of all equipment.

8.4.3.Let the EUT work in TX (Hopping on) modes measure it.

8.5.Test Procedure

- 8.5.1.The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 8.5.2.Set the spectrum analyzer as RBW=100 kHz, VBW=300 kHz.
- 8.5.3.Max hold, view and count how many channel in the band.

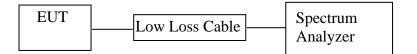


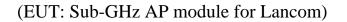
8.6.Test Result

Total number of	Measurement result(CH)	Limit(CH)		
hopping channel	99	≥50		

The spectrum analyzer plots are attached as below.

Number of hopping channels (GFSK)




Date: 16.NOV.2017 15:37:52

9. DWELL TIME TEST

9.1.Block Diagram of Test Setup

9.2.Limit

if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period.

9.3.EUT Configuration on Measurement

The equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

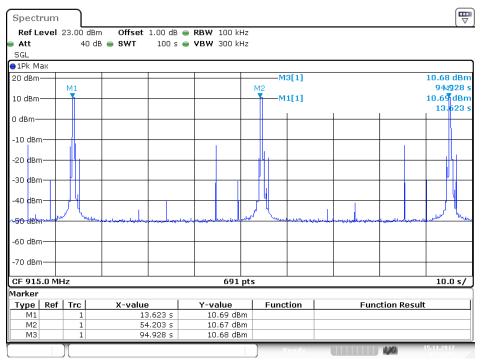
9.4. Operating Condition of EUT

- 9.4.1.Setup the EUT and simulator as shown as Section 9.1.
- 9.4.2.Turn on the power of all equipment.
- 9.4.3.Let the EUT work in TX (Hopping on) modes measure it. The transmit frequency are 902.75-927.25MHz. We select 902.75MHz, 915MHz, and 927.25MHz TX frequency to transmit.

9.5.Test Procedure

- 9.5.1.The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 9.5.2.Set center frequency of spectrum analyzer = operating frequency.
- 9.5.3.Set the spectrum analyzer as RBW=100kHz, VBW=300kHz, Span=0Hz, Adjust Sweep=20s. Get the pulse time.
- 9.5.4.Repeat above procedures until all frequency measured were complete.

9.6.Photos of Dwell time Measurement


In the connection mode RFID uses 99 channels, As defined in 15.247, a 1 I, the limit for time of occupancy is 0.4s over time of 20s.

9.7.Test Result

Limit	Result
\leq 0.4s over 20s period	396ms

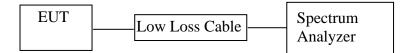
Note:

The number of occupied channels second	1/40.58=0.025 (number/ sec)
The total number of occupied channels per second	99*1/40.58=2.440(number/ sec)
Occupied time for each channel	405.8ms
Dwell time per second	99*1/40.58*405.8=990ms
Dwell time for 0.4second	99*1/40.58*405.8*0.4=396ms

Date: 15.NOV.2017 15:33:52

Effective period of the cycle: 54.203-13.623=40.58s

Ref Level 23.00		: 1.00 dB 👄 🖡							
Att 4 BGL	io dB 😑 SWT	5 s 👄 🕯	/BW 300 kH	łz					
1Pk Max									
:0 dBm				D:	1[1]				-31.09 d
0 dBm				N	1[1]				405.8 m 10.69 dBn 1.34130
									1.34130
dBm									
10 dBm						-			
20 dBm									
30 dBm				when					
40 dBm									
and and the second s		and the characteristic	and when the second	proved			mul	hennelwarm	
3 m alt water and a started	an bowhatter and a second	- C. C. M. Marco - Stofm					Ť		and the second
50 dBm									
70 dBm									
F 915.0 MHz			691	pts					500.0 ms/


Date: 15.NOV.2017 15:35:37

The graph shows the duration of 'on' signal. From marker 1 to Delta 2, duration is 405.8ms.

10.MAXIMUM PEAK OUTPUT POWER TEST

10.1.Block Diagram of Test Setup

(EUT: Sub-GHz AP module for Lancom)

10.2.Limit

For frequency hopping systems operating in the 902–928 MHz band: 1 watt for systems employing at least 50 hopping channels; and, 0.25 watts for systems employing less than 50 hop-ping channels, but at least 25 hopping channels, as permitted under para-graph (a)(1)(i) of this section. the maximum output power should not exceed 29dBm.

10.3.EUT Configuration on Measurement

The equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

10.4. Operating Condition of EUT

- 10.4.1.Setup the EUT and simulator as shown as Section 10.1.
- 10.4.2.Turn on the power of all equipment.
- 10.4.3.Let the EUT work in TX (Hopping off) modes measure it. The transmit frequency are 902.75-927.25MHz. We select 902.75MHz, 915MHz, and 927.25MHz TX frequency to transmit.

10.5.Test Procedure

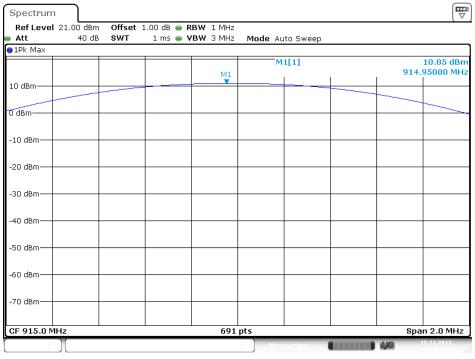
- 10.5.1.The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 10.5.2.Set RBW of spectrum analyzer to 1MHz and VBW to 3MHz.
- 10.5.3.Measurement the maximum peak output power.

10.6.Test Result

FSK Mode

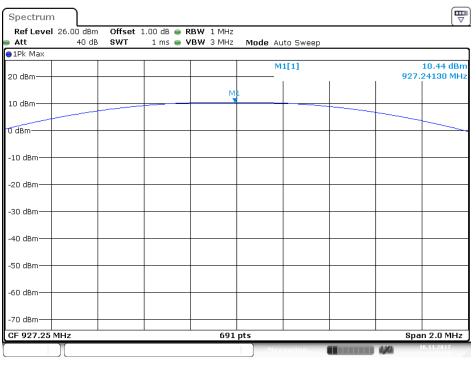
Channel	Frequency (MHz)	Peak Output Power (dBm/W)	Limits dBm / W
Low	902.75	10.98/0.0125	30/ 1.0
Middle	915.00	10.85/0.0122	30/ 1.0
High	927.25	10.44/0.0111	30/ 1.0

The spectrum analyzer plots are attached as below.


Spectrum							
Ref Level 26.00 dBm Att 40 dB	Offset 1. SWT	00 dB 👄 RB 1 ms 👄 VB		Mode A	uto Sweep		
1Pk Max							
20 dBm				N	11[1]	902.	10.98 dBm 76160 MHz
LO dBm			N	41 •			
Ĵ dBm							
10 dBm							
20 dBm							
30 dBm							
40 dBm							
50 dBm							
60 dBm							
70 dBm							
CF 902.75 MHz			691	pts	acuring	 Spa	in 2.0 MHz

Low channel

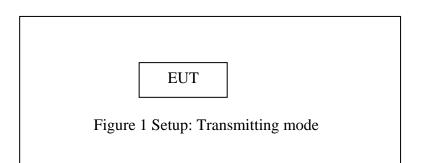
Date: 16.NOV.2017 15:48:18

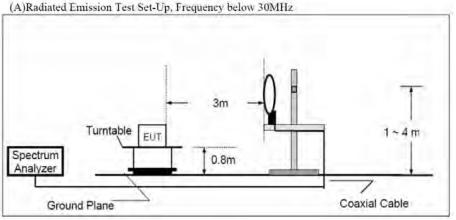


Middle channel

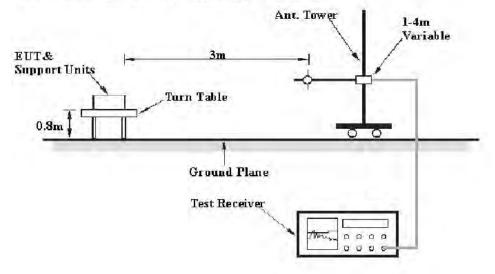
Date: 15.NOV.2017 15:01:00

High channel

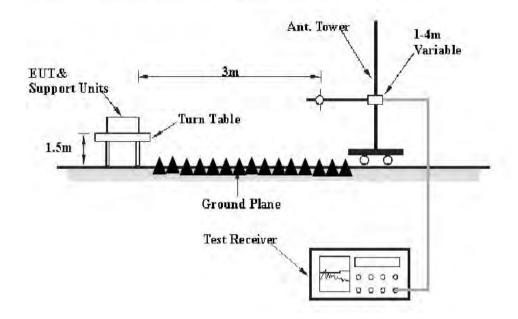

Date: 16.NOV.2017 15:56:35


11.RADIATED EMISSION TEST

11.1.Block Diagram of Test Setup


11.1.1.Block diagram of connection between the EUT and peripherals

11.1.2.Semi-Anechoic Chamber Test Setup Diagram



(B)Radiated Emission Test Set-Up, Frequency 30MHz-1GHz

(C) Radiated Emission Test Set-Up. Frequency above 1GHz

11.2. The Limit For Section 15.247(d)

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

11.3.Restricted bands of operation

11.3.1.FCC Part 15.205 Restricted bands of operation

(a) Except as shown in paragraph (d) of this section, Only spurious emissions are permitted in any of the frequency bands listed below:

permitted in any of the nequency bands listed below.							
MHz	MHz MHz		GHz				
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15				
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46				
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75				
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5				
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2				
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5				
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7				
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4				
6.31175-6.31225	123-138	2200-2300	14.47-14.5				
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2				
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4				
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12				
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0				
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8				
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5				
12.57675-12.57725	322-335.4	3600-4400	(²)				
13.36-13.41							

¹Until February 1, 1999, this restricted band shall be 0.490-0.510²Above 38.6

(b) Except as provided in paragraphs (d) and (e), the field strength of emission appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000MHz, Compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000MHz, compliance with the emission limits in Section15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

11.4.Configuration of EUT on Measurement

The equipment is installed on Radiated Emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

11.5.Operating Condition of EUT

11.5.1.Let the EUT work in TX (Hopping off) modes measure it. The transmit frequency are 902.75-927.25MHz. We select 902.75MHz, 915MHz, and 927.25MHz TX frequency to transmit.

11.6. Test Procedure

The EUT and its simulators are placed on a turntable, which is 0.8 meter high above ground(Below 1GHz). The EUT and its simulators are placed on a turntable, which is 1.5 meter high above ground(Above 1GHz). The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated bi-log antenna) is used as receiving antenna. Both horizontal and vertical polarizations of the antenna are set on measurement. In order to find the maximum emission levels, all of the EUT location must be manipulated according to ANSI C63.10:2013 on radiated emission measurement. This EUT was tested in 3 orthogonal positions and the worst case position data was reported.

During the radiated emission test, the spectrum analyzer was set with the following configurations:

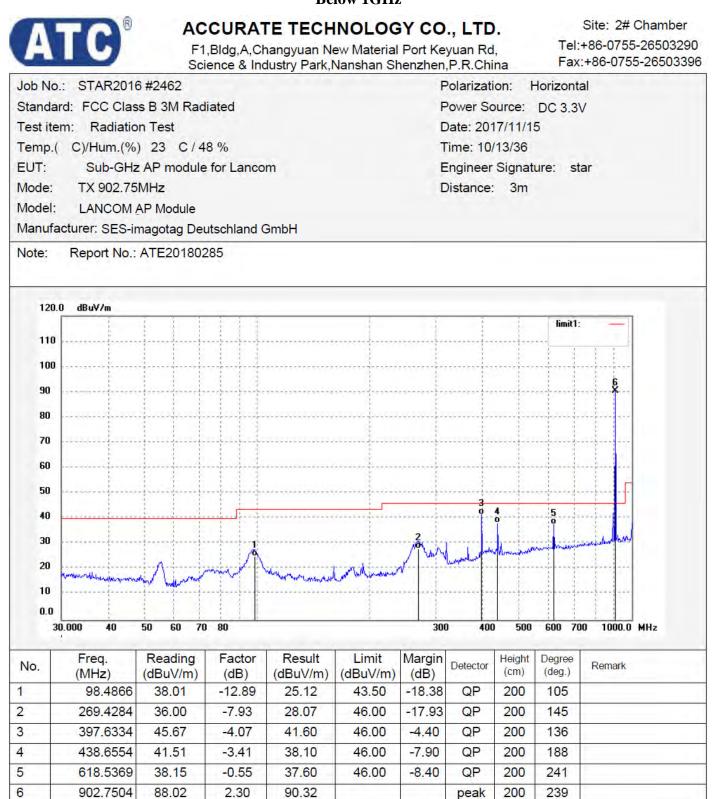
- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for peak measurement with peak detector at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 10Hz for Average measurement with peak detection at frequency above 1GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported.

Frequency	Reading	Factor	Result	Limit	Margin	Remark
(MHz)	(dBµv)	(dB/m)	(dBµv/m)	(dBµv/m)	(dB)	
X.XX	48.69	-13.35	35.34	46	-10.66	QP

 $\begin{array}{l} Frequency(MHz) = Emission \ frequency \ in \ MHz\\ Reading(dB\mu\nu) = Uncorrected \ Analyzer/Receiver \ reading\\ Factor \ (dB/m) = Antenna \ factor + Cable \ Loss - Amplifier \ gain\\ Result(dB\mu\nu/m) = Reading(dB\mu\nu) + Factor(dB/m)\\ Limit \ (dB\mu\nu/m) = Limit \ stated \ in \ standard\\ Margin \ (dB) = Result(dB\mu\nu/m) - Limit \ (dB\mu\nu/m)\\ QP = Quasi-peak \ Reading \end{array}$

Calculation Formula: Margin(dB) = Result ($dB\mu V/m$)–Limit($dB\mu V/m$) Result($dB\mu V/m$)= Reading($dB\mu V$)+ Factor(dB/m)

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7dB means the emission is 7dB below the limit.


11.8. The Field Strength of Radiation Emission Measurement Results

Note: The test frequency is from 9KHz to 10GHz, The 9KHz-30MHz emissions are not reported, because the levels are too low against the limit.

The spectrum analyzer plots are attached as below.

Below 1GHz

6

peak

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd,

Site: 2# Chamber Tel:+86-0755-26503290

ob No.	: STAR201	6 #2463				Polarization: Vertical						
tandar	rd: FCC Clas	s B 3M Rad	liated			Power Source: DC 3.3V						
est iter	m: Radiatio	n Test				Date: 2017/11/15						
emp.(C)/Hum.(%) 23 C/4	8 %			T	Time: 10/	14/58				
UT:		AP module		m		E	Engineer	Signat	ure: st	ar		
lode:	TX 902.75	MHz					Distance:	-				
lodel:	LANCOM	AP Module										
lanufa	anufacturer: SES-imagotag Deutschland GmbH											
lote:	Report No.:	ATE201802	285									
120.0	0 dBu∀/m											
							1		limit1:	-		
110				********				1		1 1		
100		++		*****								
90										<u>6</u>		
80												
70				*********								
60		+										
50												
40							q		5			
30		1	2 3				1					
	wm	Am	IVIL		1.11	And	1 martin	of Amiles and	mannen	- Antonio		
20	with my my	nd the second		M. manuell	Multimension	when had bed been	hand					
10				Notest address		······						
0.0												
30).000 40 '	50 60 70	0 80			300	0 400) 500	600 70	0 1000.0 MHz		
No.	Freq.	Reading	Factor	Result	Limit	Margin	Detector	Height	Degree	Remark		
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)		(cm)	(deg.)	Neman		
	54.0711	43.02	-13.72	29.30	40.00	-10.70	QP	100	189			
È.	76.2442	45.31	-14.46	30.85	40.00	-9.15	QP	100	71			
	95.7622	42.58	-12.83	29.75	43.50	-13.75	QP	100	236			
	396.2414	45.57	-4.10	41.47	46.00	-4.53	QP	100	205			
	665.8034	39.81	-0.55	39.26	46.00	-6.74	QP	100	174			

902.7503

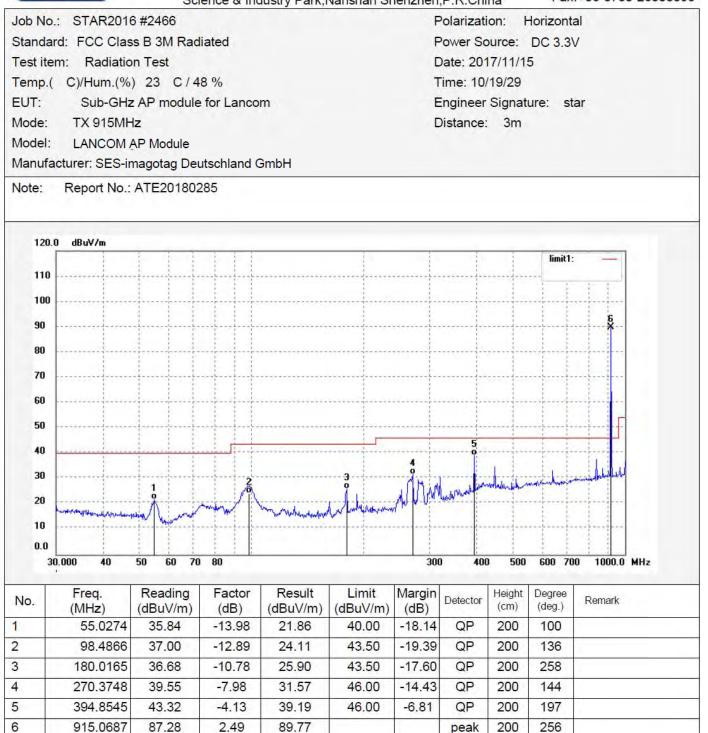
85.87

2.30

88.17

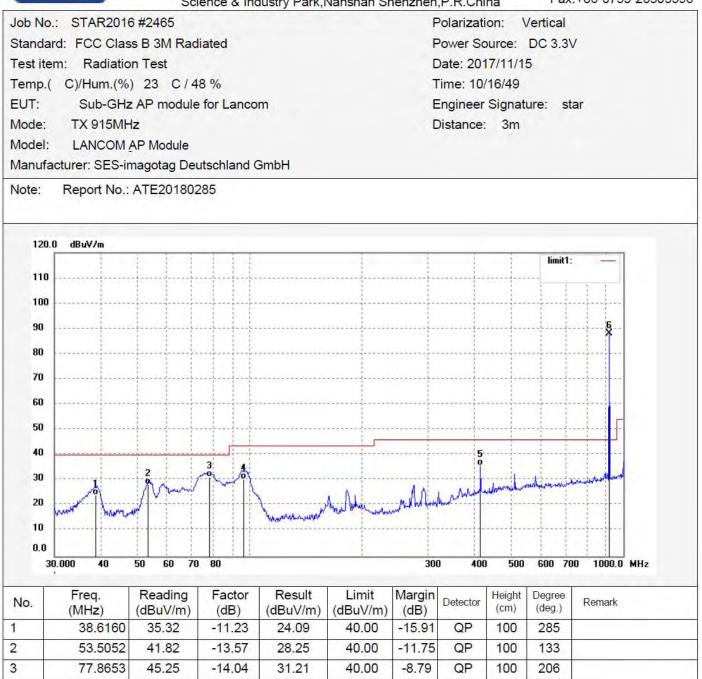
6

100


peak

59

ACCURATE TECHNOLOGY CO., LTD.


F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

96.4361

414,7223

915.0687

43.15

39.05

85.68

-12.84

-3.20

2.49

30.31

35.85

88.17

43.50

46.00

-13.19

-10.15

QP

QP

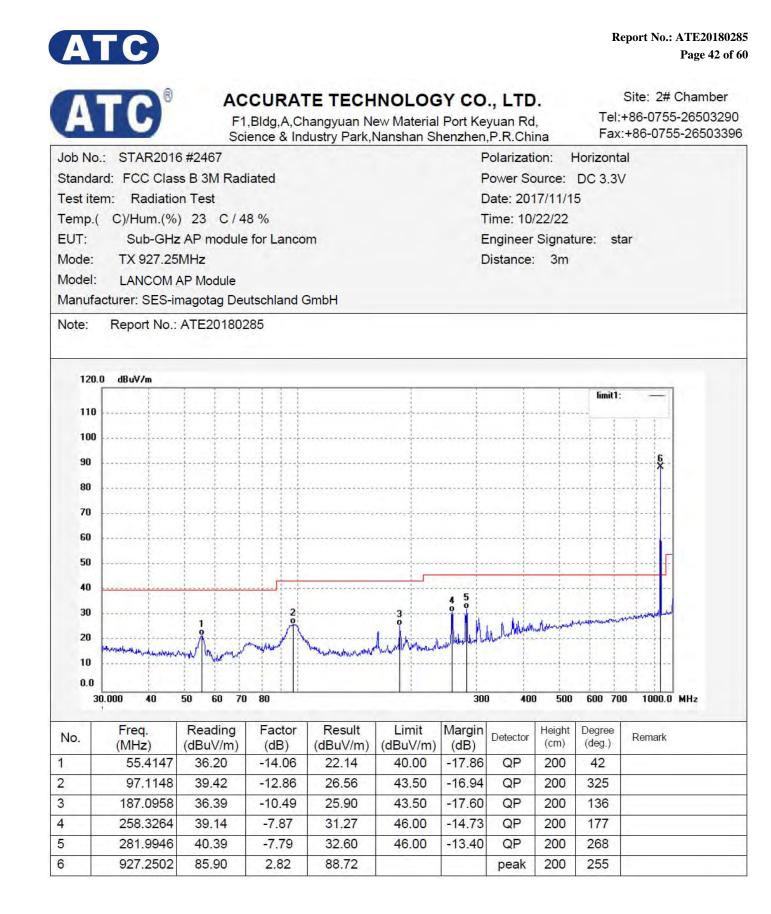
peak

100

100

100

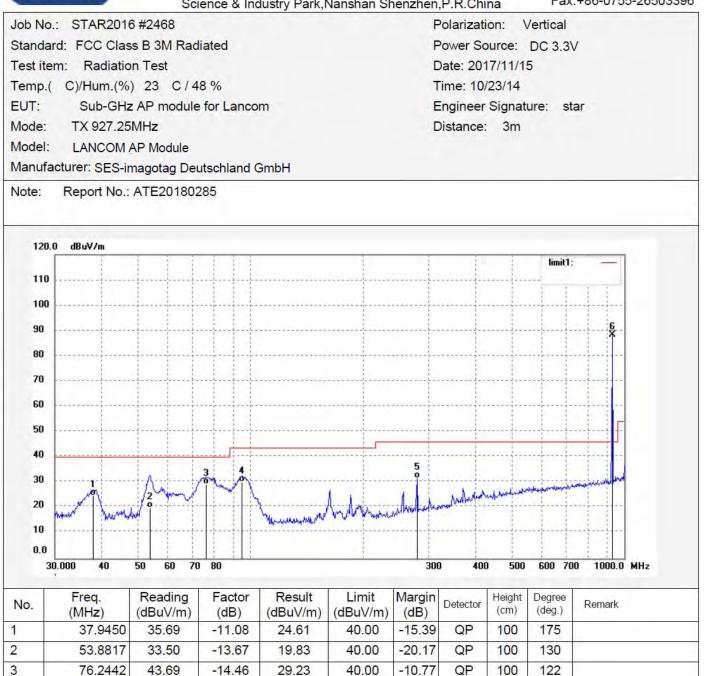
246


187

260

4

5


6

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

94,7600

280.0237

927.2501

42.93

39.42

85.43

-12.83

-7.85

2.82

30.10

31.57

88.25

43.50

46.00

-13.40

-14.43

QP

QP

peak

100

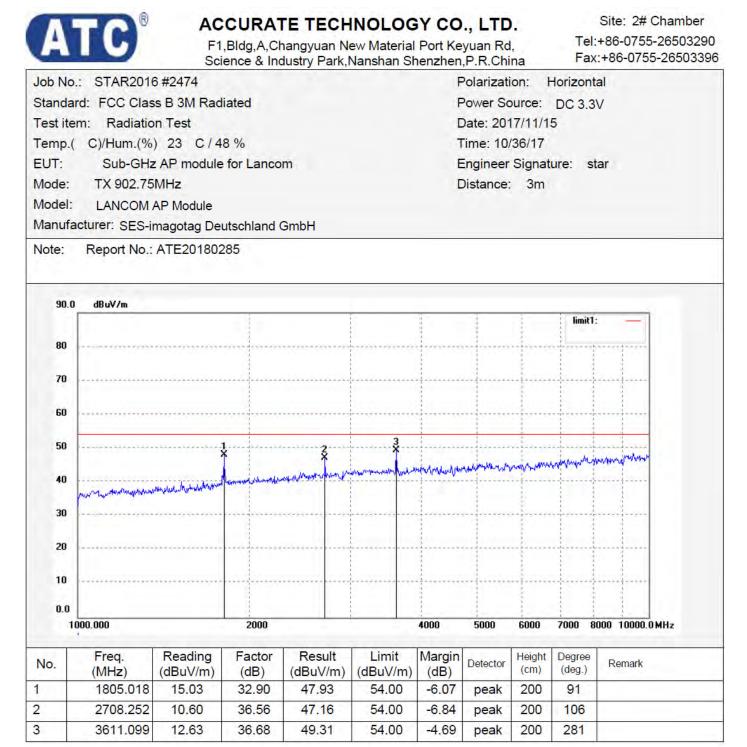
100

100

259

342

244


4

5

6

Above 1GHz

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

		Sci	ience & Ind	dustry Park,	Nanshan Sl	nenzhen	,P.R.Chi	na	Fa	x:+86-0755-26503		
Job No	.: STAR2016	6 #2473				Polarization: Vertical						
Standa	rd: FCC Clas	s B 3M Rad	liated			F	Power So	ource:	DC 3.3	3V		
Test ite	m: Radiatio	n Test				Date: 2017/11/15						
Temp.(C)/Hum.(%) 23 C/4	8 %			Time: 10/35/16						
EUT:		AP module		m		E	Engineer	Signat	ure: s	star		
Mode:	TX 902.75						Distance:					
Model:												
and the state of the	acturer: SES-in		utschland (GmbH								
Note:	Report No.:	ATE201802	285									
90.0	dBuV/m								1			
						1	1		limit	1:		
80			·····			+				11		
70						1		1				
70												
60						hand				handana		
						1 3		1	1			
50			×	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		Ť				the shares		
				mannaharten	aproper man bearing	naphenen	monthermore	million	history	human		
40	approximation and at	where where the state of the st	how have so the	entraleeren an			. lana	1000				
30												
								1	-			
20												
							1	1	1			
10		******	1									
0.0								1	1			
	000.000		2000			4000	5000	6000	7000	8000 10000.0 MHz		
No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark		
1	1805.018	18.19	32.90	51.09	54.00	-2.91	peak	150	332			
2	2708.251	11.83	36.56	48.39	54.00	-5.61	peak	150	190			
3	4513.759	11.28	40.14	51.42	54.00	-2.58	peak	150	148			

ATC ACCURATE TECHNOLOGY CO., LTD. F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Crimere & Inductor Park Nanshan Shenzhen,P.R.China

Site: 2# Chamber Tel:+86-0755-26503290

lob No	: STAR2016	3 #2472				Polarization: Horizontal						
Standa	rd: FCC Clas	s B 3M Rad	ated			Power Source: DC 3.3V						
	m: Radiatio					Date: 2017/11/15 Time: 10/32/21 Engineer Signature: star						
	C)/Hum.(%		8 %									
EUT:		AP module		m								
Aode:	TX 915MH)istance:					
Aodel:	LANCOM											
/lanufa	acturer: SES-in		utschland	GmbH								
lote:	Report No.:	ATE201802	85									
			100									
90.0	dBu¥/m					3	-	T	limit1			
								1				
80		***********		· · · · · · · · · · · · · · · · · · ·		1						
70												
								1				
60												
50			1	2	3			1				
50			1	Ť	Ť.	and some should	manderwood	Minum	withmush	un minimum		
40		and water	Auchanter	nachprasthur bryth	availand wat the three to							
	unmound	Anna and an and and a second	1				£	Î	1			
30		************										
20									.l			
								1				
10		******										
0.0						1		Î.				
1	000.000		2000			4000	5000	6000	7000	8000 10000.0 MHz	e -	
	Freq.	Reading	Factor	Result	Limit	Margin	2.0.20	Height	Degree			
No.	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Detector	(cm)	(deg.)	Remark		
	1830.314	16.68	33.11	49.79	54.00	-4.21	peak	200	199			
	2745.094	12.59	36.54	49.13	54.00	-4.87	peak	200	276			

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

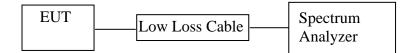
		Scie	ence & Ind	dustry Park,I	Nanshan Sl	nenzhen	,P.R.Chi	na	Fax	<:+86-0755-2650339		
Job No	: STAR2010	6 #2471				F	Polarizati	ion: \	/ertical			
Standa	rd: FCC Clas	s B 3M Radi	ated			F	Power So	ource:	DC 3.3	SV .		
Test ite	m: Radiatio	on Test				Date: 2017/11/15						
Temp.(C)/Hum.(%) 23 C/48	3 %			Т	Time: 10	30/27				
EUT:	Sub-GHz	AP module	for Lanco	m		E	Ingineer	Signat	ure: s	tar		
Mode:	TX 915MH	łz				C	Distance	3m				
Model:	LANCOM											
Manufa	icturer: SES-ii	magotag Deu	itschland	GmbH								
Note:	Report No.:	ATE201802	85									
90.0	dBu¥/m		1			1	-		limit1	: -1		
80									-			
70												
60												
50			×	x	white all the second		Ach day to Ant	whether whether	Maderetwood	unumuhh		
40	ware to a large at which and	noundation	www.	producers man drived	internal rector for	MANULANY						
30												
20												
10 0.0									-			
	000.000		2000			4000	5000	6000	7000 8	8000 10000.0 MHz		
No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark		
	1830.014	18.50	33.11	51.61	54.00	-2.39	peak	150	120			
2	2745.094	13.68	36.54	50.22	54.00	-3.78	peak	150	136			
3	3660.048	12.81	36.79	49.60	54.00	-4.40	peak	150	258			

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Job No	o.: STAR2016	6 #2469				Polarization: Horizontal						
Standa	ard: FCC Clas	s B 3M Rad	iated			Power Source: DC 3.3V						
Test ite	em: Radiatio	n Test				Date: 2017/11/15 Time: 10/27/55 Engineer Signature: star						
Temp.	(C)/Hum.(%)) 23 C/4	8 %									
EUT:	Sub-GHz	AP module	for Lanco	m								
Mode:	TX 927.25	MHz				C	Distance	3m				
Model:	LANCOM A	P Module										
Manufa	acturer: SES-in	magotag Dei	utschland	GmbH								
Note:	Report No.:	ATE201802	85									
	a se la se a se a se a se a se a se a se											
90.0	0 dBuV/m											
						1			limit1			
80	amanan			mannin		1			1			
70									- <u> </u>]			
						1	1					
60		*************		***********		1						
50			*									
					under	Anerenter	aluman	whitewar	minum	relacion that		
40	in M. Like Musimum	ANA Mandel Manuse when	Anothis terranged	March and March 1		• • • • • • • • • • • • • • • • • • • •						
30	Kine water in					1	1					
50												
20									-hind			
						1						
10						1						
0.0						1			1			
1	000.000		2000			4000	5000	6000	7000 8	000 10000.0 MHz		
No.	Freq.	Reading	Factor	Result	Limit	Margin	Detector	Height	Degree	Remark		
688 an 1	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	1.00	(cm)	(deg.)			
1	1854.532	17.41	33.27	50.68	54.00	-3.32	peak	200	169			
2	2781.753	12.48	36.53	49.01	54.00	-4.99	peak	200	281			
3	3709.007	11.64	36.93	48.57	54.00	-5.43	peak	200	222			

ACCURATE TECHNOLOGY CO., LTD.


F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

Job No	.: STAR2016	6 #2470				Polarization: Vertical						
Standa	ard: FCC Clas	s B 3M Rad	iated			F	ower Sc	ource:	DC 3.3	V		
Test ite	em: Radiatio	n Test				C)ate: 201	7/11/1	5			
Temp.	(C)/Hum.(%) 23 C/4	8 %			Time: 10/29/08						
EUT:		AP module		m		E	Ingineer	Signat	ure: s	tar		
Mode:	TX 927.25	MHz					istance:					
Model:	LANCOM A	AP Module										
Manufa	acturer: SES-in		utschland (GmbH								
Note:	Report No.:											
_												
90.0) dBuV/m		đ.			1			limit1	-	1	
80												
70												
						1	ł	1	1	0		
60												
50		*****	*							North Martin		
40		and the second	harmon	and have been have have	www.www.www.www.www.www.www.www.www.ww	dis Artem Mart	withness	manyahurar				
30	where the source with by the defects	Volly de la construcción de la const										
20	************	***********				*******						
10			·····									
0.0 1	000.000		2000			4000	5000	6000	7000 8	1000 10000.	OMHz	
NI	Freq.	Reading	Factor	Result	Limit	Margin	Datasta	Height	Degree	Derred		
No.	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Detector	(cm)	(deg.)	Remark	1.00 m	
1	1854.532	18.53	33.27	5 <mark>1</mark> .80	54.00	-2.20	peak	150	163			
2	2781.753	12.73	36.53	49.26	54.00	-4.74	peak	150	254			
3	3709.007	12.29	36.93	49.22	54.00	-4.78	peak	150	233			

12.BAND EDGE COMPLIANCE TEST

12.1.Block Diagram of Test Setup

(EUT: Sub-GHz AP module for Lancom)

12.2. The Requirement For Section 15.247(d)

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

12.3.EUT Configuration on Measurement

The equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

12.4. Operating Condition of EUT

- 12.4.1.Setup the EUT and simulator as shown as Section 12.1.
- 12.4.2.Turn on the power of all equipment.
- 12.4.3.Let the EUT work in TX (Hopping off, Hopping on) modes measure it. The transmit frequency are 902.75-927.25MHz. We select 902.75MHz, 927.25MHz TX frequency to transmit.

12.5.Test Procedure

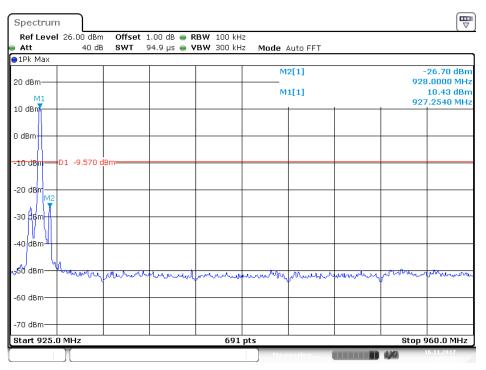
- 12.5.1.The transmitter output was connected to the spectrum analyzer via a low loss cable.
- 12.5.2.Set RBW of spectrum analyzer to 100 kHz and VBW to 300 kHz with convenient frequency span including 100 kHz bandwidth from band edge.
- 12.5.3.The band edges was measured and recorded.

12.6.Test Result

Band edge compliance of RF-conducted emissions was measured by setting the band edge as center frequency in the spectrum analyzer and measuring the power on the transmission on channels 1 and 99. The measured power and power on the band edge was then compared.

Note: Both hopping-on mode and hopping-off mode had been pre-tested, and only the worst case was recorded in the test report.

Hopping off mode:


Frequency (MHz)	Result of Band Edge (dBc)	Limit of Band Edge (dBc)								
GFSK										
902.75	56.66	> 20dBc								
927.25	37.13	> 20dBc								

The spectrum analyzer plots are attached as below.

Ref Level Att	26.00 dBm 40 dB			RBW 100 kH		Auto FFT			
)1Pk Max									
20 dBm					<u> </u>	11[1] 12[1]			11.09 dE 2.6980 M ·45.57,dE
10 dBm							1		2.000¢ M
D dBm									
-10 dBm1	01 -8.910 de	im							
20 dBm									
30 dBm									
40 dBm									M⊉ \
50 dBm	mutuk	Malan	m m	mmm	www.www	man may man	man	mare	/
-60 dBm			· · ·						
70 dBm									
Start 880.0	MHz		-	691	pts			Stop	904.0 MF

Date: 16.NOV.2017 15:51:53

Date: 16.NOV.2017 15:54:30

Hopping off mode

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

lob No	.: STAR201	6 #2233				F	olarizati	ion: H	Horizont	al			
Standa	ard: FCC Clas	s C 3M Rad	iated			F	Power Sc	ource:	DC 3.3	V			
lest ite	em: Radiatio	on Test				Date: 2017/11/15							
Temp.	(C)/Hum.(%) 23 C/4	8 %			Time: 15:22:04							
EUT:	Sub-GHz	z AP module	for Lanco	m		E	Ingineer	Signat	ure: st	ar			
Node:	TX 902.75	M				C	Distance:	3m					
Nodel:	LANCOM	AP MODUL	.E										
Manufa	acturer: SES-	imagotag De	utschland	GmbH									
Note:	Report No.:	ATE201802	285										
110	.0 dBuV/m												
110			1		1			ł.	limit1:	-			
100		***********		**********		*******							
90													
80													
					1								
70				************						*********			
60									انعارها	نفف			
50													
40										-			
30													
	Malantimanin	a the service made the	monishand	her and marginal south	www.uhadehniper	mannessment	townshipping	WWW TWW	equipres additional real	which in the state			
20	Contraction of the second							****	********	*********			
10		·····	·····										
0													
-10.	a												
6	500.000		700		800			900		1000.0	MHz		
	Erer	Reading	Factor	Result	Limit	Margin	Detector	Height	Degree	Remark			
No.	Freq. (MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Detector	(cm)	(deg.)	1 tomany			

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

oh No	.: STAR2016			dustry Park,I	tanonan or		olarizati		/ertical				
	rd: FCC Clas		betci			Power Source: DC 3.3V							
	em: Radiatio		lated			Date: 2017/11/15							
	C)/Hum.(%		9 0/			Time: 15:25:14							
UT:		AP module								~			
			for Lanco	m			Engineer		ure: st	ar			
lode:	TX 902.75		-			1	Distance:	3m					
odel:		AP MODUL		0.111									
	acturer: SES-i			GmbH									
ote:	Report No .:	ATE201802	285										
110.	0 dBu∀/m								limit1:				
100		*****											
90					-								
80													
70										*******			
60	ميتميتم			منصنح			متستنه						
50								3					
40							enterte		unuun				
30						in a she	m. Alben con bas	in the later	Luber Heren	withtentiner			
20	and show the answer	university territory to the test	unduringenergeneter	and a sub-	-1+144 minutes all and all and	true Arms and a de-	. Walton I. Sum						
10													
10			1				0,0000						
0				************		*****			*****	*****			
-10.0													
6	00.000		700		800			900		1000.0 M	Hz		
lo.	Freq.	Reading	Factor	Result	Limit	Margin	Detector	Height (cm)	Degree (deg.)	Remark			
	(MHz) 902.0000	(dBuV/m) 10.63	(dB) 28.68	(dBuV/m) 39.31	(dBuV/m) 46.00	(dB) -6.69	neak	100	(deg.) 293				
	502.0000	10.05	20.00	39.51	40.00	-0.09	peak	100	295				

ACCURATE TECHNOLOGY CO., LTD.

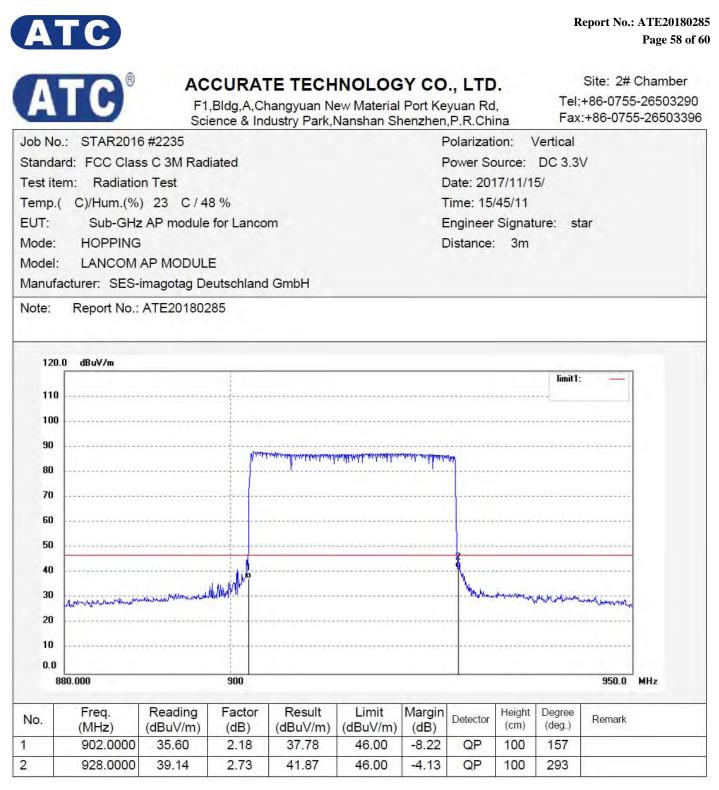
F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Q Indus Deals Ma

-		Sci	ence & In	dustry Park,	Nanshan Sh	nenzhen	,P.R.Chi	ina	Fax	:+86-0755-2	650339	
Job No	.: STAR201	6 #2217				F	Polarizati	ion: H	Horizont	al		
Standa	rd: FCC Class C 3M Radiated						Power Source: DC 3.3V					
Test ite	m: Radiation Test						Date: 2017/11/15					
Temp.(C)/Hum.(%) 23 C/4	8 %			Time: 15:30:47						
EUT:	Sub-GHz	z AP module	for Lanco	m		Engineer Signature: star						
Mode:	TX 927.25	M				0	Distance	3m				
Model:	LANCOM	AP MODUL	.E									
Manufa	acturer: SES-	imagotag De	eutschland	GmbH								
Note:	Report No .:	ATE201802	285									
	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.											
	-1										-	
120.	0 dBuV/m		1					;	limit1:			
110												
100												
90	mananan											
80		************							•••••••	******		
70										******		
60												
50												
40	*****************	*********					*********		1	******		
30	understreaments			and maked strategies	ull advanced with the set	meridensemente	and a share white	Winnishing the	w Philliphiak	approximate a significant		
20	and when the market when the	Phillipp Address and An	un har war									
10												
0.0									-			
6	00.000		700		800			900	_	1000.0 MH	łz	
. 1	Freq.	Reading	Factor	Result	Limit	Margin	Detector	Height	Degree	Remark		
No.	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	and desired	(cm)	(deg.)			

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

ob No	.: STAR201	6 #2218				Polarization: Vertical							
tanda	rd: FCC Class C 3M Radiated					Power Source: DC 3.3V							
est ite	em: Radiatio	on Test				Date: 2017/11/15							
emp.(C)/Hum.(%) 23 C/4	8 %			Time: 15:34:24							
UT:	Sub-GHz	z AP module	for Lanco	om		Engineer Signature: star							
lode:	TX 927.25	M				Distance: 3m							
lodel:	LANCOM	AP MODUL	.E										
lanufa	acturer: SES-	imagotag De	utschland	I GmbH									
lote:	Report No.:	ATE201802	85										
120.	0 dBuV/m								limit1:				
110									limit i :				
100													
90										*********			
80													
70	ananana												
60													
50					1								
									-				
40													
30	*******	milinantheresting				Junihout with	whenthe	Armeningetter	was married	interinterinter			
20	water and an and the state of t	menumperimetership	then the second with	Winner Marchael	areaning and a state of the state of the state								
10													
0.0													
	00.000		700		800		_	900		1000.0	MHz		
	Freq.	Reading	Factor	Result	Limit	Margin	Detector	Height	Degree	Remark			
lo.	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	0.00010.00000	(cm)	(deg.)				



Hopping mode

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

Job No	.: STAR2016	6 #2236				Polarization: Horizontal							
Standa	rd: FCC Clas	rd: FCC Class C 3M Radiated						Power Source: DC 3.3V					
Test ite	m: Radiatio	n Test				Date: 2017/11/15/							
remp.(C)/Hum.(%) 23 C/4	8 %			Time: 15/49/32							
EUT:	Sub-GHz	AP module	for Lanc	om		Engineer Signature: star							
Mode:	HOPPING	ir i				Distance: 3m							
Model:	LANCOM	AP MODULI	E										
Manufa	acturer: SES-	imagotag De	eutschlan	d GmbH									
Note:	Report No.:	ATE201802	.85										
120.	0 dBu∀/m		Ţ.						limit1:				
110										-			
100													
90		2010/10/10/10/10											
			P.W.	14000 marther Allow a burd	ant the purch when	. Indereshaneed	1						
80		*********	1	*****									
70													
60													
							1			Concerned and			
50						**********				**********			
50 40							2						
			MANNAN °				2 Mun						
40 30	wayyunawahh	hik normanistiket					2. Willing	Minnahafa	Wannahila	hinduisidikes			
40 30 20	waydurwaadh h	hill aparameters with	<mark>ر</mark> الملوميرورو				a	Minnahifa	www.idiabol	hjalijinsterkan)			
40 30 20 10	warapplormanikali	hh ginnerget					2. 	Mongathafa	www.tabi	hynhainhi hai			
40 30 20 10 0.0	4	ud an inner all	, , , , , , , , , , , , , , , , , , ,				- May	Mininakufa	40minidadoo	lyntuisteksia 950.0	MHz		
40 30 20 10 0.0	80.000		900				a Mun				MHz		
40 30 20 10 0.0 8		Reading (dBuV/m)		Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)		MHz		
40 30 20 10 0.0	80.000 Freq.	Reading	900 Factor					Height	Degree	950.0	MHz		

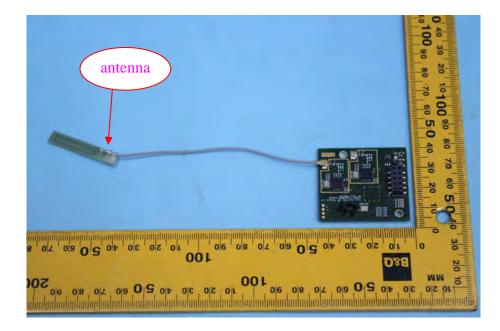
Note:

1. Emissions attenuated more than 20 dB below the permissible value are not reported.

2. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows:

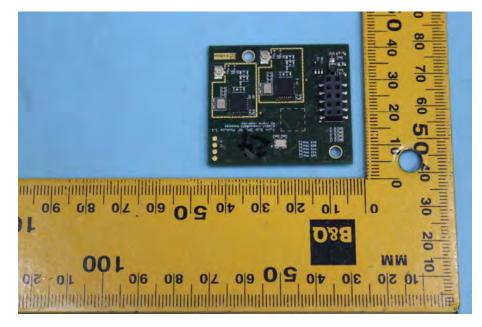
Result = Reading + Corrected Factor

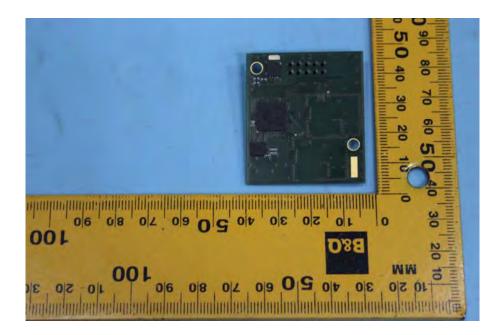
3. Display the measurement of peak values.


13.ANTENNA REQUIREMENT

13.1.The Requirement

According to Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.


13.2.Antenna Construction


The antenna use a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. The antenna jack of EUT correspond to the standard. The Antenna gain of EUT is 0dBi. Therefore, the equipment complies with the antenna requirement of Section 15.203.

14.PHOTOS

***** End of Test Report *****