

# Radio Bridge, Inc.

Wireless Multifunction Sensor

FCC 15.247:2018 902 - 928 MHz Transceiver

Report # RDBR0003







NVLAP LAB CODE: 200881-0

# **CERTIFICATE OF TEST**



Last Date of Test: September 19, 2018

Radio Bridge, Inc.

Model: Wireless Multifunction Sensor

### **Radio Equipment Testing**

#### **Standards**

| Specification   | Method           |
|-----------------|------------------|
| FCC 15.247:2018 | ANSI C63.10:2013 |

#### Results

| Method<br>Clause | Test Description                    | Applied | Results | Comments                                                |
|------------------|-------------------------------------|---------|---------|---------------------------------------------------------|
| 6.2              | Powerline Conducted Emissions       | No      | N/A     | Not required for a battery powered EUT.                 |
| 6.5, 6.6         | Spurious Radiated Emissions         | Yes     | Pass    |                                                         |
| 7.5              | Duty Cycle                          | No      | N/A     | Not required. Covered by testing under FCC ID: VPYCMABZ |
| 7.8.2            | Carrier Frequency Separation        | No      | N/A     | Not required. Covered by testing under FCC ID: VPYCMABZ |
| 7.8.3            | Number of Hopping Frequencies       | No      | N/A     | Not required. Covered by testing under FCC ID: VPYCMABZ |
| 7.8.4            | Dwell Time                          | No      | N/A     | Not required. Covered by testing under FCC ID: VPYCMABZ |
| 7.8.5            | Output Power                        | Yes     | Pass    |                                                         |
| 7.8.6            | Band Edge Compliance                | No      | N/A     | Not required. Covered by testing under FCC ID: VPYCMABZ |
| 7.8.6            | Band Edge Compliance - Hopping Mode | No      | N/A     | Not required. Covered by testing under FCC ID: VPYCMABZ |
| 7.8.7            | Occupied Bandwidth                  | No      | N/A     | Not required. Covered by testing under FCC ID: VPYCMABZ |
| 7.8.8            | Spurious Conducted Emissions        | No      | N/A     | Not required. Covered by testing under FCC ID: VPYCMABZ |
| 11.10.2          | Power Spectral Density              | No      | N/A     | Not required. Covered by testing under FCC ID: VPYCMABZ |

#### **Deviations From Test Standards**

None

Approved By:

Matt Nuernberg, Operations Manager

Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test. This report reflects only those tests from the referenced standards shown in the certificate of test. It does not include inspection or verification of labels, identification, marking or user information. As indicated in the Statement of Work sent with the quotation, Element's standard process is to always use the latest published version of the test methods even when earlier versions are cited in the test specification. Issuance of a purchase order was de facto acceptance of this approach. Otherwise, the client would have advised Element in writing of the specific version of the test methods they wanted applied to the subject testing.

Report No. RDBR0003 2/18

# **REVISION HISTORY**



| Revision<br>Number | Description | Date<br>(yyyy-mm-dd) | Page Number |
|--------------------|-------------|----------------------|-------------|
| 00                 | None        |                      |             |

Report No. RDBR0003 3/18

# ACCREDITATIONS AND AUTHORIZATIONS



#### **United States**

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

**A2LA** - Accredited by A2LA to ISO / IEC 17065 as a product certifier. This allows Element to certify transmitters to FCC and IC specifications.

NVLAP - Each laboratory is accredited by NVLAP to ISO 17025

#### Canada

**ISED** - Recognized by Innovation, Science and Economic Development Canada as a Certification Body (CB). Certification chambers and Open Area Test Sites are filed with ISED.

#### **European Union**

European Commission - Within Element, we have a EU Notified Body validated for the EMCD and RED Directives.

#### Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

#### Korea

MSIT / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

#### Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

#### **Taiwan**

**BSMI** – Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

#### **Singapore**

**IDA** – Recognized by IDA as a CAB for the acceptance of test data.

#### Israel

MOC - Recognized by MOC as a CAB for the acceptance of test data.

#### **Hong Kong**

**OFCA** – Recognized by OFCA as a CAB for the acceptance of test data.

#### **Vietnam**

**MIC** – Recognized by MIC as a CAB for the acceptance of test data.

#### SCOPE

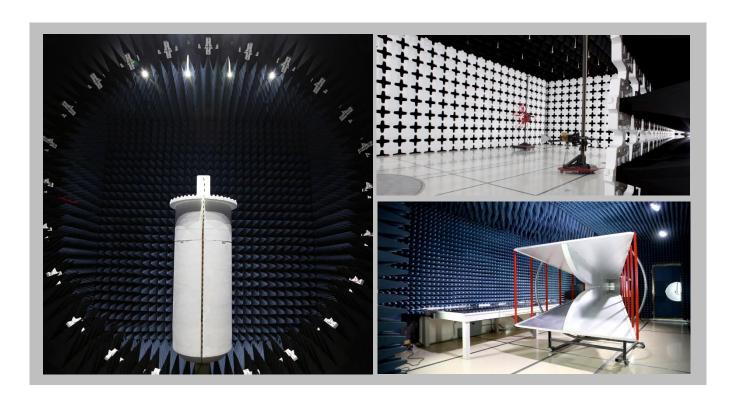
For details on the Scopes of our Accreditations, please visit: <a href="https://www.nwemc.com/emc-testing-accreditations">https://www.nwemc.com/emc-testing-accreditations</a>

Report No. RDBR0003 4/18

# **FACILITIES**








| California       |
|------------------|
| Labs OC01-17     |
| 41 Tesla         |
| Irvine, CA 92618 |
| (949) 861-8918   |

Minnesota Labs MN01-10 9349 W Broadway Ave. Brooklyn Park, MN 55445 (612)-638-5136 New York Labs NY01-04 4939 Jordan Rd. Elbridge, NY 13060 (315) 554-8214 Oregon Labs EV01-12 6775 NE Evergreen Pkwy #400 Hillsboro, OR 97124 (503) 844-4066 **Texas**Labs TX01-09
3801 E Plano Pkwy
Plano, TX 75074
(469) 304-5255

**Washington**Labs NC01-05
19201 120<sup>th</sup> Ave NE
Bothell, WA 98011
(425)984-6600

| Irvine, CA 92618<br>(949) 861-8918                                       | Brooklyn Park, MN 55445<br>(612)-638-5136 | Elbridge, NY 13060<br>(315) 554-8214 | Hillsboro, OR 97124<br>(503) 844-4066 | Plano, TX 75074<br>(469) 304-5255 | Bothell, WA 98011<br>(425)984-6600 |  |  |
|--------------------------------------------------------------------------|-------------------------------------------|--------------------------------------|---------------------------------------|-----------------------------------|------------------------------------|--|--|
| NVLAP                                                                    |                                           |                                      |                                       |                                   |                                    |  |  |
| NVLAP Lab Code: 200676-0                                                 | NVLAP Lab Code: 200881-0                  | NVLAP Lab Code: 200761-0             | NVLAP Lab Code: 200630-0              | NVLAP Lab Code:201049-0           | NVLAP Lab Code: 200629-0           |  |  |
|                                                                          | Innov                                     | ation, Science and Eco               | nomic Development Car                 | ada                               |                                    |  |  |
| 2834B-1, 2834B-3                                                         | 2834E-1, 2834E-3                          | N/A                                  | 2834D-1, 2834D-2                      | 2834G-1                           | 2834F-1                            |  |  |
|                                                                          | BSMI                                      |                                      |                                       |                                   |                                    |  |  |
| SL2-IN-E-1154R                                                           | SL2-IN-E-1152R                            | N/A                                  | SL2-IN-E-1017                         | SL2-IN-E-1158R                    | SL2-IN-E-1153R                     |  |  |
|                                                                          | VCCI                                      |                                      |                                       |                                   |                                    |  |  |
| A-0029                                                                   | A-0109                                    | N/A                                  | A-0108                                | A-0201                            | A-0110                             |  |  |
| Recognized Phase I CAB for ACMA, BSMI, IDA, KCC/RRA, MIC, MOC, NCC, OFCA |                                           |                                      |                                       |                                   |                                    |  |  |
| US0158                                                                   | US0175                                    | N/A                                  | US0017                                | US0191                            | US0157                             |  |  |



Report No. RDBR0003 5/18

### MEASUREMENT UNCERTAINTY

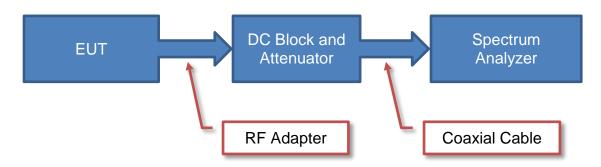


#### **Measurement Uncertainty**

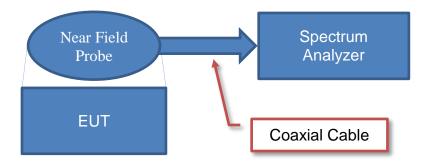
When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error qualified by a probability distribution.

A measurement uncertainty estimation has been performed for each test per our internal quality document QM205.4.6. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty (K=2) can be found included as part of the applicable test description page. Our measurement data meets or exceeds the measurement uncertainty requirements of the applicable specification; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for estimating measurement uncertainty are based upon ETSI TR 100 028 (or CISPR 16-4-2 as applicable), and are available upon request.

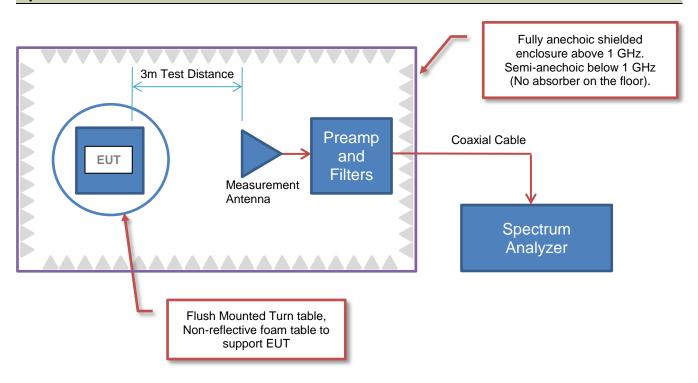
The following table represents the Measurement Uncertainty (MU) budgets for each of the tests that may be contained in this report.


| Test                                  | + MU    | - MU     |
|---------------------------------------|---------|----------|
| Frequency Accuracy (Hz)               | 0.0007% | -0.0007% |
| Amplitude Accuracy (dB)               | 1.2 dB  | -1.2 dB  |
| Conducted Power (dB)                  | 0.3 dB  | -0.3 dB  |
| Radiated Power via Substitution (dB)  | 0.7 dB  | -0.7 dB  |
| Temperature (degrees C)               | 0.7°C   | -0.7°C   |
| Humidity (% RH)                       | 2.5% RH | -2.5% RH |
| Voltage (AC)                          | 1.0%    | -1.0%    |
| Voltage (DC)                          | 0.7%    | -0.7%    |
| Field Strength (dB)                   | 5.2 dB  | -5.2 dB  |
| AC Powerline Conducted Emissions (dB) | 2.4 dB  | -2.4 dB  |

Report No. RDBR0003 6/18


# **Test Setup Block Diagrams**




#### **Antenna Port Conducted Measurements**



#### **Near Field Test Fixture Measurements**



#### **Spurious Radiated Emissions**



Report No. RDBR0003 7/18

# PRODUCT DESCRIPTION



#### Client and Equipment Under Test (EUT) Information

| Company Name:            | Radio Bridge, Inc.            |
|--------------------------|-------------------------------|
| Address:                 | 6272 Boone Ave N              |
| City, State, Zip:        | Brooklyn Park, MN 55428       |
| Test Requested By:       | Mike Fette                    |
| Model:                   | Wireless Multifunction Sensor |
| First Date of Test:      | September 17, 2018            |
| Last Date of Test:       | September 19, 2018            |
| Receipt Date of Samples: | August 22, 2018               |
| Equipment Design Stage:  | Production                    |
| Equipment Condition:     | No Damage                     |
| Purchase Authorization:  | Verified                      |

#### Information Provided by the Party Requesting the Test

#### **Functional Description of the EUT:**

The wireless acceleration-based movement sensor uses an internal accelerometer to detect movement of an asset. When motion is detected that exceeds a certain threshold, an alert is sent over the wireless network. Versions of the sensor support the major LPWAN standards such as Sigfox, LoRa/LoRaWAN, and SubGig.

#### **Testing Objective:**

Seeking to demonstrate compliance under FCC 15.247:2018 for operation in the 902 - 928 MHz Band through a Class 2 Permissive Change (C2PC) to the limited modular approval Grant for adding a new host and new antenna.

Report No. RDBR0003 8/18

# **CONFIGURATIONS**



# Configuration RDBR0003-1

| EUT                                  |                    |                   |               |
|--------------------------------------|--------------------|-------------------|---------------|
| Description                          | Manufacturer       | Model/Part Number | Serial Number |
| Wireless Multifunction Sensor (LoRa) | Radio Bridge, Inc. | RBS-301           | L2            |

# Configuration RDBR0003-2

| EUT                                  |                    |                   |               |
|--------------------------------------|--------------------|-------------------|---------------|
| Description                          | Manufacturer       | Model/Part Number | Serial Number |
| Wireless Multifunction Sensor (LoRa) | Radio Bridge, Inc. | RBS-301           | L3            |

Report No. RDBR0003 9/18

# **MODIFICATIONS**



# **Equipment Modifications**

| Item | Date       | Test                 | Modification  | Note                       | Disposition of EUT    |
|------|------------|----------------------|---------------|----------------------------|-----------------------|
|      |            | Spurious             | Tested as     | No EMI suppression         | EUT remained at       |
| 1    | 2018-09-17 | Radiated             | delivered to  | devices were added or      | Element following the |
|      |            | Emissions            | Test Station. | modified during this test. | test.                 |
|      |            |                      | Tested as     | No EMI suppression         | Scheduled testing     |
| 2    | 2018-09-19 | 8-09-19 Output Power | delivered to  | devices were added or      | was completed.        |
|      |            |                      | Test Station. | modified during this test. | was completed.        |

Report No. RDBR0003 10/18

# SPURIOUS RADIATED EMISSIONS



PSA-FSCI 2018.05.0

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

#### **MODES OF OPERATION**

Transmitting LoRa 125kHz at 902.3 MHz (low channel), 908.5 MHz (mid channel), and 914.9 MHz (high channel)

#### POWER SETTINGS INVESTIGATED

Battery

#### **CONFIGURATIONS INVESTIGATED**

RDBR0003 - 1

#### FREQUENCY RANGE INVESTIGATED

| Ctart Francisco CO MILE | Ct             | 40400 MH- |
|-------------------------|----------------|-----------|
| Start Frequency 30 MHz  | Stop Frequency | 12400 MHz |

#### **SAMPLE CALCULATIONS**

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

#### **TEST EQUIPMENT**

| Description                  | Manufacturer       | Model                          | ID  | Last Cal.   | Interval |
|------------------------------|--------------------|--------------------------------|-----|-------------|----------|
| Filter - Band Pass/Notch     | K&L Microwave      | 3TNF-500/1000-N/N              | HGS | 31-Jul-2018 | 12 mo    |
| Filter - Low Pass            | Micro-Tronics      | LPM50003                       | LFJ | 20-Sep-2017 | 12 mo    |
| Filter - High Pass           | Micro-Tronics      | HPM50108                       | LFM | 20-Sep-2017 | 12 mo    |
| Attenuator                   | Fairview Microwave | SA18E-10                       | TYA | 20-Sep-2017 | 12 mo    |
| Attenuator                   | Fairview Microwave | SA18E-20                       | TWZ | 20-Sep-2017 | 12 mo    |
| Cable                        | ESM Cable Corp.    | Standard Gain Horn Cables      | MNJ | 12-Jul-2018 | 12 mo    |
| Amplifier - Pre-Amplifier    | Miteq              | AMF-6F-08001200-30-10P         | AVV | 13-Feb-2018 | 12 mo    |
| Antenna - Standard Gain      | ETS Lindgren       | 3160-07                        | AXP | NCR         | 0 mo     |
| Amplifier - Pre-Amplifier    | Miteq              | AMF-3D-00100800-32-13P         | AVT | 13-Feb-2018 | 12 mo    |
| Cable                        | ESM Cable Corp.    | Double Ridge Guide Horn Cables | MNI | 21-Nov-2017 | 12 mo    |
| Antenna - Double Ridge       | ETS Lindgren       | 3115                           | AJA | 27-Jun-2018 | 24 mo    |
| Amplifier - Pre-Amplifier    | Miteq              | AM-1616-1000                   | AVO | 9-Nov-2017  | 12 mo    |
| Cable                        | ESM Cable Corp.    | Bilog Cables                   | MNH | 9-Nov-2017  | 12 mo    |
| Antenna - Biconilog          | Teseq              | CBL 6141B                      | AYD | 25-Jan-2018 | 24 mo    |
| Analyzer - Spectrum Analyzer | Keysight           | N9010A                         | AFN | 27-Apr-2018 | 12 mo    |

#### **MEASUREMENT BANDWIDTHS**

| INLAGGICATION DANDING |           |                 |              |
|-----------------------|-----------|-----------------|--------------|
| Frequency Range       | Peak Data | Quasi-Peak Data | Average Data |
| (MHz)                 | (kHz)     | (kHz)           | (kHz)        |
| 0.01 - 0.15           | 1.0       | 0.2             | 0.2          |
| 0.15 - 30.0           | 10.0      | 9.0             | 9.0          |
| 30.0 - 1000           | 100.0     | 120.0           | 120.0        |
| Above 1000            | 1000.0    | N/A             | 1000.0       |

Report No. RDBR0003 11/18

#### **TEST DESCRIPTION**

The highest gain antenna of each type to be used with the EUT was tested. The EUT was configured for the required transmit frequencies and the modes as showed in the data sheets.

For each configuration, the spectrum was scanned throughout the specified range as part of the exploratory investigation of the emissions. These "pre-scans" are not included in the report. Final measurements on individual emissions were then made and included in this test report.

The individual emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis if required, and adjusting the measurement antenna height and polarization (per ANSI C63.10). A preamp and high pass filter (and notch filter) were used for this test in order to provide sufficient measurement sensitivity.

Measurements were made with the required detectors and annotated on the data for each individual point using the following annotation:

QP = Quasi-Peak Detector

PK = Peak Detector

AV = RMS Detector

Measurements were made to satisfy the specific requirements of the test specification for out of band emissions as well as the restricted band requirements.

If there are no detectable emissions above the noise floor, the data included may show noise floor measurements for reference only.

Measurements at the edges of the allowable band may be presented in an alternative method as provided for in the ANSI C63.10 Marker-Delta method. This method involves performing an in-band fundamental measurement followed by a screen capture of the fundamental and out-of-band emission using reduced measurement instrumentation bandwidths. The amplitude delta measured on this screen capture is applied to the fundamental emission value to show the out-of-band emission level as applied to the limit.

Where the radio test software does not provide for a duty cycle at continuous transmit conditions (> 98%) and the RMS (power average) measurements were made across the on and off times of the EUT transmissions, a duty cycle correction is added to the measurements using the formula of 10\*LOG(dc).

# **SPURIOUS RADIATED EMISSIONS**



|                    | Work     | Order:       | DUBE         | R0003               |                | Date:                | 17-50                   | p-2018             | 6             |                        | EmiR5 2018.05.07 |              | PSA-ESCI 2018.05.04 | 4                                                |
|--------------------|----------|--------------|--------------|---------------------|----------------|----------------------|-------------------------|--------------------|---------------|------------------------|------------------|--------------|---------------------|--------------------------------------------------|
|                    |          | Project:     |              | ne                  | Ten            | perature:            |                         | ր-2016<br>1 °C     |               | tunti                  | m 2              |              | ?                   |                                                  |
| _                  |          | ob Site:     |              | N05                 |                | Humidity:            |                         | 6 RH               |               |                        | - 0/             |              |                     |                                                  |
| Se                 | rial N   | lumber:      |              | .2<br>Multifunction |                | tric Pres.:          | 1015                    | mbar               |               | Tested by:             | Dustin Spa       | rks          |                     | _                                                |
| Co                 | onfia    | uration:     | 1            | iuitiiuiictioii     | 3611201        |                      |                         |                    |               |                        |                  |              |                     | =                                                |
|                    | Cus      | stomer:      | Radio Brid   |                     |                |                      |                         |                    |               |                        |                  |              |                     | _                                                |
|                    |          |              | Michael Fe   | ette                |                |                      |                         |                    |               |                        |                  |              |                     | _                                                |
|                    | EUT      | Power:       |              | Do 10               | ELLI- ot 000   | 2 MHz (la)           | u abannal\              | 000 E MU-          | · /mid aban   | nal\ and 01            | 1 O MH= /bi      | ah ahanna    | .1\                 | _                                                |
| Opei               | rating   | g Mode:      | Hansmilli    | ig Luka 12:         | 3KHZ at 902    | 10172 (101           | w channer),             | 906.5 IVITIZ       | (IIIIu Criari | nel), and 914          | +.9 IVIDZ (III   | ign channe   | ;i <i>)</i>         |                                                  |
|                    | Dev      | iations:     | None         |                     |                |                      |                         |                    |               |                        |                  |              |                     | <del>-</del>                                     |
|                    | Com      | nments:      | None         |                     |                |                      |                         |                    |               |                        |                  |              |                     |                                                  |
| Test Sp            | ecific   | cations      |              |                     |                |                      |                         | Test Meth          | od            |                        |                  |              |                     |                                                  |
| FCC 15.            |          |              |              |                     |                |                      |                         | ANSI C63.          |               |                        |                  |              |                     | _                                                |
|                    |          |              |              |                     |                |                      |                         |                    |               |                        |                  |              |                     |                                                  |
|                    |          |              |              |                     |                |                      |                         |                    |               |                        |                  |              |                     |                                                  |
|                    |          |              |              |                     |                |                      |                         |                    |               |                        |                  |              |                     |                                                  |
|                    |          |              |              |                     |                |                      |                         |                    |               |                        |                  |              |                     |                                                  |
| Run                | #        | 35           | Test Dis     | stance (m)          | 3              | Antenna              | Height(s)               |                    | 1 to 4(m)     |                        | Results          | Pa           | ass                 | _                                                |
|                    |          |              |              | , ,                 |                |                      |                         |                    |               |                        |                  |              |                     | _                                                |
| 80                 |          |              |              |                     |                |                      |                         |                    |               |                        |                  |              | Ш                   |                                                  |
| 30                 |          |              |              |                     |                |                      |                         |                    |               |                        |                  |              |                     |                                                  |
| 70                 |          |              |              |                     |                |                      |                         |                    |               |                        |                  | <del>-</del> |                     |                                                  |
| 70                 |          |              |              |                     |                |                      |                         |                    |               |                        |                  |              |                     |                                                  |
|                    |          |              |              |                     |                |                      |                         |                    |               |                        |                  |              |                     |                                                  |
| 60                 | +        |              |              |                     |                |                      |                         |                    |               |                        |                  |              |                     |                                                  |
|                    |          |              |              |                     |                |                      | │                       |                    |               | ــــالِهِ              |                  | _            |                     |                                                  |
| _ 50               | +        |              |              |                     |                |                      |                         |                    |               |                        |                  |              |                     |                                                  |
| Ę                  |          |              |              |                     |                |                      |                         |                    |               |                        |                  |              |                     |                                                  |
| <b>m//ngp</b>      |          |              |              |                     |                |                      |                         |                    | _             |                        |                  |              |                     |                                                  |
| <b>9</b> 40        |          |              |              |                     |                |                      |                         |                    |               |                        |                  |              |                     |                                                  |
|                    |          |              |              |                     |                |                      |                         |                    |               |                        |                  |              |                     |                                                  |
| 30                 | +        |              |              |                     |                |                      |                         | •                  |               |                        |                  |              |                     |                                                  |
|                    |          |              |              |                     |                |                      |                         |                    |               |                        |                  |              |                     |                                                  |
| 20                 | +        |              |              |                     |                |                      |                         |                    |               |                        |                  |              |                     |                                                  |
|                    |          |              |              |                     |                |                      |                         |                    |               |                        |                  |              |                     |                                                  |
| 10                 | +        |              |              |                     |                |                      |                         |                    |               |                        |                  |              | +++                 |                                                  |
|                    |          |              |              |                     |                |                      |                         |                    |               |                        |                  |              |                     |                                                  |
| 0                  | <u> </u> |              |              |                     |                |                      |                         |                    |               |                        |                  |              | Щ                   |                                                  |
|                    | 10       |              |              | 100                 |                |                      | 1000                    |                    |               | 10000                  |                  |              | 100000              |                                                  |
|                    |          |              |              |                     |                |                      | MHz                     |                    |               |                        | ■ PK             | ◆ AV         | • QP                |                                                  |
|                    |          |              |              |                     |                | Duty Cycle           |                         | Polarity/          |               |                        |                  |              |                     |                                                  |
| Freq               | A        | Amplitude    | Factor       | Antenna Height      | Azimuth        | Correction<br>Factor | External<br>Attenuation | Transducer<br>Type | Detector      | Distance<br>Adjustment | Adjusted         | Spec. Limit  | Compared to Spec.   |                                                  |
| (MHz)              |          | (dBuV)       | (dB)         | (meters)            | (degrees)      | (meters)             | (dB)                    |                    |               | (dB)                   | (dBuV/m)         | (dBuV/m)     | (dB)                | Comments                                         |
| 8120.84            |          | 34.9         | 12.4         | 3.0                 | 61.0           | 0.1                  | 0.0                     | Vert               | AV            | 0.0                    | 47.3             | 54.0         | -6.7                | Low ch, EUT horizontal                           |
| 8120.86<br>8121.01 |          | 34.9<br>34.0 | 12.4<br>12.4 | 1.1<br>2.9          | 57.0<br>26.1   | 0.1<br>0.1           | 0.0<br>0.0              | Horz<br>Vert       | AV<br>AV      | 0.0<br>0.0             | 47.3<br>46.4     | 54.0<br>54.0 | -6.7<br>-7.6        | Low ch, EUT on side<br>Low ch, EUT vertical      |
| 8120.87            |          | 33.7         | 12.4         | 3.5                 | 70.1           | 0.1                  | 0.0                     | Horz               | AV            | 0.0                    | 46.1             | 54.0         | -7.9                | Low ch, EUT vertical                             |
| 7319.13            |          | 34.5         | 10.6         | 3.0                 | 138.1          | 0.1                  | 0.0                     | Horz               | AV            | 0.0                    | 45.2             | 54.0         | -8.8                | High ch, EUT on side                             |
| 8176.47<br>8120.65 |          | 32.2<br>32.2 | 12.7<br>12.4 | 1.0<br>1.0          | 246.9<br>37.1  | 0.1<br>0.1           | 0.0<br>0.0              | Horz<br>Vert       | AV<br>AV      | 0.0<br>0.0             | 45.0<br>44.6     | 54.0<br>54.0 | -9.0<br>-9.4        | Mid ch, EUT on side<br>Low ch, EUT on side       |
| 8120.73            |          | 31.6         | 12.4         | 1.0                 | 348.9          | 0.1                  | 0.0                     | Horz               | AV            | 0.0                    | 44.0             | 54.0         | -10.0               | Low ch, EUT horizontal                           |
| 8234.08            | 3        | 50.7         | -6.9         | 2.1                 | 176.0          | 0.1                  | 0.0                     | Horz               | AV            | 0.0                    | 43.9             | 54.0         | -10.1               | High ch, EUT on side                             |
| 4511.65<br>4542.59 |          | 34.6<br>34.3 | 2.9<br>3.1   | 1.0<br>1.0          | 289.9<br>314.0 | 0.1<br>0.1           | 0.0<br>0.0              | Vert<br>Vert       | AV<br>AV      | 0.0<br>0.0             | 37.6<br>37.5     | 54.0<br>54.0 | -16.4<br>-16.5      | Low ch, EUT horizontal<br>Mid ch, EUT horizontal |
| 4542.59            |          | 33.6         | 3.1          | 3.0                 | 5.1            | 0.1                  | 0.0                     | Vert               | AV            | 0.0                    | 37.5<br>37.0     | 54.0<br>54.0 | -16.5<br>-17.0      | High ch, EUT horizontal                          |
| 8120.93            | 3        | 44.6         | 12.4         | 1.1                 | 57.0           |                      | 0.0                     | Horz               | PK            | 0.0                    | 57.0             | 74.0         | -17.0               | Low ch, EUT on side                              |
| 4542.51<br>8120.01 |          | 33.6<br>44.1 | 3.1<br>12.4  | 1.0<br>3.0          | 325.0<br>61.0  | 0.1                  | 0.0<br>0.0              | Horz<br>Vert       | AV<br>PK      | 0.0<br>0.0             | 36.8<br>56.5     | 54.0<br>74.0 | -17.2<br>-17.5      | Mid ch, EUT on side<br>Low ch, EUT horizontal    |
| 4574.50            |          | 32.9         | 3.3          | 1.0                 | 115.0          | 0.1                  | 0.0                     | Horz               | AV            | 0.0                    | 36.3             | 54.0         | -17.5<br>-17.7      | High ch, EUT on side                             |
| 8121.41            | 7        | 43.6         | 12.4         | 1.0                 | 348.9          |                      | 0.0                     | Horz               | PK            | 0.0                    | 56.0             | 74.0         | -18.0               | Low ch, EUT horizontal                           |
| 8120.76            | /        | 43.6         | 12.4         | 3.5                 | 70.1           |                      | 0.0                     | Horz               | PK            | 0.0                    | 56.0             | 74.0         | -18.0               | Low ch, EUT vertical                             |

Report No. RDBR0003 13/18

| Freq<br>(MHz) | Amplitude<br>(dBuV) | Factor<br>(dB) | Antenna Height (meters) | Azimuth (degrees) | Duty Cycle<br>Correction<br>Factor<br>(meters) | External<br>Attenuation<br>(dB) | Polarity/<br>Transducer<br>Type | Detector | Distance<br>Adjustment<br>(dB) | Adjusted<br>(dBuV/m) | Spec. Limit<br>(dBuV/m) | Compared to<br>Spec.<br>(dB) | O                       |
|---------------|---------------------|----------------|-------------------------|-------------------|------------------------------------------------|---------------------------------|---------------------------------|----------|--------------------------------|----------------------|-------------------------|------------------------------|-------------------------|
| 8120.658      | 43.6                | 12.4           | 2.9                     | 26.1              |                                                | 0.0                             | Vert                            | PK       | 0.0                            | 56.0                 | 74.0                    | -18.0                        | Low ch, EUT vertical    |
| 4511.567      | 32.9                | 2.9            | 1.0                     | 102.1             | 0.1                                            | 0.0                             | Horz                            | AV       | 0.0                            | 35.9                 | 74.0<br>54.0            | -18.1                        | Low ch. EUT on side     |
| 8176.075      | 43.1                | 12.7           | 1.0                     | 246.9             | 0.1                                            | 0.0                             | Horz                            | PK       | 0.0                            | 55.8                 | 74.0                    | -18.2                        | Mid ch, EUT on side     |
| 8120.058      | 43.2                | 12.4           | 1.0                     | 37.1              |                                                | 0.0                             | Vert                            | PK       | 0.0                            | 55.6                 | 74.0                    | -18.4                        | Low ch, EUT on side     |
| 3634.083      | 35.6                | -0.3           | 1.0                     | 318.9             | 0.1                                            | 0.0                             | Vert                            | AV       | 0.0                            | 35.4                 | 54.0                    | -18.6                        | Mid ch, EUT horizontal  |
| 2744.600      | 38.7                | -3.4           | 3.9                     | 358.9             | 0.1                                            | 0.0                             | Vert                            | AV       | 0.0                            | 35.4                 | 54.0                    | -18.6                        | High ch, EUT horizontal |
| 3659.542      | 35.3                | 0.0            | 1.1                     | 133.0             | 0.1                                            | 0.0                             | Horz                            | AV       | 0.0                            | 35.4                 | 54.0                    | -18.6                        | High ch, EUT on side    |
| 3609.275      | 35.5                | -0.3           | 1.8                     | 67.0              | 0.1                                            | 0.0                             | Horz                            | AV       | 0.0                            | 35.3                 | 54.0                    | -18.7                        | Low ch, EUT on side     |
| 7319.517      | 44.1                | 10.6           | 3.0                     | 138.1             | 0.1                                            | 0.0                             | Horz                            | PK       | 0.0                            | 54.7                 | 74.0                    | -19.3                        | High ch, EUT on side    |
| 3634.075      | 34.6                | -0.3           | 1.0                     | 342.0             | 0.1                                            | 0.0                             | Horz                            | AV       | 0.0                            | 34.4                 | 54.0                    | -19.6                        | Mid ch, EUT on side     |
| 3609.075      | 34.3                | -0.3           | 1.0                     | 351.9             | 0.1                                            | 0.0                             | Vert                            | AV       | 0.0                            | 34.1                 | 54.0                    | -19.9                        | Low ch, EUT horizontal  |
| 3659.858      | 33.7                | 0.0            | 1.0                     | 180.0             | 0.1                                            | 0.0                             | Vert                            | AV       | 0.0                            | 33.8                 | 54.0                    | -20.2                        | High ch, EUT horizontal |
| 2744.658      | 35.7                | -3.3           | 1.0                     | 27.0              | 0.1                                            | 0.0                             | Horz                            | AV       | 0.0                            | 32.5                 | 54.0                    | -21.5                        | High ch, EUT on side    |
| 2725.408      | 34.5                | -3.4           | 1.0                     | 5.1               | 0.1                                            | 0.0                             | Horz                            | AV       | 0.0                            | 31.2                 | 54.0                    | -22.8                        | Mid ch. EUT on side     |
| 2725.425      | 33.6                | -3.4           | 1.0                     | 178.1             | 0.1                                            | 0.0                             | Vert                            | AV       | 0.0                            | 30.3                 | 54.0                    | -23.7                        | Mid ch, EUT horizontal  |
| 2704.850      | 33.2                | -3.4           | 1.0                     | 274.0             | 0.1                                            | 0.0                             | Vert                            | AV       | 0.0                            | 29.9                 | 54.0                    | -24.1                        | Low ch, EUT horizontal  |
| 2704.983      | 32.9                | -3.4           | 1.0                     | 271.0             | 0.1                                            | 0.0                             | Horz                            | AV       | 0.0                            | 29.6                 | 54.0                    | -24.4                        | Low ch, EUT on side     |
| 8234.175      | 54.7                | -6.9           | 2.1                     | 176.0             |                                                | 0.0                             | Horz                            | PK       | 0.0                            | 47.8                 | 74.0                    | -26.2                        | High ch, EUT on side    |
| 4542.692      | 44.7                | 3.1            | 1.0                     | 314.0             |                                                | 0.0                             | Vert                            | PK       | 0.0                            | 47.8                 | 74.0                    | -26.2                        | Mid ch, EUT horizontal  |
| 4576.625      | 44.1                | 3.3            | 1.0                     | 115.0             |                                                | 0.0                             | Horz                            | PK       | 0.0                            | 47.4                 | 74.0                    | -26.6                        | High ch, EUT on side    |
| 4574.483      | 43.9                | 3.3            | 3.0                     | 5.1               |                                                | 0.0                             | Vert                            | PK       | 0.0                            | 47.2                 | 74.0                    | -26.8                        | High ch, EUT horizontal |
| 4511.392      | 44.2                | 2.9            | 1.0                     | 289.9             |                                                | 0.0                             | Vert                            | PK       | 0.0                            | 47.1                 | 74.0                    | -26.9                        | Low ch, EUT horizontal  |
| 4542.508      | 43.8                | 3.1            | 1.0                     | 325.0             |                                                | 0.0                             | Horz                            | PK       | 0.0                            | 46.9                 | 74.0                    | -27.1                        | Mid ch, EUT on side     |
| 4511.150      | 43.7                | 2.9            | 1.0                     | 102.1             |                                                | 0.0                             | Horz                            | PK       | 0.0                            | 46.6                 | 74.0                    | -27.4                        | Low ch, EUT on side     |
| 3659.608      | 45.9                | 0.0            | 1.1                     | 133.0             |                                                | 0.0                             | Horz                            | PK       | 0.0                            | 45.9                 | 74.0                    | -28.1                        | High ch, EUT on side    |
| 3633.425      | 45.9                | -0.3           | 1.0                     | 318.9             |                                                | 0.0                             | Vert                            | PK       | 0.0                            | 45.6                 | 74.0                    | -28.4                        | Mid ch, EUT horizontal  |
| 3609.642      | 45.8                | -0.3           | 1.8                     | 67.0              |                                                | 0.0                             | Horz                            | PK       | 0.0                            | 45.5                 | 74.0                    | -28.5                        | Low ch, EUT on side     |
| 3658.100      | 45.1                | 0.0            | 1.0                     | 180.0             |                                                | 0.0                             | Vert                            | PK       | 0.0                            | 45.1                 | 74.0                    | -28.9                        | High ch, EUT horizontal |
| 3634.492      | 45.1                | -0.3           | 1.0                     | 342.0             |                                                | 0.0                             | Horz                            | PK       | 0.0                            | 44.8                 | 74.0                    | -29.2                        | Mid ch, EUT on side     |
| 3608.567      | 44.9                | -0.3           | 1.0                     | 351.9             |                                                | 0.0                             | Vert                            | PK       | 0.0                            | 44.6                 | 74.0                    | -29.4                        | Low ch, EUT horizontal  |
| 2745.008      | 46.4                | -3.3           | 3.9                     | 358.9             |                                                | 0.0                             | Vert                            | PK       | 0.0                            | 43.1                 | 74.0                    | -30.9                        | High ch, EUT horizontal |
| 2745.225      | 45.5                | -3.3           | 1.0                     | 27.0              |                                                | 0.0                             | Horz                            | PK       | 0.0                            | 42.2                 | 74.0                    | -31.8                        | High ch, EUT on side    |
| 2708.000      | 45.1                | -3.4           | 1.0                     | 274.0             |                                                | 0.0                             | Vert                            | PK       | 0.0                            | 41.7                 | 74.0                    | -32.3                        | Low ch, EUT horizontal  |
| 2725.467      | 45.1                | -3.4           | 1.0                     | 5.1               |                                                | 0.0                             | Horz                            | PK       | 0.0                            | 41.7                 | 74.0                    | -32.3                        | Mid ch, EUT on side     |
| 2708.600      | 44.8                | -3.4           | 1.0                     | 271.0             |                                                | 0.0                             | Horz                            | PK       | 0.0                            | 41.4                 | 74.0                    | -32.6                        | Low ch, EUT on side     |
| 2725.558      | 44.6                | -3.4           | 1.0                     | 178.1             |                                                | 0.0                             | Vert                            | PK       | 0.0                            | 41.2                 | 74.0                    | -32.8                        | Mid ch, EUT horizontal  |

Report No. RDBR0003 14/18



XMit 2017.12.13

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

#### **TEST EQUIPMENT**

| Description                  | Manufacturer       | Model           | ID  | Last Cal. | Cal. Due  |
|------------------------------|--------------------|-----------------|-----|-----------|-----------|
| Generator - Signal           | Agilent            | E4422B          | TGQ | 15-Mar-18 | 15-Mar-21 |
| Cable                        | ESM Cable Corp.    | TTBJ141 KMKM-72 | MNU | 15-Mar-18 | 15-Mar-19 |
| Attenuator                   | S.M. Electronics   | SA26B-20        | RFW | 13-Feb-18 | 13-Feb-19 |
| Block - DC                   | Fairview Microwave | SD3379          | AMI | 7-Sep-18  | 7-Sep-19  |
| Analyzer - Spectrum Analyzer | Keysight           | N9010A (EXA)    | AFQ | 19-Dec-17 | 19-Dec-18 |

#### **TEST DESCRIPTION**

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The transmit frequency was set to the required channels in each band. The transmit power was set to its default maximum.

Prior to measuring peak transmit power the DTS bandwidth (B) was measured.

The method found in ANSI C63.10:2013 Section 11.9.1.1 was used because the RBW on the analyzer was greater than the DTS Bandwidth of the radio.

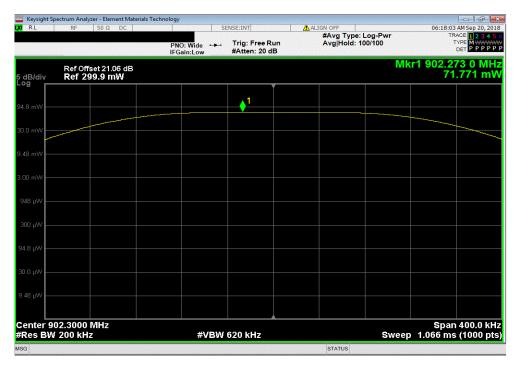
De Facto EIRP Limit: The EUT meets the de facto EIRP limit of +36 dBm.

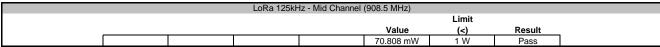
Report No. RDBR0003 15/18

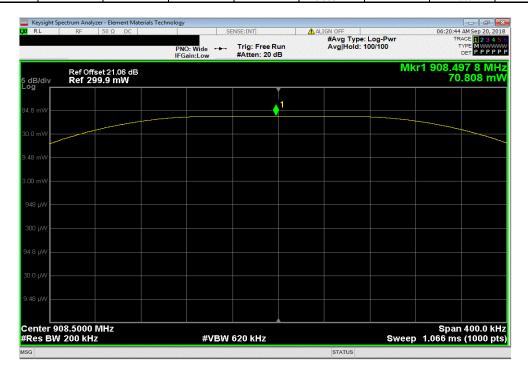


|                      |                             |           |         |                  |                   | TbtTx 2018.06.19 | XMit 2017.12.1 |
|----------------------|-----------------------------|-----------|---------|------------------|-------------------|------------------|----------------|
| EUT: Wii             | reless Multifunction Sensor | 7         |         |                  | Work Order:       | RDBR0003         |                |
| Serial Number: L3    |                             |           |         |                  | Date:             | 19-Sep-18        |                |
| Customer: Ra         | dio Bridge, Inc.            |           |         |                  | Temperature:      | 23.1 °C          |                |
| Attendees: Mid       | chael Fette                 |           |         |                  | Humidity:         | 48.5% RH         |                |
| Project: No          | ne                          |           |         |                  | Barometric Pres.: | 1018 mbar        |                |
| Tested by: Du        | stin Sparks                 |           | Power:  | Battery          | Job Site:         | MN08             |                |
| TEST SPECIFICATION   | IS                          |           |         | Test Method      |                   |                  |                |
| FCC 15.247:2018      |                             |           |         | ANSI C63.10:2013 |                   |                  |                |
|                      |                             |           |         |                  |                   |                  |                |
| COMMENTS             |                             |           |         |                  |                   |                  |                |
| None                 |                             |           |         |                  |                   |                  |                |
|                      |                             |           |         |                  |                   |                  |                |
| DEVIATIONS FROM TE   | EST STANDARD                |           |         |                  |                   |                  |                |
| None                 |                             |           |         |                  |                   |                  |                |
| Configuration #      | 2                           | Signature | Dustins | Spares           |                   |                  |                |
|                      |                             |           |         |                  |                   | Limit            |                |
|                      |                             |           |         |                  | Value             | (<)              | Result         |
| oRa 125kHz - Low Cha | annel (902.3 MHz)           |           |         |                  | 71.771 mW         | 1 W              | Pass           |
| oRa 125kHz - Mid Cha | annel (908.5 MHz)           |           |         |                  | 70.808 mW         | 1 W              | Pass           |
| oRa 125kHz - High Ch | annel (914.9 MHz)           |           |         |                  | 70.228 mW         | 1 W              | Pass           |

Report No. RDBR0003





LoRa 125kHz - Low Channel (902.3 MHz)


Limit

Value (<) Result

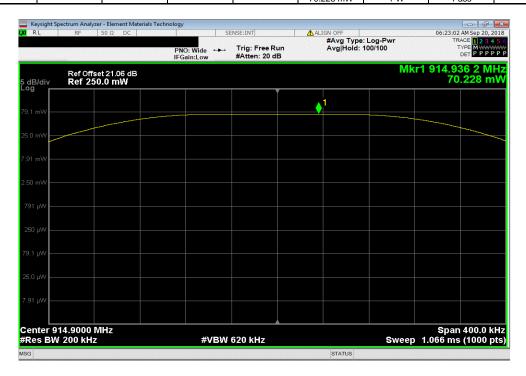
71.771 mW 1 W Pass







Report No. RDBR0003 17/18




LoRa 125kHz - High Channel (914.9 MHz)

Limit

Value (<) Result

70.228 mW 1 W Pass



Report No. RDBR0003 18/18