

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China

Tel: +86-755-27521059 Fax: +86-755-27521011 http://www.sz-ctc.org.cn

т	EST REPORT			
Report No	CTC20231627E02			
FCC ID:	2APN5BASICR4	2APN5BASICR4		
IC:	29127-BASICR4			
Applicant:	Shenzhen Sonoff Technologies	Co.,Ltd.		
Address:	3F & 6F, Bldg A, No. 663, Bulong China	Rd, Shenzhen, Guangdong,		
Manufacturer	Shenzhen Sonoff Technologies C	o.,Ltd.		
Address	3F & 6F, Bldg A, No. 663, Bulong China	3F & 6F, Bldg A, No. 663, Bulong Rd, Shenzhen, Guangdong, China		
Product Name:	Wi-Fi Smart Switch			
Trade Mark	Sonoff			
Model/Type reference:	BASICR4			
Listed Model(s)	BASICR4M			
Standard:	FCC CFR Title 47 Part 15 Subpart C Section 15.247 RSS-247 Issue 2			
Date of receipt of test sample:	Jul. 27, 2023			
Date of testing	Jul. 27, 2023 to Aug. 20, 2023			
Date of issue	Aug. 21, 2023			
Result:	PASS			
Compiled by:		Jim Jiang		
(Printed name+signature)	Jim Jiang			
Supervised by:		Tric shang		
(Printed name+signature)	Eric Zhang			
Approved by:		Zic shang		
(Printed name+signature)	Totti Zhao	10-		

This test report may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by CTC. The Test Result in the report only apply to the tested sample. The test report shall be invalid without all the signatures of testing engineers, reviewer and approver. Any objections must be raised to CTC within 15 days since the date when the report is received. It will not be taken into consideration beyond this limit. The test report merely corresponds to the test sample.

Table of Contents

Page

1.	TEST	SUMMARY	3
	1.1.	Test Standards	3
-	1.2.	REPORT VERSION	3
-	1.3.	TEST DESCRIPTION	3
-	1.4.	TEST FACILITY	4
-	1.5.	Measurement Uncertainty	5
-	1.6.	ENVIRONMENTAL CONDITIONS	5
2.	GENE	ERAL INFORMATION	6
2	2.1.	CLIENT INFORMATION	
2	2.2.	GENERAL DESCRIPTION OF EUT	6
2	2.3.	ACCESSORY EQUIPMENT INFORMATION	
2	2.4.	OPERATION STATE	
2	2.5.	Measurement Instruments List	.10
3.	TEST	ITEM AND RESULTS	. 11
	3.1.	CONDUCTED EMISSION	.11
3	3.2.	RADIATED EMISSION	.14
3	3.3.	BAND EDGE EMISSIONS (RADIATED)	.31
3	3.4.	BAND EDGE AND SPURIOUS EMISSIONS (CONDUCTED)	
3	3.5.	DTS BANDWIDTH	
3	3.6.	PEAK OUTPUT POWER	
3	3.7.	POWER SPECTRAL DENSITY	
3	3.8.	DUTY CYCLE	
3	3.9.	ANTENNA REQUIREMENT	.93

1. TEST SUMMARY

1.1. Test Standards

The tests were performed according to following standards:

FCC Rules Part 15.247: Operation within the bands 902–928MHz, 2400–2483.5MHz, and 5725–5850MHz.

<u>RSS-247 Issue 2</u>: Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices.

RSS-Gen Issue 5: General Requirements for Compliance of Radio Apparatus.

ANSI C63.10-2013: American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

1.2. Report Version

Revised No.	Date of issue	Description
01	Aug. 21, 2023	Original

1.3. Test Description

FCC Part 15 Subpart C (15.247) / RSS-247 Issue 2				
Test Item	Standard Section		Result	Test
rest nem	FCC	IC	Result	Engineer
Antenna Requirement	15.203	RSS-Gen 6.8	Pass	Jim Jiang
Conducted Emission	15.207	RSS-Gen 8.8	Pass	Jim Jiang
Conducted Band Edge and Spurious Emissions	15.247(d)	RSS-247 5.5	Pass	Jim Jiang
Radiated Band Edge and Spurious Emissions	15.205&15.209& 15.247(d)	RSS-247 5.5	Pass	Jim Jiang
6dB Bandwidth	15.247(a)(2)	RSS-247 5.2 (a)	Pass	Jim Jiang
Conducted Max Output Power	15.247(b)(3)	RSS-247 5.4 (d)	Pass	Jim Jiang
Power Spectral Density	15.247(e)	RSS-247 5.2 (b)	Pass	Jim Jiang
Transmitter Radiated Spurious	15.209&15.247(d)	RSS-247 5.5& RSS-Gen 8.9	Pass	Jim Jiang

Note:

1. The measurement uncertainty is not included in the test result.

2. N/A: means this test item is not applicable for this device according to the technology characteristic of device.

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

1.4. Test Facility

Address of the report laboratory

CTC Laboratories, Inc.

Add: 2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China

Laboratory accreditation

The test facility is recognized, certified, or accredited by the following organizations:

A2LA-Lab Cert. No.: 4340.01

CTC Laboratories, Inc. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

Industry Canada (Registration No.: 9783A, CAB Identifier: CN0029)

CTC Laboratories, Inc. EMC Laboratory has been registered by Certification and Engineer Bureau of Industry Canada for the performance of with Registration NO.: 9783A on Jan, 2016.

FCC (Registration No.: 951311, Designation Number CN1208)

CTC Laboratories, Inc. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 951311, Aug 26, 2017.

1.5. Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties radio equipment characteristics; Part 2" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 2" and is documented in the CTC Laboratories, Inc. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Test Items	Measurement Uncertainty	Notes
DTS Bandwidth	±0.0196%	(1)
Maximum Conducted Output Power	±0.686 dB	(1)
Maximum Power Spectral Density Level	±0.743 dB	(1)
Band-edge Compliance	±1.328 dB	(1)
Unwanted Emissions In Non-restricted Freq Bands	9kHz-1GHz: ±0.746dB 1GHz-26GHz: ±1.328dB	(1)
Conducted Emissions 9kHz~30MHz	±3.08 dB	(1)
Radiated Emissions 30~1000MHz	±4.51 dB	(1)
Radiated Emissions 1~18GHz	±5.84 dB	(1)
Radiated Emissions 18~40GHz	±6.12 dB	(1)

Below is the best measurement capability for CTC Laboratories, Inc.

Note (1): This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

1.6. Environmental Conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15 °C to 35 °C
Relative Humidity:	20 % to 75 %
Air Pressure:	101 kPa

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

2. GENERAL INFORMATION

2.1. Client Information

Applicant:	Shenzhen Sonoff Technologies Co.,Ltd.
Address:	3F & 6F, Bldg A, No. 663, Bulong Rd, Shenzhen, Guangdong, China
Manufacturer:	Shenzhen Sonoff Technologies Co.,Ltd.
Address:	3F & 6F, Bldg A, No. 663, Bulong Rd, Shenzhen, Guangdong, China

2.2. General Description of EUT

Product Name:	Wi-Fi Smart Switch
Trade Mark:	Sonoff
Model/Type reference:	BASICR4
Listed Model(s):	BASICR4M
Model Difference:	All these models are identical in the same PCB, layout, electrical circuit and enclosure. The difference is the model name, and the model BASICR4M supports the Matter function.
Power Supply:	Input: 100-240V~ 50/60Hz Output: 100-240V~ 50/60Hz Max. Load: 10A
Hardware Version:	V1.0
Software Version:	V1.0
2.4G WiFi	
Modulation:	802.11b: DSSS (CCK, DQPSK, DBPSK) 802.11g/ n: OFDM (BPSK, QPSK, 16QAM, 64QAM)
Operation Frequency:	802.11b/ g/ n(HT20): 2412MHz~2462MHz 802.11n(HT40): 2422MHz~2452MHz
Channel Number:	802.11b/ g/ n(HT20): 11 channels 802.11n(HT40): 7 channels
Channel Separation:	5MHz
Antenna Type:	PCB Antenna
Directional Gain:	-0.8dBi

CTC Laboratories, Inc.

2.3. Accessory Equipment Information

Equipment Information			
Name	Model	S/N	Manufacturer
Notebook	ThinkPad T460s	/	Lenovo
Cable Information			
Name	Shielded Type	Ferrite Core	Length
USB Cable	Unshielded	NO	150cm
Test Software Information			
Name	Version	/	/
EspRFTestTool	v2.8	/	/

CTC Laboratories, Inc. 2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 下 中国国家认证认可监督管理委员会

2.4. Operation State

Operation Frequency List: The EUT has been tested under typical operating condition. The Applicant provides communication tools software to control the EUT for staying in continuous transmitting and receiving mode for testing.

Operation Frequency List:

Channel	Frequency (MHz)
01	2412
02	2417
03	2422
04	2427
05	2432
06	2437
07	2442
08	2447
09	2452
10	2457
11	2462

Note: CH 01~CH 11 for 802.11b/g/n(HT20), CH 03~CH 09 for 802.11n(HT40).

Data Rated:

Preliminary tests were performed in different data rate, and found which the below bit rate is worst case mode, so only show data which it is a worst case mode.

Test Mode	Data Rate (worst mode)
802.11b	1Mbps
802.11g	6Mbps
802.11n(HT20)/(HT40)	HT-MCS0

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059

Test Mode:

For RF test items:

The engineering test program was provided and enabled to make EUT continuous transmit.

For AC power line conducted emissions:

The EUT was set to connect with the WLAN AP under large package sizes transmission.

For Radiated spurious emissions test item:

The engineering test program was provided and enabled to make EUT continuous transmit. The EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

The worse case configurations:

The Worse Case Power Setting Parameter under 2400 ~ 2483.5MHz Band			
Test Software	EspRFTestTool_v2.8		
Modulation Mode	Test Channel Attenuation		
	01	Default	
802.11b	06	Default	
	11	Default	
	01	Default	
802.11g	06	Default	
	11	Default	
	01	Default	
802.11n(HT20)	06	Default	
	11	Default	
	03	Default	
802.11n(HT40)	06	Default	
	09	Default	

CTC Laboratories, Inc. 2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 中国国家认证认可监督管理委员会 中国国家认证认可监督管理委员会

2.5. Measurement Instruments List

Tonsce	end RF Test System				
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated Until
1	MXA Signal Analyzer	Keysight	N9020A	MY46471737	Dec. 16, 2023
2	Spectrum Analyzer	R&S	FSU26	100105	Dec. 16, 2023
3	Spectrum Analyzer	R&S	FSV40-N	101331	Mar. 14, 2024
4	MXG Vector Signal Generator	Agilent	N5182A	MY47420864	Dec. 16, 2023
5	PSG Analog Signal Generator	Agilent	E8257D	MY46521908	Dec. 16, 2023
6	Power Sensor	Keysight	U2021XA	MY55130004	Mar. 14, 2024
7	Power Sensor	Keysight	U2021XA	MY55130006	Mar. 14, 2024
8	Wideband Radio Communication Tester	R&S	CMW500	102414	Dec. 16, 2023
9	High and low temperature box	ESPEC	MT3035	/	Mar. 24, 2024
10	JS1120 RF Test System	TONSCEND	v2.6	/	/

Radiate	d Emission (3m chamber 2	2)			
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated Until
1	Trilog-Broadband Antenna	Schwarzbeck	VULB 9168	9168-1013	Dec. 07, 2024
2	Horn Antenna	Schwarzbeck	BBHA 9120D	9120D-648	Dec. 07, 2024
3	Loop Antenna	ETS	6507	1446	Dec. 13, 2023
4	Spectrum Analyzer	R&S	FSU26	100105	Dec. 16, 2023
5	Spectrum Analyzer	R&S	FSV40-N	101331	Mar. 14, 2024
6	Pre-Amplifier	SONOMA	310	186194	Dec. 16, 2023
7	Low Noise Pre-Amplifier	EMCI	EMC051835	980075	Dec. 16, 2023
8	Test Receiver	R&S	ESCI7	100967	Dec. 16, 2023
9	3m chamber 2	Frankonia	EE025	/	Oct. 23, 2024

Conduc	cted Emission				
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated Until
1	LISN	R&S	ENV216	101112	Dec. 16, 2023
2	LISN	R&S	ENV216	101113	Dec. 16, 2023
3	EMI Test Receiver	R&S	ESCS30	100353	Dec. 16, 2023
4	ISN CAT6	Schwarzbeck	NTFM 8158	CAT6-8158-0046	Dec. 16, 2023
5	ISN CAT5	Schwarzbeck	NTFM 8158	CAT5-8158-0046	Dec. 16, 2023

Note: 1. The Cal. Interval was one year.

2. The Cal. Interval was three years of the antenna.

3. The cable loss has been calculated in test result which connection between each test instruments.

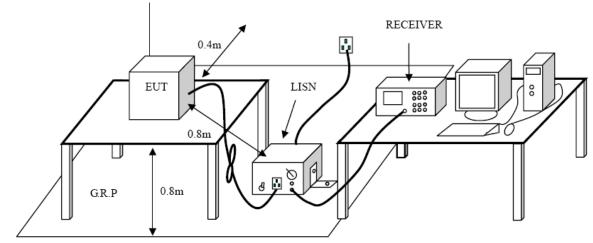
CTC Laboratories, Inc.

中国国家认证认可监督管理委员会 EN

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

3. TEST ITEM AND RESULTS

3.1. Conducted Emission


<u>Limit</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.207 / RSS-Gen 8.8

	Conducted Limit (dBµV)				
Frequency (MHz)	Quasi-peak	Average			
0.15 - 0.5	66 to 56 *	56 to 46 *			
0.5 - 5	56	46			
5 - 30	60	50			

* Decreases with the logarithm of the frequency.

Test Configuration

Test Procedure

1. The EUT was setup according to ANSI C63.10:2013 requirements.

2. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.

3. The EUT and simulators are connected to the main power through a line impedance stabilization network (LISN). The LISN provides a 50 ohm / 50 μ H coupling impedance for the measuring equipment.

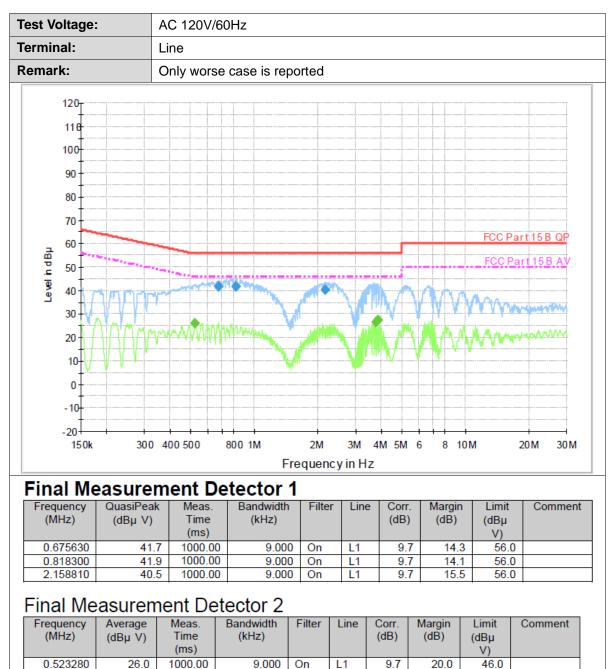
4. The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs)

5. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source.

6. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.

7. Conducted emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.

8. During the above scans, the emissions were maximized by cable manipulation.


Test Mode

Please refer to the clause 2.4.

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

Emission Level = Read Level + Correct Factor

1000.00

1000.00

9.000

9.000 On

On

L1

L1

9.7

9.7

19.3

18.5

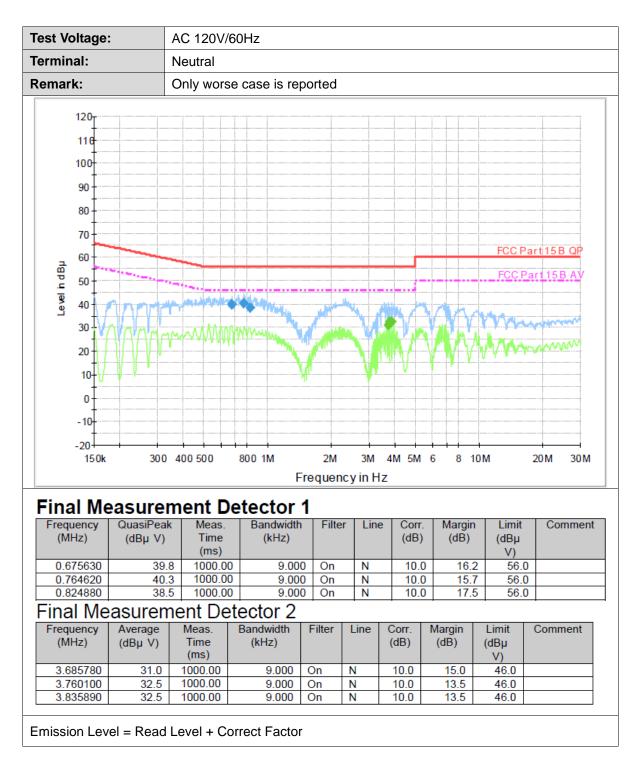
46.0

46.0

26.7

27.5

3.760100


3.835890

CTC Laboratories, Inc.

中国国家认证认可监督管理委员会 ΞN

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

CTC Laboratories, Inc.

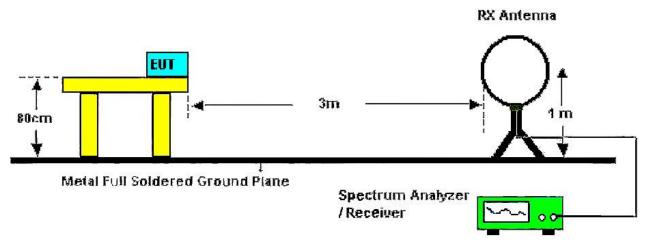
2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

3.2. Radiated Emission

<u>Limit</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.209 / RSS-Gen 8.9

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009~0.490	2400/F (kHz)	300
0.490~1.705	24000/F (kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

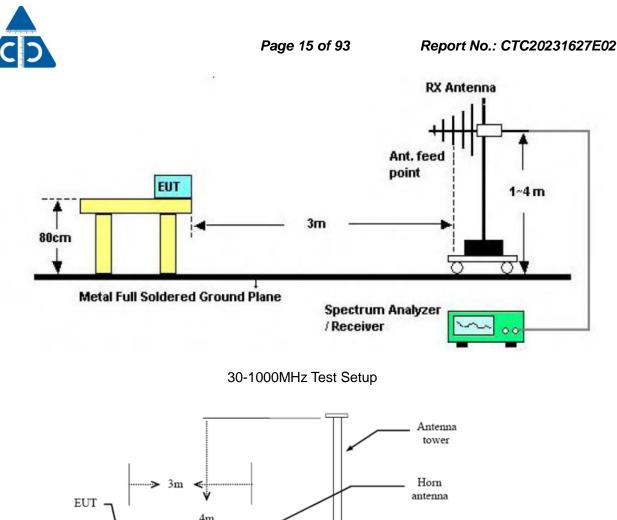

Frequency Panga (MHz)	dBµV/m (at 3 meters)				
Frequency Range (MHz)	Peak	Average			
Above 1000	74	54			

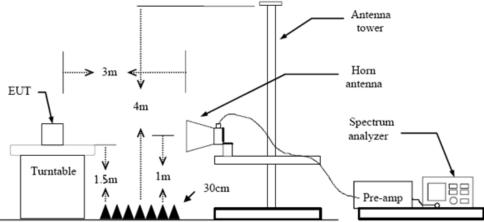
Note:

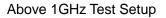
(1) The tighter limit applies at the band edges.

(2) Emission Level (dB μ V/m)=20log Emission Level (μ V/m).

Test Configuration


Below 30MHz Test Setup


CTC Laboratories, Inc.


2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

Test Procedure

1. The EUT was setup and tested according to ANSI C63.10:2013.

2. The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz, and 1.5 m for above 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level.

3. The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower.

4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.

- 5. Set to the maximum power setting and enable the EUT transmit continuously.
- 6. Use the following spectrum analyzer settings
- (1) Span shall wide enough to fully capture the emission being measured;

CTC Laboratories, Inc.

Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

(2) 9k – 150kHz:

RBW=300 Hz, VBW=1 kHz, Sweep=auto, Detector function=peak, Trace=max hold (3) 0.15M – 30MHz:

RBW=10 kHz, VBW=30 kHz, Sweep=auto, Detector function=peak, Trace=max hold (4) 30M - 1 GHz:

RBW=120 kHz, VBW=300 kHz, Sweep=auto, Detector function=peak, Trace=max hold

If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

(5) From 1 GHz to 10th harmonic:

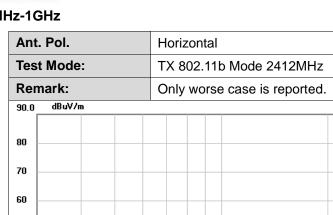
RBW=1MHz, VBW=3MHz Peak detector for Peak value.

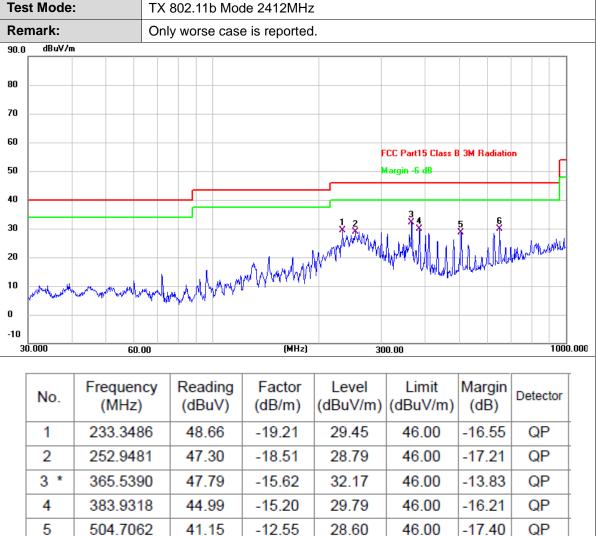
RBW=1MHz, VBW see note 1 with Peak Detector for Average Value.

Note 1: For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause 3.8 Duty Cycle.

Test Mode

Please refer to the clause 2.4.


<u>Test Result</u>


9 kHz~30 MHz

From 9 kHz to 30 MHz: The conclusion is PASS.

Note: The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

6

647.3856

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

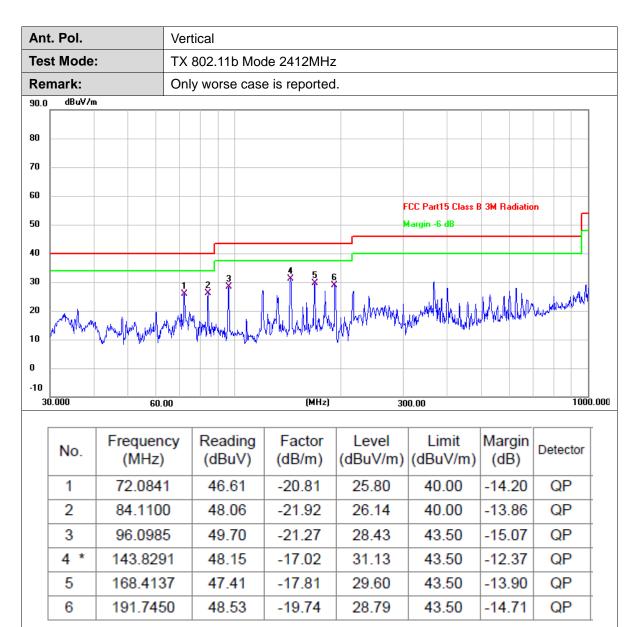
-9.87

29.97

46.00

-16.03

QP


39.84

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059

Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

Ant	. Pol.		Horizontal					
Test Mode: TX 802.11b Mode 2412MHz								
Remark:			No report for limit.	the emission	which more	than 20 dB	below the	e prescribe
	No.	Frequency (MHz)	y Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
	1	1998.750	58.12	-9.41	48.71	74.00	-25.29	peak
	2	4818.750	60.23	-2.38	57.85	74.00	-16.15	peak
	3 *	4818.750	51.75	-2.38	49.37	54.00	-4.63	AVG
	4	7533.000	48.38	3.86	52.24	74.00	-21.76	peak
	5	8672.750	47.02	5.81	52.83	74.00	-21.17	peak
	6	10787.75	0 44.40	8.85	53.25	74.00	-20.75	peak
	7	12303.50	0 43.21	9.90	53.11	74.00	-20.89	peak

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

An	t. Pol.		Vertical					
Tes	st Mode:		TX 802.11b M	ode 2412MI	Hz			
Remark:		No report for t limit.	he emission	which more	than 20 dB	below the	e prescrib	
	No.	Frequency (MHz)	/ Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
	1	1998.750	64.49	-9.41	55.08	74.00	-18.92	peak
	2	1998.750	49.65	-9.41	40.24	54.00	-13.76	AVG
	3	4818.750	60.80	-2.38	58.42	74.00	-15.58	peak
	4 *	4818.750	52.07	-2.38	49.69	54.00	-4.31	AVG
	5	6064.250	48.73	1.15	49.88	74.00	-24.12	peak
	6	7556.500	48.91	3.91	52.82	74.00	-21.18	peak
	7	8907.750	46.68	6.30	52.98	74.00	-21.02	peak
	8	11281.250) 43.07	10.28	53.35	74.00	-20.65	peak

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 中国国家认证认可监督管理委员会 Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

Ant	. Pol.		Horizontal						
Tes	t Mode:		TX 802.11b M	ode 2437MF	Ηz				
Remark:			No report for t limit.	he emission	which more	than 20 dB	below the	e prescribe	ed
	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	
	1	1998.750	56.62	-9.41	47.21	74.00	-26.79	peak	
	2	4877.500	58.11	-2.12	55.99	74.00	-18.01	peak	
	3 *	4877.500	49.82	-2.12	47.70	54.00	-6.30	AVG	
	4	6029.000	48.02	1.12	49.14	74.00	-24.86	peak	
	5	7462.500	47.95	3.72	51.67	74.00	-22.33	peak	
	6	9495.250	45.86	7.20	53.06	74.00	-20.94	peak	
	7	11434.000	43.08	10.24	53.32	74.00	-20.68	peak	

Page 20 of 93

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant	. Pol.		Vertical					
Tes	t Mode:		TX 802.11b M	lode 2437MI	Ηz			
Remark:			No report for t limit.	the emission	which more	than 20 dB	below the	e prescribe
	No.	Frequency (MHz)	y Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
	1	1998.750	64.59	-9.41	55.18	74.00	-18.82	peak
	2	1998.750	49.08	-9.41	39.67	54.00	-14.33	AVG
	3	4877.500	60.58	-2.12	58.46	74.00	-15.54	peak
	4 *	4877.500	51.64	-2.12	49.52	54.00	-4.48	AVG
	5	6416.750	47.85	1.40	49.25	74.00	-24.75	peak
	6	7544.750	49.44	3.89	53.33	74.00	-20.67	peak
	7	9730.250	45.94	6.78	52.72	74.00	-21.28	peak
	8	12009.750) 43.56	9.61	53.17	74.00	-20.83	peak

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 中国国家认证认可监督管理委员会 Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

Ant. Pol.			Horizontal						
Test Mode:			TX 802.11b M	ode 2462MH	Ηz				
Remark:			No report for t limit.	he emission	which more	than 20 dB	below the	e prescribe	€d
	No.	Frequency (MHz)	(dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	
	1	1998.750	57.67	-9.41	48.26	74.00	-25.74	peak	
	2	4924.500	58.26	-1.93	56.33	74.00	-17.67	peak	
	3 *	4924.500	50.61	-1.93	48.68	54.00	-5.32	AVG	
	4	5758.750	49.22	0.47	49.69	74.00	-24.31	peak	
	5	7556.500	48.81	3.91	52.72	74.00	-21.28	peak	
	6	9554.000	45.80	7.11	52.91	74.00	-21.09	peak	
	7	11986.250	43.58	9.61	53.19	74.00	-20.81	peak	

Page 21 of 93

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant	Ant. Pol.		Vertical					
Tes	t Mode:		TX 802.11b M	ode 2462Mł	Ηz			
Remark:			No report for t limit.	he emission	which more	than 20 dB	below the	e prescribe
	No.	Frequency (MHz)	(dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
	1	1987.000	63.45	-9.49	53.96	74.00	-20.04	peak
	2	4924.500	58.91	-1.93	56.98	74.00	-17.02	peak
	3 *	4924.500	51.16	-1.93	49.23	54.00	-4.77	AVG
	4	6134.750	48.82	1.19	50.01	74.00	-23.99	peak
	5	7380.250	47.96	3.56	51.52	74.00	-22.48	peak
	6	8708.000	46.78	5.88	52.66	74.00	-21.34	peak
	7	10282.500	46.67	6.60	53.27	74.00	-20.73	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

Ant	. Pol.		Horizontal								
Tes	t Mode:		TX 802.11g M	lode 2412Mł	Ηz						
Rer	Remark:		No report for t limit.	No report for the emission which more than 20 dB below the prescribed imit.							
	No.	Frequency (MHz)	/ Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector			
	1	1998.750	59.98	-9.41	50.57	74.00	-23.43	peak			
	2	4818.750	56.60	-2.38	54.22	74.00	-19.78	peak			
	3 *	4818.750	48.68	-2.38	46.30	54.00	-7.70	AVG			
	4	5829.250	49.11	0.66	49.77	74.00	-24.23	peak			
	5	7239.250	51.03	3.28	54.31	74.00	-19.69	peak			
	6	7239.250	42.97	3.28	46.25	54.00	-7.75	AVG			
	7	10153.250) 46.59	6.46	53.05	74.00	-20.95	peak			
	8	12315.250	43.39	9.92	53.31	74.00	-20.69	peak			

Page 22 of 93

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant	. Pol.		Vertical								
Tes	t Mode:		TX 802.11g M	lode 2412M	Ηz						
Rer	mark:		No report for t limit.	No report for the emission which more than 20 dB below the prescribed limit.							
	No.	Frequency (MHz)	/ Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector			
	1	1998.750	61.05	-9.41	51.64	74.00	-22.36	peak			
	2	4830.500	58.82	-2.33	56.49	74.00	-17.51	peak			
	3 *	4830.500	50.11	-2.33	47.78	54.00	-6.22	AVG			
	4	7239.250	52.67	3.28	55.95	74.00	-18.05	peak			
	5	7239.250	44.25	3.28	47.53	54.00	-6.47	AVG			
	6	9025.250	46.50	6.54	53.04	74.00	-20.96	peak			
	7	10270.750) 46.46	6.59	53.05	74.00	-20.95	peak	ĺ		
	8	11998.000) 43.54	9.60	53.14	74.00	-20.86	peak			

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

Ant	t. Pol.		Horizontal					
Tes	st Mode:		TX 802.11g M	ode 2437MI	Ηz			
Rei	mark:		No report for t limit.	he emission	which more	than 20 dB	below the	e prescribe
	No.	Frequency (MHz)	(dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
	1	1998.750	57.73	-9.41	48.32	74.00	-25.68	peak
	2 *	4877.500	55.85	-2.12	53.73	74.00	-20.27	peak
	3	6052.500	48.50	1.13	49.63	74.00	-24.37	peak
	4	7298.000	49.93	3.40	53.33	74.00	-20.67	peak
	5	9436.500	46.04	7.11	53.15	74.00	-20.85	peak
	6	11492.750) 43.18	10.23	53.41	74.00	-20.59	peak

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant	. Pol.		Vertical									
Tes	t Mode:		TX 802.11g M	ode 2437MI	Hz							
Rer	mark:		No report for t limit.	No report for the emission which more than 20 dB below the prescribed limit.								
	No.	Frequency (MHz)	y Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector				
	1	1998.750	63.54	-9.41	54.13	74.00	-19.87	peak				
	2	1998.750	49.51	-9.41	40.10	54.00	-13.90	AVG				
	3	3326.500	52.09	-6.77	45.32	74.00	-28.68	peak				
	4	4877.500	57.56	-2.12	55.44	74.00	-18.56	peak				
	5 *	4877.500	50.41	-2.12	48.29	54.00	-5.71	AVG				
	6	7309.750	50.42	3.42	53.84	74.00	-20.16	peak				
	7	9366.000	46.06	7.02	53.08	74.00	-20.92	peak				
	8	11974.500) 43.48	9.63	53.11	74.00	-20.89	peak				
1.Fa	•	B/m) = Antenn lue = Level -L	a Factor (dB/m .imit value)+Cable Fac	ctor (dB)-Pre	-amplifier Fa	octor	<u> </u>				

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

Ant	. Pol.		Horizontal						
Tes	t Mode:		TX 802.11g N	lode 2462Mł	Ηz				
Rer	mark:		No report for t limit.	the emission	which more	than 20 dB	below the	e prescribe	èd
	No.	Frequency (MHz)	/ Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	
	1	1998.750	59.58	-9.41	50.17	74.00	-23.83	peak	
	2	4924.500	56.88	-1.93	54.95	74.00	-19.05	peak	
	3 *	4924.500	49.00	-1.93	47.07	54.00	-6.93	AVG	
	4	7392.000	51.05	3.58	54.63	74.00	-19.37	peak	
	5	7392.000	42.92	3.58	46.50	54.00	-7.50	AVG	
	6	9389.500	45.25	7.04	52.29	74.00	-21.71	peak	
	7	10341.250) 46.44	6.66	53.10	74.00	-20.90	peak	
	8	11704.250) 43.17	9.97	53.14	74.00	-20.86	peak	

Page 24 of 93

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant	. Pol.		Ve	ertical							
Tes	t Mode:		T)	X 802.11g M	ode 2462MH	Ηz					
Rer	nark:			No report for the emission which more than 20 dB below the prescribed limit.							
	No.	Frequency (MHz)	y	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector		
	1	1998.750		61.22	-9.41	51.81	74.00	-22.19	peak	Ī	
	2	4924.500		58.16	-1.93	56.23	74.00	-17.77	peak	[
	3 *	4924.500		50.01	-1.93	48.08	54.00	-5.92	AVG	[
	4	6052.500		48.35	1.13	49.48	74.00	-24.52	peak		
	5	7380.250		52.00	3.56	55.56	74.00	-18.44	peak	Ī	
	6	7380.250		44.11	3.56	47.67	54.00	-6.33	AVG		
	7	9789.000		46.41	6.68	53.09	74.00	-20.91	peak		
	8	11457.500)	43.00	10.24	53.24	74.00	-20.76	peak		
Dor	norke									n	

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

Ant	t. Pol.		Horizontal								
Tes	st Mode:		TX 802.11n(H	TX 802.11n(HT20) Mode 2412MHz							
Rei	mark:		No report for t limit.	No report for the emission which more than 20 dB below the prescribed imit.							
	No.	Frequency (MHz)	y Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector			
	1	1998.750	59.78	-9.41	50.37	74.00	-23.63	peak			
	2	4830.500	55.26	-2.33	52.93	74.00	-21.07	peak			
	3	6076.000	47.82	1.16	48.98	74.00	-25.02	peak			
	4	7427.250	47.78	3.66	51.44	74.00	-22.56	peak			
	5	9260.250	45.86	6.87	52.73	74.00	-21.27	peak			
	6 *	11716.000) 43.12	9.96	53.08	74.00	-20.92	peak			

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant	t. Pol.		Vertical							
Tes	t Mode:		TX 802.11n(H	T20) Mode 2	2412MHz					
Rei	mark:		No report for the emission which more than 20 dB below the prescribed limit.							
	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector		
	1	1998.750	59.69	-9.41	50.28	74.00	-23.72	peak		
	2	4818.750	58.26	-2.38	55.88	74.00	-18.12	peak		
	3 *	4818.750	50.97	-2.38	48.59	54.00	-5.41	AVG		
	4	6087.750	48.44	1.17	49.61	74.00	-24.39	peak		
	5	7556.500	48.38	3.91	52.29	74.00	-21.71	peak		
	6	9377.750	45.70	7.03	52.73	74.00	-21.27	peak		
	7	11692.500	43.42	9.99	53.41	74.00	-20.59	peak		

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

Ant	t. Pol.		Horizontal								
Tes	st Mode:		TX 802.11n(H	TX 802.11n(HT20) Mode 2437MHz							
Rer	mark:		No report for the emission which more than 20 dB below the prescribed limit.								
	No.	Frequency (MHz)	y Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector			
	1	1998.750	57.26	-9.41	47.85	74.00	-26.15	peak			
	2	4877.500	55.31	-2.12	53.19	74.00	-20.81	peak			
	3	6158.250	48.22	1.21	49.43	74.00	-24.57	peak			
	4	7556.500	47.56	3.91	51.47	74.00	-22.53	peak			
	5	9319.000	46.31	6.94	53.25	74.00	-20.75	peak			
	6 *	12667.750) 43.19	10.27	53.46	74.00	-20.54	peak			

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant	t. Pol.		Vertical							
Tes	t Mode:		TX 802.11n(HT20) Mode 2437MHz							
Rer	mark:		No report for the emission which more than 20 dB below the prescribed limit.							
	No.	Frequency (MHz)	(dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector		
	1	1987.000	60.70	-9.49	51.21	74.00	-22.79	peak		
	2	3314.750	52.59	-6.78	45.81	74.00	-28.19	peak		
	3	4877.500	57.31	-2.12	55.19	74.00	-18.81	peak		
	4 *	4877.500	50.86	-2.12	48.74	54.00	-5.26	AVG		
	5	7591.750	48.13	3.98	52.11	74.00	-21.89	peak		
	6	8696.250	46.47	5.86	52.33	74.00	-21.67	peak		
	7	10870.000	43.52	9.44	52.96	74.00	-21.04	peak		

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

Ant	t. Pol.		Horizontal							
Tes	t Mode:		TX 802.11n(H	T20) Mode 2	2462MHz					
Rei	mark:		No report for t limit.	No report for the emission which more than 20 dB below the prescribed limit.						
	No.	Frequency (MHz)	/ Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector		
	1	1998.750	57.12	-9.41	47.71	74.00	-26.29	peak		
	2	3326.500	51.08	-6.77	44.31	74.00	-29.69	peak		
	3	4924.500	56.80	-1.93	54.87	74.00	-19.13	peak		
	4 *	4924.500	49.93	-1.93	48.00	54.00	-6.00	AVG		
	5	7380.250	49.18	3.56	52.74	74.00	-21.26	peak		
	6	8672.750	46.72	5.81	52.53	74.00	-21.47	peak		
	7	10035.750	46.89	6.34	53.23	74.00	-20.77	peak		

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant	. Pol.		Vertical								
Tes	t Mode:		TX 802.11n(H	TX 802.11n(HT20) Mode 2462MHz							
Rer	nark:		No report for t limit.	No report for the emission which more than 20 dB below the prescribe imit.							
	No.	Frequency (MHz)	(dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector			
	1	1998.750	60.39	-9.41	50.98	74.00	-23.02	peak			
	2 *	4924.500	55.52	-1.93	53.59	74.00	-20.41	peak			
	3	5982.000	48.16	1.05	49.21	74.00	-24.79	peak			
	4	7380.250	47.91	3.56	51.47	74.00	-22.53	peak			
	5	8590.500	46.34	5.65	51.99	74.00	-22.01	peak			
	6	10388.250) 46.46	6.70	53.16	74.00	-20.84	peak			

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

 Fax: (86)755-27521011
 Http://www.sz-ctc.org.cn

 For anti-fake verification, please visit the official website of Certification and

 Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

Ant	. Pol.		Horizontal						
Tes	t Mode:		TX 802.11n(H	T40) Mode 2	2422MHz				
Rer	nark:		No report for the emission which more than 20 dB below the prescribed limit.						
	No.	Frequency (MHz)	y Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	
	1	1998.750	58.30	-9.41	48.89	74.00	-25.11	peak	
	2	4842.250	51.76	-2.28	49.48	74.00	-24.52	peak	
	3	6052.500	48.23	1.13	49.36	74.00	-24.64	peak	
	4	7556.500	48.32	3.91	52.23	74.00	-21.77	peak	
	5 *	10212.000	0 46.91	6.53	53.44	74.00	-20.56	peak	
	6	11915.750) 43.28	9.71	52.99	74.00	-21.01	peak	

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. Pol.	Vertical
Test Mode:	TX 802.11n(HT40) Mode 2422MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	1998.750	62.12	-9.41	52.71	74.00	-21.29	peak
2	4842.250	54.21	-2.28	51.93	74.00	-22.07	peak
3	7286.250	48.42	3.38	51.80	74.00	-22.20	peak
4 *	8108.750	48.42	4.94	53.36	74.00	-20.64	peak
5	10893.500	43.51	9.60	53.11	74.00	-20.89	peak
6	12303.500	43.18	9.90	53.08	74.00	-20.92	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

An	t. Pol.		Horizontal							
Tes	st Mode:		TX 802.11n(H	T40) Mode 2	2437MHz					
Re	mark:		No report for the emission which more than 20 dB below the prescribed limit.							
	No.	Frequency (MHz)	(dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector		
	1	1998.750	56.44	-9.41	47.03	74.00	-26.97	peak		
	2	4865.750	52.01	-2.18	49.83	74.00	-24.17	peak		
	3	7591.750	47.78	3.98	51.76	74.00	-22.24	peak		
	4 *	8672.750	47.29	5.81	53.10	74.00	-20.90	peak		
	5	10212.000) 46.32	6.53	52.85	74.00	-21.15	peak		
	6	11974.500) 43.35	9.63	52.98	74.00	-21.02	peak		

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

An	t. Pol.		Vertical								
Tes	st Mode:		TX 802.11n(H	TX 802.11n(HT40) Mode 2437MHz							
Re	mark:		No report for t limit.	No report for the emission which more than 20 dB below the prescribe limit.							
	No.	Frequency (MHz)	(dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector			
	1 *	1998.750	63.03	-9.41	53.62	74.00	-20.38	peak			
	2	4877.500	53.22	-2.12	51.10	74.00	-22.90	peak			
	3	6017.250	47.95	1.12	49.07	74.00	-24.93	peak			
	4	7556.500	48.13	3.91	52.04	74.00	-21.96	peak			
	5	9624.500	46.14	6.98	53.12	74.00	-20.88	peak			
	6	11175.500) 42.94	10.31	53.25	74.00	-20.75	peak			

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 中国国家认证认可监督管理委员会 Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

An	t. Pol.		Horizontal							
Tes	st Mode:		TX 802.11n(H	T40) Mode 2	2452MHz					
Re	mark:		No report for the emission which more than 20 dB below the prescribed limit.							
	No.	Frequency (MHz)	(dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector		
	1	1998.750	58.56	-9.41	49.15	74.00	-24.85	peak		
	2	4912.750	51.34	-1.97	49.37	74.00	-24.63	peak		
	3	6052.500	48.37	1.13	49.50	74.00	-24.50	peak		
	4	7556.500	48.39	3.91	52.30	74.00	-21.70	peak		
	5 *	10317.750	46.81	6.63	53.44	74.00	-20.56	peak		
	6	12080.250	43.56	9.68	53.24	74.00	-20.76	peak		

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant	t. Pol.		Vertical					
Tes	st Mode:		TX 802.11n(H	T40) Mode 2	2452MHz			
Rer	Remark:		No report for t limit.	he emission	which more	than 20 dB	below the	e prescribe
	No.	Frequency (MHz)	(dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
	1	1998.750	64.97	-9.41	55.56	74.00	-18.44	peak
	2 *	1998.750	50.21	-9.41	40.80	54.00	-13.20	AVG
	3	3314.750	52.77	-6.78	45.99	74.00	-28.01	peak
	4	4901.000	52.97	-2.03	50.94	74.00	-23.06	peak
	5	6416.750	48.54	1.40	49.94	74.00	-24.06	peak
	6	7979.500	47.17	4.76	51.93	74.00	-22.07	peak
	7	10317.750	46.83	6.63	53.46	74.00	-20.54	peak

Remarks:

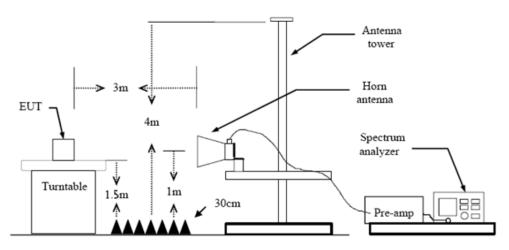
1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : http://yz.cnca.cn


3.3. Band Edge Emissions (Radiated)

Limit

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (d) / RSS-247 5.5

Restricted Frequency Band	(dBµV/m	i) (at 3m)
(MHz)	Peak	Average
2310 ~ 2390	74	54
2483.5 ~ 2500	74	54

Test Configuration

Test Procedure

1. The EUT was setup and tested according to ANSI C63.10:2013 requirements.

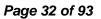
The EUT is placed on a turn table which is 1.5 meter above ground. The turn table is rotated 360 2. degrees to determine the position of the maximum emission level.

3. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is 4. repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10:2013 on radiated measurement. The receiver set as follow: 5.

RBW=1MHz, VBW=3MHz Peak detector for Peak value.

RBW=1MHz, VBW see note 1 with Peak Detector for Average Value.


Note 1: For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause 3.8 Duty Cycle.

Test Mode

Please refer to the clause 2.4.

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059

Ant. Pol.			Ho	rizontal					
est	t Mode:		ТХ	802.11b M	ode 2412MH	Ηz			
20.0	dBuV/m								1
110									
00									
0									
0							FCC Part15	C - Above 1	G PK
'O									
:0									
10							FCC Part15	C Above 1	GAV
							r (* 1	\downarrow	Long
	k Millington and the		-	al and the second s		- Construction and a second	and the stand		h.
0									
20									
0									
0.0	80.000 22	95.00 2310.0	00 2	325.00 234	10.00 (MHz)	2370.00	2385.00 24	00.00 24	15.00 243
[No.	Frequence (MHz)	cy	Reading (dBuV)	Factor (dB/m)		Limit (dBuV/m)	Margin (dB)	Detector
				17.59	30.84	48.43	74.00	-25.57	peak
	1	2390.00	0	17.59					

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

EN

nt. Pol.		Vertical					
st Mode	:	TX 802.11	lb Mode 241	2MHz			
).0 dBuV/n	1						
						\sim	
					FCC Part1	5 C - Above 1	
						+	
					ECC Part1	5 C - Above 1	GAV
					1 X		
					2	and .	Jun
who have	W/www.weedutecharter	maan	****	and a second from the state of a second of the second of	a de operation de la construction of the second of the sec		`
o							
2278.500 2	293.50 2308.50	2323.50	2338.50 (N	(Hz) 2368.50	2383.50 23	398.50 24	13.50 242
	293.50 2308.50 Frequency	/ Readi	ng Facto	or Level	Limit	Margin	13.50
No.	(8.41.1						
	(MHz)	(dBu			n) (dBuV/m)		
No.	(MHz) 2390.000	-			n) (dBuV/m) 74.00	(dB) -25.15	peak

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc. 2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 中国国家认证认可监督管理委员会 可监督管理委员会 中国国家认证认 Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

		Ho	rizontal							
Test Mode:		TX 802.11b Mode 2462MHz								
20.0 dBuV/m	1							1		
110										
100										
30	~									
30	\bigwedge									
						FCC Part15	C - Above 1	G PK		
70										
50						FCC Part15	C - Above 1	G AV		
50		×								
40 Mar 10		mar 2	and the second	and and a second second second	Andrew Marine and Anerodoxia Suradan.	analytan management	had and the second	h		
30										
20										
10										
0.0 2442.500 24	57.50 2472.5	-0 -1	487.50 250	12.50 (MHz)	2532.50	2547.50 25	62.50 25	77.50 25		
No.	Frequence (MHz)	cy I	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector		
1	2483.50	0	18.60	31.24	49.84	74.00	-24.16	peak		
2 *	2483.50	0	5.95	31.24	37.19	54.00	-16.81	AVG		

CTC Laboratories, Inc.

nt. Pol.			rtical					
st Mode:		ТХ	802.11b M	ode 2462MH	Ηz			
0 dBuV/m	1						1	
	~							
	\bigwedge							
						FCC Part15	C - Above 16	РК
		1 X				FCC Part15	C - Above 1G	AV
	4							
and a start of the		the second se	fahan manada kanala	ang tanang si katang tanan sa tantan	ton surface when the second of	an a	ander de l'anne de la constant anno de set	والرادين والمرجم من معرود والم
442.500 24	157.50 2472		2487.50 250)2.50 (MHz)	2532.50	2547.50 25	62.50 257	77.50 25
No.	Frequer (MHz	-	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
No.)						Detector peak

2.Margin value = Level -Limit value

EN

CTC Laboratories, Inc. 2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 下anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

		Hor	Horizontal TX 802.11g Mode 2412MHz						
		TX							
20.0 dBuV/	m								
10									
00									
0									
.0						ECC D-ALE	C - Above 1		
0							C - ADOVE I		
:0						1 /		\	
io							C - Above 1	La Va V	
0						2 million		~~~	
0	and the second	mannah	and the second and the second s		Hunnenmennikken				
:0									
0									
0.0	2302.50 2317.		332.50 234	17.50 (MHz)	2377.50	2392.50 24	07.50 24	22.50 24	
No.	Frequen (MHz)		Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	
No.			- 1				(dB)		
	(MHz)	0	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)		Detector peak AVG	

. Pol.		Vertical									
t Mode:		TX 802.11g M	ode 2412M	Ηz							
) dBuV/m											
					(
					FCC Part 5	C - Above 1	РК				
					L FCC Part15	C - Above 1	s Àv				
					2 4		- Marine				
	And and an and an	mar and an an an and an and an and an		energy and a start of the start	2 martine		- The				
286.000 2	301.00 2316.00	2331.00 234	46.00 (MHz)	2376.00	2391.00 24	06.00 24	21.00 24				
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector				
1	2390.000	24.02	30.84	54.86	74.00	-19.14	peak				
2 *	2390.000	10.18	30.84	41.02	54.00	-12.98	AVG				
		·			-						

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc. 2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 下anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

	(802.11g M	ode 2462MH	łz			
				FCC Part15	C - Above 16	G PK
	1					
\langle , \rangle	×					
Jan Marken	2			FCC Part15	C - Above 10	
,	- market					
	and fart fart was a	and have a second and the second and	weeken	man	anondative assessment	-maranananananananananananananananananana
72 50	2487 50 250	12.50 (MHz)	2532 50	2547 50 250	<u></u>	77.50 25
- 1	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
500	31.63	31.24	62.87	74.00	-11.13	peak
500	16.13	31.24	47.37	54.00	-6.63	AVG
		ency z) Reading (dBuV) 500 31.63	ency Reading Factor (dBuV) (dB/m) 500 31.63 31.24	ency Reading (dBuV) (dB/m) (dBuV/m) 500 31.63 31.24 62.87	ency Reading Factor Level Limit (dBuV) (dB/m) (dBuV/m) (dBuV/m) 500 31.63 31.24 62.87 74.00	ency Reading Factor Level Limit Margin (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) 500 31.63 31.24 62.87 74.00 -11.13

CTC Laboratories, Inc. 2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 中国国家认证认可监督管理委员会

. Pol.		Ve	rtical					
t Mode:		ТХ	802.11g M	ode 2462MH	łz			
) dBuV/m							i	1
						FCC Part15	C - Above 10	i PK
		1	,					
	+		•			FCC Part15	C - Above 10	AV
		many 2						
		2	and and an and the second		an an ducke and a land a second to a		ha	
				Went Annual Annual Alaska		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	mmunhan	hand a sala say of the same that we the
42.500 24	57.50 2472	.50 :	2487.50 250	2.50 (MHz)	2532.50	2547.50 250	62.50 25	77.50 259
No.	Frequen (MHz)	-	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	2483.50		32.47	31.24	63.71	74.00	-10.29	peak
2 *	2483.50	00	13.07	31.24	44.31	54.00	-9.69	AVG
narks:								

2.Margin value = Level -Limit value

EN

		Ho	rizontal					
Fest Mode:		ТХ	802.11n(H	T20) Mode 2	2412MHz			
20.0 dBu∀/m			1		i	1	Ì	1
110								
100								
30								
80								
70						FCC Part15	C - Above 1	a PK
						X FCC Part15	C - Above 1	alav
50						3 martin		and the second
10			our contractor and the contracto	Annabana		<i></i>		
10								
20								
0.0 2287.500 2	302.50 2317.	50 2	2332.50 234	7.50 (MHz)	2377.50	2392.50 24	07.50 24	22.50 24
No.	Frequen (MHz)	-	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
	2390.00	0	25.89	30.84	56.73	74.00	-17.27	peak
1		0	12.03	30.84	42.87	54.00	-11.13	AVG

Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

nt. Pol.		Ve	ertical					
est Mode:		(T)	K 802.11n(H	IT20) Mode 2	2412MHz			
20.0 dBuV/m				,				
10								
00								
0						~		
0						FCC Part15	i C - Above 10	G PK
0								
0						1 ECC P-41E	C About 1	
0						1 FCC Parts	C - Above n	
0						2 martin		Mannana
0	den an	- Marine and Constants		some man	and a specific state of the state	~~·		
0								
0								
0.0								
2286.000 23	301.00 231	6.00	2331.00 23	46.00 (MHz)	2376.00	2391.00 24	06.00 24	21.00 243
2286.000 23	301.00 231	6.00	2331.00 23	46.00 (MHz)	2376.00	2391.00 24	06.00 24	21.00 243
No.	Freque (MHz		Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
		z)						Detector

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc. 2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 中国国家认证认可监督管理委员会 中国国家认证认可监督管理委员会 Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

		Horiz	ontal					
est Mode:		TX 8	02.11n(H	T20) Mode 2	2462MHz			
0.0 dBuV/m								
o								
0								
·	$\left(\begin{array}{c} \end{array} \right)$					FCC Part15	C - Above 16	i PK
		, ,					C. 41 10	
		Lanna -				FLL Partis	C - Above 16	A A A
- And -		man 2	Minery					
			and the second	manananan ana katalahakata	an dahar kanya dahar kalendari da sa	yun Maran Marana Ma	hat the second	***************************************
.0								
	453.75 2468.7	75 248	3.75 249	18.75 (MHz)	2528.75	2543.75 255	58.75 257	73.75 25
No.	Frequence (MHz)		eading dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
No.		(Detector peak

Page 42 of 93

Remarks:

EN

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc. 2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and 可监督管理委员会 中国国家认 ūΕī Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

. Pol.		Vei	rtical					
t Mode:	:	ТХ	802.11n(H	T20) Mode 2	2462MHz			
) dBuV/m	1						1	1
						FCC Part15	C - Above 10	РК
		X				FCC Part15	C - Above 10	AV
		www.						
and the second s		2	and procession of the second	and and an	mehmolonouromaticado	manderstand	the second more second	muna
42.500 2	457.50 2472.	F0 7	2487.50 250	12.50 (MHz)	2532.50	2547.50 250	62.50 25	77.50 259
No.	Frequen (MHz)	-	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	2483.50	0	25.89	31.24	57.13	74.00	-16.87	peak
2 *	2483.50	0	9.16	31.24	40.40	54.00	-13.60	AVG

2.Margin value = Level -Limit value

EN

		Hor	rizontal									
est Mode:	:	ΤХ	802.11n(H	T40) Mode	2422M	Hz						
20.0 dBuV/m	1											
00												
)												
)							-/	ECC Part15	C - Above 1			
ı ———									C Abore II			
ı												
					1 X		+	FCC Part15	C - Above 1	GAV		
					2	harmon	ma l			mannen		
	www.anderstowner	water	un warden and	And the second and the	- Alexandra							
·												
ı												
).0 2300.500 2	315.50 2330.5		345.50 23	60.50 (MHz		0.50	2405		20.50 24	35.50 245		
	Frequence		Deading	Fastar		val		imit	Morgin	[]		
No.	Frequenc (MHz)	;y I	Reading (dBuV)	Factor (dB/m)	Lev (dBu)		-	_imit 3uV/m)	Margin (dB)	Detector		
No.			-	1		V/m)	(dB			Detector peak		

2.Margin value = Level -Limit value

CTC Laboratories, Inc. 2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 中国国家认证认可监督管理委员会 中国国家认证认可监督管理委员会 Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

	Vertica	I								
:	TX 802	2.11n(H [¬]	T40) Mode 2	2422M	Hz					
1										
						-/	FCC Part15	C - ^V Above 10	a PK	
					1 X		FCC Part15	C - Above 10	AV	
					2	and l				human
nin hoursense	water that want	genter mentalisti	warmlinewaka	New Proventies						
313.25 2328.2	5 2343.2	25 235	8.25 (MHz)	238	8.25	2403	.25 241	18.25 24	33.25	244
Frequenc (MHz)	-	ading BuV)	Factor (dB/m)	Lev (dBu\			imit uV/m)	Margin (dB)	Dete	ctor
	(dE	<u> </u>		1	V/m)	(dB			Dete pe	
								Image: Constraint of the second se	Image: Solution of the second seco	Image: Source of the state

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc. 2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 中国国家认证认可监督管理委员会 中国国家认证认可监督管理委员会 Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

t. Pol.		Horizontal					
st Mode:	:	TX 802.11r	n(HT40) Mode	2452MHz			
0 dBuV/m	1						
					FCC Part15	C - Above 10	G PK
			1				
						C - Above 1	
malina		mindenne	man and the second s				
			me file and many the second starting	nation trade and an and an and	ultipentent washington	ayan hushidayah darih yada.	www.tensome
	440.25 2455.2	2470.25	2485.25 (MHz)	2515.25	2530.25 25	45.25 25	60.25 25
No.	Frequenc (MHz)	y Readin (dBuV		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	2483.500	28.69	31.24	59.93	74.00	-14.07	peak
2 *	2483.500	0 14.82	31.24	46.06	54.00	-7.94	AVG
			1				

Remarks:

EN

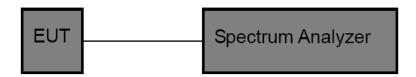
1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc. 2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 中国国家认证认可监督管理委员会 可监督管理委员会 中国国家认 ιĿi Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

Ant.	Pol.		Vertio	cal					
Test	Mode:		TX 8	02.11n(H	T40) Mode 2	2452MHz			
120.0 Г	dBuV/m								
110 -									
io -									
0									
0		V	\rightarrow				FCC Part15	C - Above 16	i PK
0									
10				1. ×			FCC Part15	C - Above 16	AV
0 4	d and the second s		4	2					
0					man and the second	www.thendow.hund	www.chananananananananananananananananananan	Allamatics	alaan ah dhadaa dha
0.0									
242	29.000 24	44.00 2459.0	0 247	4.00 248	39.00 (MHz)	2519.00	2534.00 254	49.00 256	64.00 2579.00
Г		Frequenc		eading	Factor	Level	Limit	Margin	
	No.	(MHz)	-	dBuV)	(dB/m)		(dBuV/m)	(dB)	Detector
	1	2483.500) :	22.14	31.24	53.38	74.00	-20.62	peak
	2 *	2483.500)	12.08	31.24	43.32	54.00	-10.68	AVG
0.000	arks:								
		/m) = Anteni	na Fac	tor (dB/m)+Cable Fac	tor (dB)-Pre	-amplifier Fa	ctor	

Page 47 of 93

CTC Laboratories, Inc. 2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 中国国家认证认可监督管理委员会


3.4. Band Edge and Spurious Emissions (Conducted)

<u>Limit</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (d) / RSS-247 5.5

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

Test Configuration

Test Procedure

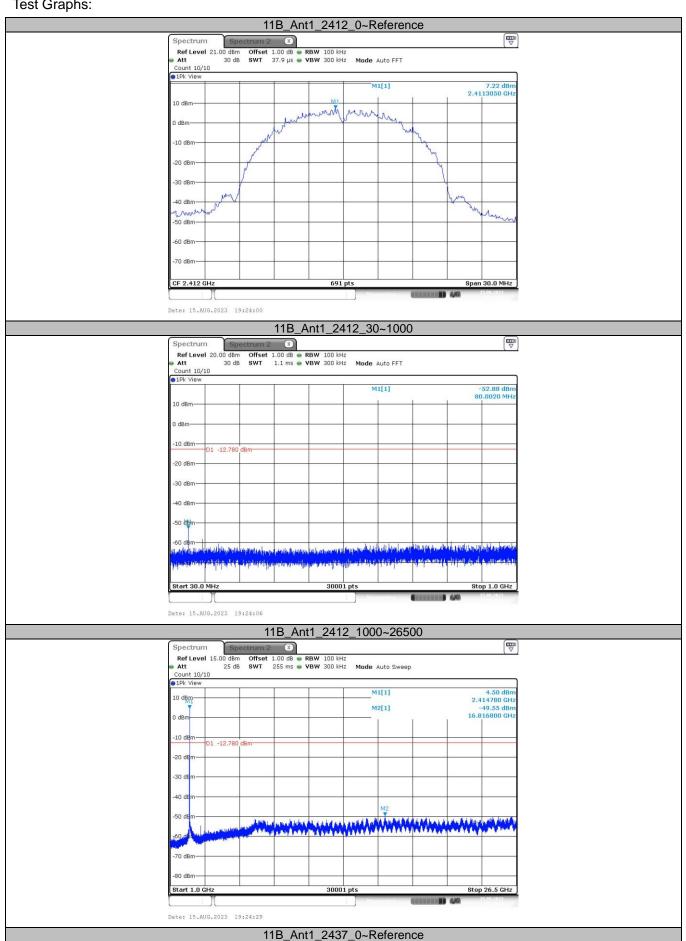
- 1. The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- Use the following spectrum analyzer settings: RBW = 100 kHz, VBW ≥ RBW, scan up through 10th harmonic. Sweep = auto, Detector function = peak, Trace = max hold.
- 4. Measure and record the results in the test report.

Test Mode

Please refer to the clause 2.4.

Test Result

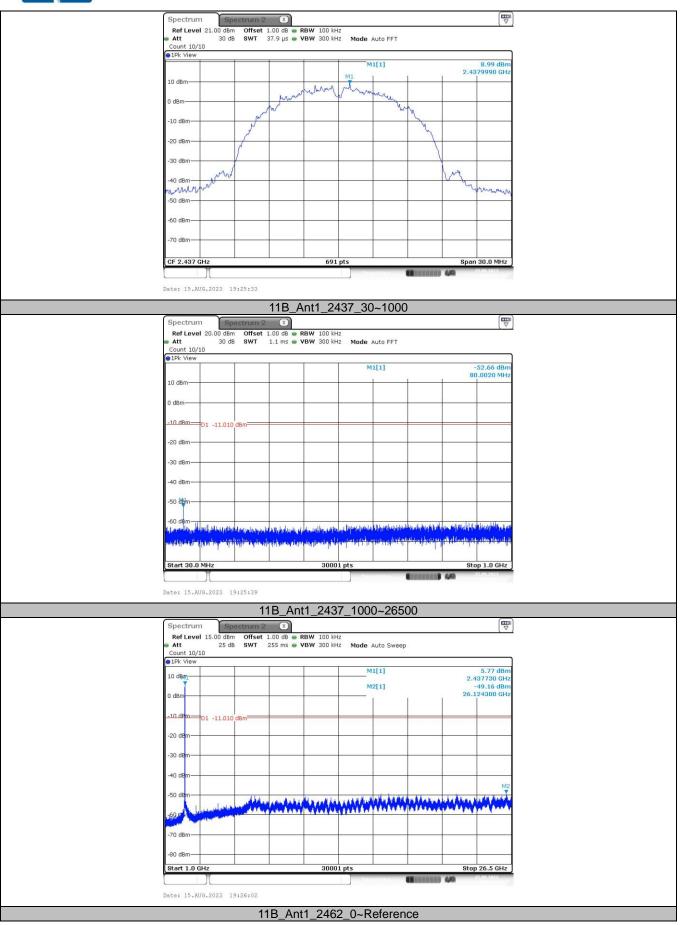
(1) Conducted Spurious Emission


Test Mode	Antenna	Channel	FreqRange [Mhz]	RefLevel [dBm]	Result [dBm]	Limit [dBm]	Verdict
			Reference	7.22	7.22		PASS
		2412	30~1000	7.22	-52.88	≤-12.78	PASS
			1000~26500	7.22	-49.55	≤-12.78	PASS
			Reference	8.99	8.99		PASS
11B	Ant1	2437	30~1000	8.99	-52.66	≤-11.01	PASS
			1000~26500	8.99	-49.16	≤-11.01	PASS
			Reference	8.46	8.46		PASS
		2462	30~1000	8.46	-53.35	≤-11.54	PASS
			1000~26500	8.46	-49.60	≤-11.54	PASS
			Reference	1.22	1.22		PASS
		2412	30~1000	1.22	-51.35	≤-18.78	PASS
			1000~26500	1.22	-49.67	≤-18.78	PASS
	1G Ant1		Reference	4.30	4.30		PASS
11G		2437	30~1000	4.30	-51.64	≤-15.70	PASS
			1000~26500	4.30	-49.18	≤-15.70	PASS
		2462	Reference	4.62	4.62		PASS
			30~1000	4.62	-51.17	≤-15.38	PASS
			1000~26500	4.62	-49.52	≤-15.38	PASS
		2412	Reference	2.46	2.46		PASS
			2412	30~1000	2.46	-51.66	≤-17.54
			1000~26500	2.46	-49.72	≤-17.54	PASS
			Reference	1.57	1.57		PASS
11N20SISO	Ant1	2437	30~1000	1.57	-51.46	≤-18.43	PASS
			1000~26500	1.57	-48.25	≤-18.43	PASS
			Reference	2.51	2.51		PASS
		2462	30~1000	2.51	-52.05	≤-17.49	PASS
			1000~26500	2.51	-49.98	≤-17.49	PASS
			Reference	-0.58	-0.58		PASS
		2422	30~1000	-0.58	-48.57	≤-20.58	PASS
			1000~26500	-0.58	-49.53	≤-20.58	PASS
			Reference	0	0		PASS
11N40SISO	Ant1	2437	30~1000	0	-50.59	≤-20.00	PASS
			1000~26500	0	-49.77	≤-20.00	PASS
			Reference	-1.52	-1.52		PASS
		2452	30~1000	-1.52	-49.76	≤-21.52	PASS
			1000~26500	-1.52	-49.18	≤-21.52	PASS

CTC Laboratories, Inc.

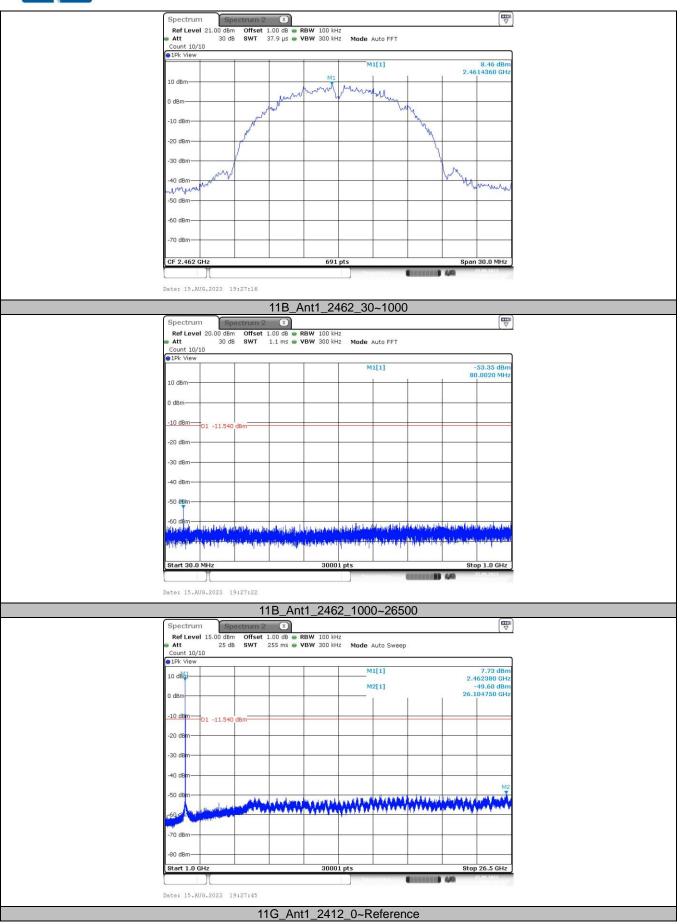
EN 中国国家认证认可监督管理委员会

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 中国国家认证认可监督管理委员会 Accreditation Administration of the People's Republic of China : http://yz.cnca.cn



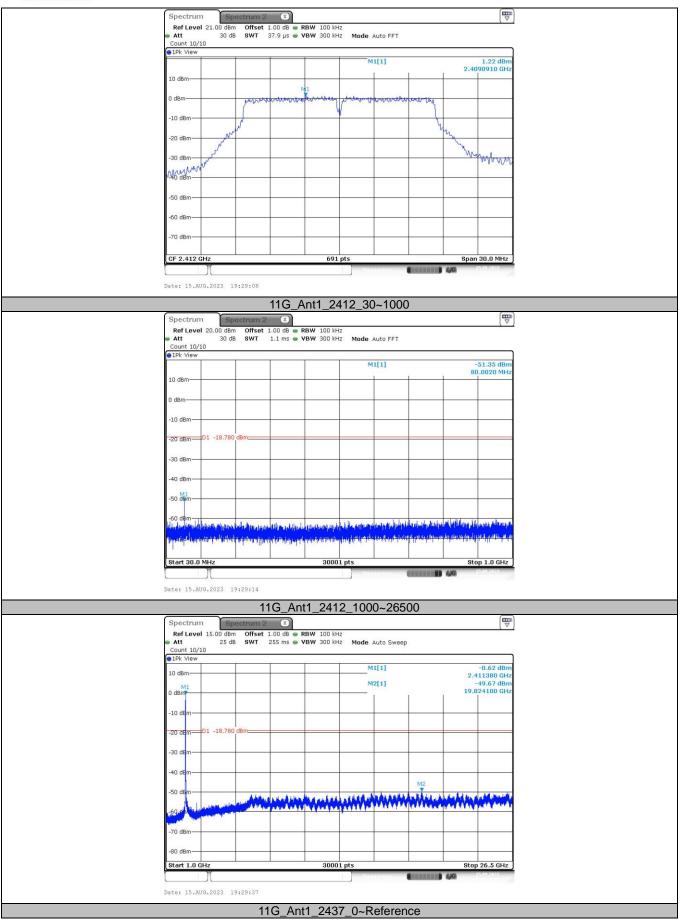
中国国家认证认可监督管理委员会 EN

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : http://yz.cnca.cn



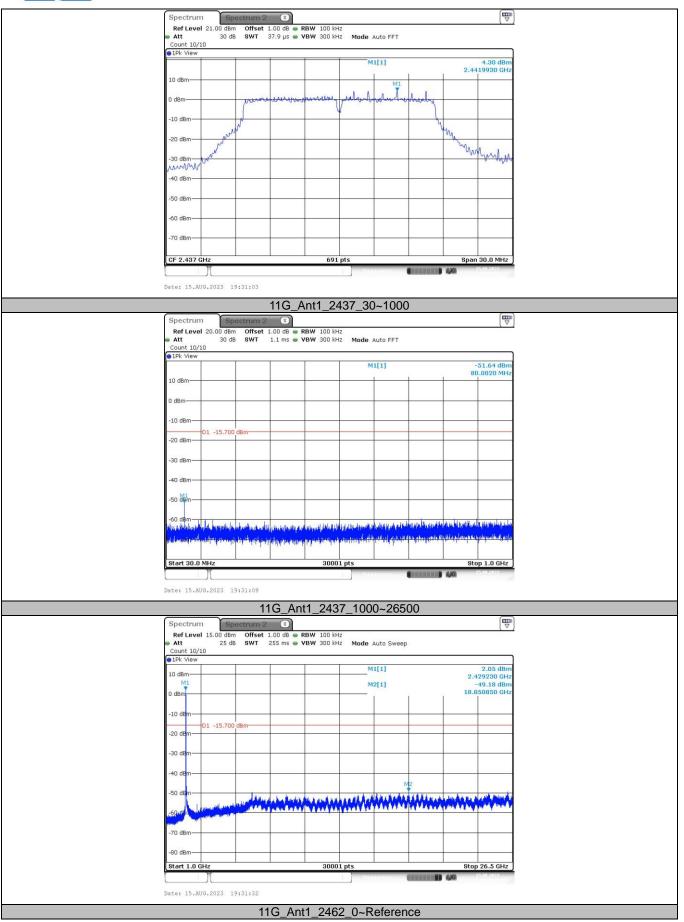
2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

EN 中国国家认证认可监督管理委员会

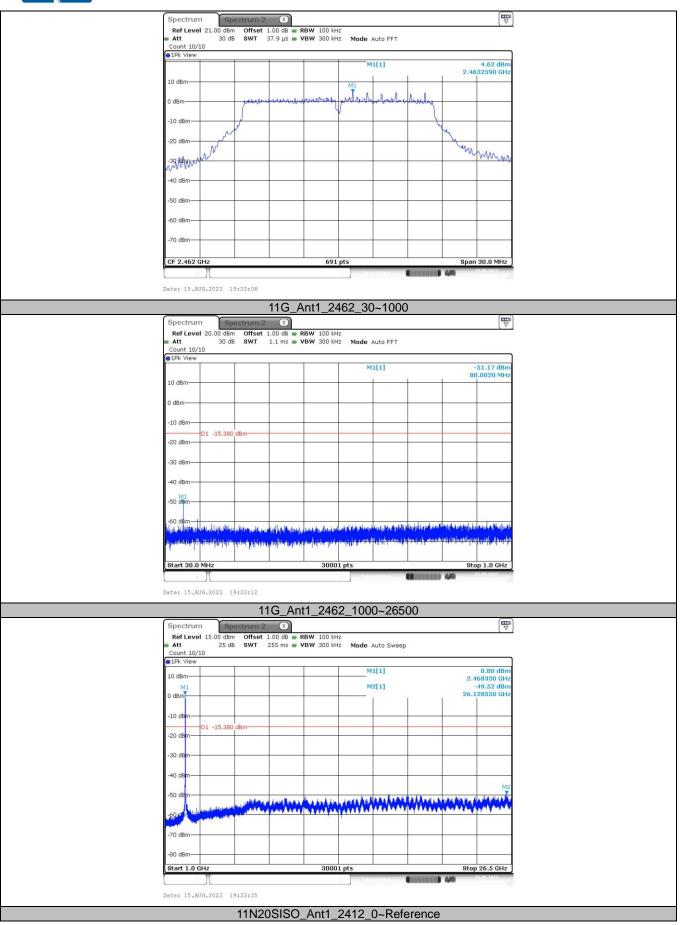


2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

EN 中国国家认证认可监督管理委员会

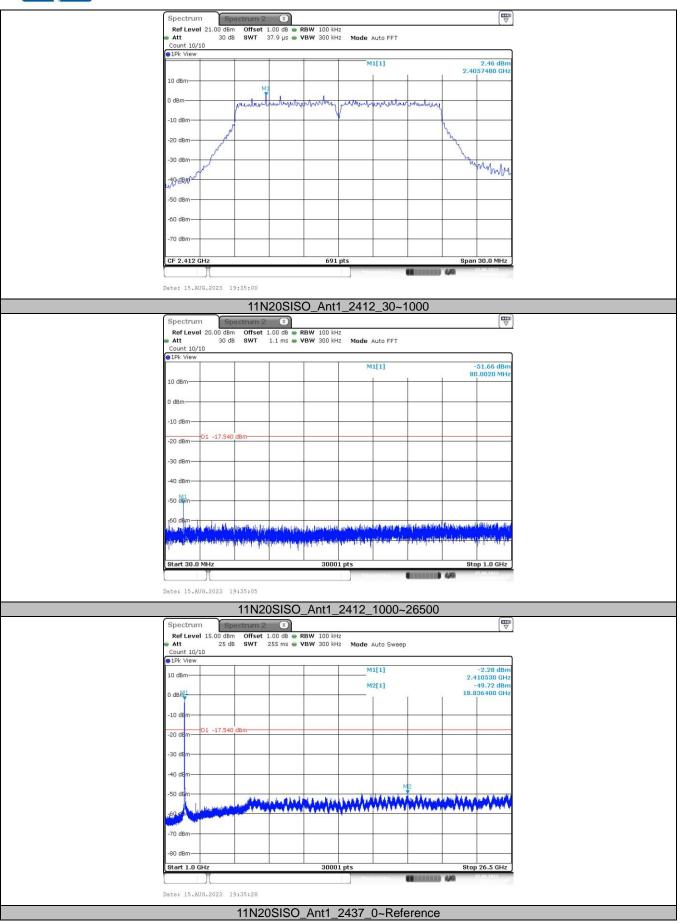


2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn



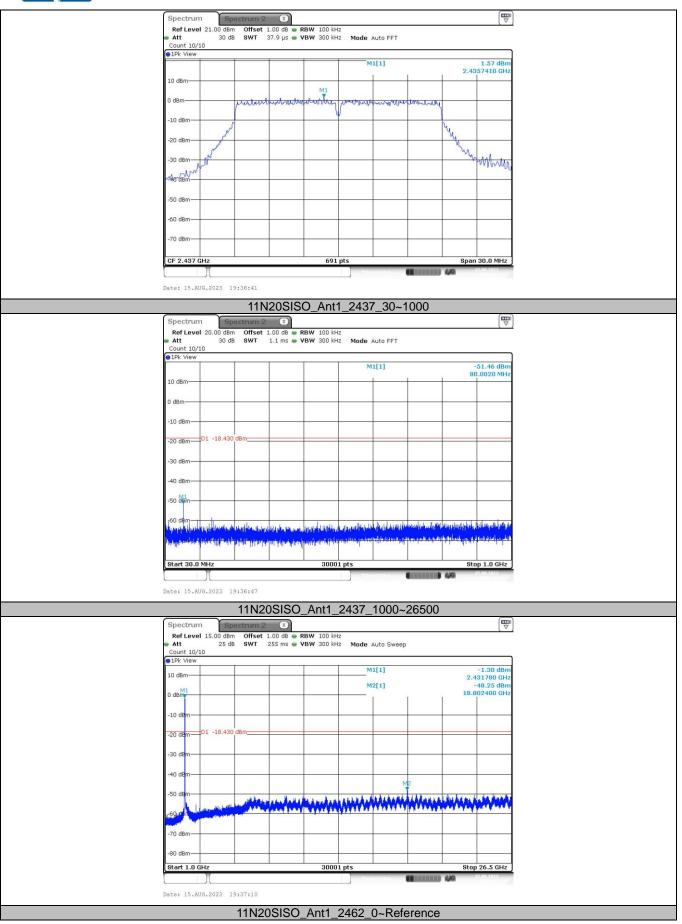
2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

EN 中国国家认证认可监督管理委员会



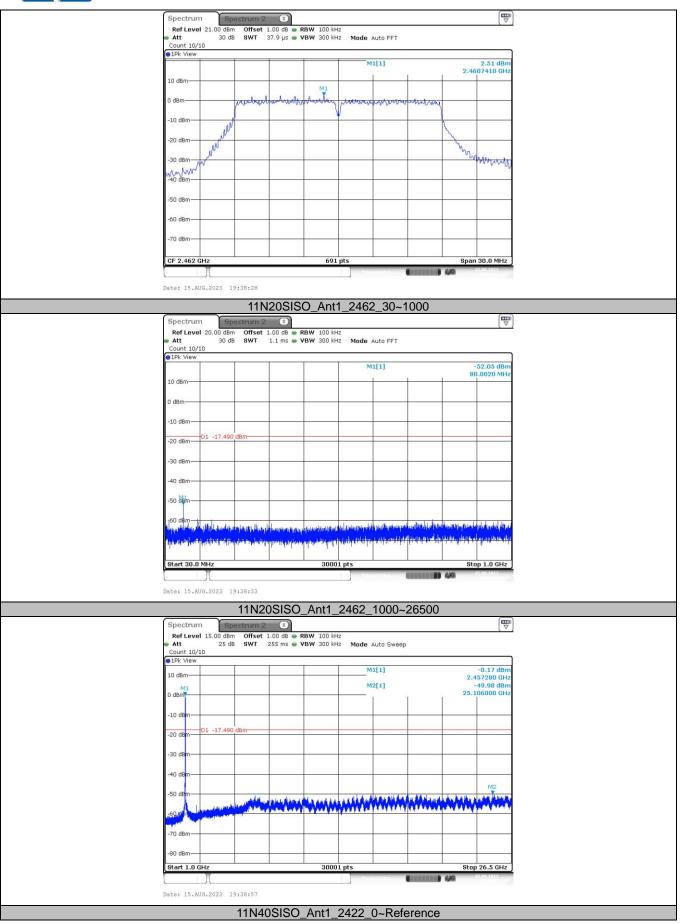
2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

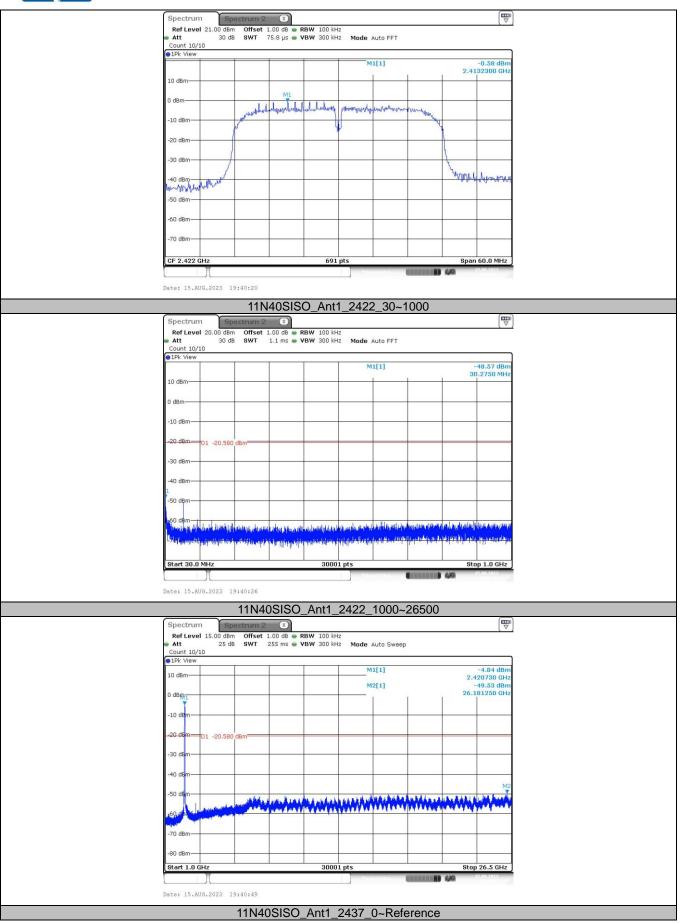


2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

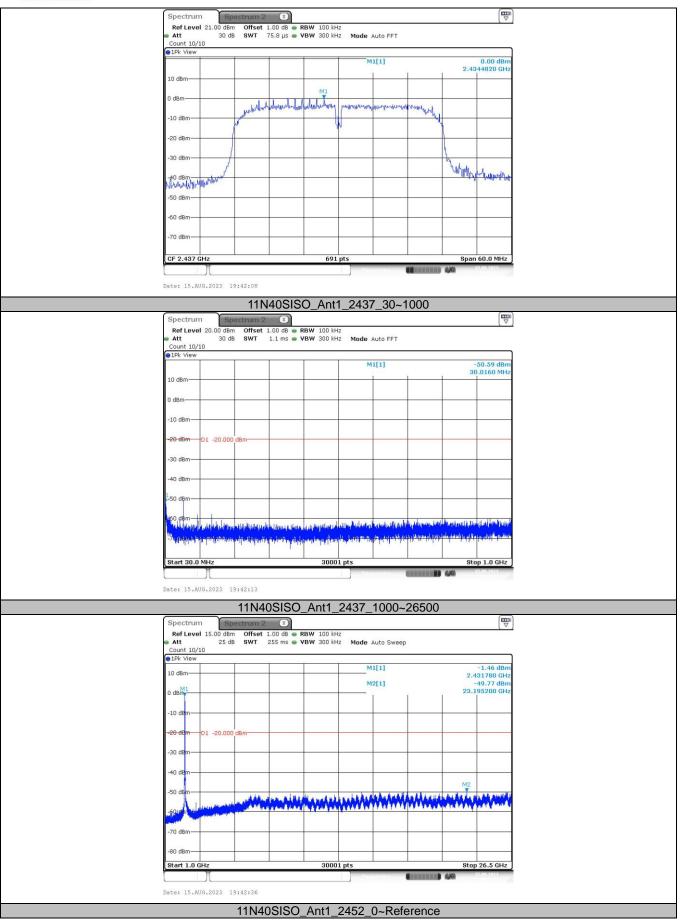
ding, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : http://yz.cnca.cn



2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

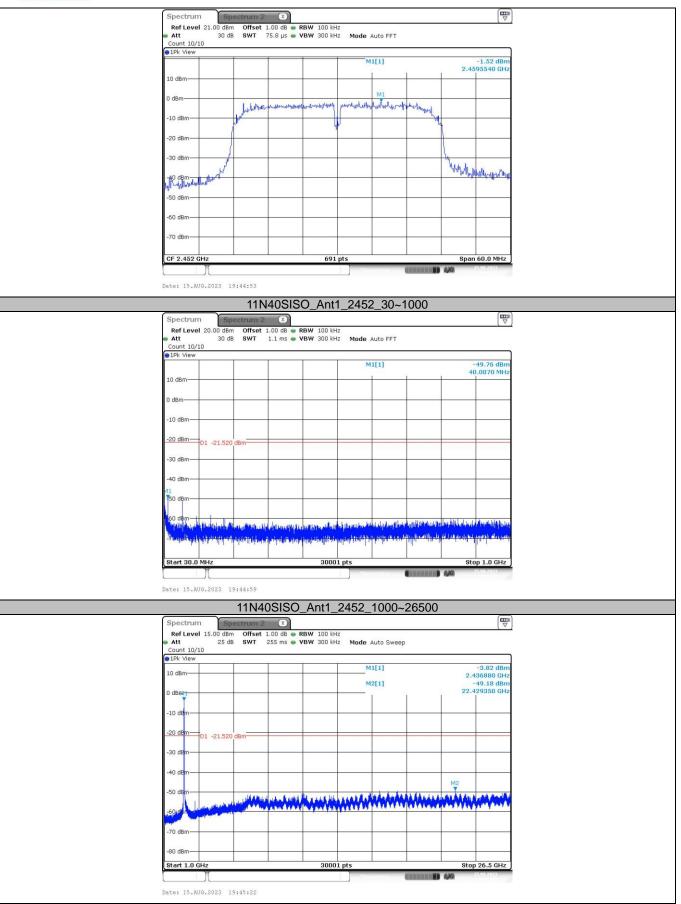


2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn



2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : http://yz.cnca.cn



2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn