

TEST REPORT

Report No	CTC2024220104			
FCC ID	2APN5ZBM5120W			
Applicant	Shenzhen Sonoff Technologies Co.,Ltd.			
Address	3F & 6F, Bldg A, No. 663, Bulong Rd, Shenzhen, Guangdong, China			
Vanufacturer	Shenzhen Sonoff Technologies C	Co.,Ltd.		
Address	3F & 6F, Bldg A, No. 663, Bulong China	3F & 6F, Bldg A, No. 663, Bulong Rd, Shenzhen, Guangdong, China		
Product Name	Zigbee Smart Wall Switch			
Frade Mark	: Sonoff			
Model/Type reference	: ZBM5-3C-120W			
_isted Model(s)	ZBM5-2C-120W, ZBM5-1C-120V ZBM5-2C-120, ZBM5-1C-120	ZBM5-2C-120W, ZBM5-1C-120W, ZBM5-3C-120,		
Standard	FCC CFR Title 47 Part 15 Subp	art C Section 15.247		
Test Report Form No	: CTC-TR-058_A1	CTC-TR-058_A1		
Master TRF	: Dated 2024-09-20			
Date of receipt of test sample	: Sept. 9, 2024			
Date of testing	Sept. 9, 2024 ~ Sept. 30, 2024			
Date of issue	Nov. 6, 2024			
Result	PASS			
Compiled by:		T: Jinny		
(Printed name+signature)	Jim Jiang	Jim f		
Supervised by:		Tin shang		
(Printed name+signature)	Jim Jiang Jim Jiang Zric Zhang			
Approved by		Jamas		
Approved by: Printed name+signature)	Totti Zhao			

This test report may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by CTC. The Test Result in the report only apply to the tested sample. The test report shall be invalid without all the signatures of testing engineers, reviewer and approver. Any objections must be raised to CTC within 15 days since the date when the report is received. It will not be taken into consideration beyond this limit.

CTC Laboratories, Inc.

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of China Inspection And Testing

Table of Contents

Page

1.	TEST	SUMMARY	3
1	L.1.	Test Standards	3
1	L.2.	REPORT VERSION	3
1	L.3.	Test Description	3
1	L.4.	TEST FACILITY	4
1	L.5.	Measurement Uncertainty	5
1	L.6.	Environmental Conditions	5
2.	GEN	IERAL INFORMATION	6
2	2.1.	CLIENT INFORMATION	
2	2.2.	GENERAL DESCRIPTION OF EUT	6
2	2.3.	Accessory Equipment Information	
2	2.4.	Operation State	
2	2.5.	Measurement Instruments List	9
3.	TEST	۲ ITEM AND RESULTS	10
Э	3.1.	CONDUCTED EMISSION	10
З	3.2.	RADIATED EMISSION	13
З	3.3.	BAND EDGE EMISSIONS (RADIATED)	21
З	3.4.	BAND EDGE AND SPURIOUS EMISSIONS (CONDUCTED)	
З	3.5.	DTS BANdwidth	31
Э	3.6.	Peak Output Power	
Э	3.7.	Power Spectral Density	
Э	3.8.	DUTY CYCLE	
3	3.9.	Antenna Requirement	40

1. TEST SUMMARY

1.1. Test Standards

The tests were performed according to following standards:

FCC Rules Part 15.247: Operation within the bands 902–928MHz, 2400–2483.5MHz, and 5725–5850MHz.

<u>ANSI C63.10-2013</u>: American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

1.2. Report Version

Revised No.	Report No.	Date of issue	Description
01	CTC2024220104	Nov. 6, 2024	Original

1.3. Test Description

FCC Part 15 Subpart C (15.247)				
Test Item	Standard Section	Result	Test Engineer	
Antenna Requirement	15.203	Pass	Jim Jiang	
Conducted Emission	15.207	Pass	Jim Jiang	
Conducted Band Edge and Spurious Emissions	15.247(d)	Pass	Jim Jiang	
Radiated Band Edge and Spurious Emissions	15.205&15.209& 15.247(d)	Pass	Jim Jiang	
6dB Bandwidth	15.247(a)(2)	Pass	Jim Jiang	
Conducted Max Output Power	15.247(b)(3)	Pass	Jim Jiang	
Power Spectral Density	15.247(e)	Pass	Jim Jiang	
Transmitter Radiated Spurious	15.209&15.247(d)	Pass	Jim Jiang	

Note:

1. The measurement uncertainty is not included in the test result.

2. N/A: means this test item is not applicable for this device according to the technology characteristic of device.

CTC Laboratories, Inc.

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

1.4. Test Facility

Address of the report laboratory

CTC Laboratories, Inc.

Add: Room 101 of Building B, Room 107, 108, 207, 208 of Building A, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China

Laboratory accreditation

The test facility is recognized, certified, or accredited by the following organizations:

A2LA-Lab Cert. No.: 4340.01

CTC Laboratories, Inc. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

Industry Canada (Registration No.: 9783A, CAB Identifier: CN0029)

CTC Laboratories, Inc. EMC Laboratory has been registered by Certification and Engineer Bureau of Industry Canada for the performance of with Registration NO.: 9783A on Jan, 2016.

FCC (Registration No.: 951311, Designation Number CN1208)

CTC Laboratories, Inc. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 951311, Aug 26, 2017.

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

1.5. Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties radio equipment characteristics; Part 2" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 2" and is documented in the CTC Laboratories, Inc. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Test Items	Measurement Uncertainty	Notes
DTS Bandwidth	±0.0196%	(1)
Maximum Conducted Output Power	±0.686 dB	(1)
Maximum Power Spectral Density Level	±0.743 dB	(1)
Band-edge Compliance	±1.328 dB	(1)
Unwanted Emissions In Non-restricted Freq Bands	9kHz-1GHz: ±0.746dB 1GHz-26GHz: ±1.328dB	(1)
Conducted Emissions 9kHz~30MHz	±3.08 dB	(1)
Radiated Emissions 30~1000MHz	±4.51 dB	(1)
Radiated Emissions 1~18GHz	±5.84 dB	(1)
Radiated Emissions 18~40GHz	±6.12 dB	(1)

Below is the best measurement capability for CTC Laboratories, Inc.

Note (1): This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

1.6. Environmental Conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15 °C to 35 °C
Relative Humidity:	20 % to 75 %
Air Pressure:	101 kPa

CTC Laboratories, Inc.

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

2. GENERAL INFORMATION

2.1. Client Information

Applicant:	Shenzhen Sonoff Technologies Co.,Ltd.	
Address: 3F & 6F, Bldg A, No. 663, Bulong Rd, Shenzhen, Guangdong, China		
Manufacturer: Shenzhen Sonoff Technologies Co.,Ltd.		
Address:	3F & 6F, Bldg A, No. 663, Bulong Rd, Shenzhen, Guangdong, China	

2.2. General Description of EUT

Product Name:	Zigbee Smart Wall Switch	
Trade Mark:		
Model/Type reference:	ZBM5-3C-120W	
Listed Model(s):	ZBM5-2C-120W, ZBM5-1C-120W, ZBM5-3C-120, ZBM5-2C-120, ZBM5-1C-120	
All these models are identical in the same PCB, layout, electrical circuModel Difference:difference is the number of output terminals, the number of relays, and color of the shell.		
Sample ID:	CTC240909-003-S002, CTC240909-003-S003	
Power Supply: 100-240V~ 50/60Hz 10A/gang, Total 10A Max		
Hardware Version:	V1.0.0	
Software Version:	V1.0.3	
Zigbee 3.0		
Modulation:	OQPSK	
Operation Frequency:	2405MHz~2480MHz	
Channel Number:	16	
Channel Separation:	5MHz	
Antenna Type:	PCB Antenna	
Antenna Gain:	2.07dBi	

Note: All the model have been tested, only reported "ZBM5-3C-120W" model as worst case.

CTC Laboratories, Inc.

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

2.3. Accessory Equipment Information

Equipment Information					
Name	Model	S/N	Manufacturer		
Notebook	ThinkPad T460s	MP246QDR	Lenovo		
Wi-Fi Zigbee	ZB Bridge-P	/	Sonoff		
Tungsten Filament Lamp / /		/			
Cable Information	Cable Information				
Name	Shielded Type	Ferrite Core	Length		
USB Cable	Unshielded	NO	150cm		
Test Software Information					
Name	Version	1	1		
ХСОМ	V2.6				

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

2.4. Operation State

Operation Frequency List: The EUT has been tested under typical operating condition. The Applicant provides communication tools software to control the EUT for staying in continuous transmitting and receiving mode for testing. Zigbee, 16 channels are provided to the EUT. Channels 11/18/26 were selected for testing

Operation Frequency List:

Channel	Frequency (MHz)
11	2405
12	2410
:	:
17	2435
18	2440
19	2445
÷	÷
25	2475
26	2480

Note: The display in grey were the channel selected for testing.

Test Mode:

For RF test items:

The engineering test program was provided and enabled to make EUT continuous transmit.

For AC power line conducted emissions:

Connect EUT to accessory equipment (Wi-Fi Zigbee) via Zigbee functionality.

For Radiated spurious emissions test item:

The engineering test program was provided and enabled to make EUT continuous transmit. The EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

The worse case configurations:

The Worse Case Power Setting Parameter under 2400 ~ 2483.5MHz Band				
Test Software XCOM V2.6				
Modulation Mode	Test Channel	Power Level		
	11	60		
OQPSK	18	6 0		
	26	6 0		

CTC Laboratories, Inc.

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

2.5. Measurement Instruments List

	RF Test System - SRD					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated Until	
1	MXA Signal Analyzer	Keysight	N9020A	MY52091402	Aug. 21, 2025	
2	MXG Vector Signal Generator	Agilent	N5182A	MY47420864	Dec. 12, 2024	
3	PSG Analog Signal Generator	Agilent	E8257D	MY46521908	Dec. 12, 2024	
4	USB Wideband Power Sensor	Keysight	U2021XA	MY55130004	Mar. 15, 2025	
5	USB Wideband Power Sensor	Keysight	U2021XA	MY55130006	Mar. 15, 2025	
6	RF Control Unit	Tonscend	JS0806-2	/	Aug. 21, 2025	
7	High and low temperature test chamber	ESPEC	MT3035	/	Mar. 15, 2025	
8	Test Software	Tonscend	JS1120-3	V3.3.38	/	
9	Wideband Radio Communication Tester	R&S	CMW500	102414	Dec. 12, 2024	

		Radia	ited emission		
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated Until
1	Trilog-Broadband Antenna	Schwarzbeck	VULB 9163	01026	Dec. 18, 2024
2	Horn Antenna	Schwarzbeck	BBHA 9120D	9120D-647	Sep. 25, 2025
3 Test Receiver		Keysight	N9038A	MY56400071	Dec. 12, 2024
4	Broadband Amplifier	SCHWARZBECK	BBV9743B	259	Dec. 12, 2024
5	Mirowave Broadband Amplifier	SCHWARZBECK	BBV9718C	111	Dec. 12, 2024
6	3m chamber 3	YIHENG	EE106	/	Aug. 28, 2026
7	Test Software	FARA	EZ-EMC	FA-03A2	/

		Con	ducted emission		
Item Test Equipment		Manufacturer	Model No.	Serial No.	Calibrated until
1	1 LISN R&S		ENV216	101112	Dec. 12, 2024
2 LISN R&S		ENV216	101113	Dec. 12, 2024	
3	EMI Test Receiver	R&S	ESCS30	100353	Dec. 12, 2024
4	ISN CAT6	Schwarzbeck	NTFM 8158	CAT6-8158-0046	Dec. 12, 2024
5 ISN CAT5		Schwarzbeck	NTFM 8158	CAT5-8158-0046	Dec. 12, 2024
6	Test Software	R&S	EMC32	6.10.10	/

Note: 1. The Cal. Interval was one year.

2. The Cal. Interval was three years of the antenna.

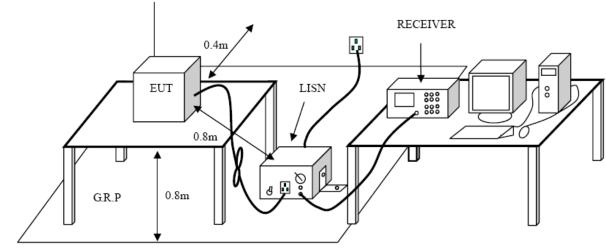
3. The cable loss has been calculated in test result which connection between each test instruments.

CTC Laboratories, Inc.

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

3. TEST ITEM AND RESULTS

3.1. Conducted Emission


<u>Limit</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.207

	Conducted Limit (dBµV)					
Frequency (MHz)	Quasi-peak	Average				
0.15 - 0.5	66 to 56 *	56 to 46 *				
0.5 - 5	56	46				
5 - 30	60	50				

* Decreases with the logarithm of the frequency.

Test Configuration

Test Procedure

1. The EUT was setup according to ANSI C63.10:2013 requirements.

2. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.

3. The EUT and simulators are connected to the main power through a line impedance stabilization network (LISN). The LISN provides a 50 ohm / 50 μ H coupling impedance for the measuring equipment. 4. The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs)

5. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source.

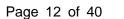
6. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.

7. Conducted emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.

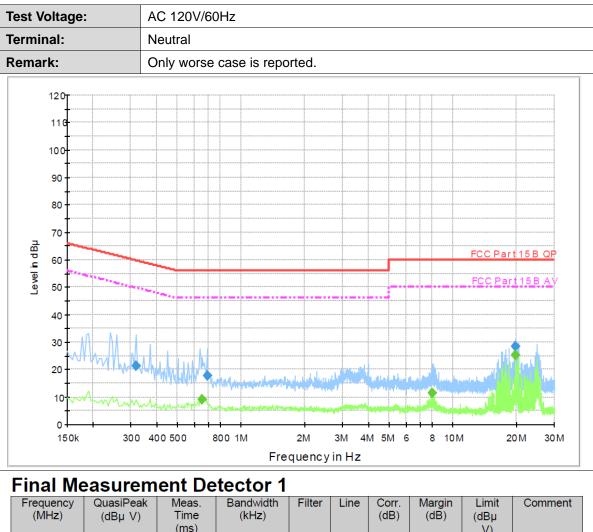
8. During the above scans, the emissions were maximized by cable manipulation.

Test Mode

Please refer to the clause 2.4.


CTC Laboratories, Inc.

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn



Test Vo	ltage		A	C 120V/6	60Hz							
ermin	al:		Lii	ne								
emar	k:		Only worse case is reported.									
	¹²⁰											
	110											
	100											
	90											
	80											
_	70											
Level in dBµ	60										FCC F	<u>art15BQP</u>
vel in				<u> </u>							FCCF	Part 15 BAV
ē	50		••••	· • • • • • • • • • •								
	40											
	30	1.										
		MAX MAL	Mu									
	20			MANUT	ha hushidu	ماسل	الأسب	1	والمرجا المراج	بالمحد و		
	10	mhin	mm					- and a star of the			n here and a	
	۰ <u>۲</u>				visci scin fingen site dimente							
	150k	30	0 40	00 500	800 1M		2M	ЗM	4M 5M	6 8	10 M	20 M 30 M
						Fr	equen	cy in H	z			
- ina	I Me	asure	m	ent De	etecto	r 1						
Frequ (MF		QuasiPea (dBµ V		Meas. Time (ms)	Bandwi (kHz)		Filter	Line	e Corr (dB)		n Limit (dBµ V)	Comment
	57000		3.3	1000.00		000	On	L1	9.		5 58.8	
	54000 11500).7 7.6	1000.00		000	On On	L1	9. 9.			
					tector				0.1			,
Frequ		Average		Meas.	Bandwidth		Filter	Line	Corr.	Margin	Limit	Comment
(MH		(dBµ V)		Time (ms)	(kHz)				(dB)	(dB)	(dBµ V)	
	11500	6.2		000.00	9.00		On	L1	9.5	39.8	46.0	
	16000	11.6 24.2		000.00	9.00		On On	L1	9.6 9.7	38.4 25.8	50.0 50.0	
19.71	11500	24.2	1	000.00	9.00	0 (On	L1	9.7	25.8	50.0	

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

(11112)	(ubµ v)					(uD)	(GD)	(ubµ	
		(ms)						V)	
0.316500	21.3	1000.00	9.000	On	N	9.4	38.5	59.8	
0.690000	17.8	1000.00	9.000	On	N	9.4	38.2	56.0	
19.711500	28.6	1000.00	9.000	On	N	9.5	31.4	60.0	

Final Measurement Detector 2

Frequency (MHz)	Average (dBµ V)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµ V)	Comment
0.649500	8.9	1000.00	9.000	On	N	9.4	37.1	46.0	
7.908000	11.5	1000.00	9.000	On	N	9.6	38.5	50.0	
19.711500	25.2	1000.00	9.000	On	N	9.5	24.8	50.0	

Emission Level = Read Level + Correct Factor

CTC Laboratories, Inc.

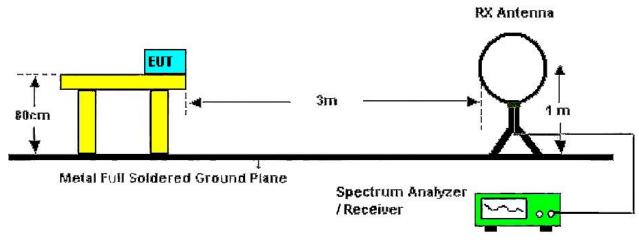
Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

3.2. Radiated Emission

<u>Limit</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.209

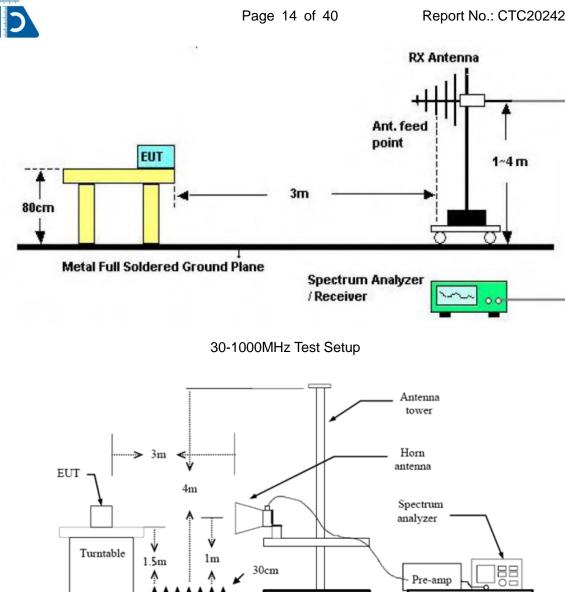
Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009~0.490	2400/F (kHz)	300
0.490~1.705	24000/F (kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

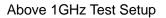

	dBµV/m (at 3 meters)					
Frequency Range (MHz)	Peak	Average				
Above 1000	74	54				

Note:

(1) The tighter limit applies at the band edges.

(2) Emission Level ($dB\mu V/m$)=20log Emission Level ($\mu V/m$).


Test Configuration



Below 30MHz Test Setup

CTC Laboratories, Inc.

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

Test Procedure

1. The EUT was setup and tested according to ANSI C63.10:2013.

The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz, and 1.5 m for 2. above 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level.

3. The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower.

For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna 4. tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.

Set to the maximum power setting and enable the EUT transmit continuously. 5.

Use the following spectrum analyzer settings 6.

Span shall wide enough to fully capture the emission being measured; (1)

(2) 9k – 150kHz:

RBW=300 Hz, VBW=1 kHz, Sweep=auto, Detector function=peak, Trace=max hold (3) 0.15M – 30MHz:

RBW=10 kHz, VBW=30 kHz, Sweep=auto, Detector function=peak, Trace=max hold (4) 30M - 1 GHz:

RBW=120 kHz, VBW=300 kHz, Sweep=auto, Detector function=peak, Trace=max hold

CTC Laboratories, Inc.

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the guasi-peak detector and reported.

(5) From 1 GHz to 10th harmonic:

RBW=1MHz, VBW=3MHz Peak detector for Peak value.

RBW=1MHz, VBW see note 1 with Peak Detector for Average Value.

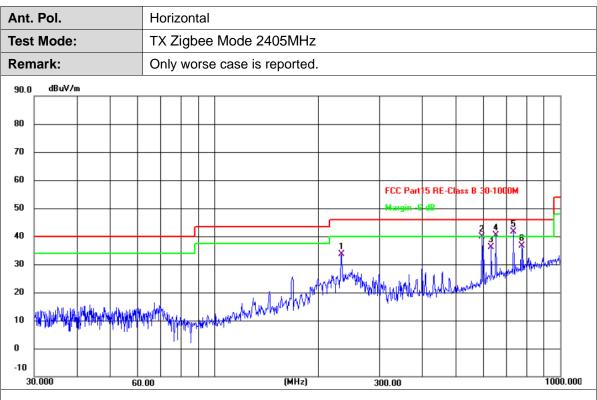
Note 1: For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause 3.8 Duty Cycle.

Test Mode

Please refer to the clause 2.4.

Test Result

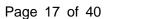
9 kHz~30 MHz


From 9 kHz to 30 MHz: The conclusion is PASS.

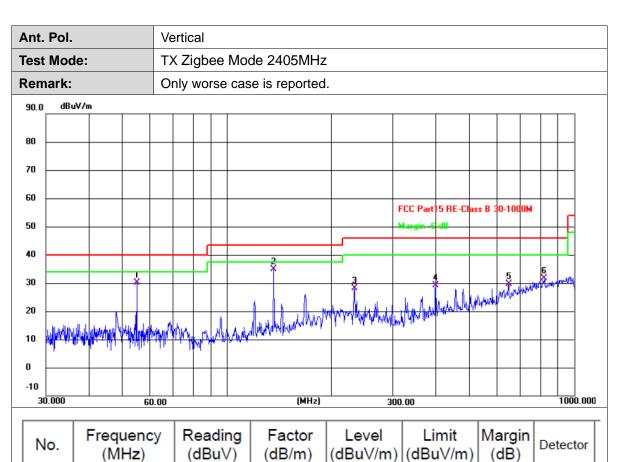
Note: The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

CTC Laboratories, Inc.

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn



No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	233.3486	51.82	-18.19	33.63	46.00	-12.37	QP
2	593.0496	47.86	-7.91	39.95	46.00	-6.05	QP
3	631.6883	43.26	-7.06	36.20	46.00	-9.80	QP
4 !	651.9417	47.15	-6.67	40.48	46.00	-5.52	QP
5 *	731.9202	46.78	-5.20	41.58	46.00	-4.42	QP
6	774.1584	40.89	-4.29	36.60	46.00	-9.40	QP


1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

1	54.8348	46.93	-16.78	30.15	40.00	-9.85	QP
2 *	135.9821	52.06	-17.11	34.95	43.50	-8.55	QP
3	233.3486	46.42	-18.19	28.23	46.00	-17.77	QP
4	399.0302	42.18	-12.95	29.23	46.00	-16.77	QP
5	647.3856	36.29	-6.74	29.55	46.00	-16.45	QP
6	821.7103	35.22	-3.55	31.67	46.00	-14.33	QP

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

CTC Laboratories, Inc.

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

/	Ant. Pol.		Horizontal								
٦	Fest Mod	le:	TX Zigbee Mode 2405MHz								
Remark:			No report for limit.	the emission	which more t	han 20 dB be	elow the p	rescribed			
	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector			
	1	4822.667	40.42	2.01	42.43	74.00	-31.57	peak			
	2	7231.417	41.45	10.03	51.48	74.00	-22.52	peak			
	3	8688.417	39.02	11.20	50.22	74.00	-23.78	peak			
	4	9385.583	39.21	12.53	51.74	74.00	-22.26	peak			
	5 *	10862.167	38.88	14.52	53.40	74.00	-20.60	peak			
	6	11751.250	38.27	15.11	53.38	74.00	-20.62	peak			

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

ŀ	nt. Pol.		Vertical	Vertical								
1	Test Mode:		TX Zigbee M	TX Zigbee Mode 2405MHz								
Remark:			No report for limit.	No report for the emission which more than 20 dB below the prescribed limit.								
	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector				
	1	4818.750	41.27	2.01	43.28	74.00	-30.72	peak				
	2 *	7231.417	43.58	10.03	53.61	74.00	-20.39	peak				
	3	8171.417	39.55	10.42	49.97	74.00	-24.03	peak				
	4	9440.417	39.67	12.56	52.23	74.00	-21.77	peak				
	5	10772.083	38.68	14.40	53.08	74.00	-20.92	peak				
	6	12033.250	38.06	15.50	53.56	74.00	-20.44	peak				

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

CTC Laboratories, Inc.

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

ŀ	Ant. Pol.		Horizontal								
٦	Test Mod	le:	TX Zigbee M	ode 2440Mł	Ηz						
F	Remark:		No report for the emission which more than 20 dB below the prescribed limit.								
	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector			
	1	5159.500	40.43	2.76	43.19	74.00	-30.81	peak			
	2	7322.742	41.62	10.07	51.69	74.00	-22.31	peak			
	3	8856.833	39.03	11.49	50.52	74.00	-23.48	peak			
	4	9902.583	38.26	13.06	51.32	74.00	-22.68	peak			
	5	10995.333	37.97	14.67	52.64	74.00	-21.36	peak			
	6 *	12487.583	37.80	15.74	53.54	74.00	-20.46	peak			

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

	st Mod mark:	e:	TX Ziabee M		Vertical								
Rei	mark:		3	TX Zigbee Mode 2440MHz									
			No report for the emission which more than 20 dB below the prescribed limit.										
1	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector					
	1	4822.667	40.50	2.01	42.51	74.00	-31.49	peak					
	2	6087.750	40.85	5.92	46.77	74.00	-27.23	peak					
	3	7321.500	42.93	10.07	53.00	74.00	-21.00	peak					
	4	9119.250	38.47	12.09	50.56	74.00	-23.44	peak					
	5	10278.583	37.65	13.71	51.36	74.00	-22.64	peak					
	6 *	11719.917	38.24	15.11	53.35	74.00	-20.65	peak					

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

CTC Laboratories, Inc.

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

ł	Ant. Pol.		Horizontal								
1	est Mod	le:	TX Zigbee Mode 2480MHz								
F	Remark:		No report for the emission which more than 20 dB below the prescribed limit.								
	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector			
	1	3921.833	42.21	0.24	42.45	74.00	-31.55	peak			
	2	4810.917	41.41	2.00	43.41	74.00	-30.59	peak			
	3	7441.667	42.39	10.10	52.49	74.00	-21.51	peak			
	4	9648.000	38.58	12.68	51.26	74.00	-22.74	peak			
	5	10991.417	38.02	14.67	52.69	74.00	-21.31	peak			
	6 *	11872.667	37.79	15.22	53.01	74.00	-20.99	peak			

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Α	nt. Pol.		Vertical								
T	est Mod	le:	TX Zigbee Mode 2480MHz								
R	emark:		No report for the emission which more than 20 dB below the prescribed limit.								
	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector			
	1	4724.750	41.56	1.84	43.40	74.00	-30.60	peak			
	2	7442.975	43.00	10.10	53.10	74.00	-20.90	peak			
Γ	3	8050.000	39.70	10.75	50.45	74.00	-23.55	peak			
Γ	4	9616.667	38.44	12.63	51.07	74.00	-22.93	peak			
	5 *	11163.750	38.68	14.75	53.43	74.00	-20.57	peak			
	6	12652.083	37.08	16.20	53.28	74.00	-20.72	peak			

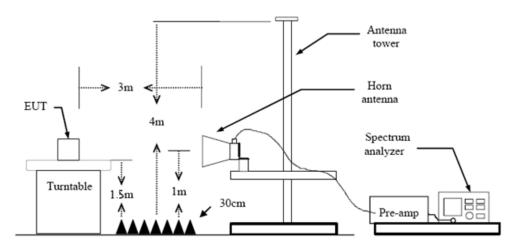
Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

CTC Laboratories, Inc.

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn


3.3. Band Edge Emissions (Radiated)

<u>Limit</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (d)

Restricted Frequency Band	(dBµV/m) (at 3m)					
(MHz)	Peak	Average				
2310 ~ 2390	74	54				
2483.5 ~ 2500	74	54				

Test Configuration

Test Procedure

1. The EUT was setup and tested according to ANSI C63.10:2013 requirements.

2. The EUT is placed on a turn table which is 1.5 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level.

3. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

4. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10:2013 on radiated measurement.
5. The receiver set as follow:

RBW=1MHz, VBW=3MHz Peak detector for Peak value.

RBW=1MHz, VBW see note 1 with Peak Detector for Average Value.

Note 1: For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause 3.8 Duty Cycle.

Test Mode

Please refer to the clause 2.4.

CTC Laboratories, Inc.

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

Ant. Pol.				Horizo	ontal									
est M	ode:			TX Zi	gbee I	Mode 2	2405MI	Ηz						
120.0	dBuV∕	m			_ 				1	_				
110 🗕		_								_				
100 -										_				
90 –		_				_				_				
BO										FCC	Port15 C	- Above 1G	PK /	
70						_	_				Partisic	- ADUYE TU		\downarrow
50 <u> </u>										ECC.		- Above 1G	A.Y.	\downarrow
50												1 X		+
10												ş		+
80 -	an a	*****	enersonaute (Manua	hallen and		egnador a la statistición de la statistica de la statistica de la statistica de la statistica de la statistica Internación de la statistica	nk-napijinitike oranjer	and a consecutor	a thank way was	and the second sec	and a grant from	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	and the second	
20 -										_				
10 -										_				
0.0 2290.	400	2302.40	2314.40	232	6.40	2338.40	(MHz)	236	2.40	2374.40	2386.4	40 239	8.40	2410.4
No.		Frequ (Mł			ading BuV)		actor B/m)		evel iV/m)	Lir (dBu		Margi (dB)		etecto
1	+	2390		· ·	7.12	· ·	1.31		.43	74.		-25.5	+	peak
2 *	*	2390			.56		1.31		.43	54.		-18.1	'	AVG
2		2390	.000	4	.50		1.51	55	.07	54.	00	-10.1	<u> </u>	AVG

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

nt. Pol.			Vertica	al									
est Moc	le:		TX Zigbee Mode 2405MHz										
20.0 dBu	i¥∕m												
0													
, 📖													
									FCC P	art15 C	- Above 1G	PK	A
													\square
									FCC P	art15 C	- Above 16	AV	\square
											X		
		nather	and the second	had and the second s	al make we		Alexandra de la constanció		eren andered	herenan	~ <u>2</u> ~~~~	engel	h
)).0													
2289.800	2301.80	2313.80	2325	.80 23	337.80	(MHz)	236	1.80	2373.80	2385	.80 239	97.80	2409.
No.		uency Hz)		ading 3u∨)		actor 3/m)		vel iV/m)	Lim (dBu\		Margi (dB)		Detecto
1	2390	0.000	15	5.29	31	.31	46	.60	74.0	00	-27.4	0	peak
2 *	2390	0.000	4	.17	31	.31	35	.48	54.(00	-18.5	2	AVG

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

ode: BuV/m	TX Zigbee N	lode 2480Mł	Ηz			
BuV/m						
	<u>.</u>					
~						
				FCC Part15 C	- Above 1G F	<u>к</u>
				FCC Part15 C	- Above 16 A	W
Kan manager	๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛		****	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	www.comenadar
00 2486.60 2498	3.60 2510.60 2	522.60 (MHz)	2546.60	2558.60 2570	.60 2582.	.60 2594.0
		Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)		Detector
		31.48	48.40	74.00	-25.60	peak
2483.500	5.04	31.48	36.52	54.00	-17.48	AVG
	Frequency (MHz) 2483.500	B B 00 2486.60 2498.60 2510.60 2 Frequency (MHz) Reading (dBuV) 2483.500 16.92	Reading (MHz) Factor (dBuV) 2483.500 16.92 31.48	Reading Factor Level (MHz) 16.92 31.48 48.40	Image: Non-State Image: Non-State <th< td=""><td>Reading (MHz) Factor (dBuV) Level (dB/m) Limit (dBuV/m) Margin (dBuV/m) 2483.500 16.92 31.48 48.40 74.00 -25.60</td></th<>	Reading (MHz) Factor (dBuV) Level (dB/m) Limit (dBuV/m) Margin (dBuV/m) 2483.500 16.92 31.48 48.40 74.00 -25.60

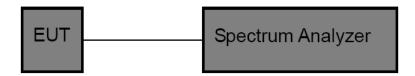
1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

Ant. I	Pol.			Ver	tical										
Test	Mode	e:		ТХ	TX Zigbee Mode 2480MHz										
120.0	dBuV	/m													
110															
100															
90															
80															
70	A										FCC	Part15	C - Above 1	i PK	
	71														
50	\square										FC	Part15	C - Above 1	AV	
		×													
10		Ser arm	a	man	man	ne an an an an			Analenna			-	and the second	munin	meridan
20 -															
10 – 0.0															
	4.600	2486.60	2498.	60 2	510.60	25	22.60	(MHz)	254	l6.60	2558.60	257	0.60 25	82.60	2594.60
No	o.		uency Hz)		leadir dBu∀			ctor /m)		evel iV/m)		mit ıV/m) Marg (dB)		etector
1		248	3.500		15.51		31	.48	46	.99	74	.00	-27.0	1 p	eak
2	*	248	3.500		4.29		31	.48	35	.77	54	.00	-18.2	3 A	VG
Rema															
		dB/m) = /alue =				B/m	i)+Cab	ole Fa	ctor (dl	3)-Pre-	amplif	ier Fa	ctor		

CTC Laboratories, Inc. Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn


3.4. Band Edge and Spurious Emissions (Conducted)

<u>Limit</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (d)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

Test Configuration

Test Procedure

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- Use the following spectrum analyzer settings: RBW = 100 kHz, VBW ≥ RBW, scan up through 10th harmonic. Sweep = auto, Detector function = peak, Trace = max hold.
- 4. Measure and record the results in the test report.

Test Mode

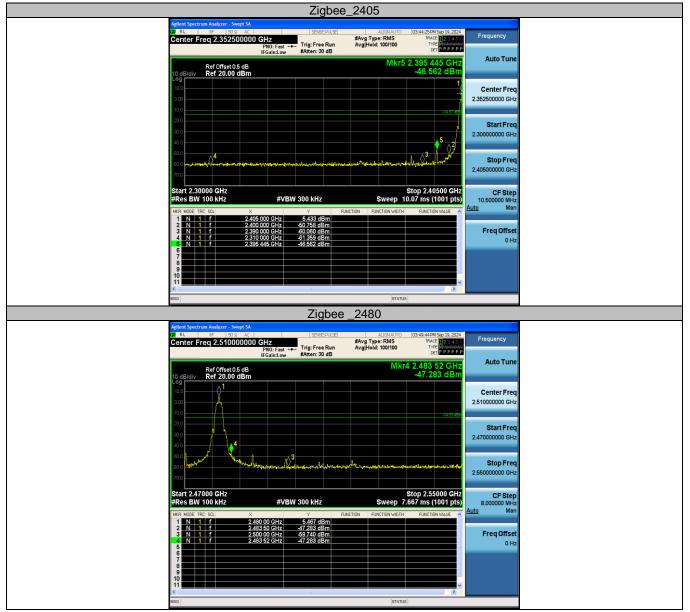
Please refer to the clause 2.4.

Test Result

Band Edge Conducted Test

Test Mode	Antenna	ChName	Freq(MHz)	RefLevel[dBm]	Result[dBm]	Limit[dBm]	Verdict
Zighoo	Apt1	Low	2405	5.43	-46.56	≤-14.57	PASS
Zigbee	Ant1	High	2480	5.47	-47.28	≤-14.53	PASS

CTC Laboratories, Inc.


Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

Conducted Spurious Emissions Test

Test Mode	Antenna	Freq(MHz)	FreqRange [MHz]	RefLevel [dBm]	Result[dBm]	Limit[dBm]	Verdict
			Reference	3.87	3.87		PASS
		2405	30~1000	3.87	-63.32	≤-16.13	PASS
			1000~26500	3.87	-43.62	≤-16.13	PASS
			Reference	-0.07	-0.07		PASS
Zigbee	Ant1	2440	30~1000	-0.07	-62.06	≤-20.07	PASS
			1000~26500	-0.07	-41.53	≤-20.07	PASS
			Reference	3.02	3.02		PASS
		2480	30~1000	3.02	-62.89	≤-16.98	PASS
			1000~26500	3.02	-38.94	≤-16.98	PASS

Band Edge Conducted Test plot as follows:

CTC Laboratories, Inc.

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

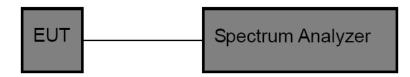
Conducted Spurious Emissions Test plot as follows:

CTC Laboratories, Inc.

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn


3.5. DTS Bandwidth

<u>Limit</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (a)(2)

Test Item	Limit	Frequency Range (MHz)
DTS Bandwidth	≥500 kHz (6dB bandwidth)	2400~2483.5

Test Configuration

Test Procedure

- 1. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- 2. DTS Spectrum Setting:
 - (1) Set RBW = 100 kHz.
 - (2) Set the video bandwidth (VBW) \geq 3 RBW.
 - (3) Detector = Peak.
 - (4) Trace mode = Max hold.
 - (5) Sweep = Auto couple.
 - OCB Spectrum Setting:
 - (1) Set RBW = $1\% \sim 5\%$ occupied bandwidth.
 - (2) Set the video bandwidth (VBW) \geq 3 RBW.
 - (3) Detector = Peak.
 - (4) Trace mode = Max hold.
 - (5) Sweep = Auto couple.

NOTE: The EUT was set to continuously transmitting in each mode and low, Middle and high channel for the test.

Test Mode

Please refer to the clause 2.4.

Test Result

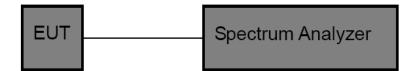
Test Mode	Channel	99% Bandwidth (MHz)	DTS Bandwidth (MHz)	Limit (kHz)	Result	
Zigbee	2405 2.1588		0.808			
	2440	2.1518	0.832	≥500	Pass	
	2480	2.1696	0.816			

CTC Laboratories, Inc.

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn


3.6. Peak Output Power

<u>Limit</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (b)(3)

Section	Test Item	Limit	Frequency Range (MHz)
FCC CFR 47 Part15.247 (b)(3)	Maximum Conducted Output Power	1 Watt or 30dBm	2400~2483.5

Test Configuration

Test Procedure

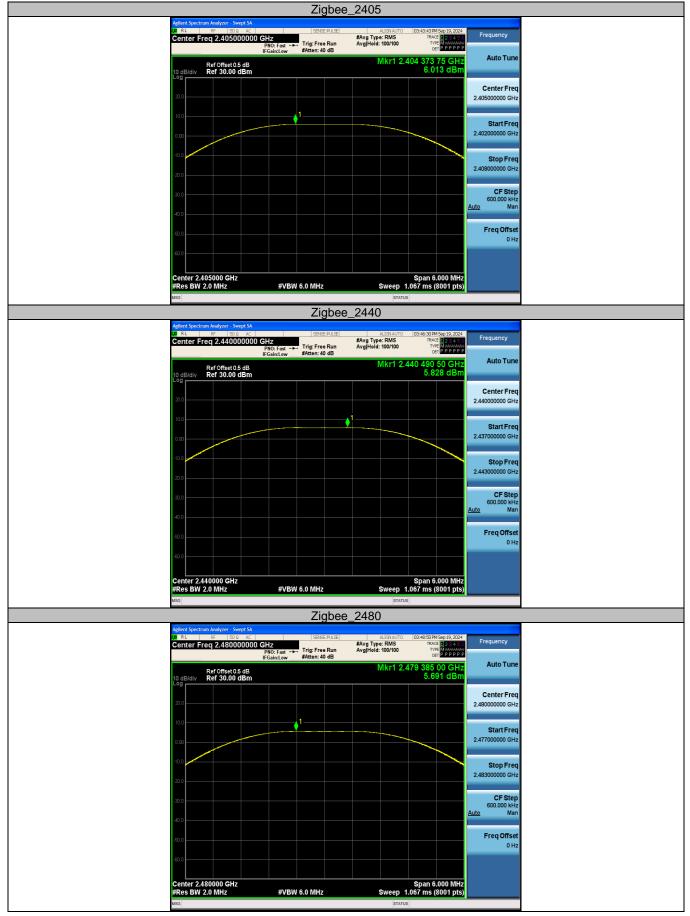
1. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.

- 2. Spectrum Setting:
 - (1) Set RBW \geq DTS Bandwidth.
 - (2) Set VBW \geq 3*RBW.
 - (3) Set Span \geq 3*RBW.
 - (4) Sweep time = Auto couple.
 - (5) Detector = Peak.
 - (6) Trace mode = Max hold.

Allow trace to fully stabilize. Then use the peak marker function to determine the maximum amplitude level.

Test Mode

Please refer to the clause 2.4.

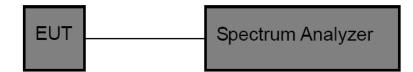

Test Result

Test Mode	Frequency (MHz)	Conducted Output Power (dBm)	FCC Limit (dBm)	Verdict
Zigbee	2405	6.01	≤30	Pass
	2440	5.83	≤30	Pass
	2480	5.69	≤30	Pass

CTC Laboratories, Inc.

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn


3.7. Power Spectral Density

<u>Limit</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (e)

Test Item	Limit	Frequency Range (MHz)	
Power Spectral Density	8 dBm (in any 3 kHz)	2400~2483.5	

Test Configuration

Test Procedure

- 1. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- 2. The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement according to section 10.2 of KDB 558074 D01 DTS Meas Guidance v05r02.

3. Spectrum Setting:

Set analyzer center frequency to DTS channel center frequency.

Set the span to 1.5 times the DTS bandwidth.

Set the RBW to: 3 kHz.

Set the VBW to: 10 kHz.

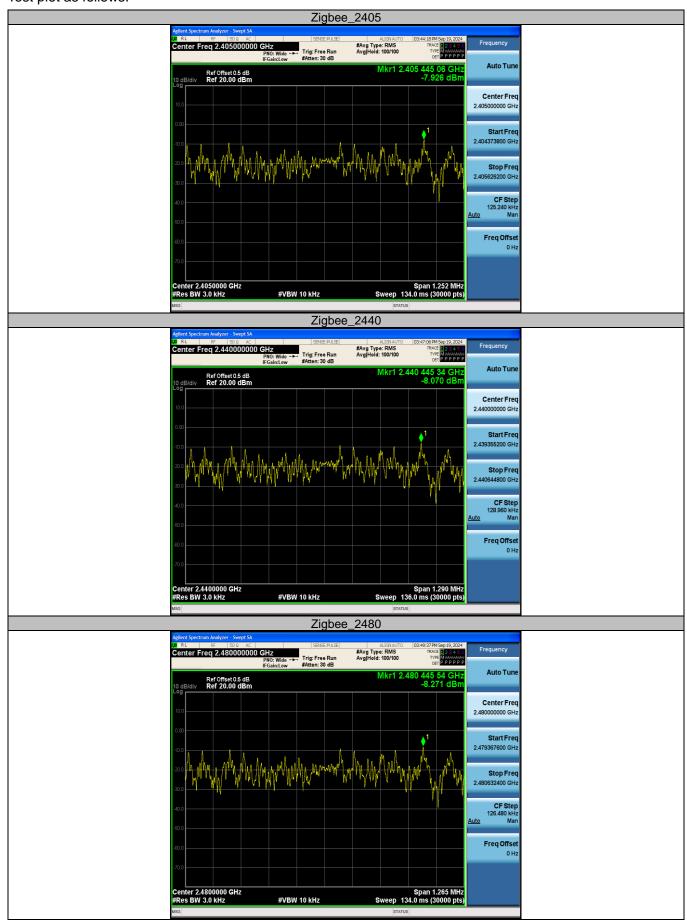
Detector: peak.

Sweep time: auto.

Allow trace to fully stabilize. Then use the peak marker function to determine the maximum amplitude level.

Test Mode

Please refer to the clause 2.4.

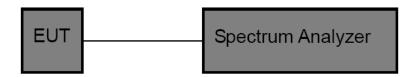

Test Result

Test Mode	Antenna	Freq(MHz) Result[dBm/3kHz]		Limit[dBm/3kHz]	Verdict
Zigbee	Ant1	2405	-7.93	≤8.00	PASS
		2440	-8.07	≤8.00	PASS
		2480	-8.27	≤8.00	PASS

CTC Laboratories, Inc.

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn



3.8. Duty Cycle

<u>Limit</u>

None, for report purposes only.

Test Configuration

Test Procedure

- 1. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- 2. The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement according to section 10.2 of KDB 558074 D01 DTS Meas Guidance v05r02.

3. Spectrum Setting:
Set analyzer center frequency to test channel center frequency.
Set the span to 0Hz.
Set the RBW to 10MHz.
Set the VBW to 10MHz.
Detector: Peak.
Sweep time: Auto.

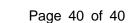
Allow trace to fully stabilize. Then use the peak marker function to determine the maximum amplitude level.

Test Mode

Please refer to the clause 2.4.

Test Result

Test Mode	Frequency (MHz)	Transmission Duration (ms)	Transmission Period (ms)	Duty Cycle (%)	1/T Minimum VBW (kHz)	Final Setting for VBW (kHz)
	2405	0.38	0.66	57.58	2.63	3
Zigbee	2440	0.38	0.66	57.58	2.63	3
	2480	0.38	0.66	57.58	2.63	3


CTC Laboratories, Inc.

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

3.9. Antenna Requirement

<u>Requirement</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1)(i)

(i) Systems operating in the 2400~2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

<u>Test Result</u>

The directional gain of the antenna is less than 6dBi, please refer to the EUT internal photographs antenna photo.