

CTC Laboratories, Inc.

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China

Tel: +86-755-27521059 Fax: +86-755-27521011 http://www.sz-ctc.org.cn

TEST REPORT

Report No.: CTC2024082010

FCC ID.....: 2APN5SGC

IC: 29127-SGC

Applicant: Shenzhen Sonoff Technologies Co.,Ltd.

China

Manufacturer...... Shenzhen Sonoff Technologies Co.,Ltd.

China

Product Name: Smart Garage Door Controller

Trade Mark 5 Dnoff, Sonoff

Model/Type reference.....: SGC300

Listed Model(s) SGC200, SGC100

Standard FCC CFR Title 47 Part 15 Subpart C Section 15.247

RSS-247 Issue 3

Date of receipt of test sample....... Apr. 15, 2024

Date of testing...... Apr. 15, 2024 to May 30, 2024

Result...... PASS

Compiled by:

(Printed name+signature) Jim Jiang

Supervised by:

(Printed name+signature) Eric Zhang

Approved by:

(Printed name+signature) Totti Zhao

This test report may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by CTC. The Test Result in the report only apply to the tested sample. The test report shall be invalid without all the signatures of testing engineers, reviewer and approver. Any objections must be raised to CTC within 15 days since the date when the report is received. It will not be taken into consideration beyond this limit. The test report merely corresponds to the test sample.

Jim Jiang
Briczhang
Jehns

Table of Contents

Page

Report No.: CTC2024082010

1. TEST	T SUMMARY	3
1.1.	TEST STANDARDS	3
1.2.	REPORT VERSION	3
1.3.	TEST DESCRIPTION	3
1.4.	TEST FACILITY	4
1.5.	Measurement Uncertainty	5
1.6.	ENVIRONMENTAL CONDITIONS	5
2. GEN	IERAL INFORMATION	6
2.1.	CLIENT INFORMATION	6
2.2.	GENERAL DESCRIPTION OF EUT	6
2.3.	ACCESSORY EQUIPMENT INFORMATION	7
2.4.	OPERATION STATE	8
2.5.	Measurement Instruments List	9
3. TEST	TITEM AND RESULTS	11
3.1.	CONDUCTED EMISSION	11
3.2.	RADIATED EMISSION	14
3.3.	BAND EDGE EMISSIONS (RADIATED)	22
3.4.	BAND EDGE AND SPURIOUS EMISSIONS (CONDUCTED)	27
3.5.	DTS BANDWIDTH	32
3.6.	PEAK OUTPUT POWER	35
3.7.	Power Spectral Density	36
3.8.	DUTY CYCLE	38
3.9.	Antenna Requirement	40

Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

Page 3 of 40

Report No.: CTC2024082010

1. TEST SUMMARY

1.1. Test Standards

The tests were performed according to following standards:

FCC Rules Part 15.247: Operation within the bands 902–928MHz, 2400–2483.5MHz, and 5725–5850MHz.

RSS-247 Issue 3: Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices.

RSS-Gen Issue 5: General Requirements for Compliance of Radio Apparatus.

<u>ANSI C63.10-2013</u>: American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

1.2. Report Version

Revised No.	Report No.	Date of issue	Description
01	CTC2024082009	Jul. 10, 2024	Original

1.3. Test Description

FCC Part 15 Subpart C (15.247) / RSS-247 Issue 3					
Test Item	Standard	Section	Result	Test	
rest item	FCC	FCC IC		Engineer	
Antenna Requirement	15.203	RSS-Gen 6.8	Pass	Jim Jiang	
Conducted Emission	15.207	RSS-Gen 8.8	Pass	Jim Jiang	
Conducted Band Edge and Spurious Emissions	15.247(d)	RSS-247 5.5	Pass	Jim Jiang	
Radiated Band Edge and Spurious Emissions	15.205&15.209& 15.247(d)	RSS-247 5.5	Pass	Jim Jiang	
6dB Bandwidth	15.247(a)(2)	RSS-247 5.2 (a)	Pass	Jim Jiang	
Conducted Max Output Power	15.247(b)(3)	RSS-247 5.4 (d)	Pass	Jim Jiang	
Power Spectral Density	15.247(e)	RSS-247 5.2 (b)	Pass	Jim Jiang	
Transmitter Radiated Spurious	15.209&15.247(d)	RSS-247 5.5& RSS-Gen 8.9	Pass	Jim Jiang	

Note:

- 1. The measurement uncertainty is not included in the test result.
- 2. N/A: means this test item is not applicable for this device according to the technology characteristic of device.

CTC Laboratories, Inc.

Accreditation Administration of the People's Republic of China: http://yz.cnca.cn

Page 4 of 40

Report No.: CTC2024082010

1.4. Test Facility

Address of the report laboratory

CTC Laboratories, Inc.

Add: Room 101 Building B, Room 107, 108, 207, 208, 303 Building A, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China (formerly 2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, High-Tech Park, Guanlan Sub-District, Longhua New District, Shenzhen, Guangdong, China)

Laboratory accreditation

The test facility is recognized, certified, or accredited by the following organizations:

A2LA-Lab Cert. No.: 4340.01

CTC Laboratories, Inc. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

Industry Canada (Registration No.: 9783A, CAB Identifier: CN0029)

CTC Laboratories, Inc. EMC Laboratory has been registered by Certification and Engineer Bureau of Industry Canada for the performance of with Registration NO.: 9783A on Jan, 2016.

FCC (Registration No.: 951311, Designation Number CN1208)

CTC Laboratories, Inc. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 951311, Aug 26, 2017.

CTC Laboratories, Inc.

Accreditation Administration of the People's Republic of China: http://yz.cnca.cn

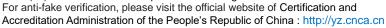
Page 5 of 40

Report No.: CTC2024082010

1.5. Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 2" and is documented in the CTC Laboratories, Inc. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Below is the best measurement capability for CTC Laboratories, Inc.


Test Items	Measurement Uncertainty	Notes
DTS Bandwidth	±0.0196%	(1)
Maximum Conducted Output Power	±0.686 dB	(1)
Maximum Power Spectral Density Level	±0.743 dB	(1)
Band-edge Compliance	±1.328 dB	(1)
Unwanted Emissions In Non-restricted Freq Bands	9kHz-1GHz: ±0.746dB 1GHz-26GHz: ±1.328dB	(1)
Conducted Emissions 9kHz~30MHz	±3.08 dB	(1)
Radiated Emissions 30~1000MHz	±4.51 dB	(1)
Radiated Emissions 1~18GHz	±5.84 dB	(1)
Radiated Emissions 18~40GHz	±6.12 dB	(1)

Note (1): This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

1.6. Environmental Conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15 °C to 35 °C
Relative Humidity:	20 % to 75 %
Air Pressure:	101 kPa

Page 6 of 40

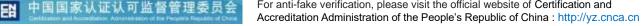
Report No.: CTC2024082010

2. GENERAL INFORMATION

2.1. Client Information

Applicant:	Shenzhen Sonoff Technologies Co.,Ltd.
Address:	3F & 6F, Bldg A, No. 663, Bulong Rd, Shenzhen, Guangdong, China
Manufacturer:	Shenzhen Sonoff Technologies Co.,Ltd.
Address:	3F & 6F, Bldg A, No. 663, Bulong Rd, Shenzhen, Guangdong, China

2.2. General Description of EUT


Product Name:	Smart Garage Door Controller
Trade Mark:	Signoff, Sonoff
Model/Type reference:	SGC300
Listed Model(s):	SGC200, SGC100
Model Difference:	All these models are identical in the same PCB, layout, electrical circuit. The difference is controlling the number of channels. The SGC300 controls three channels. The SGC200 controls two channels. SGC100 controls one channel.
Power Supply:	Input: DC5V 1A
Hardware Version:	V1.0
Software Version:	V1.0.0
Bluetooth 4.2 / BLE	
Modulation:	GFSK
Operation Frequency:	2402MHz~2480MHz
Channel Number:	40
Channel Separation:	2MHz
Data Rate:	1Mbps
Antenna Type:	PCB Antenna
Antenna Gain:	2.82dBi

2.3. Accessory Equipment Information

Equipment Information					
Name Model S/N Manufacturer					
Notebook	ThinkPad T460s	/	Lenovo		
Cable Information					
Name	Name Shielded Type Ferrite Core Length				
USB Cable	Unshielded	NO	100cm		
Test Software Information					
Name Version / /					
EspRFTestTool	v3.6	/	1		

Page 8 of 40

Report No.: CTC2024082010

2.4. Operation State

Operation Frequency List: The EUT has been tested under typical operating condition. The Applicant provides communication tools software to control the EUT for staying in continuous transmitting and receiving mode for testing. BT BLE, 40 channels are provided to the EUT. Channels 00/19/39 were selected for testing.

Operation Frequency List:

Channel	Frequency (MHz)
00	2402
01	2404
:	i i
18	2438
19	2440
20	2442
÷	i i
38	2478
39	2480

Note: The display in grey were the channel selected for testing.

Test Mode:

For RF test items:

The engineering test program was provided and enabled to make EUT continuous transmit.

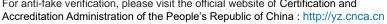
For AC power line conducted emissions:

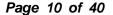
The EUT was set to connect with the Bluetooth instrument under large package sizes transmission.

For Radiated spurious emissions test item:

The engineering test program was provided and enabled to make EUT continuous transmit. The EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

The worse case configurations:

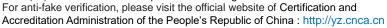

The Worse Case Power Setting Parameter under 2400 ~ 2483.5MHz Band					
Test Software EspRFTestTool_v3.6					
Modulation Mode	Modulation Mode Test Channel Power Level				
	00	5			
GFSK	19	5			
	39	5			



2.5. Measurement Instruments List

Tonscend RF Test System					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated Until
1	Spectrum Analyzer	R&S	FSV40-N	101331	Mar. 21, 2025
2	Spectrum Analyzer	R&S	FSV40-N	101654	Aug. 07, 2024
3	Spectrum Analyzer	R&S	FSU26	100105	Dec. 12, 2024
4	MXA Signal Analyzer	Keysight	N9020A	MY46471737	Dec. 12, 2024
5	MXA Signal Analyzer	Keysight	N9020A	MY52091402	Aug. 22, 2024
6	MXG Vector Signal Generator	Agilent	N5182A	MY47420864	Dec. 12, 2024
7	PSG Analog Signal Generator	Agilent	E8257D	MY46521908	Dec. 12, 2024
8	EXG Analog Signal Generator	Keysight	N5173B	MY59100842	Dec. 12, 2024
9	MXG Vector Signal Generator	Keysight	N5182B	MY59100212	Dec. 12, 2024
10	USB Wideband Power Sensor	Keysight	U2021XA	MY55130004	Mar. 21, 2025
11	USB Wideband Power Sensor	Keysight	U2021XA	MY55130006	Mar. 21, 2025
12	Wideband Radio Communication Tester	R&S	CMW500	102414	Dec. 12, 2024
13	RF Control Unit	Tonscend	JS0806-2	/	Aug. 22, 2024
14	High and low temperature test chamber	ESPEC	MT3035	/	Mar. 21, 2025

Radiate	Radiated Emission						
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated Until		
1	Trilog-Broadband Antenna	Schwarzbeck	VULB 9163	01026	Dec. 18, 2024		
2	Horn Antenna	Schwarzbeck	BBHA 9120D	9120D-647	Sep. 25, 2025		
3	Test Receiver	Keysight	N9038A	MY56400071	Dec. 12, 2024		
4	Broadband Amplifier	SCHWARZBECK	BBV9743B	259	Dec. 12, 2024		
5	Mirowave Broadband Amplifier	SCHWARZBECK	BBV9718C	111	Dec. 12, 2024		
6	3m chamber 3	YIHENG	EE106	/	Aug. 28, 2026		
7	Test Software	FARA	EZ-EMC	FA-03A2	/		



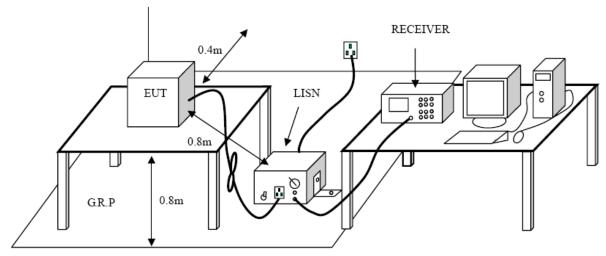
Conducted Emission Test Equipment Manufacturer Model No. Serial No. Calibrated Until Item 1 LISN R&S **ENV216** 101112 Dec. 12, 2024 2 LISN R&S **ENV216** 101113 Dec. 12, 2024 3 **EMI Test Receiver** R&S ESCS30 100353 Dec. 12, 2024 4 ISN CAT6 Schwarzbeck NTFM 8158 CAT6-8158-0046 Dec. 12, 2024 Schwarzbeck 5 **ISN CAT5** NTFM 8158 CAT5-8158-0046 Dec. 12, 2024 6 R&S Test Software EMC32 6.10.10 /

Note: 1. The Cal. Interval was one year.

- 2. The Cal. Interval was three years of the antenna.
- 3. The cable loss has been calculated in test result which connection between each test instruments.

3. TEST ITEM AND RESULTS

3.1. Conducted Emission


<u>Limit</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.207 / RSS-Gen 8.8

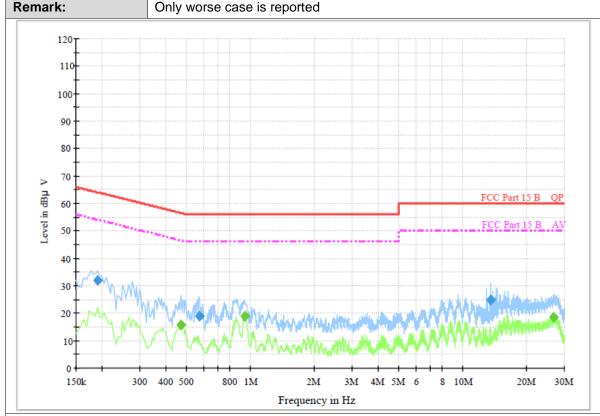
Fraguency (MHz)	Conducted Limit (dBµV)				
Frequency (MHz)	Quasi-peak	Average			
0.15 - 0.5	66 to 56 *	56 to 46 *			
0.5 - 5	56	46			
5 - 30	60	50			

^{*} Decreases with the logarithm of the frequency.

Test Configuration

Test Procedure

- 1. The EUT was setup according to ANSI C63.10:2013 requirements.
- 2. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.
- 3. The EUT and simulators are connected to the main power through a line impedance stabilization network (LISN). The LISN provides a 50 ohm / 50 µH coupling impedance for the measuring equipment.
- 4. The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs)
- 5. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source.
- 6. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.
- 7. Conducted emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.
- 8. During the above scans, the emissions were maximized by cable manipulation.


Test Mode

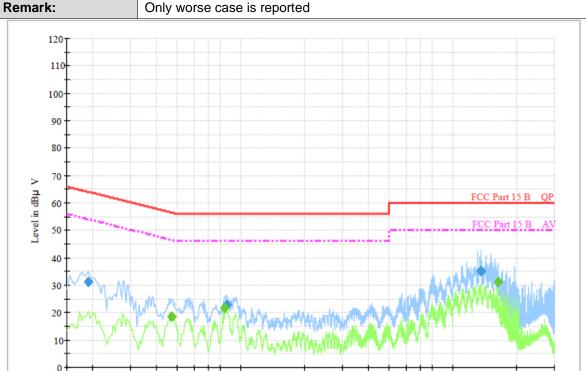
Please refer to the clause 2.4.

Test Result

Test Voltage:	AC 120V/60Hz
Terminal:	Line

Final Measurement Detector 1

Frequenc (MHz)	y QuasiPeak (dBµ V)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµ V)	Comment
0.19050	00 31.8	1000.00	9.000	On	L1	9.5	32.2	64.0	
0.57300	00 18.9	1000.00	9.000	On	L1	9.5	37.1	56.0	
13.55550	00 24.8	1000.00	9.000	On	L1	9.8	35.2	60.0	


Final Measurement Detector 2

	Frequency (MHz)	Average (dBu V)	Meas. Time	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµ	Comment
1		` ' '	(ms)						` V)	
	0.469500	15.6	1000.00	9.000	On	L1	9.5	30.9	46.5	
	0.942000	18.8	1000.00	9.000	On	L1	9.5	27.2	46.0	
[26.776500	18.7	1000.00	9.000	On	L1	9.7	31.3	50.0	

Emission Level = Read Level + Correct Factor

Test Voltage: AC 120V/60Hz
Terminal: Neutral

Final Measurement Detector 1

400 500

800 1M

300

150k

Frequency (MHz)	QuasiPeak (dBµ V)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµ V)	Comment
0.190500	31.1	1000.00	9.000	On	N	9.4	32.9	64.0	
0.852000	23.1	1000.00	9.000	On	N	9.4	32.9	56.0	
13.560000	35.2	1000.00	9.000	On	N	9.7	24.8	60.0	

Frequency in Hz

4M 5M 6

8 10M

20M

30M

3M

Final Measurement Detector 2

Frequency (MHz)	Average (dBµ V)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµ V)	Comment
0.469500	18.7	1000.00	9.000	On	N	9.4	27.8	46.5	
0.834000	21.7	1000.00	9.000	On	N	9.4	24.3	46.0	
16.228500	31.0	1000.00	9.000	On	N	9.6	19.0	50.0	

Emission Level = Read Level + Correct Factor

3.2. Radiated Emission

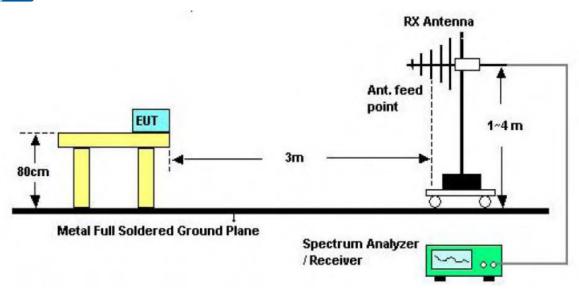
<u>Limit</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.209 / RSS-Gen 8.9

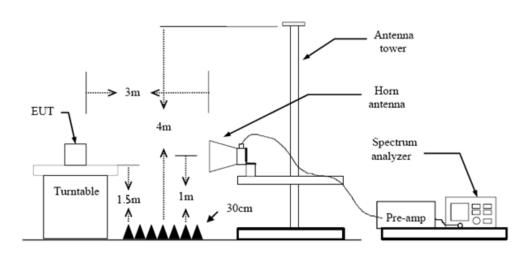
Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009~0.490	2400/F (kHz)	300
0.490~1.705	24000/F (kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

Frequency Range (MHz)	dBμV/m (at 3 meters)			
Frequency Range (MHZ)	Peak	Average		
Above 1000	74	54		

Note:


- (1) The tighter limit applies at the band edges.
- (2) Emission Level (dBμV/m)=20log Emission Level (μV/m).

Test Configuration



Below 30MHz Test Setup


30-1000MHz Test Setup

Above 1GHz Test Setup

Test Procedure

- 1. The EUT was setup and tested according to ANSI C63.10:2013.
- 2. The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz, and 1.5 m for above 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower.
- 4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the quidelines.
- 5. Set to the maximum power setting and enable the EUT transmit continuously.
- 6. Use the following spectrum analyzer settings
- (1) Span shall wide enough to fully capture the emission being measured;

(2) 9k - 150kHz:

RBW=300 Hz, VBW=1 kHz, Sweep=auto, Detector function=peak, Trace=max hold (3) 0.15M - 30MHz:

RBW=10 kHz, VBW=30 kHz, Sweep=auto, Detector function=peak, Trace=max hold (4) 30M - 1 GHz:

RBW=120 kHz, VBW=300 kHz, Sweep=auto, Detector function=peak, Trace=max hold If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

(5) From 1 GHz to 10th harmonic:

RBW=1MHz, VBW=3MHz Peak detector for Peak value.

RBW=1MHz, VBW see note 1 with Peak Detector for Average Value.

Note 1: For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause 3.8 Duty Cycle.

Test Mode

Please refer to the clause 2.4.

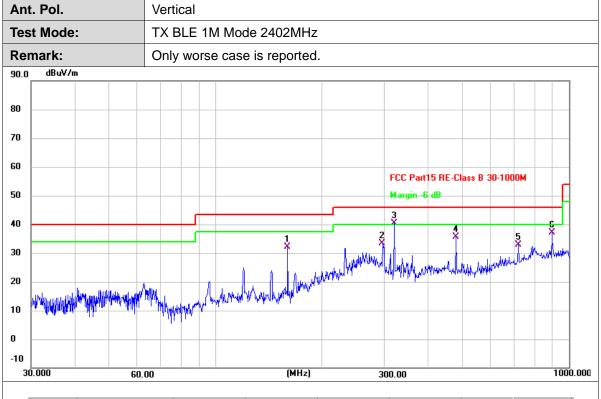
Test Result

9 kHz~30 MHz

From 9 kHz to 30 MHz: The conclusion is PASS.

Note: The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

	4 Mada.	TV DI E 4M Ma	TX BLE 1M Mode 2402MHz				
esi	t Mode:	IX BLE JIM MO	ue 2402IVIHZ				
en	nark:	Only worse cas	e is reported.				
0.0	dBuV/m						
,							
,							
1				FCC Part15 RE-Class B 30-100)OM _		
}				Margin 6 dB			
,			And the state of t	A 1	6 HMMmhulu		
)	Washington Andrewsky May Polytol Hallows	Manufacture of the second	Many	. III II III III II AMARAMAA AMAA WAAAAAA			
' ¹	1 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	THE THE PERSON NAMED IN					
0							
30.	.000	60.00	(MHz)	300.00	1000		


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	159.7844	51.11	-20.76	30.35	43.50	-13.15	QP
2	231.7178	53.39	-16.79	36.60	46.00	-9.40	QP
3	298.2681	50.23	-15.12	35.11	46.00	-10.89	QP
4 *	319.9368	55.37	-14.38	40.99	46.00	-5.01	QP
5!	478.8455	51.20	-10.96	40.24	46.00	-5.76	QP
6	719.1994	41.66	-6.59	35.07	46.00	-10.93	QP

Remarks

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	159.7844	52.95	-20.76	32.19	43.50	-11.31	QP
2	297.2238	48.48	-15.14	33.34	46.00	-12.66	QP
3 *	319.9368	54.77	-14.38	40.39	46.00	-5.61	QP
4	478.8455	46.64	-10.96	35.68	46.00	-10.32	QP
5	719.1992	39.58	-6.59	32.99	46.00	-13.01	QP
6	893.8564	41.30	-4.10	37.20	46.00	-8.80	QP

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. Pol.	Horizontal
Test Mode:	TX BLE 1M Mode 2402MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	1501.333	48.30	-6.88	41.42	74.00	-32.58	peak
2	5155.583	40.56	2.74	43.30	74.00	-30.70	peak
3	7529.083	39.22	10.08	49.30	74.00	-24.70	peak
4	9268.083	40.45	12.43	52.88	74.00	-21.12	peak
5	10819.083	38.69	14.47	53.16	74.00	-20.84	peak
6 *	12291.750	37.59	15.61	53.20	74.00	-20.80	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. Pol.	Vertical
Test Mode:	TX BLE 1M Mode 2402MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	1493.500	51.46	-6.88	44.58	74.00	-29.42	peak
2	3651.583	42.25	-0.68	41.57	74.00	-32.43	peak
3	7192.250	39.11	9.98	49.09	74.00	-24.91	peak
4	8735.417	40.06	11.29	51.35	74.00	-22.65	peak
5 *	11238.167	38.60	14.78	53.38	74.00	-20.62	peak
6	12154.667	37.52	15.66	53.18	74.00	-20.82	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Accreditation Administration of the People's Republic of China: http://yz.cnca.cn

Ant. Pol.	Horizontal
Test Mode:	TX BLE 1M Mode 2440MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	1191.917	50.97	-7.74	43.23	74.00	-30.77	peak
2	2402.167	44.97	-3.20	41.77	74.00	-32.23	peak
3	7153.083	39.89	9.77	49.66	74.00	-24.34	peak
4	8782.417	40.86	11.37	52.23	74.00	-21.77	peak
5	11148.083	38.59	14.74	53.33	74.00	-20.67	peak
6 *	12068.500	37.89	15.54	53.43	74.00	-20.57	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. Pol.	Vertical
Test Mode:	TX BLE 1M Mode 2440MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	1293.750	49.29	-7.31	41.98	74.00	-32.02	peak
2	4779.583	41.79	1.94	43.73	74.00	-30.27	peak
3	7223.583	38.62	10.03	48.65	74.00	-25.35	peak
4	8022.583	39.56	10.80	50.36	74.00	-23.64	peak
5	10838.667	38.76	14.50	53.26	74.00	-20.74	peak
6 *	11954.917	37.94	15.37	53.31	74.00	-20.69	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. Pol.	Horizontal
Test Mode:	TX BLE 1M Mode 2480MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	1195.833	52.37	-7.73	44.64	74.00	-29.36	peak
2	2441.333	45.86	-3.11	42.75	74.00	-31.25	peak
3	6471.583	40.06	7.24	47.30	74.00	-26.70	peak
4	9162.333	39.30	12.24	51.54	74.00	-22.46	peak
5	10913.083	38.80	14.58	53.38	74.00	-20.62	peak
6 *	12029.333	37.94	15.49	53.43	74.00	-20.57	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. Pol.	Vertical
Test Mode:	TX BLE 1M Mode 2480MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

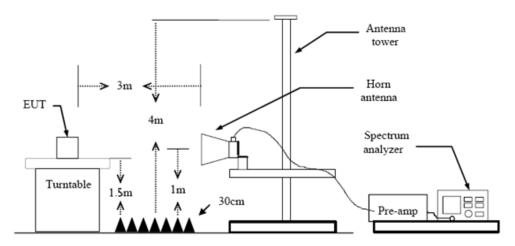
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	1195.833	50.36	-7.73	42.63	74.00	-31.37	peak
2	5946.750	40.57	5.45	46.02	74.00	-27.98	peak
3	7439.000	40.42	10.09	50.51	74.00	-23.49	peak
4	9225.000	39.35	12.39	51.74	74.00	-22.26	peak
5	10646.750	39.35	14.14	53.49	74.00	-20.51	peak
6 *	11633.750	38.47	15.12	53.59	74.00	-20.41	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Accreditation Administration of the People's Republic of China: http://yz.cnca.cn


3.3. Band Edge Emissions (Radiated)

Limit

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (d) / RSS-247 5.5

Restricted Frequency Band	(dBµV/m) (at 3m)			
(MHz)	Peak	Average		
2310 ~ 2390	74	54		
2483.5 ~ 2500	74	54		

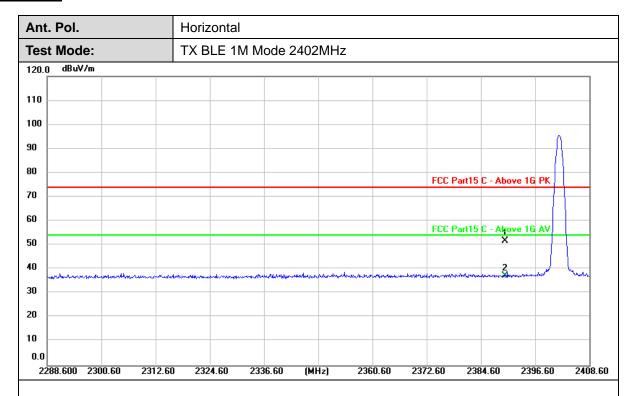
Test Configuration

Test Procedure

- 1. The EUT was setup and tested according to ANSI C63.10:2013 requirements.
- 2. The EUT is placed on a turn table which is 1.5 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.
- 4. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10:2013 on radiated measurement.
- The receiver set as follow:

RBW=1MHz, VBW=3MHz Peak detector for Peak value.

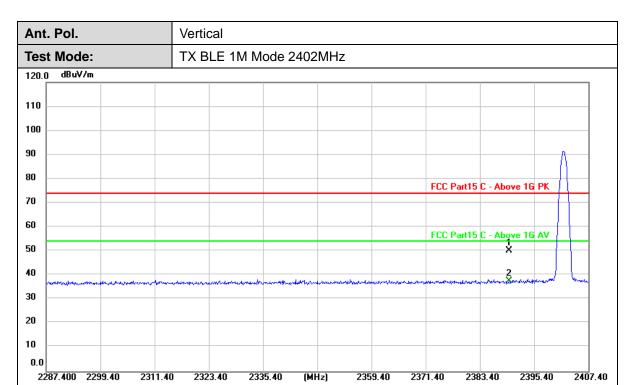
RBW=1MHz, VBW see note 1 with Peak Detector for Average Value.


Note 1: For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause 3.8 Duty Cycle.

Test Mode

Please refer to the clause 2.4.

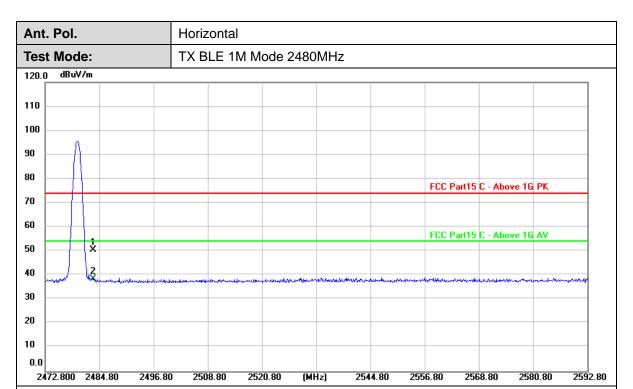
Test Result


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	2390.000	20.35	31.31	51.66	74.00	-22.34	peak
2 *	2390.000	6.08	31.31	37.39	54.00	-16.61	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

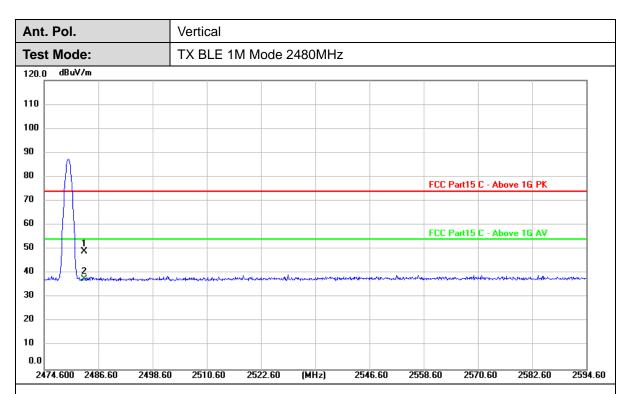

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	2390.000	18.85	31.31	50.16	74.00	-23.84	peak
2 *	2390.000	6.44	31.31	37.75	54.00	-16.25	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	2483.500	18.96	31.48	50.44	74.00	-23.56	peak
2 *	2483.500	7.05	31.48	38.53	54.00	-15.47	AVG


Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

中国国家认证认可监督管理委员会

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	2483.500	17.59	31.48	49.07	74.00	-24.93	peak
2 '	2483.500	6.30	31.48	37.78	54.00	-16.22	AVG

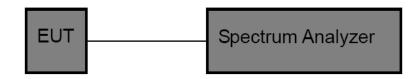
Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Page 27 of 40

Report No.: CTC2024082010


3.4. Band Edge and Spurious Emissions (Conducted)

Limit

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (d) / RSS-247 5.5

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

Test Configuration

Test Procedure

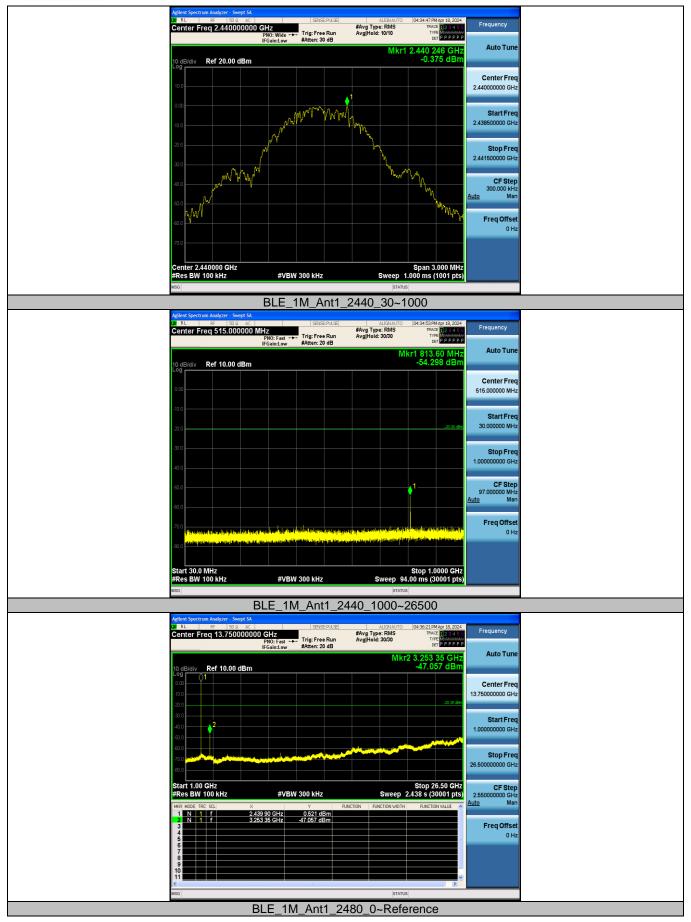
- 1. The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- Use the following spectrum analyzer settings: RBW = 100 kHz, VBW ≥ RBW, scan up through 10th harmonic. Sweep = auto, Detector function = peak, Trace = max hold.
- 4. Measure and record the results in the test report.

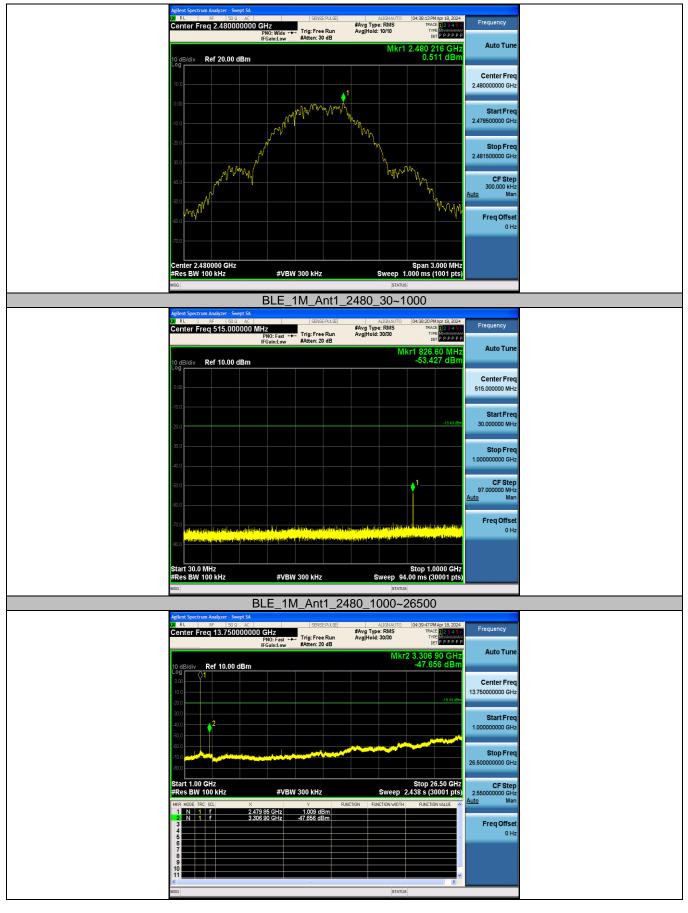
Test Mode

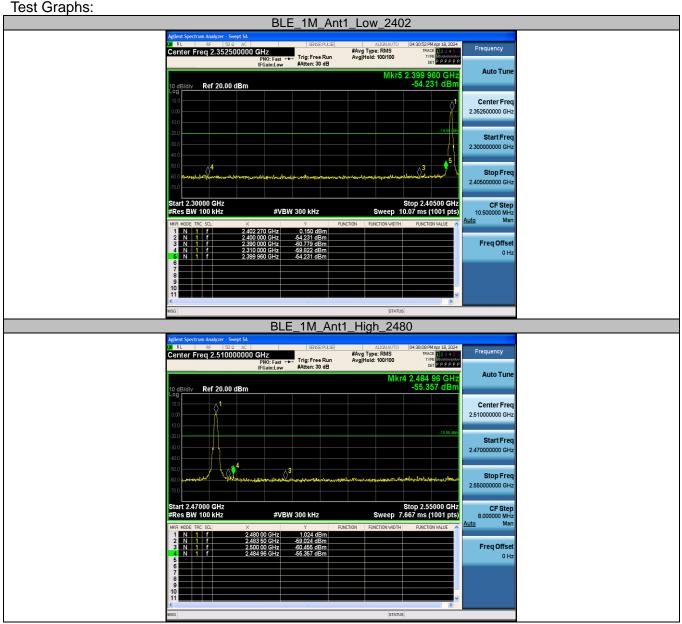
Please refer to the clause 2.4.

Test Result

Conducted Spurious Emissions

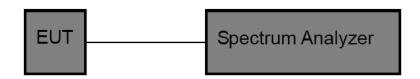

Test Mode	Antenna	Freq(MHz)	FreqRange [MHz]	RefLevel [dBm]	Result[dBm]	Limit[dBm]	Verdict
			Reference	-0.54	-0.54		PASS
		2402	30~1000	-0.54	-54.65	≤-20.54	PASS
			1000~26500	-0.54	-47.04	≤-20.54	PASS
		Ant1 2440	Reference	-0.38	-0.38		PASS
BLE_1M	Ant1		30~1000	-0.38	-54.30	≤-20.38	PASS
			1000~26500	-0.38	-47.06	≤-20.38	PASS
			Reference	0.51	0.51		PASS
		2480	30~1000	0.51 -53.43 ≤-19.49	≤-19.49	PASS	
			1000~26500	0.51	-47.66	≤-19.49	PASS


Test Graphs:



Conducted Band Edge

	Test Mode	Antenna	ChName	Freq(MHz)	RefLevel[dBm]	Result[dBm]	Limit[dBm]	Verdict
ſ	DIE 4M	A n+1	Low	2402	0.15	-54.23	≤-19.85	PASS
	BLE_1M	Ant1	High	2480	1.02	-55.36	≤-18.98	PASS


3.5. DTS Bandwidth

Limit

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (a)(2) / RSS-247 5.2 a

Test Item	Limit	Frequency Range (MHz)
DTS Bandwidth	≥500 kHz (6dB bandwidth)	2400~2483.5

Test Configuration

Test Procedure

- The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- 2. DTS Spectrum Setting:
 - (1) Set RBW = 100 kHz.
 - (2) Set the video bandwidth (VBW) ≥ 3 RBW.
 - (3) Detector = Peak.
 - (4) Trace mode = Max hold.
 - (5) Sweep = Auto couple.
 - OCB Spectrum Setting:
 - (1) Set RBW = $1\% \sim 5\%$ occupied bandwidth.
 - (2) Set the video bandwidth (VBW) ≥ 3 RBW.
 - (3) Detector = Peak.
 - (4) Trace mode = Max hold.
 - (5) Sweep = Auto couple.

NOTE: The EUT was set to continuously transmitting in each mode and low, Middle and high channel for the test.

Test Mode

Please refer to the clause 2.4.

Test Result

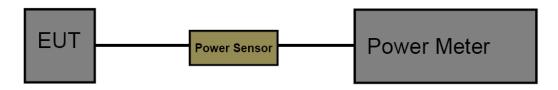
Test Mode	Frequency (MHz)	99% Bandwidth (MHz)	DTS Bandwidth (MHz)	Limit (MHz)	Verdict
	2402	1.0117	0.676	≥0.5	Pass
BLE_1M	2440	1.0078	0.668	≥0.5	Pass
	2480	1.0231	0.672	≥0.5	Pass

CTC Laboratories, Inc.

Accreditation Administration of the People's Republic of China: http://yz.cnca.cn

99% Bandwidth:

DTS Bandwidth:


3.6. Peak Output Power

Limit

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (b)(3) / RSS-247 5.4 d

Section	Test Item	Limit	Frequency Range (MHz)
FCC CFR 47 Part15.247 (b)(3)	Maximum Conducted Output Power	1 Watt or 30dBm	2400~2483.5
ISED RSS-247 5.4 d	EIRP	4 Watt or 36dBm	2400~2483.5

Test Configuration

Test Procedure

- 1. The maximum conducted output power may be measured using a broadband Peak RF power meter.
- 2. Peak power measurements were performed only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor.
- 3. The power meter implemented triggering and gating capabilities which were set up such that power measurements were recorded only during the ON time of the transmitter.

 Record the measurement data.

Test Mode

Please refer to the clause 2.4.

Test Result

Test Mode	Antenna	Channel	Peak Output Power[dBm]	Limit[dBm]	Verdict
		2402	0.80	≤30	PASS
BLE_1M	Ant1	2440	1.45	≤30	PASS
		2480	1.81	≤30	PASS

Test Mode	Antenna	Channel	EIRP[dBm]	Limit[dBm]	Verdict
		2402	3.62	≤36	PASS
BLE_1M	Ant1	2440	4.27	≤36	PASS
		2480	4.63	≤36	PASS

CTC Laboratories, Inc.

Page 36 of 40

Report No.: CTC2024082010

3.7. Power Spectral Density

Limit

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (e) / RSS-247 5.2 b

Test Item	Limit	Frequency Range (MHz)
Power Spectral Density	8 dBm (in any 3 kHz)	2400~2483.5

Test Configuration

Test Procedure

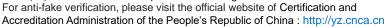
- 1. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- 2. The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement according to section 10.2 of KDB 558074 D01 DTS Meas Guidance v05r02.
- 3. Spectrum Setting:

Set analyzer center frequency to DTS channel center frequency.

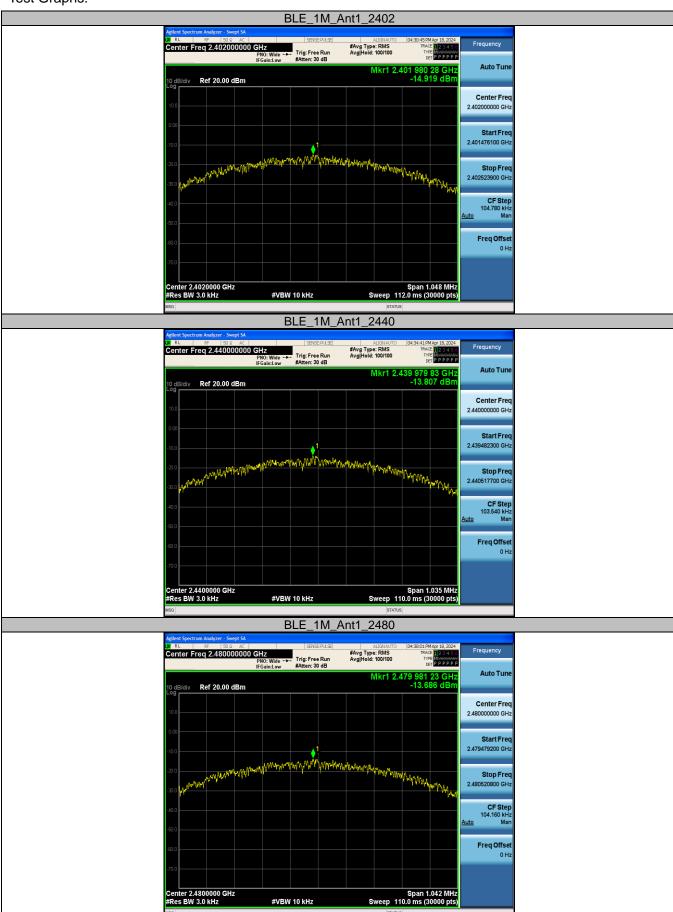
Set the span to 1.5 times the DTS bandwidth.

Set the RBW to: 3 kHz. Set the VBW to: 10 kHz.

Detector: peak. Sweep time: auto.


Allow trace to fully stabilize. Then use the peak marker function to determine the maximum amplitude level.

Test Mode


Please refer to the clause 2.4.

Test Result

Test Mode	Antenna	Channel Result[dBm/3-100kHz]		Limit[dBm/3kHz]	Verdict
		2402	-14.92	≤8	PASS
BLE_1M	Ant1	2440	-13.81	≤8	PASS
		2480	-13.69	≤8	PASS

Page 38 of 40

Report No.: CTC2024082010



3.8. Duty Cycle

Limit

None, for report purposes only.

Test Configuration

Test Procedure

- The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- 2. The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement according to section 10.2 of KDB 558074 D01 DTS Meas Guidance v05r02.
- 3. Spectrum Setting:

Set analyzer center frequency to test channel center frequency.

Set the span to 0Hz. Set the RBW to 10MHz. Set the VBW to 10MHz.

Detector: Peak. Sweep time: Auto.

Allow trace to fully stabilize. Then use the peak marker function to determine the maximum amplitude level.

Test Mode

Please refer to the clause 2.4.

Test Result

Test Mode	Channel	Transmission Duration [ms]	Transmission Period [ms]	Duty Cycle [%]	1/T Minimum VBW (kHz)	Final Setting for VBW (kHz)
BLE_1M	2402	2.09	2.50	83.60	0.48	1
	2440	2.09	2.50	83.60	0.48	1
	2480	2.09	2.50	83.60	0.48	1

Page 40 of 40

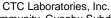
Report No.: CTC2024082010

3.9. Antenna Requirement

Requirement

FCC CFR Title 47 Part 15 Subpart C Section 15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.


FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1)(i)

(i) Systems operating in the 2400~2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

Test Result

The directional gain of the antenna is less than 6dBi, please refer to the EUT internal photographs antenna photo.

Accreditation Administration of the People's Republic of China: http://yz.cnca.cn