

CTC Laboratories, Inc.

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel: +86-755-27521059 Fax: +86-755-27521011 http://www.sz-ctc.org.cn

TEST REPORT			
Report No:	CTC2024082011		
FCC ID:	2APN5SGC		
IC:	29127-SGC		
Applicant:	Shenzhen Sonoff Technologies Co.,Ltd.		
Address:	3F & 6F, Bldg A, No. 663, Bulong Rd, Shenzhen, Guangdong, China		
Manufacturer	Shenzhen Sonoff Technologies Co.,Ltd.		
Address	3F & 6F, Bldg A, No. 663, Bulong Rd, Shenzhen, Guangdong, China		
Product Name:	Smart Garage Door Controller		
Trade Mark:	Sonoff		
Model/Type reference:	SGC300		
Listed Model(s):	SGC200, SGC100		
Standard:	FCC CFR Title 47 Part 15 Subpart C Section 15.247 RSS-247 Issue 3		
Date of receipt of test sample:	Apr. 15, 2024		
Date of testing	Apr. 15, 2024 to May 30, 2024		
Date of issue	Jul. 10, 2024		
Result	PASS		
Compiled by:	Jim Jiang		
(Printed name+signature)	Jim Jiang		
Supervised by:	Tone shang		
(Printed name+signature)	Eric Zhang		
Approved by:	Totti Zhao		
(Printed name+signature)	Totti Zhao		
This test report may be duplicated completely for legal use with the approval of the applicant. It should not use			

This test report may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by CTC. The Test Result in the report only apply to the tested sample. The test report shall be invalid without all the signatures of testing engineers, reviewer and approver. Any objections must be raised to CTC within 15 days since the date when the report is received. It will not be taken into consideration beyond this limit. The test report merely corresponds to the test sample.

Table of Contents

Page

1. T	TEST SUMMARY	3
1.1.	. Test Standards	3
1.2.	Report Version	3
1.3.	. Test Description	3
1.4.	. Test Facility	4
1.5.	. Measurement Uncertainty	5
1.6.	Environmental Conditions	5
2. 0	GENERAL INFORMATION	6
2.1.	. CLIENT INFORMATION	6
2.2.	GENERAL DESCRIPTION OF EUT	6
2.3.		
2.4.		
2.5.	. Measurement Instruments List	10
з. т	TEST ITEM AND RESULTS	12
3.1.	. Conducted Emission	12
3.2.	RADIATED EMISSION	15
3.3.	Band Edge Emissions (Radiated)	32
3.4.	Band Edge and Spurious Emissions (Conducted)	49
3.5.	DTS BANDWIDTH	66
3.6.	. Peak Output Power	76
3.7.	Power Spectral Density	78
3.8.		
3.9.	ANTENNA REQUIREMENT	90

1. TEST SUMMARY

1.1. Test Standards

The tests were performed according to following standards:

FCC Rules Part 15.247: Operation within the bands 902–928MHz, 2400–2483.5MHz, and 5725-5850MHz.

RSS-247 Issue 3: Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices.

RSS-Gen Issue 5: General Requirements for Compliance of Radio Apparatus.

ANSI C63.10-2013: American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

1.2. Report Version

Revised No.	Report No.	Date of issue	Description
01	CTC2024082010	Jul. 10, 2024	Original

1.3. Test Description

FCC Part 15 Subpart C (15.247) / RSS-247 Issue 3				
Test How	Standard Section		Result	Test
Test Item	FCC	IC	Result	Engineer
Antenna Requirement	15.203	RSS-Gen 6.8	Pass	Jim Jiang
Conducted Emission	15.207	RSS-Gen 8.8	Pass	Jim Jiang
Conducted Band Edge and Spurious Emissions	15.247(d)	RSS-247 5.5	Pass	Jim Jiang
Radiated Band Edge and Spurious Emissions	15.205&15.209& 15.247(d)	RSS-247 5.5	Pass	Jim Jiang
6dB Bandwidth	15.247(a)(2)	RSS-247 5.2 (a)	Pass	Jim Jiang
Conducted Max Output Power	15.247(b)(3)	RSS-247 5.4 (d)	Pass	Jim Jiang
Power Spectral Density	15.247(e)	RSS-247 5.2 (b)	Pass	Jim Jiang
Transmitter Radiated Spurious	15.209&15.247(d)	RSS-247 5.5& RSS-Gen 8.9	Pass	Jim Jiang

Note:

The measurement uncertainty is not included in the test result. 1.

2. N/A: means this test item is not applicable for this device according to the technology characteristic of device.

CTC Laboratories, Inc.

Tel.: (86)755-27521059 可监督管理委员会 中国国家认证认 EN

1.4. Test Facility

Address of the report laboratory

CTC Laboratories, Inc.

Add: Room 101 Building B, Room 107, 108, 207, 208, 303 Building A, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China (formerly 2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, High-Tech Park, Guanlan Sub-District, Longhua New District, Shenzhen, Guangdong, China)

Laboratory accreditation

The test facility is recognized, certified, or accredited by the following organizations:

A2LA-Lab Cert. No.: 4340.01

CTC Laboratories, Inc. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

Industry Canada (Registration No.: 9783A, CAB Identifier: CN0029)

CTC Laboratories, Inc. EMC Laboratory has been registered by Certification and Engineer Bureau of Industry Canada for the performance of with Registration NO.: 9783A on Jan, 2016.

FCC (Registration No.: 951311, Designation Number CN1208)

CTC Laboratories, Inc. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 951311, Aug 26, 2017.

1.5. Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 2" and is documented in the CTC Laboratories, Inc. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Test Items	Measurement Uncertainty	Notes
DTS Bandwidth	±0.0196%	(1)
Maximum Conducted Output Power	±0.686 dB	(1)
Maximum Power Spectral Density Level	±0.743 dB	(1)
Band-edge Compliance	±1.328 dB	(1)
Unwanted Emissions In Non-restricted Freq Bands	9kHz-1GHz: ±0.746dB 1GHz-26GHz: ±1.328dB	(1)
Conducted Emissions 9kHz~30MHz	±3.08 dB	(1)
Radiated Emissions 30~1000MHz	±4.51 dB	(1)
Radiated Emissions 1~18GHz	±5.84 dB	(1)
Radiated Emissions 18~40GHz	±6.12 dB	(1)

Below is the best measurement capability for CTC Laboratories, Inc.

Note (1): This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

1.6. Environmental Conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15 °C to 35 °C
Relative Humidity:	20 % to 75 %
Air Pressure:	101 kPa

CTC Laboratories, Inc.

2. GENERAL INFORMATION

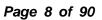
2.1. Client Information

Applicant:	Shenzhen Sonoff Technologies Co.,Ltd.
Address:	3F & 6F, Bldg A, No. 663, Bulong Rd, Shenzhen, Guangdong, China
Manufacturer:	Shenzhen Sonoff Technologies Co.,Ltd.
Address:	3F & 6F, Bldg A, No. 663, Bulong Rd, Shenzhen, Guangdong, China

2.2. General Description of EUT

Product Name:	Smart Garage Door Controller
Trade Mark:	Sonoff
Model/Type reference:	SGC300
Listed Model(s):	SGC200, SGC100
Model Difference:	All these models are identical in the same PCB, layout, electrical circuit. The difference is controlling the number of channels. The SGC300 controls three channels. The SGC200 controls two channels. SGC100 controls one channel.
Power Supply:	Input: DC5V 1A
Hardware Version:	V1.0
Software Version:	V1.0.0
2.4G WiFi	
Modulation:	802.11b: DSSS (CCK, DQPSK, DBPSK) 802.11g/ n: OFDM (BPSK, QPSK, 16QAM, 64QAM)
Operation Frequency:	802.11b/ g/ n(HT20): 2412MHz~2462MHz 802.11n(HT40): 2422MHz~2452MHz
Channel Number:	802.11b/ g/ n(HT20): 11 channels 802.11n(HT40): 7 channels
Channel Separation:	5MHz
Antenna Type:	PCB Antenna
Directional Gain:	2.82dBi

EN



EN

2.3. Accessory Equipment Information

Equipment Information				
Name	Model	S/N	Manufacturer	
Notebook	ThinkPad T460s	/	Lenovo	
Cable Information	Cable Information			
Name	Shielded Type	Ferrite Core	Length	
USB Cable	Unshielded	NO	100cm	
Test Software Information				
Name	Version	1	/	
EspRFTestTool	v3.6	/	/	

CTC Laboratories, Inc. Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and 中国国家认证认可监督管理委员会 Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

2.4. Operation State

Operation Frequency List: The EUT has been tested under typical operating condition. The Applicant provides communication tools software to control the EUT for staying in continuous transmitting and receiving mode for testing.

Operation Frequency List:

Channel	Frequency (MHz)
01	2412
02	2417
03	2422
04	2427
05	2432
06	2437
07	2442
08	2447
09	2452
10	2457
11	2462

Note: CH 01~CH 11 for 802.11b/g/n(HT20), CH 03~CH 09 for 802.11n(HT40).

Data Rated:

EN

Preliminary tests were performed in different data rate, and found which the below bit rate is worst case mode, so only show data which it is a worst case mode.

Test Mode	Data Rate (worst mode)
802.11b	1Mbps
802.11g	6Mbps
802.11n(HT20)/(HT40)	HT-MCS0

CTC Laboratories, Inc.

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 可监督管理委员会 中国国家认证认

Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

Test Mode:

For RF test items:

The engineering test program was provided and enabled to make EUT continuous transmit.

For AC power line conducted emissions:

The EUT was set to connect with the WLAN AP under large package sizes transmission.

For Radiated spurious emissions test item:

The engineering test program was provided and enabled to make EUT continuous transmit. The EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

The worse case configurations:

The Worse Case Power Setting Parameter under 2400 ~ 2483.5MHz Band			
Test Software	EspRFTestTool_v3.6		
Modulation Mode	Test Channel	Attenuation	
	01	Default	
802.11b	06	Default	
	11	Default	
	01	Default	
802.11g	06	Default	
	11	Default	
	01	Default	
802.11n(HT20)	06	Default	
	11	Default	
	03	Default	
802.11n(HT40)	06	Default	
	09	Default	

CTC Laboratories, Inc.

2.5. Measurement Instruments List

Tonsce	end RF Test System				
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated Until
1	Spectrum Analyzer	R&S	FSV40-N	101331	Mar. 21, 2025
2	Spectrum Analyzer	R&S	FSV40-N	101654	Aug. 07, 2024
3	Spectrum Analyzer	R&S	FSU26	100105	Dec. 12, 2024
4	MXA Signal Analyzer	Keysight	N9020A	MY46471737	Dec. 12, 2024
5	MXA Signal Analyzer	Keysight	N9020A	MY52091402	Aug. 22, 2024
6	MXG Vector Signal Generator	Agilent	N5182A	MY47420864	Dec. 12, 2024
7	PSG Analog Signal Generator	Agilent	E8257D	MY46521908	Dec. 12, 2024
8	EXG Analog Signal Generator	Keysight	N5173B	MY59100842	Dec. 12, 2024
9	MXG Vector Signal Generator	Keysight	N5182B	MY59100212	Dec. 12, 2024
10	USB Wideband Power Sensor	Keysight	U2021XA	MY55130004	Mar. 21, 2025
11	USB Wideband Power Sensor	Keysight	U2021XA	MY55130006	Mar. 21, 2025
12	Wideband Radio Communication Tester	R&S	CMW500	102414	Dec. 12, 2024
13	RF Control Unit	Tonscend	JS0806-2	/	Aug. 22, 2024
14	High and low temperature test chamber	ESPEC	MT3035	/	Mar. 21, 2025

Radiate	d Emission				
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated Until
1	Trilog-Broadband Antenna	Schwarzbeck	VULB 9163	01026	Dec. 18, 2024
2	Horn Antenna	Schwarzbeck	BBHA 9120D	9120D-647	Sep. 25, 2025
3	Test Receiver	Keysight	N9038A	MY56400071	Dec. 12, 2024
4	Broadband Amplifier	SCHWARZBECK	BBV9743B	259	Dec. 12, 2024
5	Mirowave Broadband Amplifier	SCHWARZBECK	BBV9718C	111	Dec. 12, 2024
6	3m chamber 3	YIHENG	EE106	/	Aug. 28, 2026
7	Test Software	FARA	EZ-EMC	FA-03A2	/

CTC Laboratories, Inc.

EN 中国国家认证认可监督管理委员会

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Tel.: (86)755-27521059 下配中国国家认证认可监督管理委员会 Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

EN

Conducted Emission

Conduc										
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated Until					
1	LISN	R&S	ENV216	101112	Dec. 12, 2024					
2	LISN	R&S	ENV216	101113	Dec. 12, 2024					
3	EMI Test Receiver	R&S	ESCS30	100353	Dec. 12, 2024					
4	ISN CAT6	Schwarzbeck	NTFM 8158	CAT6-8158-0046	Dec. 12, 2024					
5	ISN CAT5	Schwarzbeck	NTFM 8158	CAT5-8158-0046	Dec. 12, 2024					
6	Test Software	R&S	EMC32	6.10.10	/					

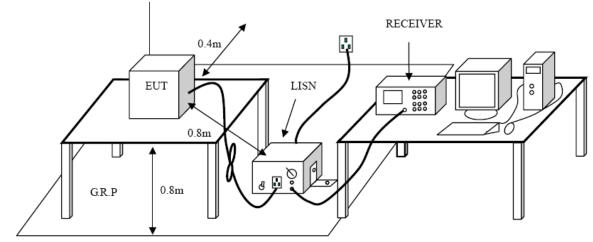
Note: 1. The Cal. Interval was one year.

2. The Cal. Interval was three years of the antenna.

3. The cable loss has been calculated in test result which connection between each test instruments.

3. TEST ITEM AND RESULTS

3.1. Conducted Emission


<u>Limit</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.207 / RSS-Gen 8.8

	Conducted Limit (dBµV)				
Frequency (MHz)	Quasi-peak	Average			
0.15 - 0.5	66 to 56 *	56 to 46 *			
0.5 - 5	56	46			
5 - 30	60	50			

* Decreases with the logarithm of the frequency.

Test Configuration

Test Procedure

1. The EUT was setup according to ANSI C63.10:2013 requirements.

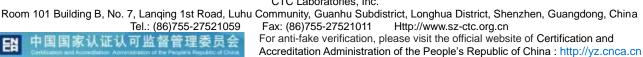
2. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.

The EUT and simulators are connected to the main power through a line impedance stabilization 3. network (LISN). The LISN provides a 50 ohm / 50 µH coupling impedance for the measuring equipment.

The peripheral devices are also connected to the main power through a LISN. (Please refer to the 4. block diagram of the test setup and photographs)

Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was 5. individually connected through a LISN to the input power source.

The excess length of the power cord between the EUT and the LISN receptacle were folded back and 6 forth at the center of the lead to form a bundle not exceeding 40 cm in length.

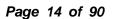

Conducted emissions were investigated over the frequency range from 0.15MHz to 30MHz using a 7. receiver bandwidth of 9 kHz.

During the above scans, the emissions were maximized by cable manipulation. 8.

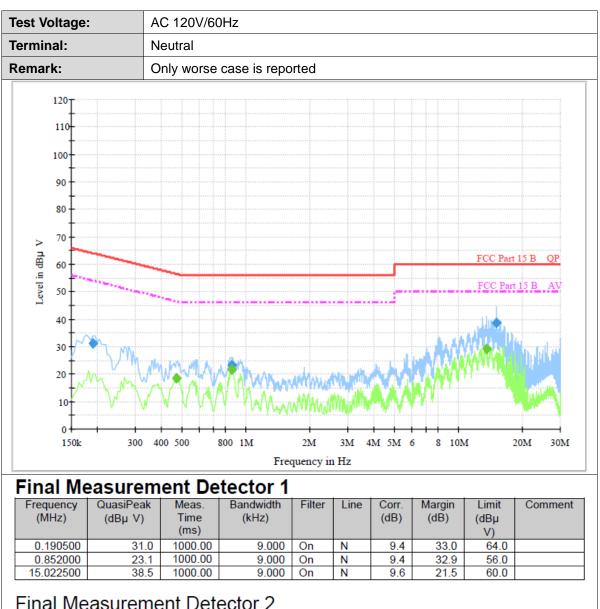
Test Mode

Please refer to the clause 2.4.

CTC Laboratories, Inc.


st Voltage	: 4	AC 120V/60Hz							
erminal: Line									
emark:									
120 									
+									
110									
100-									
90									
80									
> 70									
0 10 Cevel in dBu V								FCC Part	15 B QP
ii								FCC Part	15 B AV
50 - Fe									
40									
30									
+									
20	m m	WWW	MAR MANA	Mar		<u>aa</u> a	LAAA	A Second Party	
10-	\vee	V MA	Num	Mr		AAA	VVV	MM	
0				Manana N					
150k	300	400 500	800 1M	2M	3M 4	M 5M 6	5 8 10N	A 2	20M 30M
			Fre	quency is	ı Hz				
inal Me	easuren	nent De	tector 1						
Frequency	QuasiPeak	Meas.	Bandwidth	Filter	Line	Corr.	Margin	Limit	Comment
(MHz)	(dBµ V)	Time (ms)	(kHz)			(dB)	(dB)	(dBµ V)	
0.195000	29.9	1000.00	9.000	On	L1	9.5	33.9	63.8	
0.852000	21.0 26.1	1000.00 1000.00	9.000 9.000	On On	L1 L1	9.5 9.7	35.0 33.9	56.0 60.0	
15.022500									

Frequency (MHz)	Average (dBµ V)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµ V)	Comment
0.469500	15.6	1000.00	9.000	On	L1	9.5	30.9	46.5	
0.942000	18.8	1000.00	9.000	On	L1	9.5	27.2	46.0	
16.228500	20.7	1000.00	9.000	On	L1	9.7	29.3	50.0	


Emission Level = Read Level + Correct Factor

CTC Laboratories, Inc.

EN

Frequency (MHz)	Average (dBµ V)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµ V)	Comment
0.469500	18.7	1000.00	9.000	On	Ν	9.4	27.8	46.5	
0.852000	21.8	1000.00	9.000	On	N	9.4	24.2	46.0	
13.479000	29.1	1000.00	9.000	On	Ν	9.7	20.9	50.0	

Emission Level = Read Level + Correct Factor

CTC Laboratories, Inc.

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

中国国家认证认

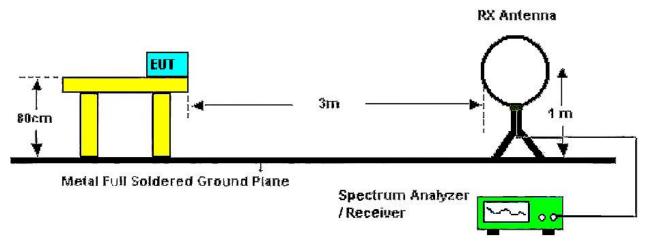
EN

3.2. Radiated Emission

<u>Limit</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.209 / RSS-Gen 8.9

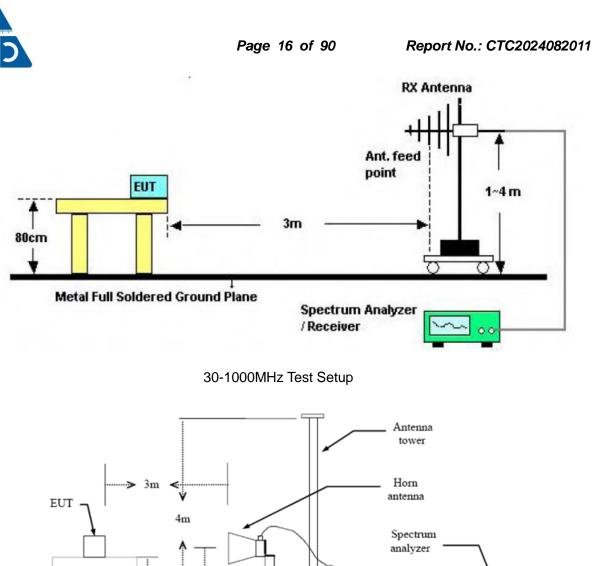
Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009~0.490	2400/F (kHz)	300
0.490~1.705	24000/F (kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

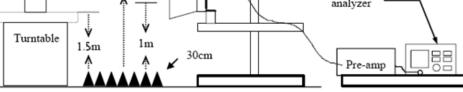

	dBµV/m (at 3 meters)				
Frequency Range (MHz)	Peak	Average			
Above 1000	74	54			

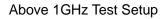
Note:

(1) The tighter limit applies at the band edges.

(2) Emission Level (dBµV/m)=20log Emission Level (µV/m).


Test Configuration




Below 30MHz Test Setup

CTC Laboratories, Inc.

Room 101 Building B, No. 7, Lanqing 1st Road, Luh	u Community, Guanhu S
Tel.: (86)755-27521059	Fax: (86)755-275210
FN 中国国家认证认可监督管理委员会	For anti-fake verificat

Test Procedure

1. The EUT was setup and tested according to ANSI C63.10:2013.

The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz, and 1.5 m for 2. above 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level.

The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable 3. height antenna tower.

For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna 4. tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.

- Set to the maximum power setting and enable the EUT transmit continuously. 5.
- Use the following spectrum analyzer settings 6.
- (1) Span shall wide enough to fully capture the emission being measured;

CTC Laboratories, Inc.

(2) 9k – 150kHz:

RBW=300 Hz, VBW=1 kHz, Sweep=auto, Detector function=peak, Trace=max hold (3) 0.15M – 30MHz:

RBW=10 kHz, VBW=30 kHz, Sweep=auto, Detector function=peak, Trace=max hold (4) 30M - 1 GHz:

RBW=120 kHz, VBW=300 kHz, Sweep=auto, Detector function=peak, Trace=max hold

If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

(5) From 1 GHz to 10th harmonic:

RBW=1MHz, VBW=3MHz Peak detector for Peak value.

RBW=1MHz, VBW see note 1 with Peak Detector for Average Value.

Note 1: For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause 3.8 Duty Cycle.

Test Mode

Please refer to the clause 2.4.

<u>Test Result</u>

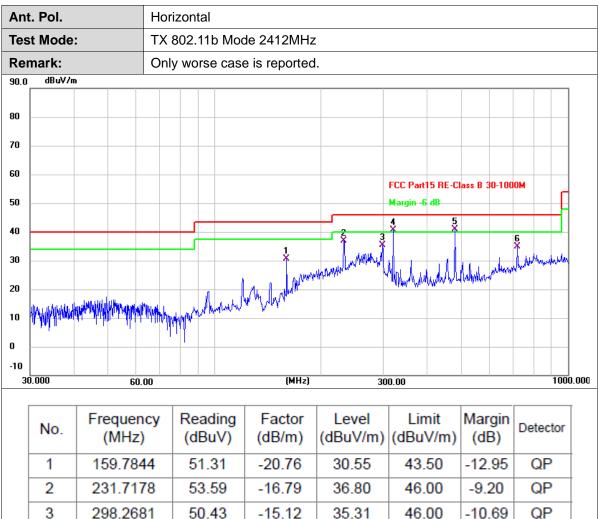
9 kHz~30 MHz

From 9 kHz to 30 MHz: The conclusion is PASS.

Note: The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

QP

QP


QP

-5.31

-5.06

-11.23

Remarks:

4 !

6

中国国家认证认

EN

* 5

319.9368

478.8455

719.1992

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

-14.38

-10.96

-6.59

40.69

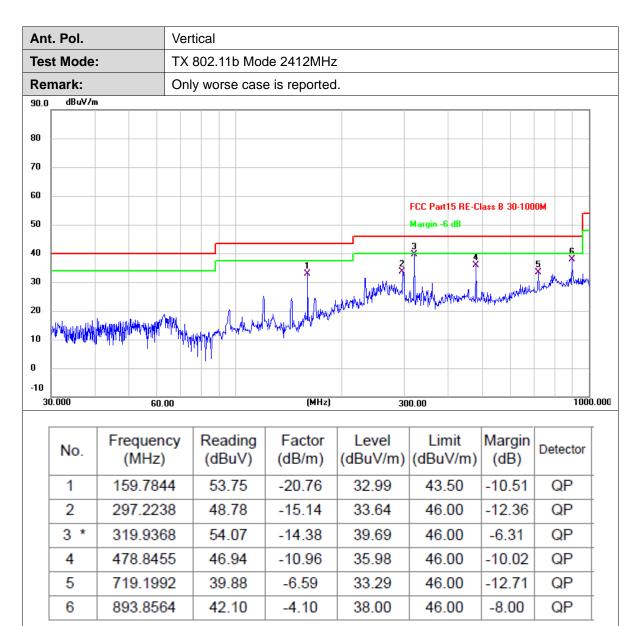
40.94

34.77

46.00

46.00

46.00

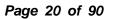

55.07

51.90

41.36

CTC Laboratories, Inc.

ΕN


1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

CTC Laboratories, Inc.

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

中国国家认证认可监督管理委员会

Ant	t. Pol.		Horizontal					
Tes	t Mode:		TX 802.11b M	ode 2412MH	Ηz			
Remark: No report for the emission which more than 20 dB below the limit.					e prescribe			
	No.	Frequency (MHz)	/ Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
	1	1497.417	54.78	-6.88	47.90	74.00	-26.10	peak
	2	4822.667	46.61	2.01	48.62	74.00	-25.38	peak
	3	7967.750	38.97	10.80	49.77	74.00	-24.23	peak
	4	9193.667	40.31	12.34	52.65	74.00	-21.35	peak
	5	11418.333	38.58	14.87	53.45	74.00	-20.55	peak
	6 *	12397.500) 37.96	15.50	53.46	74.00	-20.54	peak

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. Pol.	Vertical
Test Mode:	TX 802.11b Mode 2412MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	1501.333	53.76	-6.88	46.88	74.00	-27.12	peak
2	4822.667	47.30	2.01	49.31	74.00	-24.69	peak
3	7920.750	39.88	10.69	50.57	74.00	-23.43	peak
4	9115.333	39.98	12.08	52.06	74.00	-21.94	peak
5	10795.583	39.02	14.45	53.47	74.00	-20.53	peak
6 *	12632.500	37.35	16.15	53.50	74.00	-20.50	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

CTC Laboratories, Inc.

Tel.: (86)755-27521059 可监督管理委员会 中国 国家い EN üΕù

An	t. Pol.		Horizontal						
Tes	st Mode:		TX 802.11b Mode 2437MHz						
Re	mark:		No report for t limit.	he emission	which more	than 20 dB	below the	e prescribe	
	No.	Frequency (MHz)	(dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	
	1	1497.417	54.18	-6.88	47.30	74.00	-26.70	peak	
	2	4873.583	43.24	2.09	45.33	74.00	-28.67	peak	
	3	6499.000	40.01	7.32	47.33	74.00	-26.67	peak	
	4	9538.333	39.26	12.59	51.85	74.00	-22.15	peak	
	5 *	10909.167	38.67	14.57	53.24	74.00	-20.76	peak	
	6	11770.833	3 38.12	15.10	53.22	74.00	-20.78	peak	

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant	. Pol.		Vertical						
Tes	t Mode:		TX 802.11b Mode 2437MHz						
Rer	nark:		No report for t limit.	he emission	which more	than 20 dB	below the	e prescrib	
	No.	Frequency (MHz)	(dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	
	1	1493.500	51.48	-6.88	44.60	74.00	-29.40	peak	
	2	4873.583	47.26	2.09	49.35	74.00	-24.65	peak	
	3	8042.167	39.31	10.76	50.07	74.00	-23.93	peak	
	4	9123.167	39.50	12.11	51.61	74.00	-22.39	peak	
	5	10834.750	38.75	14.50	53.25	74.00	-20.75	peak	

Remarks:

EN

6 *

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

15.10

53.43

74.00

-20.57

peak

38.33

2.Margin value = Level -Limit value

11759.083

CTC Laboratories, Inc.

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 中国国家认证认可监督管理委员会

Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

An	t. Pol.		Horizontal						
Tes	st Mode:		TX 802.11b Mode 2462MHz						
Re	mark:		No report for the emission which more than 20 dB below the prescribed limit.						
	No.	Frequency (MHz)	/ Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	
	1	1195.833	54.54	-7.73	46.81	74.00	-27.19	peak	
	2	4924.500	46.89	2.16	49.05	74.00	-24.95	peak	
	3	7231.417	39.22	10.03	49.25	74.00	-24.75	peak	
	4	9217.167	39.36	12.38	51.74	74.00	-22.26	peak	
	5	10270.750) 39.49	13.69	53.18	74.00	-20.82	peak	
	6 *	11563.250	38.61	15.06	53.67	74.00	-20.33	peak	

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. Po	I.		Vertical							
Test Mo	ode:		TX 802.11b Mode 2462MHz							
Remark	c :		No report fo limit.	or the emissi	on which more	than 20 dB	below the	e prescribe		
No	0.	Frequency (MHz)	y Readin (dBuV			Limit (dBuV/m)	Margin (dB)	Detector		
1		1497.417	55.58	-6.88	48.70	74.00	-25.30	peak		
2	2	4924.500	43.03	3 2.16	45.19	74.00	-28.81	peak		
3	;	7352.833	39.25	5 10.08	49.33	74.00	-24.67	peak		
4	ł	9871.250	39.70) 13.03	52.73	74.00	-21.27	peak		
5	;	11269.50	38.47	/ 14.79	53.26	74.00	-20.74	peak		
6	*	12166.417	7 37.64	15.68	53.32	74.00	-20.68	peak		

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

CTC Laboratories, Inc.

Tel.: (86)755-27521059 可监督管理委员会

中国国家认证认

EN

Ant	t. Pol.		Horizontal							
Tes	st Mode:		TX 802.11g M	TX 802.11g Mode 2412MHz						
Rer	mark:		No report for t limit.	he emission	which more	than 20 dB	below the	e prescribe		
	No.	Frequency (MHz)	y Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector		
	1	1497.417	56.56	-6.88	49.68	74.00	-24.32	peak		
	2	4826.583	40.36	2.02	42.38	74.00	-31.62	peak		
	3	7254.917	39.40	10.04	49.44	74.00	-24.56	peak		
	4	9111.417	39.24	12.07	51.31	74.00	-22.69	peak		
	5 *	10791.66	7 39.22	14.44	53.66	74.00	-20.34	peak		
	6	12624.66	7 37.30	16.13	53.43	74.00	-20.57	peak		

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. Pol.	Vertical
Test Mode:	TX 802.11g Mode 2412MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	1199.750	51.87	-7.71	44.16	74.00	-29.84	peak
2	4826.583	42.90	2.02	44.92	74.00	-29.08	peak
3	6428.500	40.24	7.14	47.38	74.00	-26.62	peak
4	8136.167	40.79	10.52	51.31	74.00	-22.69	peak
5 *	11253.833	38.69	14.79	53.48	74.00	-20.52	peak
6	12201.667	37.73	15.72	53.45	74.00	-20.55	peak

Remarks:

EN

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

CTC Laboratories, Inc.

Tel.: (86)755-27521059 中国国家认证认可监督管理委员会

An	t. Pol.		Horizontal						
Tes	st Mode:		TX 802.11g Mode 2437MHz						
Re	mark:		No report for the emission which more than 20 dB below the prescribed limit.						
					1				
	No.	Frequency (MHz)	(dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	
	1	1195.833	48.88	-7.73	41.15	74.00	-32.85	peak	
	2	4877.500	42.19	2.10	44.29	74.00	-29.71	peak	
	3	7388.083	39.35	10.09	49.44	74.00	-24.56	peak	
	4	9679.333	39.00	12.74	51.74	74.00	-22.26	peak	
	5 *	10823.000	39.26	14.48	53.74	74.00	-20.26	peak	
	6	12342.667	7 37.73	15.56	53.29	74.00	-20.71	peak	

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant	t. Pol.		Vertical						
Tes	t Mode:		TX 802.11g Mode 2437MHz No report for the emission which more than 20 dB below the prescribed limit.						
Rer	mark:								
	No.	Frequence (MHz)	y Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	
	1	1497.417	55.47	-6.88	48.59	74.00	-25.41	peak	
	2	4869.667	42.70	2.07	44.77	74.00	-29.23	peak	
	3	7932.500	40.04	10.71	50.75	74.00	-23.25	peak	
	4	9197.583	39.33	12.35	51.68	74.00	-22.32	peak	
	5 *	10760.33	3 39.10	14.37	53.47	74.00	-20.53	peak	
	6	12483.66	7 37.61	15.74	53.35	74.00	-20.65	peak	

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

CTC Laboratories, Inc.

Tel.: (86)755-27521059 可监督管理委员会

中国国家认证认

EN

Ant	t. Pol.		Horizontal						
Tes	st Mode:		TX 802.11g Mode 2462MHz						
Remark:			No report for the emission which more than 20 dB below the prescribed limit.						
		F		- ·					
	No.	Frequency (MHz)	(dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	
	1	1195.833	50.47	-7.73	42.74	74.00	-31.26	peak	
	2	5218.250	42.11	2.92	45.03	74.00	-28.97	peak	
	3	7975.583	39.76	10.81	50.57	74.00	-23.43	peak	
	4	9914.333	39.09	13.08	52.17	74.00	-21.83	peak	
	5 *	10897.417	7 38.78	14.56	53.34	74.00	-20.66	peak	
	6	11817.833	3 38.06	15.12	53.18	74.00	-20.82	peak	

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

An	t. Pol.		Vertical							
Tes	st Mode:		TX 802.11g M	TX 802.11g Mode 2462MHz						
Re	mark:		No report for t limit.	he emission	which more	than 20 dB	below the	e prescrib		
	No.	Frequency (MHz)	(dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector		
	1	4928.417	43.68	2.16	45.84	74.00	-28.16	peak		
	2	6424.583	39.66	7.13	46.79	74.00	-27.21	peak		
	3	7854.167	39.45	10.54	49.99	74.00	-24.01	peak		
	4	9816.417	38.77	12.96	51.73	74.00	-22.27	peak		
	5 *	11547.583	3 38.45	15.03	53.48	74.00	-20.52	peak		
	6	12229.083	3 37.58	15.70	53.28	74.00	-20.72	peak		

Remarks:

EN

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

CTC Laboratories, Inc.

Tel.: (86)755-27521059 中国国家认证认可监督管理委员会

Ant	t. Pol.		Horizontal							
Tes	st Mode:		TX 802.11n(H	TX 802.11n(HT20) Mode 2412MHz No report for the emission which more than 20 dB below the prescribed limit.						
Rei	mark:		No report for t limit.							
	No.	Frequency (MHz)	y Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector		
	1	1195.833	48.74	-7.73	41.01	74.00	-32.99	peak		
	2	3933.583	42.59	0.28	42.87	74.00	-31.13	peak		
	3	6322.750	39.79	6.75	46.54	74.00	-27.46	peak		
	4	8328.083	40.04	10.48	50.52	74.00	-23.48	peak		
	5 *	10611.500	39.34	14.07	53.41	74.00	-20.59	peak		
	6	12233.000	37.51	15.69	53.20	74.00	-20.80	peak		

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. Pol.	Vertical
Test Mode:	TX 802.11n(HT20) Mode 2412MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	1497.417	52.12	-6.88	45.24	74.00	-28.76	peak
2	4826.583	42.62	2.02	44.64	74.00	-29.36	peak
3	7086.500	39.11	9.40	48.51	74.00	-25.49	peak
4	9181.917	39.31	12.30	51.61	74.00	-22.39	peak
5 *	10964.000	38.98	14.63	53.61	74.00	-20.39	peak
6	12174.250	37.65	15.69	53.34	74.00	-20.66	peak

Remarks:

EN

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

CTC Laboratories, Inc.

Tel.: (86)755-27521059 中国国家认证认可监督管理委员会

An	t. Pol.		Horizontal							
Tes	st Mode:		TX 802.11n(H	TX 802.11n(HT20) Mode 2437MHz No report for the emission which more than 20 dB below the prescribed limit.						
Re	mark:		No report for t limit.							
	No.	Frequency (MHz)	(dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector		
	1	1207.583	49.73	-7.69	42.04	74.00	-31.96	peak		
	2	5214.333	41.36	2.91	44.27	74.00	-29.73	peak		
	3	7799.333	39.17	10.42	49.59	74.00	-24.41	peak		
	4	9127.083	39.22	12.12	51.34	74.00	-22.66	peak		
	5	11061.917	38.64	14.70	53.34	74.00	-20.66	peak		
	6 *	11935.333	38,29	15.34	53.63	74.00	-20.37	peak		

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. Pol.	Vertical
Test Mode:	TX 802.11n(HT20) Mode 2437MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	1497.417	49.60	-6.88	42.72	74.00	-31.28	peak
2	5186.917	42.17	2.84	45.01	74.00	-28.99	peak
3	7278.417	39.44	10.05	49.49	74.00	-24.51	peak
4	9969.167	40.06	13.14	53.20	74.00	-20.80	peak
5	10897.417	39.01	14.56	53.57	74.00	-20.43	peak
6 *	12413.167	38.22	15.53	53.75	74.00	-20.25	peak

Remarks:

EN

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

CTC Laboratories, Inc.

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 中国国家认证认可监督管理委员会

Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

Ant	. Pol.		Horizontal							
Test Mode:			TX 802.11n(H	TX 802.11n(HT20) Mode 2462MHz						
Rer	mark:		No report for the emission which more than 20 dB below the prescribed limit.							
	No.	Frequency (MHz)	y Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector		
	1	1199.750	53.04	-7.71	45.33	74.00	-28.67	peak		
	2	5942.833	39.62	5.44	45.06	74.00	-28.94	peak		
	3	7192.250	39.03	9.98	49.01	74.00	-24.99	peak		
	4	8406.417	40.08	10.55	50.63	74.00	-23.37	peak		
	5	10415.667	7 39.22	13.90	53.12	74.00	-20.88	peak		
	6 *	12060.667	7 37.68	15.53	53.21	74.00	-20.79	peak		

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

An	t. Pol.		Vertical							
Tes	st Mode:		TX 802.11n(H	TX 802.11n(HT20) Mode 2462MHz						
Rei	mark:		No report for the emission which more than 20 dB below the prescribed limit.							
	No.	Frequency (MHz)	(dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector		
	1	1195.833	52.58	-7.73	44.85	74.00	-29.15	peak		
	2	1493.500	53.29	-6.88	46.41	74.00	-27.59	peak		
	3	7932.500	39.39	10.71	50.10	74.00	-23.90	peak		
	4	9644.083	39.77	12.67	52.44	74.00	-21.56	peak		
	5 *	10396.083	39.65	13.88	53.53	74.00	-20.47	peak		
	6	12374.000	38.00	15.52	53.52	74.00	-20.48	peak		

Remarks:

EN

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

CTC Laboratories, Inc.

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 中国国家认证认可监督管理委员会

Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

Ant	. Pol.		Horizontal							
Tes	t Mode:		TX 802.11n(H	TX 802.11n(HT40) Mode 2422MHz						
Rer	nark:		No report for the emission which more than 20 dB below the prescribed limit.							
	No.	Frequency (MHz)	(dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector		
	1	1199.750	57.43	-7.71	49.72	74.00	-24.28	peak		
	2	5171.250	44.28	2.78	47.06	74.00	-26.94	peak		
	3	7415.500	38.92	10.10	49.02	74.00	-24.98	peak		
	4	8755.000	40.15	11.31	51.46	74.00	-22.54	peak		
	5 *	10936.583	3 38.81	14.61	53.42	74.00	-20.58	peak		
	6	12280.000	37.78	15.63	53.41	74.00	-20.59	peak		

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. Pol.	Vertical
Test Mode:	TX 802.11n(HT40) Mode 2422MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	4822.667	41.74	2.01	43.75	74.00	-30.25	peak
2	6440.250	38.84	7.17	46.01	74.00	-27.99	peak
3	7948.167	38.77	10.76	49.53	74.00	-24.47	peak
4	9209.333	38.12	12.37	50.49	74.00	-23.51	peak
5 *	11195.083	38.76	14.76	53.52	74.00	-20.48	peak
6	12428.833	37.78	15.58	53.36	74.00	-20.64	peak

Remarks:

EN

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

CTC Laboratories, Inc.

Tel.: (86)755-27521059 中国国家认证认可监督管理委员会

An	t. Pol.		Horizontal							
Tes	st Mode:	:	TX 802.11n(H	TX 802.11n(HT40) Mode 2437MHz No report for the emission which more than 20 dB below the prescribed limit.						
Re	mark:		No report for t limit.							
	No.	Frequency (MHz)	(dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector		
	1	1199.750	57.47	-7.71	49.76	74.00	-24.24	peak		
	2	4814.833	41.22	2.00	43.22	74.00	-30.78	peak		
	3	7677.917	40.09	10.20	50.29	74.00	-23.71	peak		
	4	8860.750	39.31	11.49	50.80	74.00	-23.20	peak		
	5	11093.250	38.73	14.71	53.44	74.00	-20.56	peak		
	6 *	12088.083	3 37.92	15.57	53.49	74.00	-20.51	peak		

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. Pol. Test Mode:			Vertical TX 802.11n(HT40) Mode 2437MHz							
	No. Frequen (MHz)		(dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector		
	1	1497.417	54.71	-6.88	47.83	74.00	-26.17	peak		
	2	5206.500	41.89	2.89	44.78	74.00	-29.22	peak		
	3	6330.583	40.01	40.01 6.79	46.80 74.00	-27.20	peak			
	4	9017.417	40.04	11.75	51.79	74.00	-22.21	peak		
	5 *	10779.917	7 39.00	14.42	53.42	74.00	-20.58	peak		
	6	12041.083	3 37.81	15.51	53.32	74.00	-20.68	peak		

Remarks:

EN

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

CTC Laboratories, Inc.

Tel.: (86)755-27521059 中国国家认证认可监督管理委员会

Ant. Pol. Test Mode:			Horizontal							
			TX 802.11n(HT40) Mode 2452MHz							
Rer	mark:		No report for the emission which more than 20 dB below the prescribed limit.							
	. Frequency		y Reading	Factor	Level	Limit	Margin	Detector		
	No.	NO. (MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector		
	1	1199.750	54.99	-7.71	47.28	74.00	-26.72	peak		
	2	1497.417	53.93	-6.88	47.05	74.00	-26.95	peak		
	3	5179.083	42.90	2.82	45.72	74.00	-28.28	peak		
	4	9252.417	40.34	12.41	52.75	74.00	-21.25	peak		
	5 *	11293.000	38.67	14.80	53.47	74.00	-20.53	peak		
	6	12562.000	37.39	15.96	53.35	74.00	-20.65	peak		

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. Pol. Test Mode:			Vertical							
			TX 802.11n(HT40) Mode 2452MHz							
Re	mark:		No report for the emission which more than 20 dB below the prescribed limit.							
	No. Frequency (MHz)		(dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector		
	1	1195.833	53.40	-7.73	45.67	74.00	-28.33	peak		
	2	4834.417	42.37	2.03	44.40	74.00	-29.60	peak		
	3	7262.750	39.29	10.05	49.34	74.00	-24.66	peak		
	4	8833.333	39.80	11.46	51.26	74.00	-22.74	peak		
	5	10787.750	38.54	14.43	52.97	74.00	-21.03	peak		
	6 *	12346.583	37.96	15.55	53.51	74.00	-20.49	peak		

Remarks:

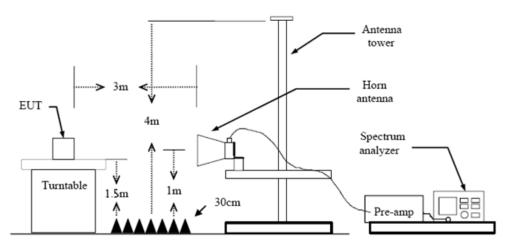
EN

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

CTC Laboratories, Inc.

Tel.: (86)755-27521059 中国国家认证认可监督管理委员会


3.3. Band Edge Emissions (Radiated)

Limit

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (d) / RSS-247 5.5

Restricted Frequency Band	(dBµV/m	i) (at 3m)
(MHz)	Peak	Average
2310 ~ 2390	74	54
2483.5 ~ 2500	74	54

Test Configuration

Test Procedure

1. The EUT was setup and tested according to ANSI C63.10:2013 requirements.

The EUT is placed on a turn table which is 1.5 meter above ground. The turn table is rotated 360 2. degrees to determine the position of the maximum emission level.

3. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

4. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10:2013 on radiated measurement. The receiver set as follow: 5.

RBW=1MHz, VBW=3MHz Peak detector for Peak value.

RBW=1MHz, VBW see note 1 with Peak Detector for Average Value.

Note 1: For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause 3.8 Duty Cycle.

Test Mode

Please refer to the clause 2.4.

CTC Laboratories, Inc.

Tel.: (86)755-27521059 可监督管理委员会

Ant. Pol.		Ho	Horizontal											
Test Mode:			ТХ	(802.1 [/]	1b M	ode 24	12MF	Ηz						
120.0 Г	dBuV/m	1					1						1	
110														
100														
90														1
80													ļ	1
70												FCC Part15	i C - Above 1	G PK
50														
50											×	5CC Par(15 X	C - Above 1	GAV
10											2	4		
80	manthematical Manthematical	and the second	and the state of the second	n that the second	Anon-press, Physics	harryn she	****	Wardines to	-Andrew Color					
20														
10														
0.0														
22	82.250 22	297.25	2312.	25	2327.25	234	2.25	(MHz)	237	2.25	238	7.25 24	02.25 24	17.25 243
Г											1		1	
	No. Freque				Read (dBu		Fac (dB)	tor m)	Lev (dBu)			Limit BuV/m)	Margin (dB)	Detector
		0	··· 12)		(uDu	• /	(GD/		(ubu	,	(u	,	· · ·	
-	1		36.60		24.6	-	31.		55.		· .	74.00	-18.09	peak
-	1 2 *	238		0		0		31		91	1			peak AVG
-	-	238 238	36.60	0	24.6	0 '8	31.	31 31	55.	91 09	- - 	4.00	-18.09	AVG

EN

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

Ant. Pol.		Vertical								
st Mode	:	TX 802.11b Mode 2412MHz								
.0 dBu¥/i	m									
						m				
							1			
					FCC Part15	C Above 1	g PK			
						1				
					FCC Part15	G - Above 1	GAV			
					× 🔨	1	1 m			
angenter om som som	hall an all and a second s	ungele channel and a final second particular	- Annora Maranda	Marine and the second second second	mar 2 ml		- h			
) 281.500 2	2296.50 2311.50) 2326.50 23	41.50 (MHz)	2371.50	2386.50 24	01.50 24	16.50 243			
No.	Frequence (MHz)	y Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector			
1	2390.000	19.89	31.31	51.20	74.00	-22.80	peak			
2 *	2390.000	6.54	31.31	37.85	54.00	-16.15	AVG			

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

EN

Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

Ant. Pol. Test Mode:		Ho	orizontal						
Test Mode: 120.0 dBuV/m 110				(802.11b M	ode 2462MH	łz			
20.0	dBu¥/m	1			1			1	
00									
		\sim							
0	1								
0	(FCC Part15	C - Above 10	G PK
0 -									
o -				1			ECC Part15	C - Above 10	2 AV
0 =			m	×			rucratti	C - ADOVE TO	
o 🖌	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		<u> </u>	2			a fallan sanakiran sakarin sa		
0				California - California - California	6/4/14/14/12/12/4/20/4/20/4/20/4/14/14/14/14/14/14/14/14/14/14/14/14/1	handrenden den bergeligtet	**************************************	(maa){	******
0									
0									
	1.750 24	56.75 2471	.75	2486.75 250)1.75 (MHz)	2531.75	2546.75 25	61.75 25 ⁻	76.75 259
Γ	No.	Frequer	-	Reading	Factor	Level	Limit	Margin	Detector
		(MHz)		(dBuV)	(dB/m)		(dBuV/m)		
	1	2483.50	00	23.03	31.48	54.51	74.00	-19.49	peak
	2 *	2483.50	00	7.18	31.48	38.66	54.00	-15.34	AVG

2.Margin value = Level -Limit value

CTC Laboratories, Inc.

EN

nt. Pol.		Vertica	Vertical								
t Mode):	TX 802	TX 802.11b Mode 2462MHz								
0 dBuV/	'n			1	Ì	i.	i	1			
	\sim										
						FCC Part15	C - Above 10	і РК			
						FCC Part15	C - Above 16	AV			
		1 X									
marker	h	man	andreamly	and an an and all and a start of the start	many proper to the point	man many far the man man man		-			
443.250	2458.25 2473.	25 2488.	25 250)3.25 (MHz)	2533.25	2548.25 250	53.25 25	78.25 25			
No.	Frequen (MHz)		ading BuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector			
1	2483.50	0 1	7.10	31.48	48.58	74.00	-25.42	peak			
2 *	2483.50	0 5	5.99	31.48	37.47	54.00	-16.53	AVG			
marks:											

2.Margin value = Level -Limit value

EN

CTC Laboratories, Inc.

Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

Ant. Pol.		Ho	rizontal					
Test Mode:		TX	802.11g M	ode 2412M	Hz			
120.0 dBuV/m	•				ì			
110								
100								
90							~~~~	\
80								
70						FCC Part15	C - Above 10	а РК
60						1 X		
						FCP Part15	C - Above 10	AV
50						2		
40 Michaelar	and the stand with the second	3.75 23	manere	man	www.hermanner			
30		.75 2326						
20								
10								
0.0	200 7E 2212	75 1	100 7E 004	3.75 (MHz)	2373.75	2388.75 24	03.75 24	18.75 243
No.	Frequen (MHz)	-	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	2390.00	0	30.24	31.31	61.55	74.00	-12.45	peak
	2390.00	0	16.50	31.31	47.81	54.00	-6.19	AVG

EN

Ant.	Pol.			Ve	tical											
est	Mode	:		ТΧ	802.1	1g M	ode 24	12MH	Ιz							
20.0	dBuV/n	1					î								0	
10																
00																
,																
					2325.75 234								\int	~	-	
											FC	2 Part15	C - Ab	ove 10	i PK	
					-						FC	Part15	g - Ab	ove 10	AV	
)					rigentationaristationarista						× 2	/				
'	Annalger and the state of the	horner	enterna da fra	Although	leeve har more the second		water and the second second	n	anddon fyd of yn Aner Aner A	ware and the second	- page and a second	<u>,</u>				
'																
).0 22	80.750 2	295.75	2310.7	5 2	2325.75 2340		10.75	(MHz)	237	0.75	2385.75	24	00.75	24	15.75	2430.
	No.		quenc MHz)	у	Read (dBu	-	Fac (dB/		Lev (dBu)		Lin (dBu)		Mar (dl		Dete	ctor
ľ	1	239	90.00)	19.0)6	31.3	31	50.	37	74.	00	-23	.63	pea	ak
	2 *	239	90.00	0	8.6	6	31.3	31	39.	97	54.	00	-14	.03	AV	G
	narks:	1			8.66				I		1		1			L

EN

CTC Laboratories, Inc.

	X 802.11g M	ode 2462MH			C - Above 10	G AV
				FCC Part15	C - Above 10	G AV
				FCC Part15	C - Above 10	G AV
			Madralating for the contraction of the contraction	FCC Part15	C - Above 10	G AV
				FCC Part15	C - Above 10	G AV
		etter denna autor de la	Herbergergergergergergergergergergergergerge	FCC Part15	C - Above 10	G AV
		nterreturn gewenter April	Malester and the contraction of	FCC Part15	C - Above 10	G AV
		Town for a second when				
		maanaaaaahahad	Madrahetra (na martina ang kata			
	2 marine	attain fan na beinage April	Malministrativationen anti-matikika	une and the state of the state	elecentiveless ^{ince} sselesses	
		ntant (from a cost of from the first	halmleter (var men men men her og her som her og he	ana ang mana ang man Ing mang mang mang mang mang mang mang ma	nhaansisanteen muunteetseens	
2471.75	2486.75 250)1.75 (MHz)	2531.75	2546.75 256	61.75 25	76.75 25
equency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
183.500	31.15	31.48	62.63	74.00	-11.37	peak
483.500	13.79	31.48	45.27	54.00	-8.73	AVG
(MHz) 83.500	MHz) (dBuV) 83.500 31.15	MHz) (dBuV) (dB/m) 83.500 31.15 31.48	MHz) (dBuV) (dB/m) (dBuV/m) 83.500 31.15 31.48 62.63	MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) 83.500 31.15 31.48 62.63 74.00	MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) 83.500 31.15 31.48 62.63 74.00 -11.37

Page 39 of 90

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

EN

. Pol.		Ver	tical					
t Mode:		TX	802.11g M	lode 2462MI	łz			
) dBuV/m					1			
						FCC Part15	C - Above 10	i PK
		1 X				FCC Part15	C - Above 10	AV
www		2	han manager and the state of the	and the second	- marine and the marine and	hatern and reading the	ant and a state of the state of	
43.250 2	458.25 2473.	25 2	488.25 25	03.25 (MHz)	2533.25	2548.25 25	63.25 25	78.25 25
No.	Frequen	cy I	Reading	Factor	Level	Limit	Margin	Detector
NO.	(MHz)		(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Delector
1	2483.50	0	24.20	31.48	55.68	74.00	-18.32	peak
2 *	2483.50	0	7.81	31.48	39.29	54.00	-14.71	AVG

CTC Laboratories, Inc.

Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

	TX 802.11n(H	T20) Mode 2	2412MHz			
						7
				ECC D-41E	C - Above 11	
					C - ADOVE T	
				<u> </u>		
				FCC Part15	C - Above 1	G AV
				1		
enter and the second of the second	han an a	Honora Maria Maria	und encomments whereas	and the second s		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
2390.000	37.36	31.31	68.67	74.00	-5.33	peak
2390.000	18.78	31.31	50.09	54.00	-3.91	AVG
	(MHz) 2390.000	Frequency (MHz) Reading (dBuV) 2390.000 37.36	B.75 2313.75 2328.75 2343.75 (MHz) Frequency (MHz) Reading (dBuV) Factor (dB/m) 2390.000 37.36 31.31	3.75 2313.75 2328.75 2343.75 (MHz) 2373.75 Frequency (MHz) Reading (dBuV) Factor (dB/m) Level (dBuV/m) 2390.000 37.36 31.31 68.67	Bit Markov Reading (MHz) Factor (dBuV) Level (dBuV) Limit (dBuV/m) 2390.000 37.36 31.31 68.67 74.00	Frequency (MHz) Reading (dBuV) Factor (dB/m) Level (dBuV/m) Limit (dBuV/m) Margin (dB) 2390.000 37.36 31.31 68.67 74.00 -5.33

EN

CTC Laboratories, Inc.

		Vert	tical										
st Mode:		TX	802.11n	(HT:	20) Mod	e 2	2412MI	Ηz					
).() dBuV/m													
											$\int_{-\infty}^{\infty}$	~~	-
									F	CC Part15	C - Abo	ove 10	i PK
										1 CC Part15			
									F	CC Part15	<u> </u>	ove 16	AV
										2			~~~
	warden ware warden warden	ratus interpresenti	lagenallyn an gerigel a strategerigel		denen gemeent soonen.	mhin	an a	//////////////////////////////////////	an marked and				
			/es.elba.es.elba.es.										
o	295.75 2310.				75 (MH			0.75					15.75 24
	Frequen	-	Reading	-	Factor (dB/m)		Lev (dBu)		1	mit JV/m)	Març (dE		Detector
No.	(MHz)		(ubuv)	/	(32,111)	' I	(aba		(ab.				
No.	(MHz) 2390.00		27.12		31.31		58.4	-	-	1.00	-15.	57	peak

EN

CTC Laboratories, Inc.

Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

. Pol.		Ho	rizontal										
t Mode:		ТΧ	802.11	n(H	T20) Mo	de 2	462M	Hz					
) dBuV/m								1					1
										FCC Part1	5 C - Abo	ove 10	i PK
			1 X										
			×							500 D	F C H		
June		-	2							FCC Part1	5 L - ADO	ove It	
			X										
				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-veryesh ^r ed	Bellingerson	al a shaka ka ka ka ka a	and so the second	ndertindentinden	en de la composition	etras tech com	an a
39.500 24	154.50 2469.5	i0 2	2484.50	249	9.50 (N	(Hz)	252	9.50	254	4.50 2	559.50	257	74.50 25
[													
No.		;y	Readi (dBu\	-	Fact (dB/n		Le (dBu			Limit BuV/m)	Mar (dE		Detector
1	2483.500	0	32.7	1	31.4	8	64	.19	1	4.00	-9.8	81	peak
2 *	2483.500	0	15.34	4	31.4	8	46	.82	5	54.00	-7.	18	AVG
_													

EN

CTC Laboratories, Inc.



t. Pol.		Ve	rtical									
t Mode:		ТХ	802.11	n(HT2	20) Moc	le 2	462M	Hz				
0 dBu¥/m											Ì	1
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~												
	· \								F	CC Part15	C - Above 10	а РК
		ļ	•						F	CC Part15	C - Above 10	AV .
		- -	-									
mandula		and the second sec	an and the second s	mm	de promonente de		ويعددهم وعسرهما المردور	united	hadhoonder	-ghanges/theoretics.	mandelalistican	angto-wit-device-sector
442.500 24	457.50 2472		2487.50	2502.	50 (MI			2.50	2547.		62.50 25	77.50 25
						,						
No.	Frequer (MHz)	-	Readir (dBuV	-	Facto (dB/m		Lev (dBu)		1	mit uV/m)	Margin (dB)	Detector
1	2483.50	00	22.43	3	31.48		53.	91	74	00.1	-20.09	peak
2 *	2483.50	00	8.53		31.48		40.	01	54	1.00	-13.99	AVG

CTC Laboratories, Inc.

Test N	Pol.		Ho	orizontal						
1031 1	Mode:		ТХ	(802.11n(H ⁻	T40) Mode	2422M	Hz			
120.0	dBuV/m									
110										
100										
90										
80									V	\square
70								FCC Part15	C - Above 10	G PK
60							1 X			
50							3	FCC Part15	C - Above 10	
40						Andrew March March 194	- A.			
30	hard and a start of the start o		And the second	Neverland Constitution of the	- Children - Children					
20										
10 0.0										
2297.	.000 23	12.00 2327.	.00	2342.00 235	7.00 (MHz)	238	7.00	2402.00 24	17.00 24	32.00 244
1	No.	Frequen (MHz)		Reading (dBuV)	Factor (dB/m)	Lev (dBu)		Limit (dBuV/m)	Margin (dB)	Detector
	1	2390.00	0	31.48	31.31	62.	79	74.00	-11.21	peak
	2 *	2390.00	0	19.18	31.31	50.	49	54.00	-3.51	AVG

EN

Ant.	Pol.			Vertic	al										
Test	Mode	:		TX 8	ertical X 802.11n(H	T40) I	Mode 2	2422M	Hz						
120.0	dBuV/n	n			X 802.11n(H					1				1	_
110															
00															
10															
10											F	CC Part15	C - Above		_
'0															
50										1 X					
50												CC Part15	C - Above '	IG AV	\square
10										2 And Samuel	man				
ľ	mannather	where we are a second	mhunyahund	ana kana kana kana kana kana kana kana	VHALMAN	manna	ven Award	Hunninden	We open the						
10															
20															_
0															_
0.0	95.500 2	310.50	2325.50	234	0 50	235	5.50	(MHz)	239	5.50	2400.	50 24	15.50 2	430.50	244
Г															
	No.		quency MHz)		-			ctor 3/m)		vel V/m)	Limit (dBuV/m)		Margin (dB)	Detect	or
	1	23	90.000	1	26.6	9	31	.31	58.	.00	74	4.00	-16.00	peal	ĸ
	2 *	23	90.000		11.6	3	31	.31	42	.94	54	1.00	-11.06	AVG	;
L	narks:	-		·	11.63				-				-		

EN

CTC Laboratories, Inc.

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and According table and Accor

t. Pol.		Ho	rizontal					
st Mode	:	ТХ	802.11n(H	T40) Mode 2	2452MHz			
0 dBuV/ı	n				1	i	7	
~~~		~						
	•					FCC Part15	C - Above 16	i PK
			1					
		{	×			FCC Part15	C - Above 16	AV
<u> </u>			and the second second					
				which man which where	tokan-pore-mathyantunyahan	mitterformant the	anthermode and a stand of the	Muhammyorth
430.500 2	2445.50 2460	0.50 2	2475.50 249	0.50 (MHz)	2520.50	2535.50 25	50.50 256	5.50 25
[	-			-				
No.	Frequer (MHz		Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	2483.5	00	32.40	31.48	63.88	74.00	-10.12	peak
2 *	2483.5	00	19.50	31.48	50.98	54.00	-3.02	AVG

Remarks:

EN

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.



nt. Pol.		Verti	cal						
est Mode	):	TX 8	02.11n(H	T40) Mode	e 2452M	Hz			
0.0 dBuV/	m							Î	
o									
		~					FCC Part15	C - Above 1G	PK
7									
			1				ECC Part15	C - Above 1G	AV
			1						
<i></i>			2	Warman and a second	Add as All the state of the	dellar, ole k	-	the case wetter by	ومتعاقبه أحصينا والمعاد
							a de la d	MICH WALLAND	1.10-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1
.0									
	2445.50 2460.	50 247	75.50 249	90.50 (MH	z) 252	0.50	2535.50 255	io.50 250	5.50 258
No.	Frequen (MHz)	-	eading dBuV)	Factor (dB/m)			Limit (dBuV/m)	Margin (dB)	Detector
1	2483.50	0	22.06	31.48	53.	54	74.00	-20.46	peak
2 *	2483.50	0	11.12	31.48	42.	60	54.00	-11.40	AVG
emarks:				1			1		

Page 48 of 90

2.Margin value = Level -Limit value

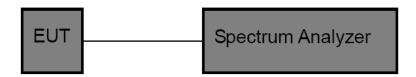
EN

CTC Laboratories, Inc.

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn 国家认证认可监督管理委员会 中国

For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : http://yz.cnca.cn




# 3.4. Band Edge and Spurious Emissions (Conducted)

# <u>Limit</u>

# FCC CFR Title 47 Part 15 Subpart C Section 15.247 (d) / RSS-247 5.5

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

# **Test Configuration**



## **Test Procedure**

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- Use the following spectrum analyzer settings: RBW = 100 kHz, VBW ≥ RBW, scan up through 10th harmonic. Sweep = auto, Detector function = peak, Trace = max hold.
- 4. Measure and record the results in the test report.

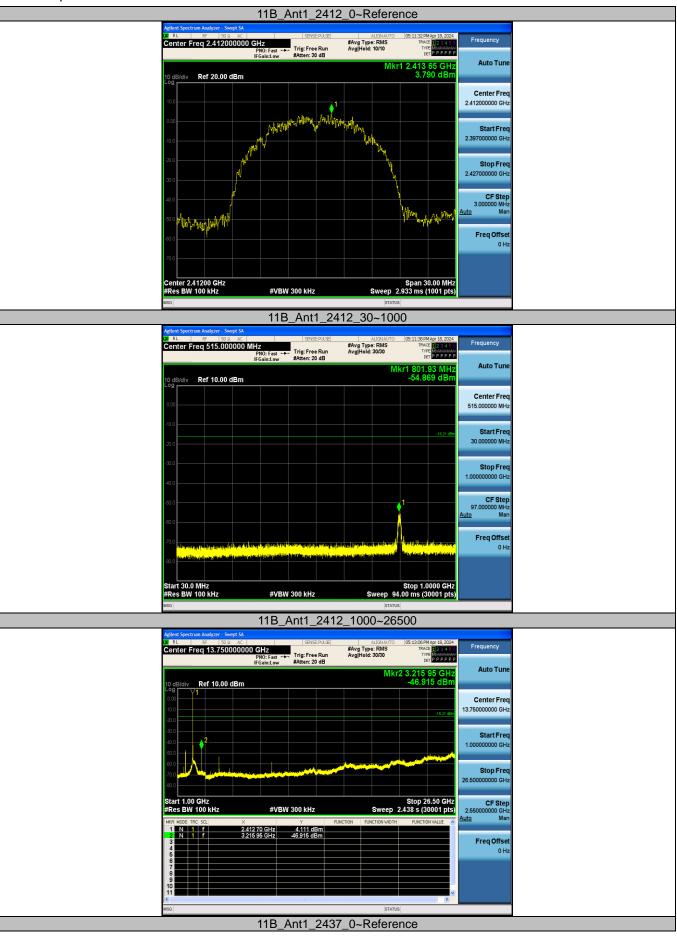
#### Test Mode

Please refer to the clause 2.4.



## **Test Result**

**Conducted Spurious Emission** 


Test Mode	Antenna	Frequency[MHz]	FreqRange [Mhz]	RefLevel [dBm]	Result [dBm]	Limit [dBm]	Verdict
11B	Ant1	2412	Reference	3.79	3.79		PASS
			30~1000	3.79	-54.87	≤-16.21	PASS
			1000~26500	3.79	-46.92	≤-16.21	PASS
		2437	Reference	3.15	3.15		PASS
			30~1000	3.15	-55.26	≤-16.85	PASS
			1000~26500	3.15	-45.89	≤-16.85	PASS
		2462	Reference	3.56	3.56		PASS
			30~1000	3.56	-55.55	≤-16.44	PASS
			1000~26500	3.56	-45.62	≤-16.44	PASS
11G	Ant1	2412	Reference	-0.93	-0.93		PASS
			30~1000	-0.93	-57.99	≤-20.93	PASS
			1000~26500	-0.93	-44.80	≤-20.93	PASS
		2437	Reference	-0.95	-0.95		PASS
			30~1000	-0.95	-58.26	≤-20.95	PASS
			1000~26500	-0.95	-46.46	≤-20.95	PASS
		2462	Reference	-0.54	-0.54		PASS
			30~1000	-0.54	-58.59	≤-20.54	PASS
			1000~26500	-0.54	-46.44	≤-20.54	PASS
11N20SISO	Ant1	2412	Reference	-1.14	-1.14		PASS
			30~1000	-1.14	-58.10	≤-21.14	PASS
			1000~26500	-1.14	-44.50	≤-21.14	PASS
		2437	Reference	-1.20	-1.20		PASS
			30~1000	-1.20	-58.63	≤-21.20	PASS
			1000~26500	-1.20	-46.26	≤-21.20	PASS
		2462	Reference	-0.54	-0.54		PASS
			30~1000	-0.54	-58.12	≤-20.54	PASS
			1000~26500	-0.54	-46.47	≤-20.54	PASS
11N40SISO	Ant1	2422	Reference	-3.19	-3.19		PASS
			30~1000	-3.19	-60.47	≤-23.19	PASS
			1000~26500	-3.19	-44.45	≤-23.19	PASS
		2437	Reference	-3.39	-3.39		PASS
			30~1000	-3.39	-60.91	≤-23.39	PASS
			1000~26500	-3.39	-46.30	≤-23.39	PASS
		2452	Reference	-3.50	-3.50		PASS
			30~1000	-3.50	-59.39	≤-23.50	PASS
			1000~26500	-3.50	-46.19	≤-23.50	PASS

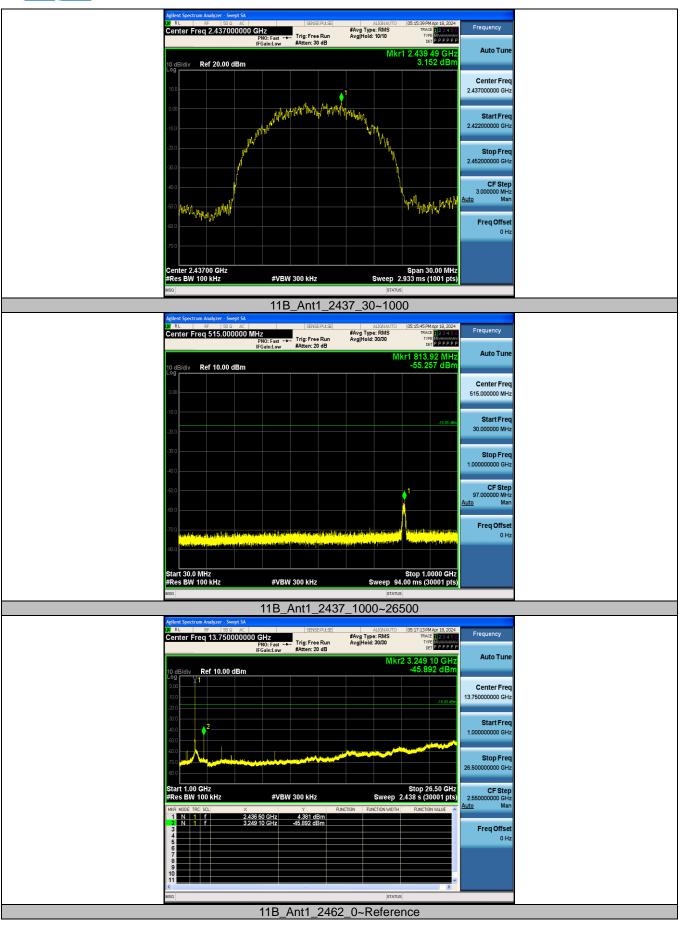
CTC Laboratories, Inc.

EN 中国国家认证认可监督管理委员会



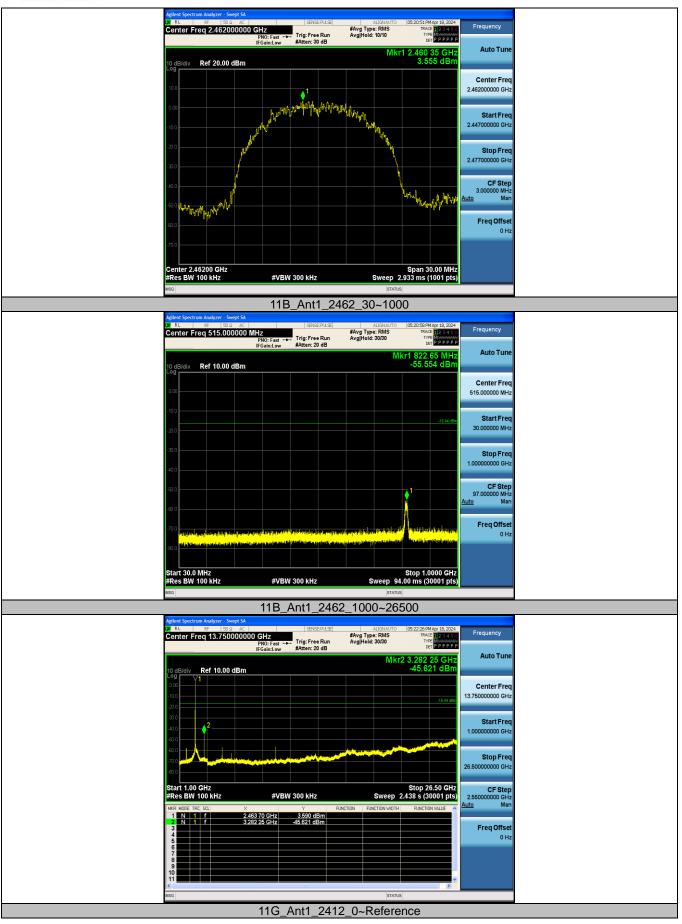
#### Test Graphs:




CTC Laboratories, Inc.

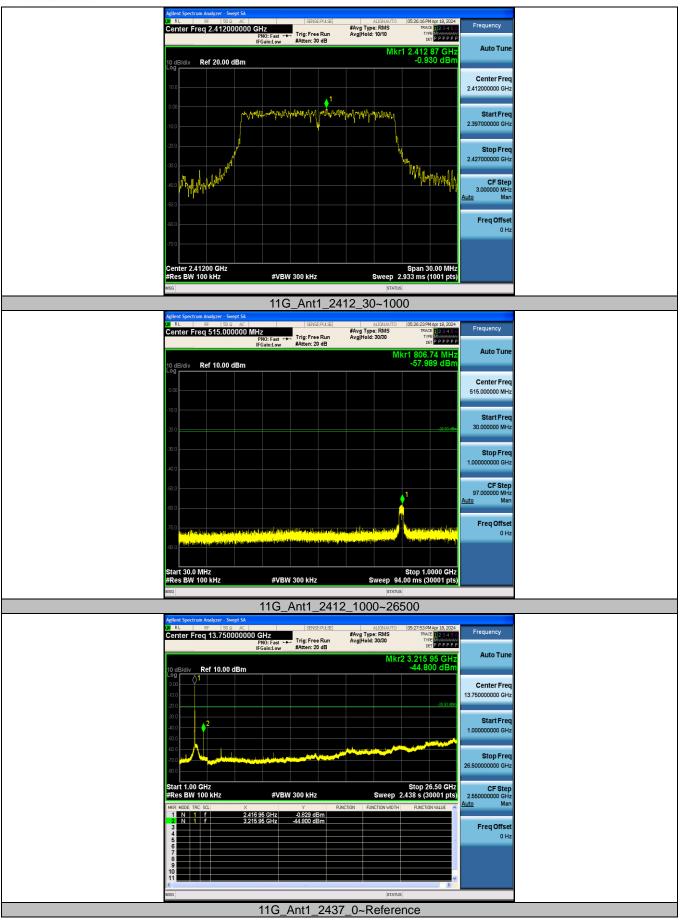
Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059




Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

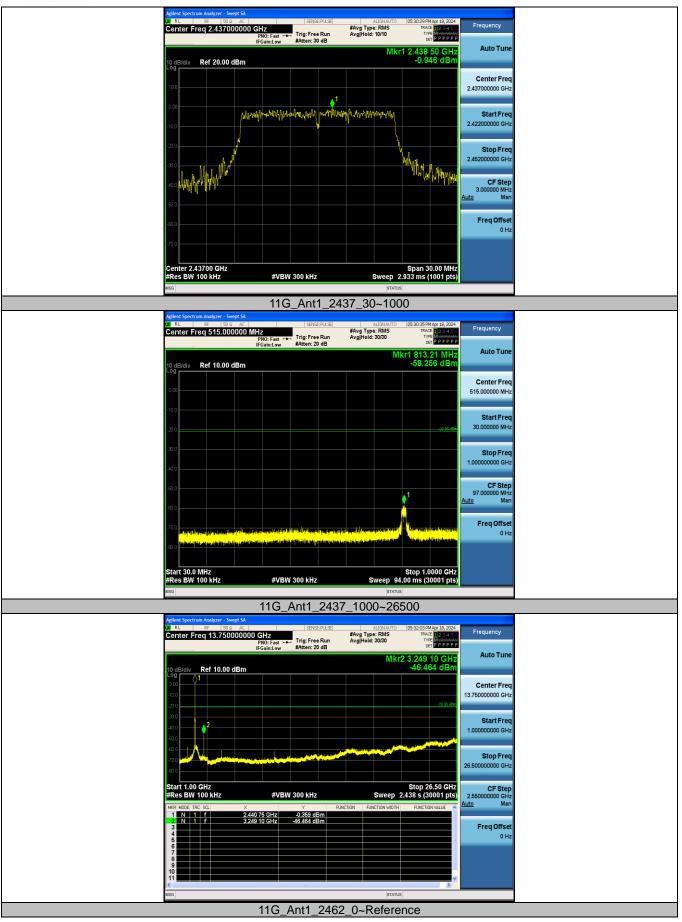





Tel.: (86)755-27521059 中国国家认证认可监督管理委员会 EN

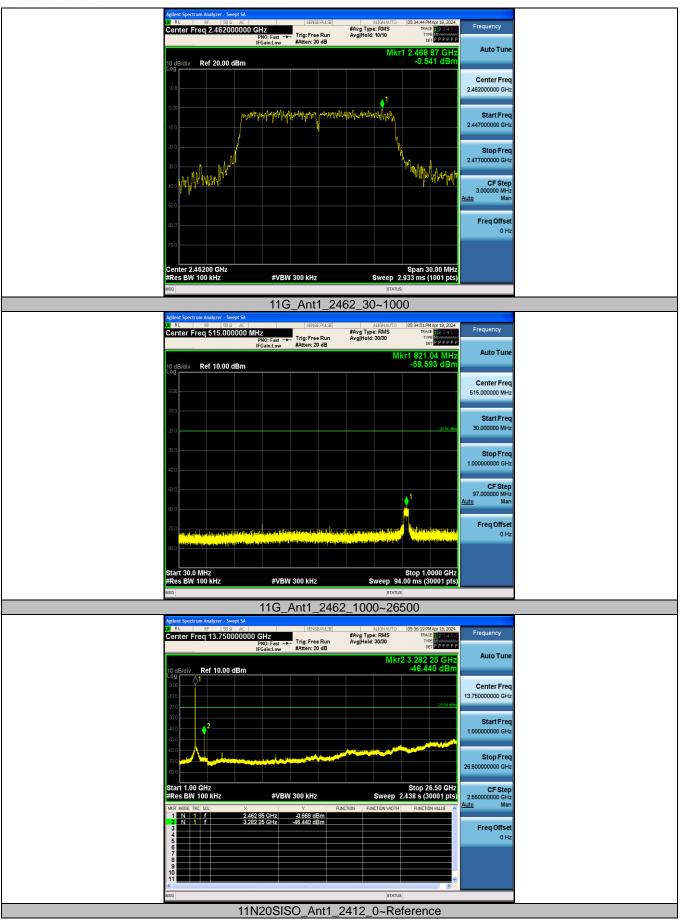





Tel.: (86)755-27521059 中国国家认证认可监督管理委员会 EN

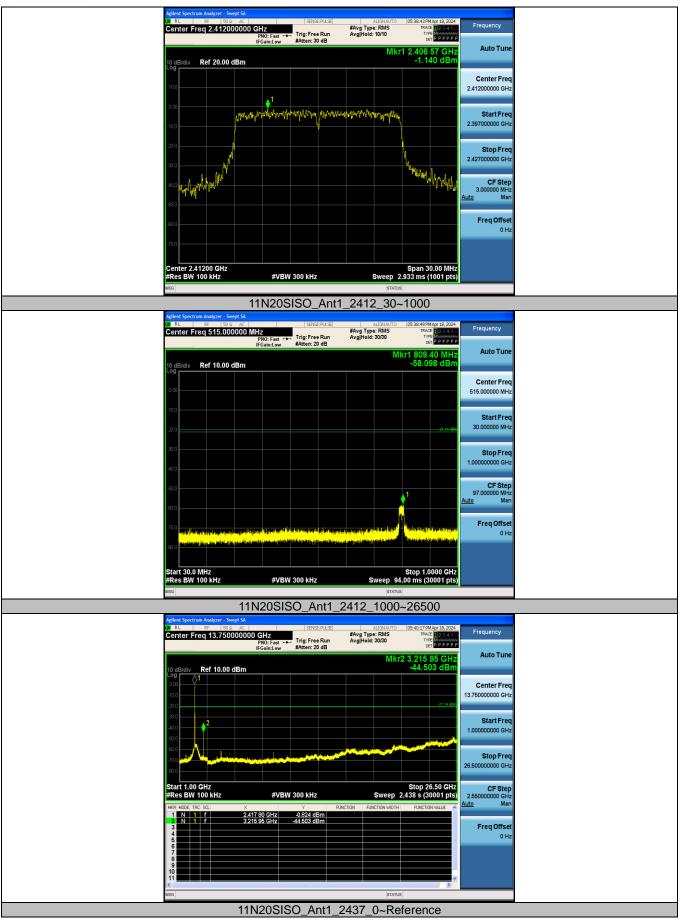





Tel.: (86)755-27521059 中国国家认证认可监督管理委员会 EN

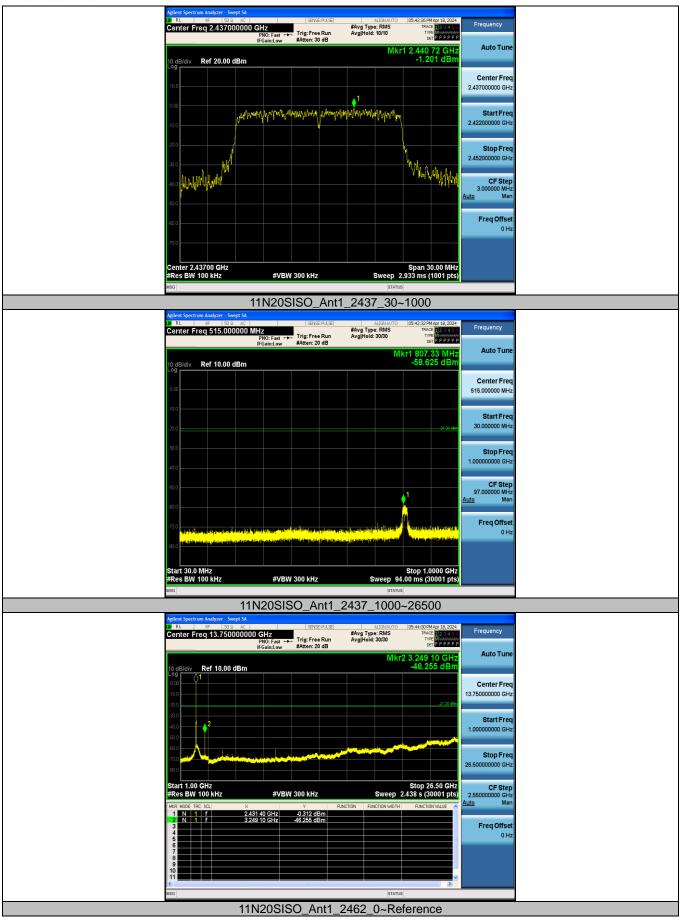





Tel.: (86)755-27521059 中国国家认证认可监督管理委员会 EN



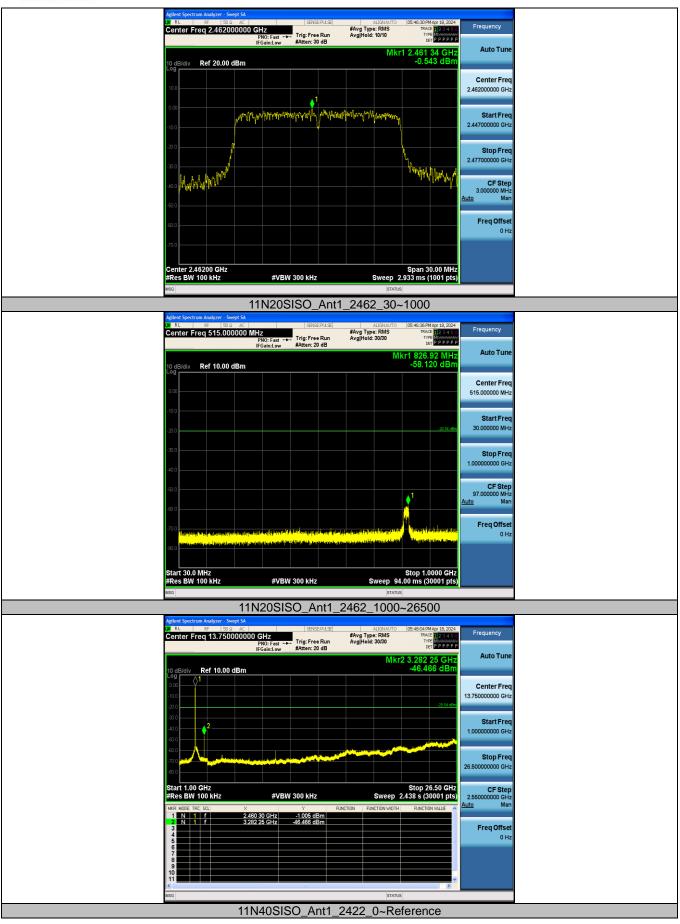



Tel.: (86)755-27521059 中国国家认证认可监督管理委员会 EN



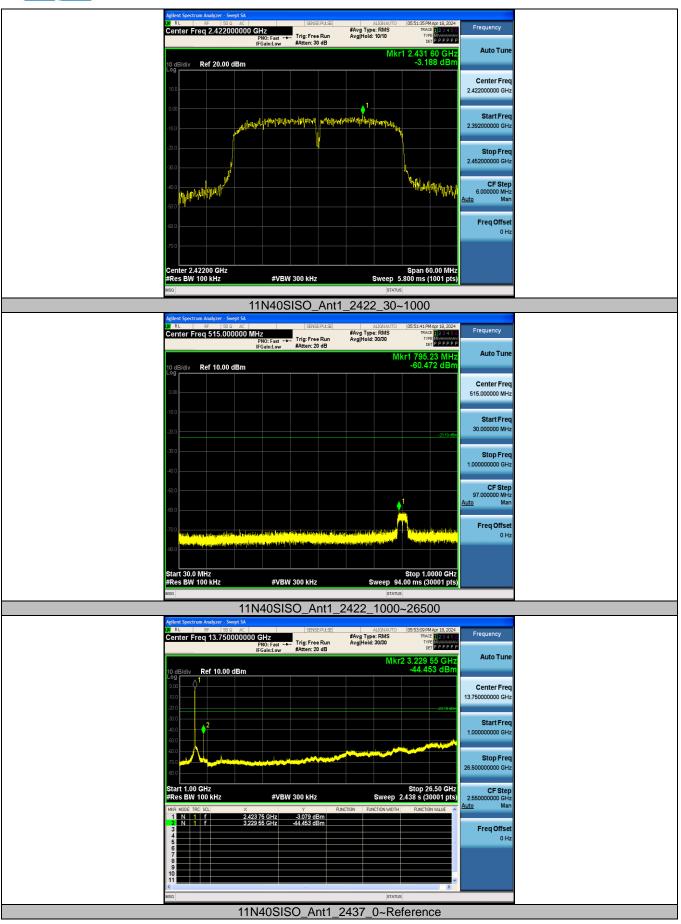






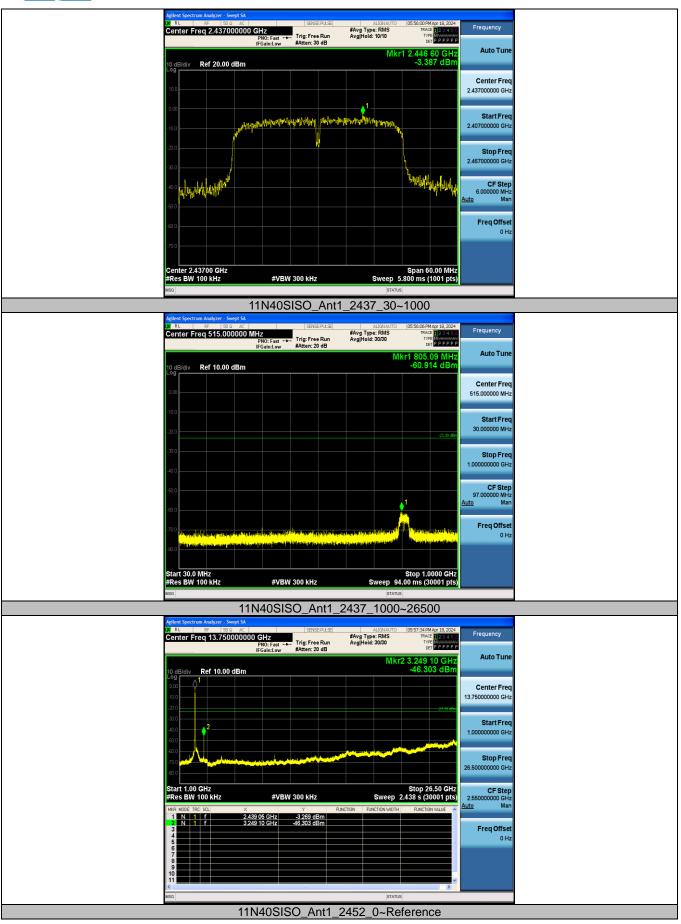




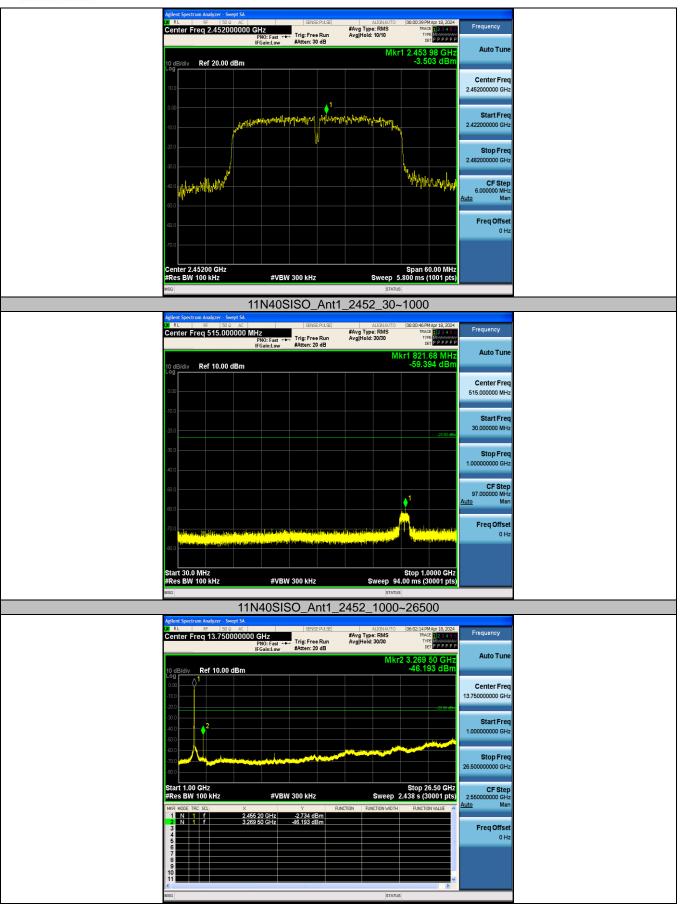






Tel.: (86)755-27521059 中国国家认证认可监督管理委员会 EN






Tel.: (86)755-27521059 中国国家认证认可监督管理委员会 EN





Tel.: (86)755-27521059 中国国家认证认可监督管理委员会 EN





