

CTC Laboratories, Inc.

Room 101 Building B, No. 7, Langing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China

Tel: +86-755-27521059 Fax: +86-755-27521011 http://www.sz-ctc.org.cn

TEST REPORT

Report No. CTC20240757E04

FCC ID...... 2APN5SWV

IC...... 29127-SWV

Applicant-----: Shenzhen Sonoff Technologies Co.,Ltd.

3F & 6F, Bldg A, No. 663, Bulong Rd, Shenzhen, Guangdong, Address-----:

China

Manufacturer-----: Shenzhen Sonoff Technologies Co.,Ltd.

3F & 6F, Bldg A, No. 663, Bulong Rd, Shenzhen, Guangdong, Address----:

China

Product Name----: **Zigbee Smart Water Valve**

Signoff, Sonoff Trade Mark·····:

Model/Type reference·····: SWV-BSP Listed Model(s) SWV-NH

FCC CFR Title 47 Part 15 Subpart C Section 15.247 Standard----::

RSS-247 Issue 3

Date of receipt of test sample...: Mar. 12, 2024

Date of testing.....: Mar. 12, 2024 to Mar. 27, 2024

Date of issue.....: Jun. 19, 2024

Result....: **PASS**

Compiled by:

(Printed name+signature) Jim Jiang

Supervised by:

(Printed name+signature) Eric Zhang Jim Jiang Briczhang

Approved by:

(Printed name+signature) Totti Zhao

This test report may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by CTC. The test results in the report only apply to the tested sample. The test report shall be invalid without all the signatures of testing engineers, reviewer and approver. Any objections must be raised to CTC within 15 days since the date when the report is received. It will not be taken into consideration beyond this limit. The test report merely correspond to the test sample.

Table of Contents

Report No.: CTC20240121E04

Page

1. TI	TEST SUMMARY	3
1.1.	. Test Standards	3
1.2.	. REPORT VERSION	3
1.3.	. Test Description	3
1.4.	. Test Facility	4
1.5.	. Measurement Uncertainty	4
1.6.	. Environmental Conditions	5
2. G	GENERAL INFORMATION	6
2.1.	. CLIENT INFORMATION	6
2.2.		
2.3.	. Accessory Equipment Information	7
2.4.		
2.5.		
3. TI	TEST ITEM AND RESULTS	11
3.1.	. CONDUCTED EMISSION	11
3.2.	. RADIATED EMISSION	13
3.3.	. BAND EDGE EMISSIONS (RADIATED)	21
3.4.	. BAND EDGE AND SPURIOUS EMISSIONS (CONDUCTED)	26
3.5.	. DTS Bandwidth	32
3.6.	. PEAK OUTPUT POWER	35
3.7.	. Power Spectral Density	36
3.8.	. Duty Cycle	38
3.9.	. Antenna Requirement	40

Accreditation Administration of the People's Republic of China: yz.cnca.cn

Page 3 of 40 Report No.: CTC20240121E04

1. TEST SUMMARY

1.1. Test Standards

The tests were performed according to following standards:

FCC Rules Part 15.247: Operation within the bands of 902-928MHz, 2400-2483.5MHz, and 5725-5850MHz. RSS-247 Issue 3: Standard Specifications for Frequency Hopping Systems (FHSs) and Digital Transmission Systems (DTSs) Operating in the Bands 902-928MHz, 2400-2483.5MHz and 5725-5850MHz. ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices.

1.2. Report Version

Revised No.	Report No.	Date of issue	Description
01	CTC20240757E04	Jun. 19, 2024	Original

1.3. Test Description

FCC Part 15 Subpart C (15.247) / RSS-247 Issue 3						
Test Item	Standard	Section	Result	Test Engineer		
rest item	FCC	IC	Result			
Antenna Requirement	15.203	/	Pass	Jim Jiang		
Conducted Emission	15.207	RSS-Gen 8.8	Pass	N/A		
Band Edge Emissions	15.247(d)	RSS-247 5.5	Pass	Jim Jiang		
6dB Bandwidth	15.247(a)(2)	RSS-247 5.2 (a)	Pass	Jim Jiang		
Conducted Max Output Power	15.247(b)(3)	RSS-247 5.4 (d)	Pass	Jim Jiang		
Power Spectral Density	15.247(e)	RSS-247 5.2 (b)	Pass	Jim Jiang		
Transmitter Radiated Spurious	15.209&15.247(d)	RSS-247 5.5& RSS-Gen 8.9	Pass	Jim Jiang		

Note:

N/A: Not applicable.

The measurement uncertainty is not included in the test result.

Page 4 of 40 Report No.: CTC20240121E04

1.4. Test Facility

CTC Laboratories, Inc.

Add: Room 101 Building B, Room 107, 108, 207, 208, 303 Building A, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China (formerly 2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, High-Tech Park, Guanlan Sub-District, Longhua New District, Shenzhen, Guangdong, China)

Laboratory accreditation

The test facility is recognized, certified, or accredited by the following organizations:

A2LA-Lab Cert. No.: 4340.01

CTC Laboratories, Inc. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

Industry Canada (Registration No.: 9783A, CAB Identifier: CN0029)

CTC Laboratories, Inc. EMC Laboratory has been registered by Certification and Engineer Bureau of Industry Canada for the performance of with Registration NO.: 9783A on Jan, 2016.

FCC (Registration No.: 951311, Designation Number CN1208)

CTC Laboratories, Inc. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained inour files. Registration 951311, Aug 26, 2017.

1.5. Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the CTC Laboratories, Inc. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Below is the best measurement capability for CTC Laboratories, Inc.

For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China: yz.cnca.cn

Test Items	Measurement Uncertainty	Notes
Transmitter power conducted	0.42 dB	(1)
Transmitter power Radiated	2.14 dB	(1)
Conducted spurious emissions 9kHz~40GHz	1.60 dB	(1)
Radiated spurious emissions 9kHz~40GHz	2.20 dB	(1)
Conducted Emissions 9kHz~30MHz	3.20 dB	(1)
Radiated Emissions 30~1000MHz	4.70 dB	(1)
Radiated Emissions 1~18GHz	5.00 dB	(1)
Radiated Emissions 18~40GHz	5.54 dB	(1)
Occupied Bandwidth		(1)

Note (1): This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

1.6. Environmental Conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15 °C to 35 °C
Relative Humidity:	20 % to 75 %
Air Pressure:	101 kPa

2. GENERAL INFORMATION

2.1. Client Information

Applicant:	Shenzhen Sonoff Technologies Co.,Ltd.	
Address:	3F & 6F, Bldg A, No. 663, Bulong Rd, Shenzhen, Guangdong, China	
Manufacturer:	Shenzhen Sonoff Technologies Co.,Ltd.	
Address:	3F & 6F, Bldg A, No. 663, Bulong Rd, Shenzhen, Guangdong, China	

2.2. General Description of EUT

Product Name:	Zigbee Smart Water Valve
Trade Mark:	Signoff, Sonoff
Model/Type reference:	SWV-BSP
Listed Model(s):	SWV-NH
Model Difference:	All these models are identical in the same PCB, layout, electrical circuit and enclosure. The difference is the model name and the interface thread.
Power supply:	DC6V from 4*AA Batteries
Hardware version:	V1.0.1
Software version:	V1.0.2
Zigbee 3.0	
Modulation:	OQPSK
Operation frequency:	2405MHz~2480MHz
Channel number:	16
Channel separation:	5MHz
Antenna type:	PCB Antenna
Antenna gain:	-0.17dBi

Accreditation Administration of the People's Republic of China: yz.cnca.cn

2.3. Accessory Equipment Information

Equipment Information					
Name	Model	S/N	Manufacturer		
Notebook	ThinkPad E14 Gen 3	PF-3384L3	Lenovo		
Cable Information					
Name	Shielded Type	Ferrite Core	Length		
USB Cable	Unshielded	NO	120cm		
Test Software Information					
Name	Version	/	1		
SSCOM	V5.13.1	/	/		

Accreditation Administration of the People's Republic of China : <u>yz.cnca.cn</u>

Page 8 of 40

Report No.: CTC20240121E04

2.4. Operation State

The EUT has been tested under typical operating condition. The Applicant provides communication tools software to control the EUT for staying in continuous transmitting and receiving mode for testing. Zigbee, 16 channels are provided to the EUT. Channels 11/18/26 were selected for testing.

Operation Frequency List:

Channel	Frequency (MHz)
11	2405
12	2410
:	::
17	2435
18	2440
19	2445
:	÷
25	2475
26	2480

Note: The display in grey were the channel selected for testing.

Test Mode:

For RF test items:

The engineering test program was provided and enabled to make EUT continuous transmit.

For AC power line conducted emissions:

The EUT was set to connect with the Bluetooth instrument under large package sizes transmission.

For Radiated spurious emissions test item:

The engineering test program was provided and enabled to make EUT continuous transmit. The EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

The worse case configurations:

The worde dade definigations:						
The Worse Case Power Setting Parameter under 2400 ~ 2483.5MHz Band						
Test Software SSCOM V5.13.1						
Modulation Mode Test Channel Power Level						
	11	6 0				
OQPSK	18	6 0				
	26	6 0				

2.5. Measurement Instruments List

Wideband Radio

Communication Tester

RF Control Unit

High and low

temperature test

chamber

13

14

15

Tonsc	Tonscend JS0806-2 Test system				
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated until
1	Spectrum Analyzer	R&S	FSV40-N	101331	Mar. 21, 2025
2	Spectrum Analyzer	R&S	FSV40-N	101654	Aug. 07, 2024
3	Spectrum Analyzer	R&S	FSU26	100105	Dec. 12, 2024
4	MXA Signal Analyzer	Keysight	N9020A	MY46471737	Dec. 12, 2024
5	MXA Signal Analyzer	Keysight	N9020A	MY52091402	Aug. 22, 2024
6	MXG Vector Signal Generator	Agilent	N5182A	MY47420864	Dec. 12, 2024
7	PSG Analog Signal Generator	Agilent	E8257D	MY46521908	Dec. 12, 2024
8	EXG Analog Signal Generator	Keysight	N5173B	MY59100842	Dec. 12, 2024
9	MXG Vector Signal Generator	Keysight	N5182B	MY59100212	Dec. 12, 2024
10	USB Wideband Power Sensor	Keysight	U2021XA	MY55130004	Mar. 21, 2025
11	USB Wideband Power Sensor	Keysight	U2021XA	MY55130006	Mar. 21, 2025
12	Wideband Radio Communication Tester	R&S	CMW500	102257	May 25, 2024

CMW500

JS0806-2

MT3035

102414

/

Dec. 12, 2024

Aug. 22, 2024

Mar. 21, 2025

R&S

Tonscend

ESPEC

Radia	Radiated emission					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated until	
1	Trilog-Broadband Antenna	Schwarzbeck	VULB 9163	01026	Dec. 18, 2024	
2	Horn Antenna	Schwarzbeck	BBHA 9120D	9120D-647	Sep. 25, 2025	
3	Test Receiver	Keysight	N9038A	MY56400071	Dec. 12, 2024	
4	Broadband Premplifier	SCHWARZBECK	BBV9743B	259	Dec. 12, 2024	
5	Mirowave Broadband Amplifier	SCHWARZBECK	BBV9718C	111	Dec. 12, 2024	
6	3m chamber 3	YIHENG	EE106	/	Aug. 28, 2026	
7	Test Software	FARA	EZ-EMC	FA-03A2	/	

Accreditation Administration of the People's Republic of China: yz.cnca.cn

EN 中国国家认证认可监督管理委员会

Condu	Conducted Emission							
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated until			
1	LISN	R&S	ENV216	101112	Dec. 12, 2024			
2	LISN	R&S	ENV216	101113	Dec. 12, 2024			
3	EMI Test Receiver	R&S	ESCS30	100353	Dec. 12, 2024			
4	ISN CAT6	Schwarzbeck	NTFM 8158	CAT6-8158-0046	Dec. 12, 2024			
5	ISN CAT5	Schwarzbeck	NTFM 8158	CAT5-8158-0046	Dec. 12, 2024			
6	Test Software	R&S	EMC32	6.10.10	/			

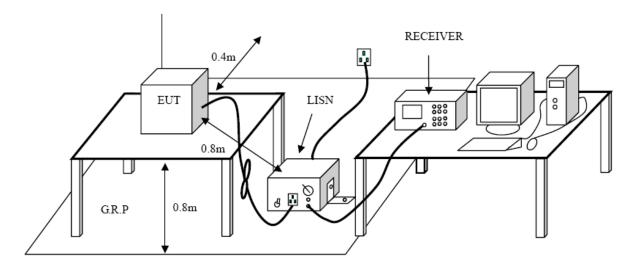
Note: 1. The Cal. Interval was one year.

- 2. The Cal. Interval was three years of the antenna.
- 3. The cable loss has been calculated in test result which connection between each test instruments.

Accreditation Administration of the People's Republic of China: yz.cnca.cn

3. TEST ITEM AND RESULTS

3.1. Conducted Emission


Limit

FCC CFR Title 47 Part 15 Subpart C Section 15.207/ RSS - Gen 8.8

Fraguency range (MHz)	Limit (dBuV)			
Frequency range (MHz)	Quasi-peak	Average		
0.15-0.5	66 to 56*	56 to 46*		
0.5-5	56	46		
5-30	60	50		

^{*} Decreases with the logarithm of the frequency.

Test Configuration

Test Procedure

- 1. The EUT was setup according to ANSI C63.10:2013 requirements.
- 2. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.
- 3. The EUT and simulators are connected to the main power through a line impedances stabilization network (LISN). The LISN provides a 50ohm /50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs)
- 4. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source.
- 5. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.
- 6. Conducted Emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.
- 7. During the above scans, the emissions were maximized by cable manipulation.

Test Mode:

Please refer to the clause 2.4.

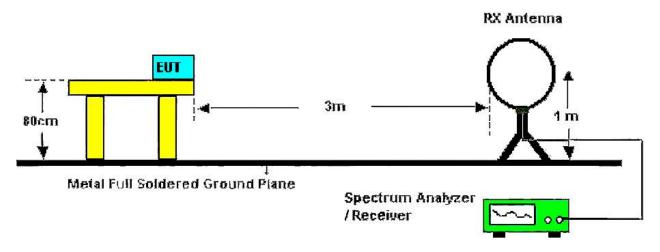
Test Results

Not applicable.

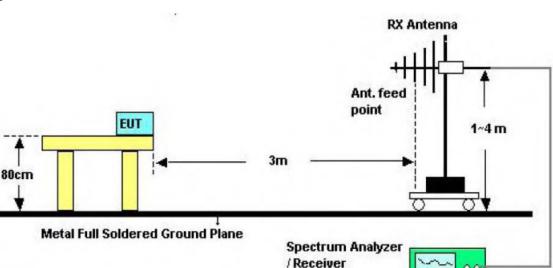
3.2. Radiated Emission

<u>Limit</u>

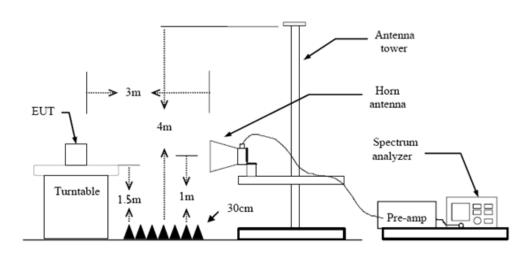
FCC CFR Title 47 Part 15 Subpart C Section 15.209/ RSS - Gen 8.9


Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

Fraguesov (MLIT)	dB(uV/m) (at 3 meters)		
Frequency (MHz)	Peak	Average	
Above 1000	74	54	


Note:

- (1) The tighter limit applies at the band edges.
- (2) Emission Level (dBuV/m)=20log Emission Level (uV/m).


Test Configuration

Below 30MHz Test Setup

30-1000MHz Test Setup

Above 1GHz Test Setup

Test Procedure

- 1. The EUT was setup and tested according to ANSI C63.10:2013.
- 2. The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz, and 1.5 m for above 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower.
- 4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 5. Set to the maximum power setting and enable the EUT transmit continuously.
- 6. Use the following spectrum analyzer settings
- (1) Span shall wide enough to fully capture the emission being measured;

CTC Laboratories, Inc.

(2) 9k - 150kHz:

RBW=300 Hz, VBW=1 kHz, Sweep=auto, Detector function=peak, Trace=max hold (3) 0.15M – 30MHz:

RBW=10 kHz, VBW=30 kHz, Sweep=auto, Detector function=peak, Trace=max hold (4) 30M - 1 GHz:

RBW=120 kHz, VBW=300 kHz, Sweep=auto, Detector function=peak, Trace=max hold

If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

(5) From 1 GHz to 10th harmonic:

RBW=1MHz, VBW=3MHz Peak detector for Peak value.

RBW=1MHz, VBW see note 1 with Peak Detector for Average Value.

Note 1: For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause 3.8 Duty Cycle.

Test Mode

Please refer to the clause 2.4.

Test Result

9 KHz~30 MHz

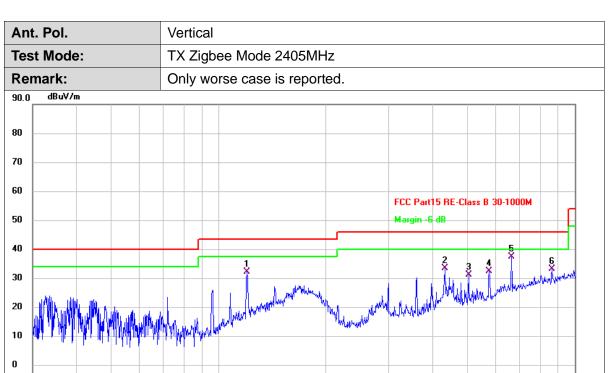
From 9 KHz to 30 MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Accreditation Administration of the People's Republic of China: yz.cnca.cn

30MHz-1GHz

	t Mode: TX Zigbee Mode 2405MHz									
Test										
Rem	nark:		Only	y wo	rse case is rep	orted.				
90.0	dBuV/m									
30 -										
70										
60 <u> </u>							FCC Part	15 RE-Class	B 30-1000M	
50							Margin -	6 dB		
40				-			4 *	5	×	
30			1		2 3	Mu I I I	l skaal a		personal description	mudaya Mil
20		AND THE PROPERTY OF THE PROPER	MAYAW	Mary April Bel	S S S S S S S S S S S S S S S S S S S	" Andreil Applification of	YAMHAMA #YY	OIL INTER		
0		'		1						
-10										
30.	000	60.00			(MHz	J	300.00			1000


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	71.8319	39.90	-19.21	20.69	40.00	-19.31	QP
2	119.8556	43.91	-18.07	25.84	43.50	-17.66	QP
3	166.6513	41.28	-16.32	24.96	43.50	-18.54	QP
4	359.1860	49.77	-14.08	35.69	46.00	-10.31	QP
5	432.5456	47.77	-11.93	35.84	46.00	-10.16	QP
6 *	663.4728	42.55	-6.51	36.04	46.00	-9.96	QP

Remarks:

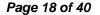
1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

1000.000

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	119.8556	50.21	-18.07	32.14	43.50	-11.36	QP
2	432.5457	45.25	-11.93	33.32	46.00	-12.68	QP
3	502.9395	41.59	-10.50	31.09	46.00	-14.91	QP
4	574.6258	40.95	-8.47	32.48	46.00	-13.52	QP
5 *	663.4729	43.96	-6.51	37.45	46.00	-8.55	QP
6	863.0562	36.14	-3.12	33.02	46.00	-12.98	QP

(MHz)

300.00


Remarks:

-10 30.000

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

60.00

Above 1GHz

Ant. Pol.	Horizontal
Test Mode:	TX Zigbee Mode 2405MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	1329.000	48.40	-7.15	41.25	74.00	-32.75	peak
2	3972.750	40.89	0.44	41.33	74.00	-32.67	peak
3	7215.750	41.85	10.03	51.88	74.00	-22.12	peak
4	9189.750	37.91	12.33	50.24	74.00	-23.76	peak
5	10270.750	38.47	13.69	52.16	74.00	-21.84	peak
6 *	12687.333	36.42	16.29	52.71	74.00	-21.29	peak

Remarks

- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

Ant. Pol.	Vertical
Test Mode:	TX Zigbee Mode 2405MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	1329.000	49.78	-7.15	42.63	74.00	-31.37	peak
2	3882.667	45.83	0.08	45.91	74.00	-28.09	peak
3 *	7211.833	42.95	10.03	52.98	74.00	-21.02	peak
4	10020.083	38.55	13.22	51.77	74.00	-22.23	peak
5	11187.250	37.33	14.76	52.09	74.00	-21.91	peak
6	12554.167	37.02	15.94	52.96	74.00	-21.04	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant. Pol.	Horizontal
Test Mode:	TX Zigbee Mode 2440MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	3021.000	41.96	-2.08	39.88	74.00	-34.12	peak
2	5613.833	38.98	4.17	43.15	74.00	-30.85	peak
3	7215.700	40.65	10.03	50.68	74.00	-23.32	peak
4	8715.833	38.65	11.25	49.90	74.00	-24.10	peak
5	10212.000	38.09	13.60	51.69	74.00	-22.31	peak
6 *	12417.083	37.35	15.55	52.90	74.00	-21.10	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. Pol.	Vertical
Test Mode:	TX Zigbee Mode 2440MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	1329.000	51.16	-7.15	44.01	74.00	-29.99	peak
2	3890.500	44.49	0.11	44.60	74.00	-29.40	peak
3	7215.750	42.78	10.03	52.81	74.00	-21.19	peak
4	8903.833	39.32	11.55	50.87	74.00	-23.13	peak
5	10725.083	38.19	14.31	52.50	74.00	-21.50	peak
6 *	12025.417	37.82	15.48	53.30	74.00	-20.70	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant. Pol.	Horizontal
Test Mode:	TX Zigbee Mode 2480MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	1329.000	48.38	-7.15	41.23	74.00	-32.77	peak
2	4748.250	39.53	1.89	41.42	74.00	-32.58	peak
3	7215.270	40.93	10.03	50.96	74.00	-23.04	peak
4	8794.167	38.98	11.39	50.37	74.00	-23.63	peak
5 *	10756.417	38.67	14.36	53.03	74.00	-20.97	peak
6	12193.833	36.79	15.71	52.50	74.00	-21.50	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

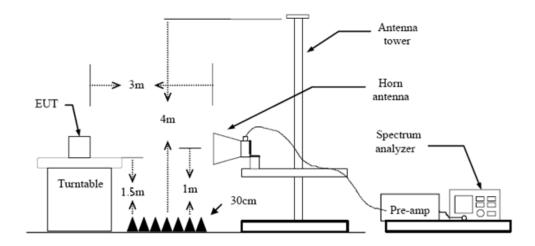
Ant. Pol.	Vertical
Test Mode:	TX Zigbee Mode 2480MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	1329.000	51.46	-7.15	44.31	74.00	-29.69	peak
2	5112.500	40.01	2.60	42.61	74.00	-31.39	peak
3	7215.725	42.69	10.03	52.72	74.00	-21.28	peak
4	9244.583	38.58	12.41	50.99	74.00	-23.01	peak
5	10917.000	37.70	14.58	52.28	74.00	-21.72	peak
6 *	12146.833	37.15	15.65	52.80	74.00	-21.20	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

3.3. Band Edge Emissions (Radiated)


Limit

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (d)/ RSS-247 5.5:

Restricted Frequency Band	(dBuV/m	n)(at 3m)
(MHz)	Peak	Average
2310 ~ 2390	74	54
2483.5 ~ 2500	74	54

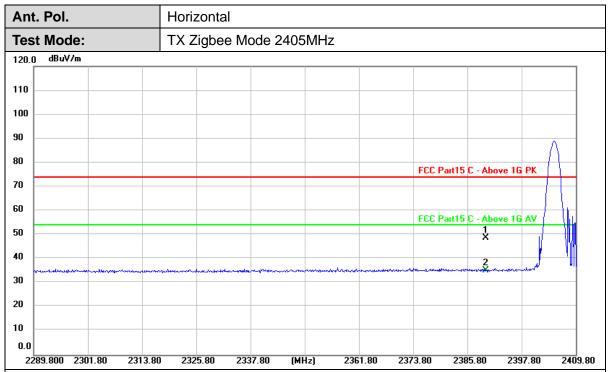
Conducted band edge limit: The highest point of the operating frequency waveform down 20dB

Test Configuration

Test Procedure

- 1. The EUT was setup and tested according to ANSI C63.10:2013 requirements.
- 2. The EUT is placed on a turn table which is 1.5 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.
- 4. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10:2013 on radiated measurement.
- 5. The receiver set as follow:
 - RBW=1MHz, VBW=3MHz Peak detector for Peak value.
 - RBW=1MHz, VBW see note 1 with Peak Detector for Average Value.
 - Note 1: For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause 3.8 Duty Cycle.

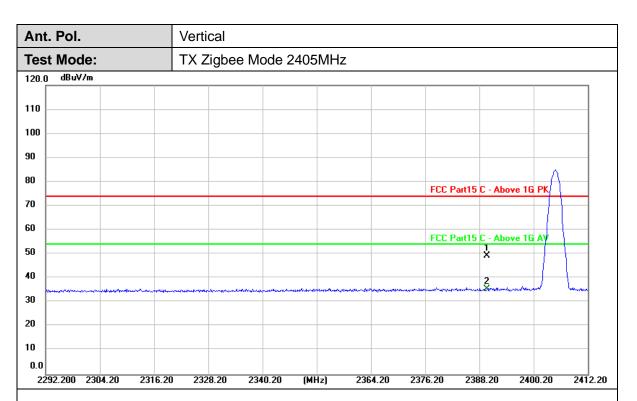
Test Mode


Please refer to the clause 2.4.

Test Results

(1) Radiation Test

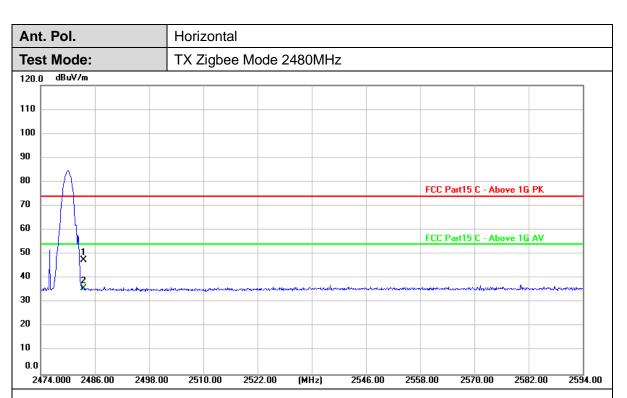
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	2390.000	17.32	31.31	48.63	74.00	-25.37	peak
2 *	2390.000	3.87	31.31	35.18	54.00	-18.82	AVG


Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

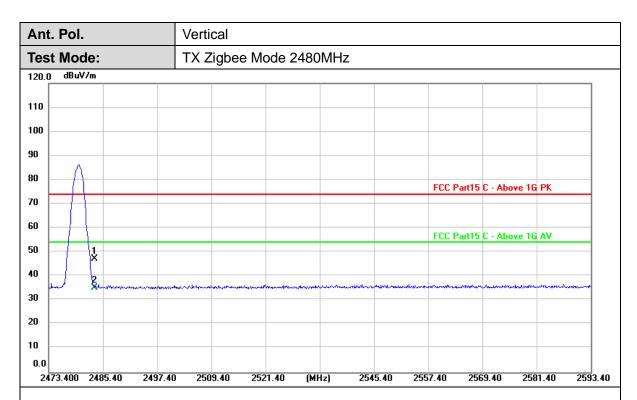
For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China: yz.cnca.cn



No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	2390.000	18.17	31.31	49.48	74.00	-24.52	peak
2 *	2390.000	4.27	31.31	35.58	54.00	-18.42	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor



No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	2483.500	16.09	31.48	47.57	74.00	-26.43	peak
2 *	2483.500	4.22	31.48	35.70	54.00	-18.30	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

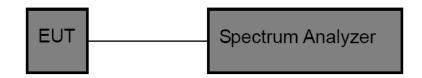
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	2483.500	15.64	31.48	47.12	74.00	-26.88	peak
2 *	2483.500	3.86	31.48	35.34	54.00	-18.66	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Page 26 of 40

Report No.: CTC20240121E04



3.4. Band edge and Spurious Emissions (Conducted)

Limit

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (d):In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

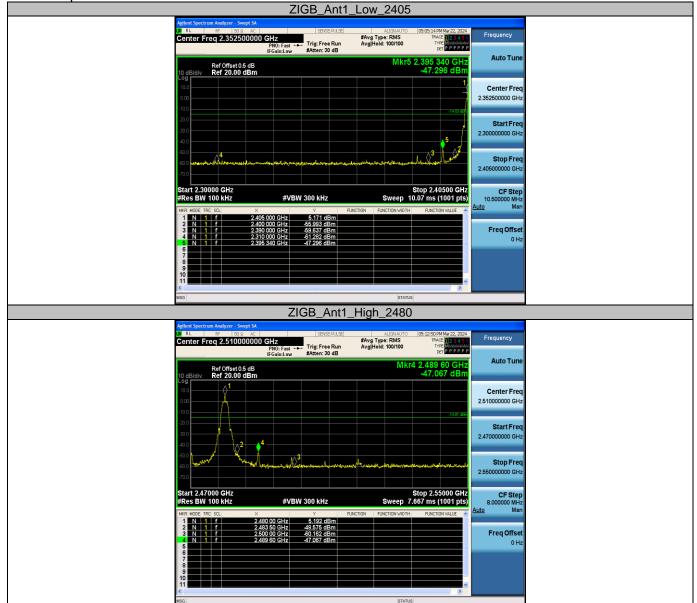
Test Configuration

Test Procedure

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously
- Use the following spectrum analyzer settings: RBW = 100 kHz, VBW ≥ RBW, scan up through 10th harmonic. Sweep = auto, Detector function = peak, Trace = max hold
- 4. Measure and record the results in the test report.

Test Mode

Please refer to the clause 2.4.


Test Results

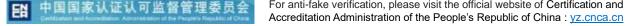
(1) Conducted band edge

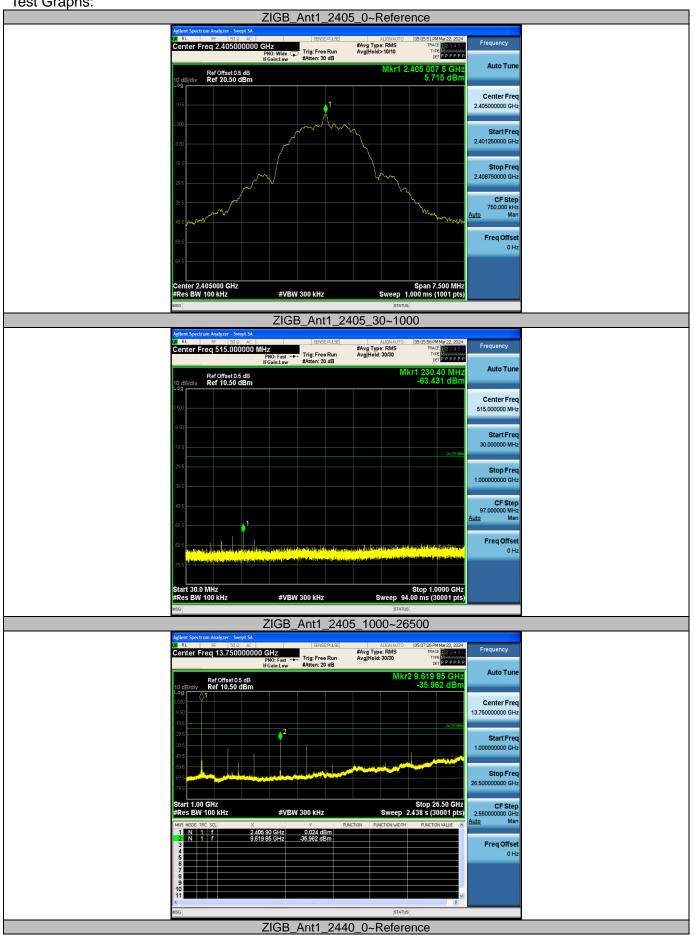
Test Mode	Antenna	ChName	Freq(MHz)	RefLevel[dBm]	Result[dBm]	Limit[dBm]	Verdict
Zighoo	Ant1	Low	2405	5.17	-47.30	≤-14.83	PASS
Zigbee	Ant1	High	2480	5.19	-47.07	≤-14.81	PASS

CD

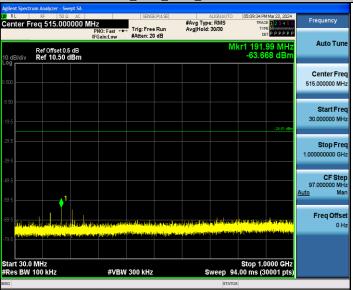
Test Graphs:

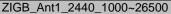
Accreditation Administration of the People's Republic of China: yz.cnca.cn




(2) Conducted Spurious Emissions

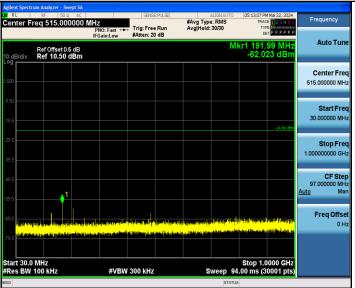
(Z) Conduct	(2) Conducted Optimical Emissions								
Test Mode	Antenna	Freq(MHz)	FreqRange [MHz]	RefLevel [dBm]	Result[dBm]	Limit[dBm]	Verdict		
			Reference	5.71	5.71		PASS		
		2405 Ant1 2440 2480	30~1000	5.71	-63.43	≤-24.29	PASS		
			1000~26500	5.71	-35.96	≤-24.29	PASS		
			Reference	5.49	5.49		PASS		
Zigbee	Ant1		30~1000	5.49	-63.67	≤-24.51	PASS		
			1000~26500	5.49	-33.62	≤-24.51	PASS		
			Reference	5.32	5.32		PASS		
			30~1000	5.32	-62.02	≤-24.68	PASS		
					1000~26500	5.32	-33.21	≤-24.68	PASS




Test Graphs:

ZIGB_Ant1_2440_30~1000

ZIGB_Ant1_2480_0~Reference


Accreditation Administration of the People's Republic of China: <u>yz.cnca.cn</u>



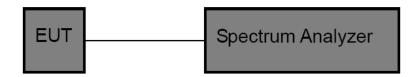
ZIGB_Ant1_2480_30~1000

ZIGB_Ant1_2480_1000~26500

Accreditation Administration of the People's Republic of China: yz.cnca.cn

Page 32 of 40

Report No.: CTC20240121E04


3.5. DTS Bandwidth

Limit

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (a)(2)/ RSS-247 5.2 a:

Test Item	Limit	Frequency Range(MHz)
DTS Bandwidth	≥500 KHz (6dB bandwidth)	2400~2483.5

Test Configuration

Test Procedure

- 1. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- 2. DTS Spectrum Setting:
 - (1) Set RBW = 100 kHz.
 - (2) Set the video bandwidth (VBW) ≥ 3 RBW.
 - (3) Detector = Peak.
 - (4) Trace mode = Max hold.
 - (5) Sweep = Auto couple.
 - **OCB Spectrum Setting:**
 - (1) Set RBW = 1% ~ 5% occupied bandwidth.
 - (2) Set the video bandwidth (VBW) ≥ 3 RBW.
 - (3) Detector = Peak.
 - (4) Trace mode = Max hold.
 - (5) Sweep = Auto couple.

NOTE: The EUT was set to continuously transmitting in each mode and low, Middle and high channel for the test.

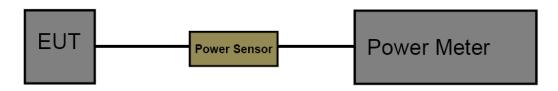
Test Mode

Please refer to the clause 2.4.

Test Results

Test Mode	Channel	99% Bandwidth (MHz)	DTS Bandwidth (MHz)	Limit (kHz)	Result
	CH11	2.2171	0.840		
Zigbee	CH18	2.2407	1.030	≥500	Pass
	CH26	2.2355	0.810		

99% Bandwidth:


3.6. Peak Output Power

Limit

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (b)(3)/ RSS-247 5.4 d:

Section	Test Item	Limit	Frequency Range(MHz)
CFR 47 FCC 15.247(b)(3)	Maximum conducted output power	1 Watt or 30dBm	2400~2483.5
ISED RSS-247 5.4 d	EIRP	4 Watt or 36dBm	2400~2483.5

Test Configuration

Test Procedure

- 1. The maximum conducted output power may be measured using a broadband Peak RF power meter.
- 2. Peak power measurements were performed only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor.
- 3. The power meter implemented triggering and gating capabilities which were set up such that power measurements were recorded only during the ON time of the transmitter.
- 4. Record the measurement data.

Test Mode

Please refer to the clause 2.4.

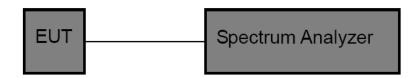
Test Result

Test Mode	Channel	Peak Output power (dBm)	Limit (dBm)	Result
	CH11	6.01		
Zigbee	CH18	5.74	≤30.00	Pass
	CH26	5.63		

Test Mode	Channel	EIRP (dBm)	Limit (dBm)	Result
	CH11	5.84		
Zigbee	CH18	5.57	≤36.00	Pass
	CH26	5.46		

Page 36 of 40

Report No.: CTC20240121E04


3.7. Power Spectral Density

Limit

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (e)/ RSS-247 5.2 b:

Test Item	Limit	Frequency Range(MHz)	
Power Spectral Density	8dBm(in any 3 kHz)	2400~2483.5	

Test Configuration

Test Procedure

- 1. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- 2. The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement according to section 10.2 of KDB 558074 D01 DTS Meas Guidance v05r02.
- 3. Spectrum Setting:

Set analyzer center frequency to DTS channel center frequency.

Set the span to 1.5 times the DTS bandwidth.

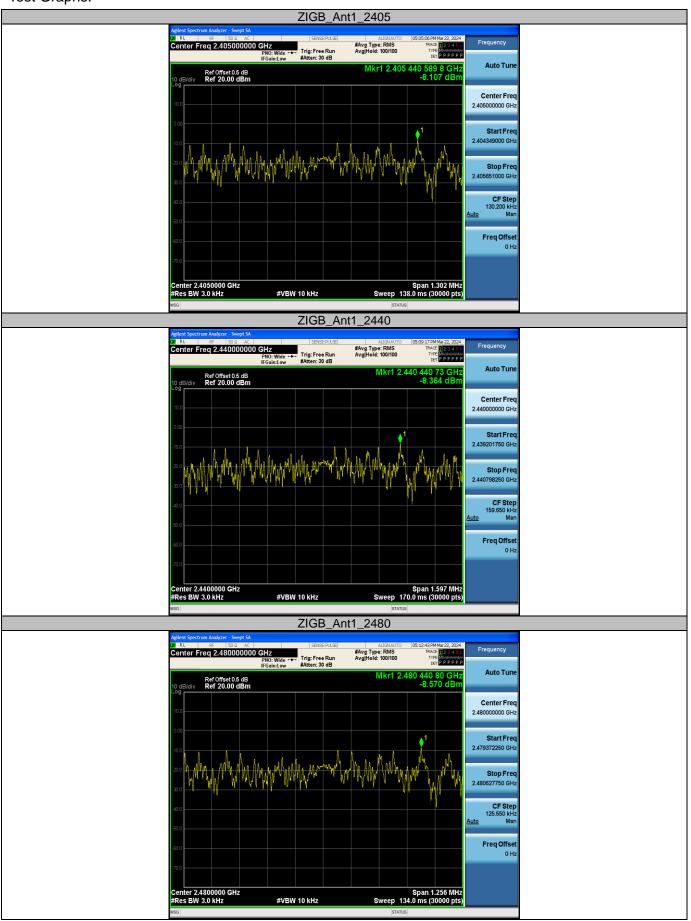
Set the RBW to: 3 kHz Set the VBW to: 10 kHz

Detector: peak Sweep time: auto

Allow trace to fully stabilize. Then use the peak marker function to determine the maximum amplitude level.

Test Mode

Please refer to the clause 2.4.


Test Result

Test Mode	Channel	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)	Result
	CH11	-8.11		
Zigbee	CH18	-8.36	≤8.00	Pass
	CH26	-8.57		

For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China: yz.cnca.cn

Test Graphs:

3.8. Duty Cycle

Limit

None, for report purposes only.

Test Configuration

Test Procedure

- 1. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- 2. The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement according to section 10.2 of KDB 558074 D01 DTS Meas Guidance v05r02.
- 3. Spectrum Setting:

Set analyzer center frequency to test channel center frequency.

Set the span to 0Hz Set the RBW to 10MHz Set the VBW to 10MHz

Detector: Peak Sweep time: Auto

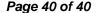
Allow trace to fully stabilize. Then use the peak marker function to determine the maximum amplitude level.

Test Mode

Please refer to the clause 2.4.

Test Result

Mode	Channel	On Time (ms)	Period (ms)	Duty Cycle (%)	1/T Minimum VBW (kHz)	Final setting For VBW (kHz)
	CH11	0.38	0.65	58.46	2.63	3
Zigbee	CH18	0.38	0.66	57.58	2.63	3
	CH26	0.38	0.66	57.58	2.63	3


Note: Duty Cycle>98%, VBW=10Hz

For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China: yz.cnca.cn

Test Graphs:

3.9. Antenna Requirement

Requirement

FCC CFR Title 47 Part 15 Subpart C Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1)(i):

(i) Systems operating in the 2400~2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

Test Result

The directional gain of the antenna less than 6dBi, please refer to the EUT internal photographs antenna photo.