

CTC Laboratories, Inc. (FCC Designation Number: CN1208)

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China

Tel: +86-755-27521059 Fax: +86-755-27521011 http://www.sz-ctc.org.cn

Maximum Permissible Exposure Evaluation

FCC ID: 2APN5ZBBRIDGEU

According to FCC 1.1310: The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency (RF) Radiation as specified in §1.1307(b).

EUT Specification

Applicant	Shenzhen Sonoff Technologies Co.,Ltd.				
Address	3F & 6F, Bldg A, No. 663, Bulong Rd, Shenzhen, Guangdong, China				
Product Name:	Zigbee Bridge				
Trade Mark:	Sonoff				
Model/Type Reference:	ZBBridge-U				
Listed Model(s):	/				
Model Differences:	/				
Frequency Band (Operating)	Zigbee: 2405~2480MHz BLE: 2402~2480MHz 2.4G WiFi: 2412-2462MHz				
Device Category	☐ Portable (<5mm separation) ☐ Mobile (>20cm separation) ☐ Fixed (>20cm separation) ☐ Others				
Exposure Classification	☐Occupational/Controlled exposure (S=5mW/cm²) ☐General Population/Uncontrolled exposure (S=1mW/cm²)				
Antenna Diversity	□Single antenna □Multiple antennas □TX diversity □RX diversity □TX/RX diversity				
Antenna Gain (Max)	Zigbee (RF Module: EFR32MG21): 3.85dBi BLE (RF Module: YC1175): 1.73dBi BLE/2.4G WiFi (RF Module: 6223A-SRD): 2.5dBi				
Evaluation Applied					

Report No.: CTC20240361E11

Limits for Maximum Permissible Exposure (MPE)

Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm²)	Averaging Time (minutes)					
(A) Limits for Occupational/Controlled Exposure									
300-1500			F/300	<6					
1500-100000			5	<6					
(B) Lim	(B) Limits for General Population/Uncontrolled Exposure								
300-1500			F/1500	<30					
1500-100000			1	<30					

Calculation Method

Friis transmission formula: Pd=(P_{out}*G)/(4*Pi*R²)

Where:

Pd= Power density in mW/cm²

 P_{out} = output power to antenna in mW

G= gain of antenna in linear scale

Pi= 3.1416

R= distance between observation point and center of the radiator in cm

Pd limit of MPE is 1mW/cm². If we know the maximum gain of the antenna and total power input to the antenna, through the calculation, we will know the distance where the MPE limit is reached.

Report No.: CTC20240361E11

Measurement Result

Mode	Frequency (MHz)	Antenna Gain (dBi)	Maximum Power (dBm)	Tune Up Tolerance (dB)	Power	Power Density at 20cm (mW/cm²)	Limit (mW/cm²)	Result
Zigbee	2405	3.85	4.64	±1	5.50	0.0017	1	Pass
GFSK (BLE) (RF Module: YC1175)	2440	1.73	1.22	±1	2.00	0.0005	1	Pass
GFSK (BLE) (RF Module: 6223A-SRD)	2480	2.5	0.21	±1	1.00	0.0004	1	Pass
802.11g	2462	2.5	17.00	±1	18.00	0.0223	1	Pass

The Zigbee, BLE and WiFi can transmit simultaneously.

Mode	Frequency (MHz)	Antenna Gain (dBi)	Power Density at 20cm (mW/cm²)	Total Power density at 20cm (mW/cm²)	Limit (mW/cm²)	Result
Zigbee	2405	3.85	0.0017		1	Pass
GFSK (BLE) (RF Module: YC1175)	2440	1.73	0.0005	0.0240		
GFSK (BLE) (RF Module: 6223A-SRD)	2480	2.5	0.0004	0.0249		
802.11n(HT40)	2462	2.5	0.0223			

Note:

- 1. Calculate in the worst-case mode.
- 2. Max. Tune Up Power is declared by manufacturer, and used to calculate.
- 3. For a more detailed features description, please refer to the RF Test Report.

