

CFR 47 FCC PART 15 SUBPART C, ISED RSS-247 ISSUE 3

TEST REPORT

For

Zigbee Smart Switch (Neutral Wire Required)

MODEL NUMBER: ZBMINIR2

REPORT NUMBER: E04A24041144F00501

ISSUE DATE: May 20, 2024

FCC ID: 2APN5-ZBMINIR2

IC: 29127-ZBMINIR2

Prepared for

Shenzhen Sonoff Technologies Co., Ltd.

3F & 6F, Bldg A, No. 663, Bulong Rd, Shenzhen, Guangdong, China

Prepared by

Guangdong Global Testing Technology Co., Ltd.

Room 101-105, 203-210, Building 1, No.2, Keji 8 Road, Songshan Lake Park, Dongguan city, Guangdong, People's Republic of China, 523808

This report is based on a single evaluation of the submitted sample(s) of the above mentioned Product, it does not imply an assessment of the production of the products. This report shall not be reproduced, except in full, without the written approval of Guangdong Global Testing Technology Co., Ltd.

TRF No.: 04-E001-0B Web: www.gtggroup.com TRF Originator: GTG E-mail: info@gtggroup.com

TRF Date: 2023-12-13 Tel.: 86-400 755 8988

Revision History

Rev.	Issue Date	Revisions	Revised By
V0	May 20, 2024	Initial Issue	

Test Item	Clause	Limit/Requirement	Result
Antenna	N/A	FCC Part 15.203/15.247 (c)	Complianc
Requirement	N/A	RSS-GEN Clause 6.8	е
AC Power Line	ANSI C63.10-2013, Clause	FCC Part 15.207	Pass
Conducted Emission	6.2	RSS-GEN Clause 8.8	F 855
Conducted Output	ANSI C63.10-2013, Clause	FCC Part 15.247 (b)(3)	Pass
Power	11.9.1.3	RSS-247 Clause 5.4 (d)	F 855
6dB Bandwidth and	ANSI C63.10-2013, Clause	FCC Part 15.247 (a)(2)	
99% Occupied	11.8.1	RSS-247 Clause 5.2 (a)	Pass
Bandwidth	11.0.1	ISED RSS-Gen Clause 6.7	
Power Spectral	ANSI C63.10-2013, Clause	FCC Part 15.247 (e)	Pass
Density	11.10.2	RSS-247 Clause 5.2 (b)	F 855
Conducted Band	ANSI C63.10-2013, Clause	FCC Part 15.247(d)	
edge and spurious emission	11.11	RSS-247 Clause 5.5	Pass
Radiated Band edge		FCC Part 15.247 (d)	
and Spurious	ANSI C63.10-2013, Clause	FCC Part 15.205/15.209	Pass
Emission	11.11 & Clause 11.12	RSS-247 Clause 5.5	F 855
		RSS-GEN Clause 8.9	
Duty Cycle	ANSI C63.10-2013, Clause 11.6	None; for reporting purposes only.	Pass

Summary of Test Results

*This test report is only published to and used by the applicant, and it is not for evidence purpose in China.

*The measurement result for the sample received is <Pass> according to <CFR 47 FCC PART 15 SUBPART C,

ISED RSS-247 ISSUE 3 (DTS)> when <Accuracy Method> decision rule is applied.

CONTENTS

1.	ATTEST	ATION OF TEST RESULTS	.5
2.	TEST M	ETHODOLOGY	.6
3.	FACILIT	IES AND ACCREDITATION	.6
4.	CALIBR	ATION AND UNCERTAINTY	.7
4	.1.	MEASURING INSTRUMENT CALIBRATION	.7
4	.2.	MEASUREMENT UNCERTAINTY	.7
5.	EQUIPN	IENT UNDER TEST	.8
5	.1.	DESCRIPTION OF EUT	.8
5	.2.	CHANNEL LIST	.8
5	.3.	MAXIMUM EIRP	.9
5	.4.	TEST CHANNEL CONFIGURATION	.9
5	.5.	THE WORSE CASE POWER SETTING PARAMETER	.9
5	.6.	DESCRIPTION OF AVAILABLE ANTENNAS	.9
5	.7.	SUPPORT UNITS FOR SYSTEM TEST	.9
5	.8.	SETUP DIAGRAM	10
6.	MEASU	RING EQUIPMENT AND SOFTWARE USED	11
6. 7.		RING EQUIPMENT AND SOFTWARE USED	
7.	ANTEN		13
7 . 7	ANTENI 7.1.	NA PORT TEST RESULTS	13 13
7 . 7 7	ANTEN! 2.1. 2.2.	A PORT TEST RESULTS	13 13 14
7 . 7 7 7	ANTENN 2.1. 2.2. 2.3.	NA PORT TEST RESULTS	13 13 14 16
7 . 7 7 7 7	ANTEN! 2.1. 2.2. 2.3. 2.4.	NA PORT TEST RESULTS	13 13 14 16 17
7 . 7 7 7 7 7	ANTENN 2.1. 2.2. 2.3. 2.4. 2.5.	NA PORT TEST RESULTS Conducted Output Power 6dB Bandwidth and 99% Occupied Bandwidth Power Spectral Density Conducted Band edge and spurious emission	13 13 14 16 17 19
7. 7 7 7 7 8.	ANTENN 2.1. 2.2. 2.3. 2.4. 2.5. RADIAT	NA PORT TEST RESULTS 1 Conducted Output Power 1 6dB Bandwidth and 99% Occupied Bandwidth 1 Power Spectral Density 1 Conducted Band edge and spurious emission 1 Duty Cycle 1	13 13 14 16 17 19 20
7. 7 7 7 7 8.	ANTENN 2.1. 2.2. 2.3. 2.4. 2.5. RADIAT 2.1.	NA PORT TEST RESULTS 1 Conducted Output Power 1 6dB Bandwidth and 99% Occupied Bandwidth 1 Power Spectral Density 1 Conducted Band edge and spurious emission 1 Duty Cycle 1 ED TEST RESULTS 2	13 13 14 16 17 19 20 26
7. 7 7 7 7 8. 8.	ANTENN 2.1. 2.2. 2.3. 2.4. 2.5. RADIAT 2.1. ANTENN	NA PORT TEST RESULTS 1 Conducted Output Power 1 6dB Bandwidth and 99% Occupied Bandwidth 1 Power Spectral Density 1 Conducted Band edge and spurious emission 1 Duty Cycle 1 Radiated Band edge and Spurious Emission 1	13 13 14 16 17 19 20 26 38
7. 7 7 7 7 8. 8. 8	ANTENN 2.1. 2.2. 2.3. 2.4. 2.5. RADIAT 2.1. ANTENN	NA PORT TEST RESULTS 1 Conducted Output Power 1 6dB Bandwidth and 99% Occupied Bandwidth 1 Power Spectral Density 1 Conducted Band edge and spurious emission 1 Duty Cycle 1 ED TEST RESULTS 2 Radiated Band edge and Spurious Emission 2 NA REQUIREMENT 3	13 13 14 16 17 19 20 26 38 40
7. 7 7 7 7 8. 8 9. 10. 11.	ANTENN 2.1. 2.2. 2.3. 2.4. 2.5. RADIAT 2.1. ANTENN	NA PORT TEST RESULTS 1 Conducted Output Power 1 6dB Bandwidth and 99% Occupied Bandwidth 1 Power Spectral Density 1 Conducted Band edge and spurious emission 1 Duty Cycle 1 ED TEST RESULTS 1 Radiated Band edge and Spurious Emission 1 NA REQUIREMENT 1 AC POWER LINE CONDUCTED EMISSION 4	13 14 16 17 19 20 26 38 40 43

1. ATTESTATION OF TEST RESULTS

Applicant Information

Company Name:	Shenzhen Sonoff Technologies Co., Ltd.
Address:	3F & 6F, Bldg A, No. 663, Bulong Rd, Shenzhen, Guangdong, China

Manufacturer Information

Company Name:	Shenzhen Sonoff Technologies Co., Ltd.
Address:	3F & 6F, Bldg A, No. 663, Bulong Rd, Shenzhen, Guangdong,
	China

EUT Information

Product Description:	Zigbee Smart Switch (Neutral Wire Required)
Model:	ZBMINIR2
Series Model:	N/A
Brand:	SONOFF
Sample Received Date:	May 10, 2024
Sample Status:	Normal
Sample ID:	A24041144 001
Date of Tested:	May 10, 2024 to May 17, 2024

APPLICABLE STANDARDS		
STANDARD TEST RESULTS		
CFR 47 FCC PART 15 SUBPART C, ISED RSS-247 ISSUE 3 (DTS)	Pass	

Prepared By:

k)in -

Win Huang

Checked By:

San La

Alan He Laboratory Leader

2. TEST METHODOLOGY

All tests were performed in accordance with the standard CFR 47 FCC PART 15 SUBPART C, ISED RSS-247 ISSUE 3 (DTS)

3. FACILITIES AND ACCREDITATION

	A2LA (Certificate No.: 6947.01) Guangdong Global Testing Technology Co., Ltd.	
	has been assessed and proved to be in compliance with A2LA. FCC (FCC Designation No.: CN1343)	
	Guangdong Global Testing Technology Co., Ltd.	
	has been recognized to perform compliance testing on equipment	
Accreditation Certificate	subject to Supplier's Declaration of Conformity (SDoC) and	
	Certification rules	
	ISED (Company No.: 30714)	
	Guangdong Global Testing Technology Co., Ltd.	
	has been registered and fully described in a report filed with ISED.	
	The Company Number is 30714 and the test lab Conformity	
	Assessment Body Identifier (CABID) is CN0148.	
Note: All tests measurement facilities use to collect the measurement data are located at		

Note: All tests measurement facilities use to collect the measurement data are located at Room 101-105, 203-210, Building 1, No.2, Keji 8 Road, Songshan Lake Park, Dongguan city, Guangdong, People's Republic of China, 523808

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Items	k	Uncertainty
DTS Bandwidth		±9.2 PPM
20dB Emission Bandwidth	1.96	±9.2 PPM
Carrier Frequency Separation	1.96	±9.2 PPM
Time of Occupancy	1.96	±0.57%
Conducted Output Power	1.96	±1.5 dB
Power Spectral Density Level	1.96	±1.9 dB
Conducted Spurious Emission	1.96	9 kHz-30 MHz: ± 0.95 dB 30 MHz-1 GHz: ± 1.5 dB 1GHz-12.75GHz: ± 1.8 dB 12.75 GHz-26.5 GHz: ± 2.1dB
Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.		

Test Item	Measurement Frequency Range	К	U(dB)
Conducted emissions from the AC mains power ports (AMN)	150 kHz ~ 30 MHz	2	3.37
Radiated emissions	9 kHz ~ 30 MHz	2	4.16
Radiated emissions	30 MHz ~ 1 GHz	2	3.79
Radiated emissions	1 GHz ~ 18 GHz	2	5.62
Radiated emissions	18 GHz ~ 40 GHz	2	5.54
Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.			

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

EUT Name		Zigbee Smart Switch (Neutral Wire Required)
Model		ZBMINIR2
Series Model		N/A
Model Difference		N/A
Hardware Version		V1.0.0
Software Version		V1.0.0
Ratings		100-240V AC 50/60Hz 10A Max
Power Supply AC		100-240V

Frequency Band:	2400 MHz to 2483.5 MHz
Frequency Range:	2405 MHz to 2480 MHz
Mode:	Zigbee
Type of Modulation:	DSSS-OQPSK
Number of Channels:	16
Channel Separation:	5 MHz
Maximum Peak Power:	4.05 dBm
Antenna Type:	Ceramic Antenna
Antenna Gain:	0.77 dBi
Normal Test Voltage:	120 Vac
EUT Test software:	sscom5.12.1
Note:	The Antenna Gain was provided by customer, and this information may affect the validity of the results, customer should be responsible for this.

5.2. CHANNEL LIST

Channel	Frequency (MHz)	Channel	Frequency (MHz)
11	2405	22	2460
12	2410	23	2465
13	2415	24	2470
14	2420	25	2475
15	2425	26	2480
16	2430	/	/
17	2435	/	/
18	2440	/	/
19	2445	/	/
20	2450	/	/
21	2455	1	1

5.3. MAXIMUM EIRP

Test Mode	Frequency (MHz)	Channel Number	Maximum Peak Output Power (dBm)	Maximum EIRP (dBm)
DSSS-OQPSK	2405 ~ 2480	11-26[16]	4.05	4.82

5.4. TEST CHANNEL CONFIGURATION

Test Mode	Test Channel	Frequency
DSSS- OQPSK	CH 11(Low Channel), CH 18(MID Channel), CH 26(High Channel)	2405 MHz, 2440 MHz, 2480 MHz

5.5. THE WORSE CASE POWER SETTING PARAMETER

The Worse Case Power Setting Parameter under 2400 ~ 2483.5MHz Band					
Test Software Version sscom5.12.1					
Modulation Type	Transmit	Test Software setting value			
	Antenna Number	CH11	CH 18	CH 26	
DSSS-OQPSK	1	10	10	10	

5.6. DESCRIPTION OF AVAILABLE ANTENNAS

Antenna	Frequency (MHz)	Antenna Type	MAX Antenna Gain (dBi)
1	2405-2480	Ceramic	0.77 dBi

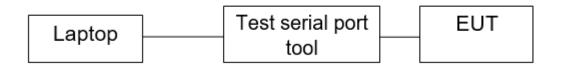
Test Mode	Transmit and Receive Mode	Description
DSSS- OQPSK	⊠1TX, 1RX	Antenna 1 can be used as transmitting/receiving antenna.
Note:		

5.7. SUPPORT UNITS FOR SYSTEM TEST

The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
E-1	Test serial port tool	N/A	USB TO TTL	N/A	GTG Support
E-2	PC	Lenovo	T430	N/A	GTG Support

	The following capies here acea to form a representative test comparation adming the tests.						
Item	Type of cable	Shielded Type	Ferrite Core	Length			
C-1	Dupont Cable	Unshielded	without ferrite	0.4 m			
C-2	USB extension Cable	Unshielded	without ferrite	1.5 m			


The following cables were used to form a representation	ative test configuration during the tests.
---	--

5.8. SETUP DIAGRAM

Radiated emissions:

Laptop	Test serial port		EUT
Laptop	tool		

AC Power Line Conducted Emission:

Test Equipment of Conducted RF							
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date		
Spectrum Analyzer	Rohde & Schwarz	FSV40	102257	2023/09/18	2024/09/17		
Spectrum Analyzer	KEYSIGHT	N9020A	MY51285127	2023/09/18	2024/09/17		
EXG Analog Signal Generator	KEYSIGHT	N5173B	MY61253075	2023/09/18	2024/09/17		
Vector Signal Generator	Rohde & Schwarz	SMM100A	101899	2023/09/18	2024/09/17		
RF Control box	MWRF-test	MW100-RFCB	MW220926GTG	2023/09/18	2024/09/17		
Wideband Radio Communication Tester	Rohde & Schwarz	CMW270	102792	2023/09/18	2024/09/17		
Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	103235	2023/09/18	2024/09/17		
temperature humidity chamber	Espec	SH-241	SH-241-2014	2023/09/18	2024/09/17		
RF Test Software	MWRF-test	MTS8310E (Ver. V2/0)	N/A	N/A	N/A		

	Test Equipment of Radiated emissions below 1GHz				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date
3m Semi-anechoic Chamber	ETS	9m*6m*6m	Q2146	2022/08/30	2025/08/29
EMI Test Receiver	Rohde & Schwarz	ESCI3	101409	2023/09/18	2024/09/17
Spectrum Analyzer	KEYSIGHT	N9020A	MY51283932	2023/09/18	2024/09/17
Pre-Amplifier	HzEMC	HPA-9K0130	HYPA21001	2023/09/18	2024/09/17
Biconilog Antenna	Schwarzbeck	VULB 9168	01315	2022/10/10	2025/10/09
Biconilog Antenna	ETS	3142E	00243646	2022/03/23	2025/03/22
Loop Antenna	ETS	6502	243668	2022/03/30	2025/03/29
Test Software	Farad	EZ-EMC (Ver.FA-03A2 RE)	N/A	N/A	N/A

	Test Equipment of Radiated emissions above 1GHz					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date	
3m Semi-anechoic Chamber	ETS	9m*6m*6m	Q2149	2022/08/30	2025/08/29	
Spectrum Analyzer	Rohde & Schwarz	FSV40	101413	2023/09/18	2024/09/17	
Spectrum Analyzer	KEYSIGHT	N9020A	MY51283932	2023/09/18	2024/09/17	
Pre-Amplifier	A-INFO	HPA-1G1850	HYPA21003	2023/09/18	2024/09/17	
Horn antenna	A-INFO	3117	246069	2022/03/11	2025/03/10	
Pre-Amplifier	ZKJC	HPA-184057	HYPA21004	2023/09/18	2024/09/17	

TRF No.: 04-E001-0B

Global Testing , Great Quality.

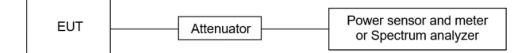
Horn antenna	ZKJC	3116C	246265	2022/03/29	2025/03/28
Test Software	Farad	EZ-EMC (Ver.FA-03A2 RE+)	N/A	N/A	N/A

	Test Equipment of Conducted emissions				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date
Shielded Room	CHENG YU	8m*5m*4m	N/A	2022/10/29	2025/10/28
EMI Test Receiver	Rohde & Schwarz	ESR3	102647	2023/09/18	2024/09/17
LISN/AMN	Rohde & Schwarz	ENV216	102843	2023/09/18	2024/09/17
NNLK 8129 RC	Schwarzbeck	NNLK 8129 RC	5046	2023/09/18	2024/09/17
Test Software	Farad	EZ-EMC (Ver. EMC-con-3A1 1+)	N/A	N/A	N/A

7. ANTENNA PORT TEST RESULTS

7.1. CONDUCTED OUTPUT POWER

<u>LIMITS</u>


CFR 47 FCC Part15 (15.247) Subpart C ISED RSS-247 ISSUE 3				
Section	Test Item	Limit	Frequency Range (MHz)	
CFR 47 FCC 15.247(b)(3) ISED RSS-247 5.4 (d)	Peak Conduct Output Power	1 watt or 30 dBm	2400-2483.5	

TEST PROCEDURE

Connect the EUT to a low loss RF cable from the antenna port to the power sensor (video bandwidth is greater than the occupied bandwidth).

Measure peak emission level, the indicated level is the peak output power, after any corrections for external attenuators and cables.

TEST SETUP

TEST ENVIRONMENT

Temperature	21.7 ℃	Relative Humidity	53%
Atmosphere Pressure	100kPa		

TEST RESULTS

Please refer to section "Test Data" - Appendix A

7.2. 6DB BANDWIDTH AND 99% OCCUPIED BANDWIDTH

LIMITS

CFR 47 FCC Part15 (15.247) Subpart C ISED RSS-247 ISSUE 3					
Section Test Item Limit Frequency Range (MHz)					
CFR 47 FCC 15.247(a)(2) ISED RSS-247 5.2 (a)	6 dB Bandwidth	≥ 500 kHz	2400-2483.5		
ISED RSS-Gen Clause 6.7 99 % Occupied Bandwidth		For reporting purposes only.	2400-2483.5		

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 11.8 for DTS bandwidth and clause 6.9 for Occupied Bandwidth.

Connect the EUT to the spectrum	analyser and use the following settings:
---------------------------------	--

Center Frequency	The center frequency of the channel under test
Frequency Span	For 6 dB Bandwidth: Enough to capture all products of the modulation carrier emission For 99 % Occupied Bandwidth: Between 1.5 times and 5.0 times the OBW
Detector	Peak
RR///	For 6 dB Bandwidth: 100 kHz For 99 % Occupied Bandwidth: 1 % to 5 % of the occupied bandwidth
IVBW/	For 6 dB Bandwidth: ≥3 × RBW For 99 % Occupied Bandwidth: ≥3 × RBW
Trace	Max hold
Sweep	Auto couple

a) Use the 99 % power bandwidth function of the instrument, allow the trace to stabilize and report the measured bandwidth.

b) Allow the trace to stabilize and measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

TEST SETUP

TEST ENVIRONMENT

Temperature	21.7 ℃	Relative Humidity	53%
Atmosphere Pressure	100kPa		

TEST RESULTS

Please refer to section "Test Data" - Appendix A

7.3. POWER SPECTRAL DENSITY

<u>LIMITS</u>

CFR 47 FCC Part15 (15.247) Subpart C ISED RSS-247 ISSUE 3				
Section	Test Item	Limit	Frequency Range (MHz)	
CFR 47 FCC §15.247 (e) ISED RSS-247 5.2 (b)	Power Spectral Density	8 dBm in any 3 kHz band	2400-2483.5	

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 11.10.

Connect the EUT to the spectrum analyser and use the following settings:

Center Frequency	The center frequency of the channel under test
Detector	PEAK
RBW	3 kHz ≤ RBW ≤ 100 kHz
VBW	≥3 × RBW
Span	1.5 x DTS bandwidth
Trace	Max hold
Sweep time	Auto couple

Allow trace to fully stabilize and use the peak marker function to determine the maximum amplitude level within the RBW.

If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

TEST SETUP

TEST ENVIRONMENT

Temperature	21.7 ℃	Relative Humidity	53%
Atmosphere Pressure	100kPa		

TEST RESULTS

Please refer to section "Test Data" - Appendix A

TRF No.: 04-E001-0B

7.4. CONDUCTED BAND EDGE AND SPURIOUS EMISSION

LIMITS

CFR 47 FCC Part15 (15.247) Subpart C ISED RSS-247 ISSUE 3		
Section Test Item Limit		Limit
CFR 47 FCC §15.247 (d) ISED RSS-247 5.5	Conducted Bandedge and Spurious Emissions	at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 11.11 and 11.13.

Connect the EUT to the spectrum analyser and use the following settings for reference level measurement:

Center Frequency	The center frequency of the channel under test
Detector	Peak
RBW	100 kHz
VBW	≥3 × RBW
Span	1.5 x DTS bandwidth
Trace	Max hold
Sweep time	Auto couple.

Allow trace to fully stabilize and use the peak marker function to determine the maximum PSD level.

Change the settings for emission level measurement:

Shan	Set the center frequency and span to encompass frequency range to be measured
Detector	Peak
RBW	100 kHz
VBW	≥3 × RBW
measurement points	≥span/RBW
Trace	Max hold
Sweep time	Auto couple.

Allow trace to fully stabilize and use the peak marker function to determine the maximum PSD level. Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum requirements specified in 11.11.

TEST SETUP

TEST ENVIRONMENT

Temperature	21.7 ℃	Relative Humidity	53%
Atmosphere Pressure	100kPa		

TEST RESULTS

Please refer to section "Test Data" - Appendix A

7.5. DUTY CYCLE

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 11.6 Zero – Span Spectrum Analyzer method.

TEST SETUP

TEST ENVIRONMENT

Temperature	21.7℃	Relative Humidity	53%
Atmosphere Pressure	100kPa		

TEST RESULTS

Please refer to section "Test Data" - Appendix A

8. RADIATED TEST RESULTS

<u>LIMITS</u>

Please refer to CFR 47 FCC §15.205 and §15.209.

Please refer to ISED RSS-GEN Clause 8.9 and Clause 8.10.

Radiation Disturbance Test Limit for FCC (Class B) (9 kHz ~ 1 GHz)

Emissions radiated outside of the specified frequency bands above 30 MHz			
Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Stren (dBuV/m)	0
		Quasi-l	Peak
30 - 88	100	40	
88 - 216	150	43.5	
216 - 960	200	46	
Above 960	500	54	
Above 1000	500	Peak	Average
	300	74	54

FCC Emissions radiated outside of the specified frequency bands below 30 MHz		
Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30

ISED General field strength limits at frequencies below 30 MHz

Table 6 – General field strength limits at frequencies below 30 MHz		
Frequency	Magnetic field strength (H-Field) (μA/m)	Measurement distance (m)
9 - 490 kHz ^{Note 1}	6.37/F (F in kHz)	300
490 - 1705 kHz	63.7/F (F in kHz)	30
1.705 - 30 MHz	0.08	30

Note 1: The emission limits for the ranges 9-90 kHz and 110-490 kHz are based on measurements employing a linear average detector.

ISED Restricted bands please refer to ISED RSS-GEN Clause 8.10

	Table 7 – Restricted frequency bands ^N	
MHz	MHz	GHz
0.090 - 0.110	149.9 - 150.05	9.0 - 9.2
0.495 - 0.505	158.52475 - 158.52525	9.3 - 9.5
2.1735 - 2.1905	158.7 - 158.9	10.6 - 12.7
3.020 - 3.028	162.0125 - 167.17	13.25 - 13.4
4.125 - 4.128	167.72 - 173.2	14.47 - 14.5
4.17725 - 4.17775	240 - 285	15.35 - 16.2
4.20725 - 4.20775	322 - 335.4	17.7 - 21.4
5.677 - 5.683	399.9 - 410	22.01 - 23.12
6.215 - 6.218	608 - 614	23.6 - 24.0
8.26775 - 6.26825	960 - 1427	31.2 - 31.8
8.31175 - 6.31225	1435 - 1626.5	36.43 - 36.5
8.291 - 8.294	1845.5 - 1848.5	Above 38.6
8.362 - 8.366	1660 - 1710	
8.37625 - 8.38675	1718.8 - 1722.2	
8.41425 - 8.41475	2200 - 2300	
12.29 - 12.293	2310 - 2390	
12.51975 - 12.52025	2483.5 - 2500	
12.57675 - 12.57725	2655 - 2900	
13.36 - 13.41	3260 - 3267	
16.42 - 16.423	3332 - 3339	
16.69475 - 16.69525	3345.8 - 3358	
16.80425 - 16.80475	3500 - 4400	
25.5 - 25.67	4500 - 5150	
37.5 - 38.25	5350 - 5460	
73 - 74.6	7250 - 7750	
74.8 - 75.2	8025 - 8500	

Note 1: Certain frequency bands listed in table 7 and in bands above 38.6 GHz are designated for licence-exempt applications. These frequency bands and the requirements that apply to related devices are set out in the 200 and 300 series of RSSs.

FCC Restricted bands of operation refer to FCC §15.205 (a):

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(²)
13.36-13.41			

Note: ¹Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. ²Above 38.6c

TEST PROCEDURE

Below 30 MHz

The setting of the spectrum analyser

RBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
VBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
Sweep	Auto

1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.4.

2. The EUT was arranged to its worst case and then turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both Horizontal, Face-on and Face-off polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 80 cm above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a 1 m height antenna tower.

5. The radiated emission limits are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz Radiated emission limits in these three bands are based on measurements employing an average detector.

6. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak and average detector mode remeasured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak and average detector and reported.

7. Although these tests were performed other than open field site, adequate comparison measurements were confirmed against 30m open field site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field site based on KDB 414788.

8. The limits in CFR 47, Part 15, Subpart C, paragraph 15.209 (a), are identical to those in RSS-GEN Section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of 377Ω . For example, the measurement frequency X KHz resulted in a level of Y dBuV/m, which is equivalent to Y-51.5 = Z dBuA/m, which has the same margin, W dB, to the corresponding RSS-GEN Table 6 limit as it has to be 15.209(a) limit.

Below 1 GHz and above 30 MHz

The setting of the spectrum analyser

RBW	120 kHz
VBW	300 kHz
Sweep	Auto
Detector	Peak/QP
Trace	Max hold

1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.5.

TRF No.: 04-E001-0B

2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 80 cm above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

5. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

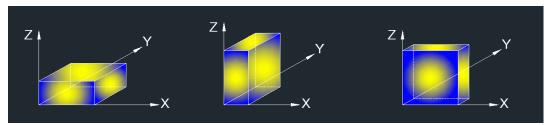
Above 1G

The setting of the spectrum analyser

RBW	MHz			
IV BW	EAK: 3 MHz /G: see note 6			
Sweep	Auto			
Detector	Peak			
Trace	Max hold			

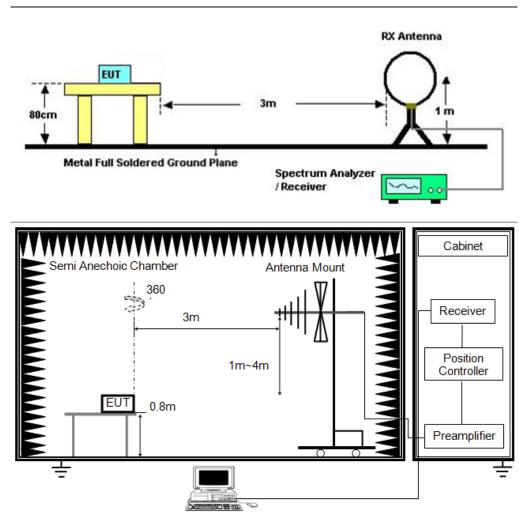
1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.6.

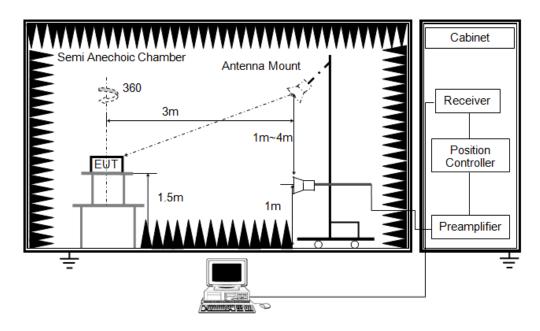
2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.


3. The EUT was placed on a turntable with 1.5 m above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

5. For measurement above 1 GHz, the emission measurement will be measured by the peak detector. This peak level, once corrected, must comply with the limit specified in Section 15.209.

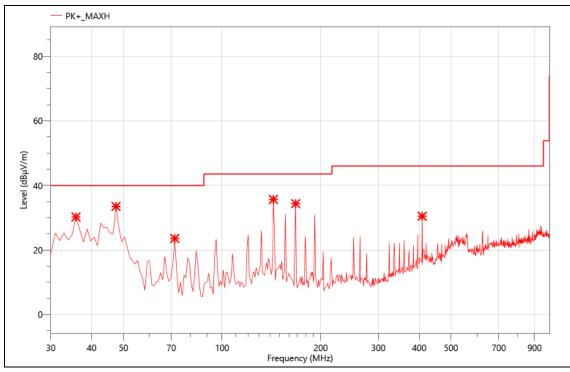

6. For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause 7.1.ON TIME AND DUTY CYCLE.


X axis, Y axis, Z axis positions:

Note 1: For all radiated test, EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

TEST SETUP

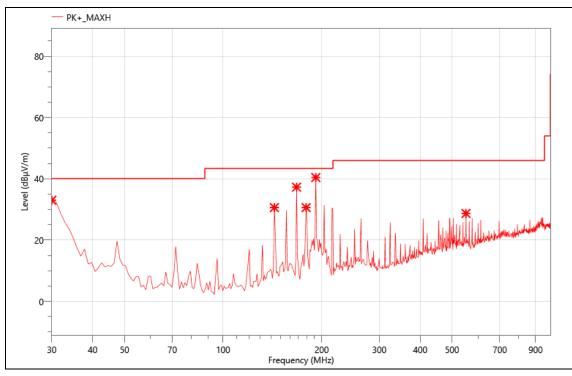
TEST ENVIRONMENT


Temperature	23.6 ℃	Relative Humidity	52%
Atmosphere Pressure	101kPa		

TEST RESULTS

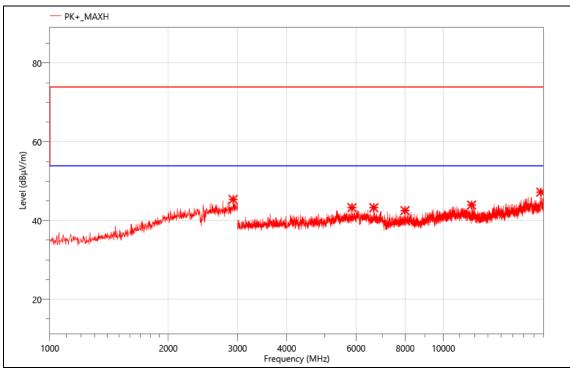
8.1. RADIATED BAND EDGE AND SPURIOUS EMISSION

30MHz to 1GHz The worst result as bellow:


Mode:	Zigbee 2405
Power:	DC 5V
TE:	Big
Date	2024/5/13
T/A/P	23.6°C/52%/101Kpa

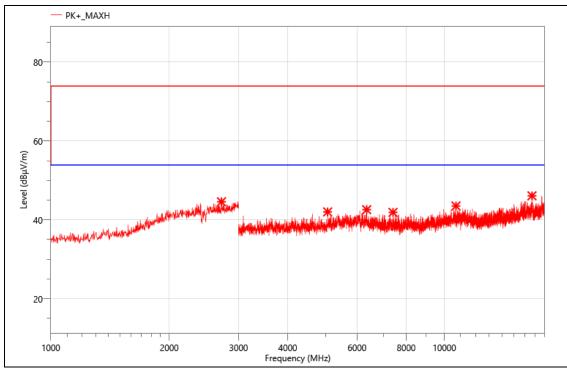
Critical_Freqs

No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	35.820	47.87	-17.65	30.22	40.00	9.78	PK+	V
-	33.020	47.07	-17.05	30.22	40.00	9.70	ГКТ	v
2	47.460	56.78	-23.3	33.48	40.00	6.52	PK+	V
3	71.710	48.69	-25.12	23.57	40.00	16.43	PK+	V
4	143.490	59.18	-23.52	35.66	43.50	7.84	PK+	V
5	167.740	57.04	-22.7	34.34	43.50	9.16	PK+	V
6	408.300	44.19	-13.74	30.45	46.00	15.55	PK+	V

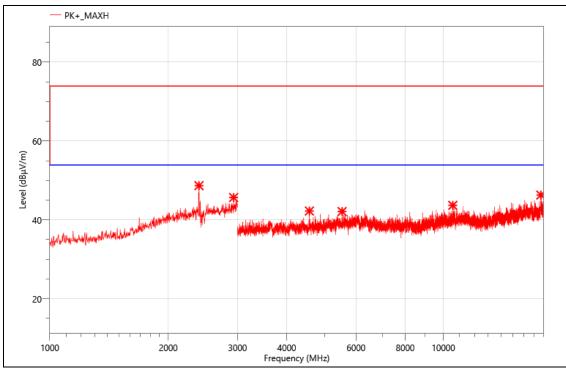

Mode:	Zigbee 2405
Power:	DC 5V
TE:	Big
Date	2024/5/13
T/A/P	23.6°C/52%/101Kpa

No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	30.000	47.29	-14.27	33.02	40.00	6.98	PK+	Н
2	143.490	54.15	-23.52	30.63	43.50	12.87	PK+	Н
3	167.740	60.00	-22.7	37.30	43.50	6.20	PK+	Н
4	179.380	52.77	-22.15	30.62	43.50	12.88	PK+	Н
5	191.990	63.01	-22.57	40.44	43.50	3.06	PK+	Н
6	551.860	38.55	-9.84	28.71	46.00	17.29	PK+	Н

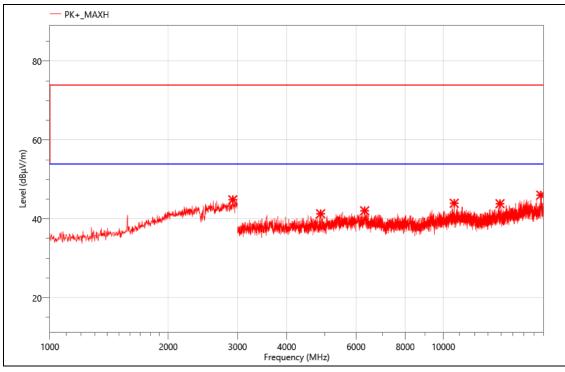
Above 1GHz:


Mode:	Zigbee 2405
Power:	DC 5V
TE:	Big
Date	2024/5/13
T/A/P	23.6°C/52%/101Kpa

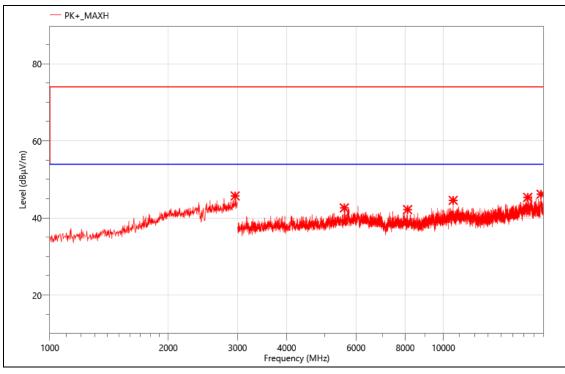
Critical_Freqs


No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	2924.000	52.94	-7.58	45.36	74.00	28.64	PK+	Н
2	5857.500	52.36	-9.08	43.28	74.00	30.72	PK+	Н
3	6658.500	51.48	-8.2	43.28	74.00	30.72	PK+	Н
4	7990.500	50.58	-8.05	42.53	74.00	31.47	PK+	Н
5	11797.500	48.84	-4.9	43.94	74.00	30.06	PK+	Н
6	17686.500	46.96	0.25	47.21	74.00	26.79	PK+	Н

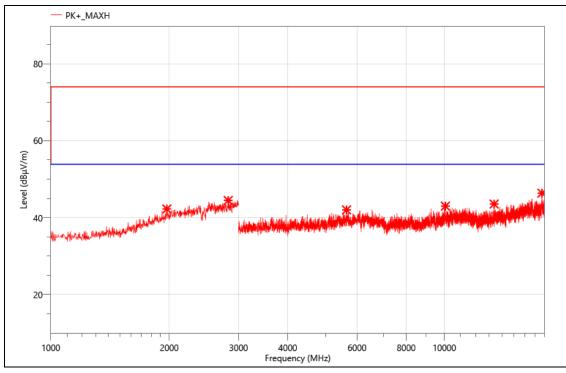
Mode:	Zigbee 2405
Power:	DC 5V
TE:	Big
Date	2024/5/13
T/A/P	23.6°C/52%/101Kpa


No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	2714.000	53.06	-8.47	44.59	74.00	29.41	PK+	V
2	5052.000	52.69	-10.66	42.03	74.00	31.97	PK+	V
3	6348.000	50.55	-7.96	42.59	74.00	31.41	PK+	V
4	7405.500	50.01	-8.11	41.90	74.00	32.10	PK+	V
5	10704.000	48.41	-4.89	43.52	74.00	30.48	PK+	V
6	16698.000	46.58	-0.48	46.10	74.00	27.90	PK+	V

Mode:	Zigbee 2440
Power:	DC 5V
TE:	Big
Date	2024/5/13
T/A/P	23.6°C/52%/101Kpa


No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	2394.000	57.21	-8.53	48.68	74.00	25.32	PK+	V
2	2932.000	53.19	-7.52	45.67	74.00	28.33	PK+	V
3	4567.500	54.07	-11.82	42.25	74.00	31.75	PK+	V
4	5529.000	51.69	-9.57	42.12	74.00	31.88	PK+	V
5	10567.500	48.79	-5.1	43.69	74.00	30.31	PK+	V
6	17685.000	46.04	0.26	46.30	74.00	27.70	PK+	V

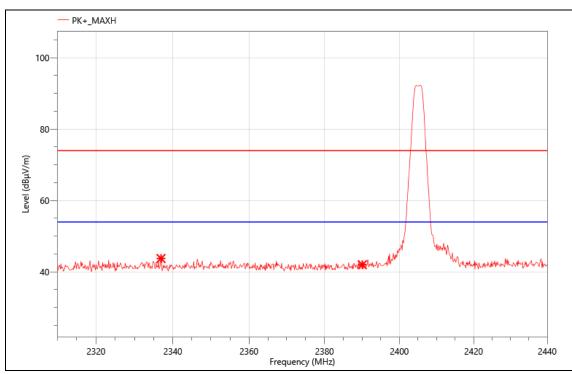
Mode:	Zigbee 2440
Power:	DC 5V
TE:	Big
Date	2024/5/13
T/A/P	23.6°C/52%/101Kpa


No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	2918.000	52.48	-7.63	44.85	74.00	29.15	PK+	Н
2	4878.000	52.44	-11.14	41.30	74.00	32.70	PK+	Н
3	6312.000	49.64	-7.59	42.05	74.00	31.95	PK+	Н
4	10657.500	49.23	-5.27	43.96	74.00	30.04	PK+	Н
5	13930.500	47.78	-3.94	43.84	74.00	30.16	PK+	Н
6	17680.500	45.74	0.29	46.03	74.00	27.97	PK+	Н

Mode:	Zigbee 2480
Power:	DC 5V
TE:	Big
Date	2024/5/13
T/A/P	23.6°C/52%/101Kpa

No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	2958.000	53.08	-7.37	45.71	74.00	28.29	PK+	Н
2	5602.500	51.85	-9.25	42.60	74.00	31.40	PK+	Н
3	8112.000	50.02	-7.85	42.17	74.00	31.83	PK+	Н
4	10591.500	49.84	-5.28	44.56	74.00	29.44	PK+	Н
5	16380.000	46.81	-1.48	45.33	74.00	28.67	PK+	Н
6	17707.500	46.13	0.02	46.15	74.00	27.85	PK+	Н

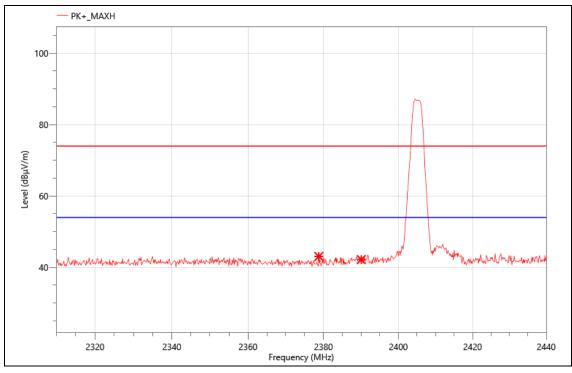
Mode:	Zigbee 2480
Power:	DC 5V
TE:	Big
Date	2024/5/13
T/A/P	23.6°C/52%/101Kpa


No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	1972.000	51.50	-9.24	42.26	74.00	31.74	PK+	V
2	2824.000	52.39	-7.92	44.47	74.00	29.53	PK+	V
3	5643.000	51.18	-9.17	42.01	74.00	31.99	PK+	V
4	10062.000	49.24	-6.24	43.00	74.00	31.00	PK+	V
5	13380.000	47.80	-4.27	43.53	74.00	30.47	PK+	V
6	17692.500	46.14	0.22	46.36	74.00	27.64	PK+	V

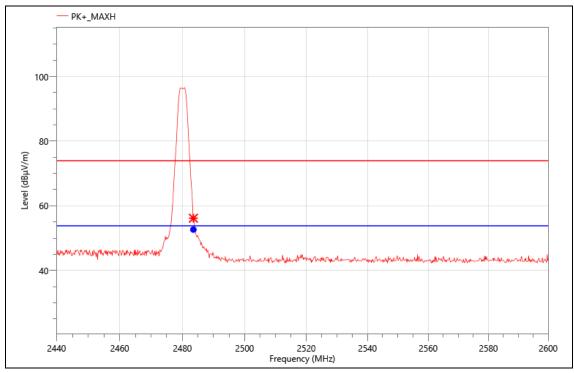
Note: [Margin=Limit-Meas.]; [Meas.=Reading+Corr.]

For the frequency above 18 GHz, a pre-scan was performed, and the result was 20 dB lower than the limit line, the test data was not shown in the report.

Band Edge The worst result as bellow:


Mode:	Zigbee 2405
Power:	DC 5V
TE:	Big
Date	2024/5/13
T/A/P	23.6°C/52%/101Kpa

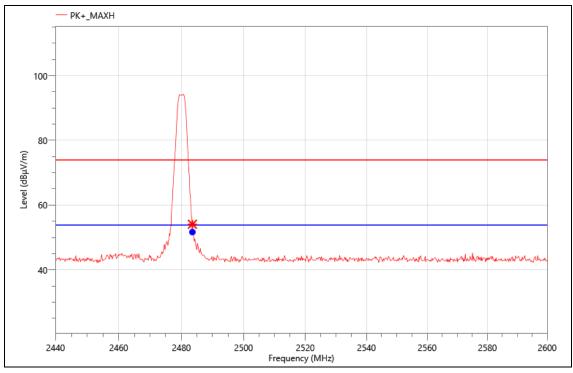
Critical_Freqs


No.	Freq. (MHz)	Reading (dBuV)	Corr. (dB)	Meas. (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Det.	Pol.
1	2336.910	21.09	22.63	43.72	74.00	30.28	PK+	V
2	2390.080	19.25	22.72	41.97	74.00	32.03	PK+	V

Mode:	Zigbee 2405
Power:	DC 5V
TE:	Big
Date	2024/5/13
T/A/P	23.6°C/52%/101Kpa

No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	2378.770	20.50	22.54	43.04	74.00	30.96	PK+	Н
2	2390.080	19.44	22.72	42.16	74.00	31.84	PK+	Н

Mode:	Zigbee 2480
Power:	DC 5V
TE:	Big
Date	2024/5/13
T/A/P	23.6°C/52%/101Kpa



No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	2483.520	33.01	23.15	56.16	74.00	17.84	PK+	V

Final_Result

No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.	Verdict
1	2483.520	29.50	23.15	52.65	53.90	1.25	AVG	V	PASS

Mode:	Zigbee 2480
Power:	DC 5V
TE:	Big
Date	2024/5/13
T/A/P	23.6°C/52%/101Kpa

Critical_Freqs

No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	2483.520	30.93	23.15	54.08	74.00	19.92	PK+	Н

Final_Result

No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.	Verdict
1	2483.520	28.51	23.15	51.66	53.90	2.24	AVG	Н	PASS
N. 1	FR 4				-				

Note: [Margin=Limit-Meas.]; [Meas.=Reading+Corr.]

9. ANTENNA REQUIREMENT

REQUIREMENT

Please refer to FCC §15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Please refer to FCC §15.247(b)(4)

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Standard	Requirement
RSS-Gen issue 5 6.8.	The applicant for equipment certification shall provide a list of all antenna types that may be used with the transmitter, where applicable (i.e. for transmitters with detachable antenna), indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna. The test report shall demonstrate the compliance of the transmitter with the limit for maximum equivalent isotropically radiated power (e.i.r.p.) specified in the applicable RSS, when the transmitter is equipped with any antenna type, selected from this list. For expediting the testing, measurements may be performed using only the antenna with highest gain of each combination of transmitter and antenna type, with the transmitter output power set at the maximum level. However, the transmitter shall comply with the applicable requirements under all operational conditions and when in combination with any type of antenna from the list provided in the test report (and in the notice to be included in the user manual, provided below). When measurements at the antenna port are used to determine the RF output power, the effective gain of the device's antenna shall be stated, based on a measurement or on data from the antenna's manufacturer. The test report shall state the RF power, output power setting and spurious emission measurements with each antenna type that is used with the transmitter being tested. For licence-exempt equipment with detachable antennas, the user manual shall also contain the following notice in a conspicuous location: This radio transmitter [enter the device's ISED certification number] has been approved by Innovation, Science and Economic Development Canada to operate with the antenna types listed below, with the maximum permissible gain indicated. Antenna types not included in this list that have a gain greater than the maximum gain indicated for any type listed are strictly prohibited for use with this device.

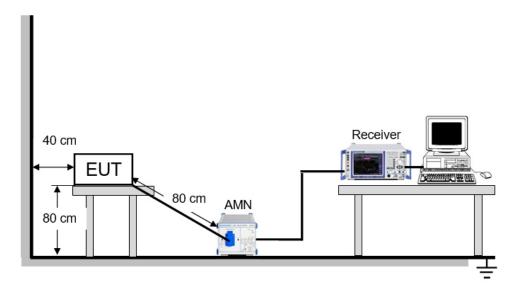
Immediately following the above notice, the manufacturer shall provide a list of all antenna types which can be used with the transmitter, indicating the maximum permissible antenna gain (in dPi) and the required impedance for each entenna type
dBi) and the required impedance for each antenna type.

DESCRIPTION

Compliance.

10. AC POWER LINE CONDUCTED EMISSION

LIMITS

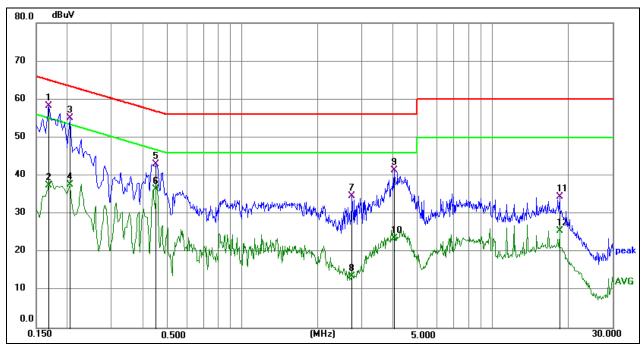

Please refer to CFR 47 FCC §15.207 (a) and ISED RSS-Gen Clause 8.8

FREQUENCY (MHz)	Quasi-peak	Average
0.15 -0.5	66 - 56 *	56 - 46 *
0.50 -5.0	56.00	46.00
5.0 -30.0	60.00	50.00

TEST PROCEDURE

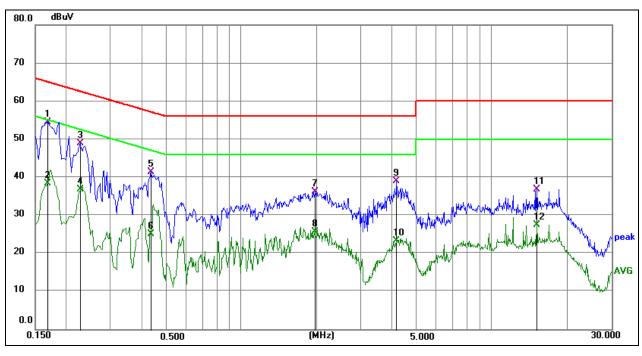
The EUT is put on a table of non-conducting material that is 80 cm high. The vertical conducting wall of shielding is located 40 cm to the rear of the EUT. The power line of the EUT is connected to the AC mains through a Artificial Mains Network (A.M.N.). A EMI Measurement Receiver (R&S Test Receiver ESR3) is used to test the emissions from both sides of AC line. According to the requirements in Section 6.2 of ANSI C63.10-2013.Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode. The bandwidth of EMI test receiver is set at 9 kHz.

The arrangement of the equipment is installed to meet the standards and operating in a manner, which tends to maximize its emission characteristics in a normal application.



TEST SETUP

TEST ENVIRONMENT


Temperature	25 ℃	Relative Humidity	53%
Atmosphere Pressure	101kPa		

TEST RESULTS

Phase: L1	Mode: 2405MHz

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1680	48.44	9.81	58.25	65.06	-6.81	QP
2	0.1680	27.62	9.81	37.43	55.06	-17.63	AVG
3	0.2040	45.25	9.79	55.04	63.45	-8.41	QP
4	0.2040	27.87	9.79	37.66	53.45	-15.79	AVG
5	0.4515	33.08	9.82	42.90	56.85	-13.95	QP
6	0.4515	26.70	9.82	36.52	46.85	-10.33	AVG
7	2.7375	24.85	9.82	34.67	56.00	-21.33	QP
8	2.7375	3.82	9.82	13.64	46.00	-32.36	AVG
9	4.0380	31.63	9.81	41.44	56.00	-14.56	QP
10	4.0380	13.81	9.81	23.62	46.00	-22.38	AVG
11	18.4740	24.24	10.20	34.44	60.00	-25.56	QP
12	18.4740	15.27	10.20	25.47	50.00	-24.53	AVG

Phase: N	Mode: 2405MHz

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1680	44.70	9.89	54.59	65.06	-10.47	QP
2	0.1680	28.46	9.89	38.35	55.06	-16.71	AVG
3	0.2265	39.06	9.86	48.92	62.58	-13.66	QP
4	0.2265	26.90	9.86	36.76	52.58	-15.82	AVG
5	0.4335	31.52	9.81	41.33	57.19	-15.86	QP
6	0.4335	15.22	9.81	25.03	47.19	-22.16	AVG
7	1.9680	26.18	9.99	36.17	56.00	-19.83	QP
8	1.9680	15.67	9.99	25.66	46.00	-20.34	AVG
9	4.1595	28.99	10.00	38.99	56.00	-17.01	QP
10	4.1595	13.32	10.00	23.32	46.00	-22.68	AVG
11	15.1035	25.11	11.67	36.78	60.00	-23.22	QP
12	15.1035	15.75	11.67	27.42	50.00	-22.58	AVG

Note: 1. Result = Reading + Correct Factor.

- 2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 200 Hz (9 kHz ~ 150 kHz), 9 kHz (150 kHz ~ 30 MHz).
- 4. Step size: 80 Hz (0.009 MHz ~ 0.15 MHz), 4 kHz (0.15 MHz ~ 30 MHz), Scan time: auto.

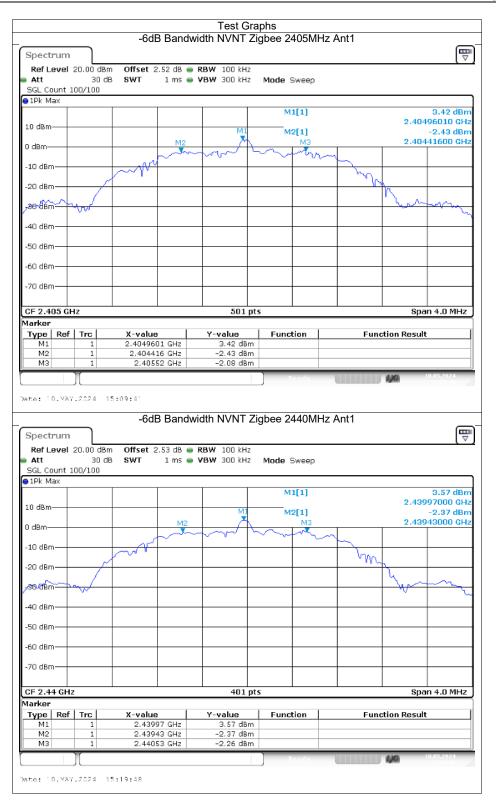
Note: All the modes have been tested, only the worst data was recorded in the report.

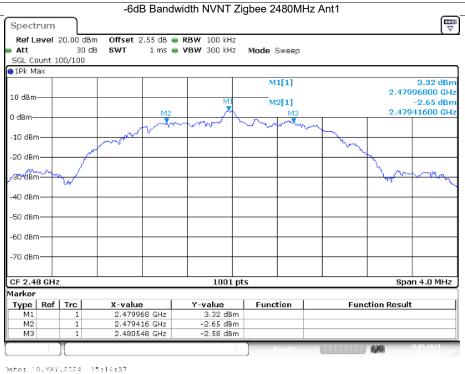
11. TEST DATA - Appendix A

Duty Cycle

Condition	Mode	Frequency (MHz)	Antenna	On Time (ms)	Period (ms)	Duty Cycle (%)	Correction Factor (dB)	1/T (kHz)	Final settingFor VBW (kHz)
NVNT	Zigbee	2405	Ant1	0.41	0.67	61.19	2.13	2.44	1
NVNT	Zigbee	2440	Ant1	0.41	0.66	62.12	2.07	2.44	1
NVNT	Zigbee	2480	Ant1	0.41	0.67	61.19	2.13	2.44	1

Maximum Conducted Output Power

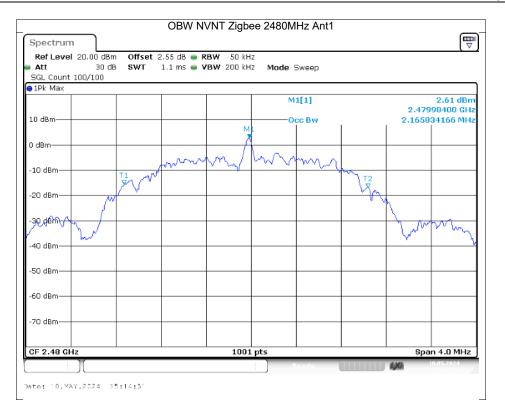

Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Duty Factor (dB)	Total Power (dBm)	Limit (dBm)	E.I.R.P (dBm	E.I.R.P Limit (dBm)	Verdict
NVNT	Zigbee	2405	Ant1	4.05	0	4.05	30	4.82	<=36.02	Pass
NVNT	Zigbee	2440	Ant1	3.99	0	3.99	30	4.76	<=36.02	Pass
NVNT	Zigbee	2480	Ant1	3.96	0	3.96	30	4.73	<=36.02	Pass
Note1: Ante	nna Gain:	0.77 dBi;								
Note2: E.I.R	.P = Meas	sured Power + /	Antenna Gai	n						


		Power N	Test Gr IVNT Ziabe	e 2405MHz Ant1			
Spectrum							E
Ref Level 20.00			RBW 3 MHz				(*
Att 31 SGL Count 100/100)dB SWT	1 ms 👄 🎙	BW 10 MHz	Mode Sweep			
1Pk Max	,						
				M1[1]		0.40	4.05 dBn
10 dBm					1	2.404	142100 GH
			M1				
0 dBm							
-10 dBm							
10 00							
-20 dBm							
-30 dBm							
-40 dBm							
-50 dBm							
-60 dBm							
-co usin							
-70 dBm							
CF 2.405 GHz			1001	pts		Span	10.0 MHz
	15:07:07	Power N	IVNT Ziqbe	Predvee 2440MHz Ant1		444	10.05.2024 15:07:05
ate: 10.MAY.2024	15:07:07	Power N	IVNT Zigbe	e 2440MHz Ant1		4,454	10.05.2024
spectrum Ref Level 20.00	dBm Offset :	2.53 dB 👄 R	RBW 3 MHz			4,44	10.05.2024
ate: 10.YAY.2024 Spectrum Ref Level 20.00	dBm Offset : DdB SWT	2.53 dB 👄 R				4,40	10.05.2024
Spectrum Ref Level 20.00 Att 31 SGL Count 100/100	dBm Offset : DdB SWT	2.53 dB 👄 R	RBW 3 MHz	Mode Sweep		440	(\
Spectrum Ref Level 20.00 Att 3	dBm Offset : DdB SWT	2.53 dB 👄 R	RBW 3 MHz			2.435	(⊽ 3.99 dBn
Spectrum Ref Level 20.00 Att 31 SGL Count 100/100 1Pk Max	dBm Offset : DdB SWT	2.53 dB 👄 R	RBW 3 MHz /BW 10 MHz	Mode Sweep		2.439	(⊽ 3.99 dBr
Spectrum Ref Level 20.00 Att 31 SGL Count 100/100 IPk Max 10 dBm	dBm Offset : DdB SWT	2.53 dB 👄 R	RBW 3 MHz YBW 10 MHz	Mode Sweep		2.435	{ ⊽ 3.99 dBr
Spectrum Ref Level 20.00 Att 31 SGL Count 100/100 IPk Max 10 dBm	dBm Offset : DdB SWT	2.53 dB 👄 R	RBW 3 MHz /BW 10 MHz	Mode Sweep		2.435	{ ⊽ 3.99 dBr
Spectrum Ref Level 20.00 Att 30 SGL Count 100/100 10 dBm 0 dBm	dBm Offset : DdB SWT	2.53 dB 👄 R	RBW 3 MHz /BW 10 MHz	Mode Sweep		2.439	{ ⊽ 3.99 dBr
Atto: 10. VAV. 2024 Spectrum Ref Level 20.00 Att 33 SGL Count 100/100 IPk Max 10 dBm 0 dBm -10 dBm	dBm Offset : DdB SWT	2.53 dB 👄 R	RBW 3 MHz /BW 10 MHz	Mode Sweep		2.435	{ ⊽ 3.99 dBr
Atto: 10. VAV. 2024 Spectrum Ref Level 20.00 Att 33 SGL Count 100/100 IPk Max 10 dBm 0 dBm -10 dBm	dBm Offset : DdB SWT	2.53 dB 👄 R	RBW 3 MHz /BW 10 MHz	Mode Sweep		2.439	(⊽ 3.99 dBr
Atto: 10. YAY.2024 Spectrum Ref Level 20.00 Att 31 SGL Count 100/100 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm	dBm Offset : DdB SWT	2.53 dB 👄 R	RBW 3 MHz /BW 10 MHz	Mode Sweep		2.439	{ ⊽ 3.99 dBr
Atte: 10. VAV. 2024 Spectrum Ref Level 20.00 Att 30 SGL Count 100/100 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	dBm Offset : DdB SWT	2.53 dB 👄 R	RBW 3 MHz /BW 10 MHz	Mode Sweep		2.435	{ ⊽ 3.99 dBr
Atte: 10. VAV. 2024 Spectrum Ref Level 20.00 Att 30 SGL Count 100/100 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	dBm Offset : DdB SWT	2.53 dB 👄 R	RBW 3 MHz /BW 10 MHz	Mode Sweep		2.439	{ ⊽ 3.99 dBr
ate: 10. YAY.2024 Spectrum Ref Level 20.00 Att 31 SGL Count 100/100 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -40 dBm	dBm Offset : DdB SWT	2.53 dB 👄 R	RBW 3 MHz /BW 10 MHz	Mode Sweep		2.435	(⊽ 3.99 dBr
Ate: 10.YAY.2024 Spectrum Ref Level 20.00 Att 31 SGL Count 100/100 IPk Max 10 dBm	dBm Offset : DdB SWT	2.53 dB 👄 R	RBW 3 MHz /BW 10 MHz	Mode Sweep		2.435	(⊽ 3.99 dBr
Ato: 10. VAV.2024 Spectrum Ref Level 20.00 Att 31 SGL Count 100/100 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	dBm Offset : DdB SWT	2.53 dB 👄 R	RBW 3 MHz /BW 10 MHz	Mode Sweep		2.435	(⊽ 3.99 dBr
Ato: 10. YAY.2024 Spectrum Ref Level 20.00 Att 31 SGL Count 100/100 TPk Max 10 dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	dBm Offset : DdB SWT	2.53 dB 👄 R	RBW 3 MHz /BW 10 MHz	Mode Sweep		2.439	(⊽ 3.99 dBr
Ate: 10. VAV.2024 Spectrum Ref Level 20.00 Att 31 SGL Count 100/100 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	dBm Offset : DdB SWT	2.53 dB 👄 R	RBW 3 MHz /BW 10 MHz	Mode Sweep		2.439	(⊽ 3.99 dBn
Spectrum Ref Level 20.00 Att 31 SGL Count 100/100 10 dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	dBm Offset : DdB SWT	2.53 dB 👄 R	RBW 3 MHz /BW 10 MHz	Mode Sweep			3.99 dBn 049100 GH

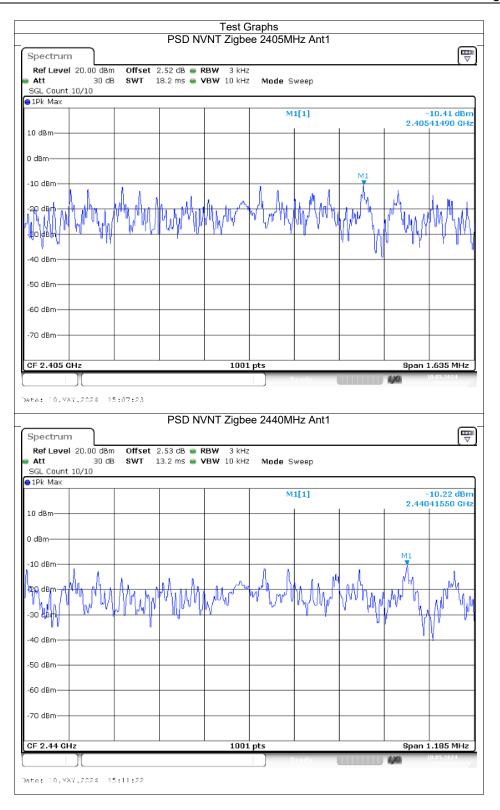
Spectrum				□
Att 30 dB SWT SGL Count 100/100	nt 2.55 dB ● RBW 3 MH 1 ms ● VBW 10 MH			
1Pk Max		M1[1]	3 2.47936	.96 dBm
.0 dBm	M1			100 011
l dBm				
10 dBm				
20 dBm				
30 dBm				
40 dBm				
50 dBm				
60 dBm				
70 dBm				
CF 2.48 GHz	100	1 pts	Span 10	.0 MHz
		Ready	10.0	5.2024

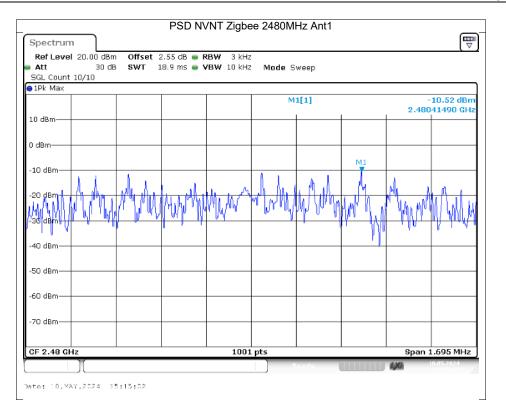
-6dB Bandwidth

Condition	Mode	Frequency (MHz)	Antenna	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict
NVNT	Zigbee	2405	Ant1	1.1	0.5	Pass
NVNT	Zigbee	2440	Ant1	1.1	0.5	Pass
NVNT	Zigbee	2480	Ant1	1.13	0.5	Pass



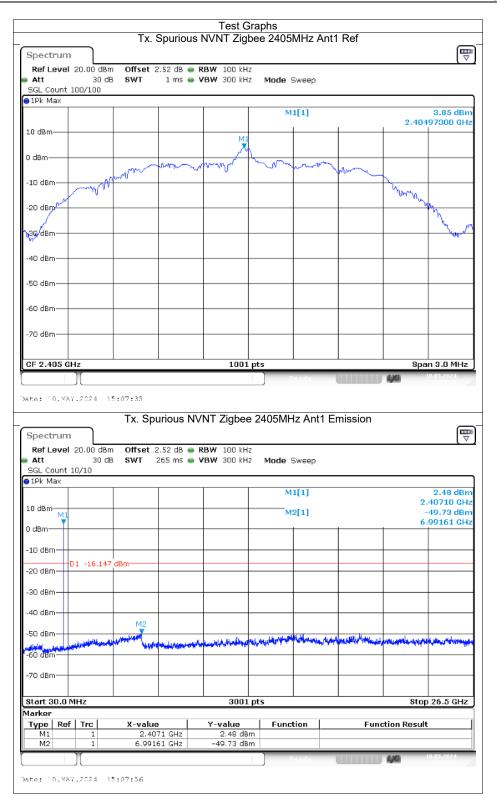
Occupied Channel Bandwidth

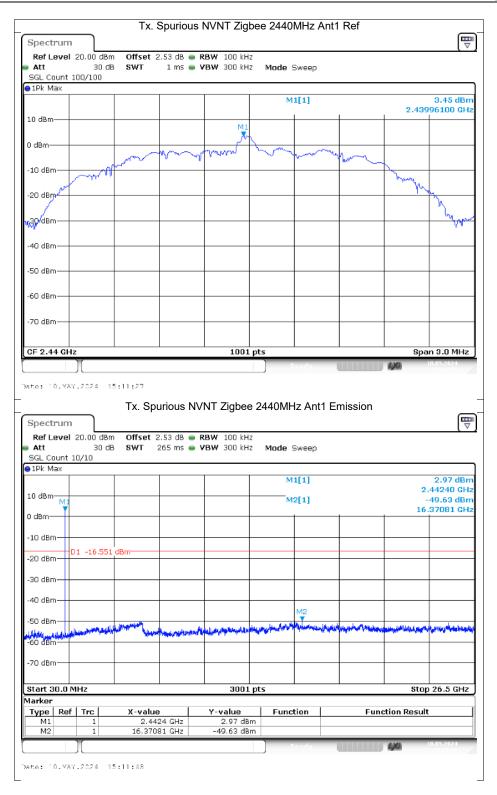

Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)
NVNT	Zigbee	2405	Ant1	2.166
NVNT	Zigbee	2440	Ant1	2.19
NVNT	Zigbee	2480	Ant1	2.166

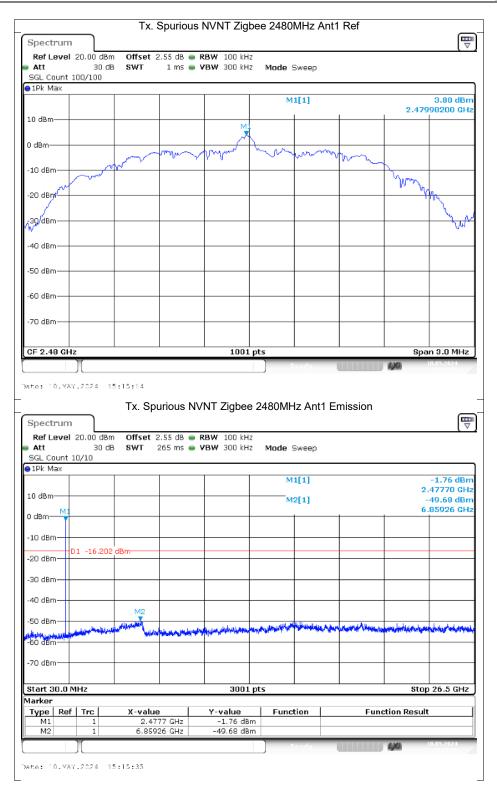

		OBW N	Test G √NT Zigbe	iraphs ee 2405M	Hz Ant1			
Spectrum								E
Ref Level 20.00 dBm		2.52 dB 👄 R						(*)
Att 30 dE SGL Count 100/100	B SWT	1.1 ms 👄 V	' BW 200 kH:	z Mode 9	Sweep			
●1Pk Max		1						4 00 10
10 dBm					1[1]			1.82 dBm 198000 GHz
			M)	0	cc Bw		2.1659	34166 MHz
0 dBm		umm	mal	him				
-10 dBm	TI m		0 000		4 · · · · ·	T2		
-20 dBm	<u> </u>					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	h	
-30 dBm-							n sm	m
-40 dBm							her?"	لمريب
-50 dBm								
-60 dBm								
-70 dBm	1							
CF 2.405 GHz			1001	pts			Spa	in 4.0 MHz
Marker Type Ref Trc	X-value	_	Y-value	Fund	tion	Eup	tion Result	
M1 1	2.404	98 GHz	1.82 dB	m		Fund		
T1 1 T2 1	2.403877 2.406042		-15.42 dB -17.19 dB		CC BW		2.1658	34166 MHz
					e ady		4/0	10.05.2024
Date: 10.MAY.2024 1	5:09:01							
Spectrum			VNT Zigbe		Hz Ant1			
RefLevel 20.00 dBm Att 30 dB		2.53 dB 🛑 R	BW 50 kH	7				
SGL Count 100/100	B SWT	1.1 ms 👄 V	' BW 200 kH:		Sweep			
SGL Count 100/100 9 1Pk Max	BSWT	1.1 ms 👄 V	' BW 200 kH:	z Mode S				
	B SWT	1.1 ms 🖷 V	' BW 200 kH:	z Mode S	Sweep 1[1]		2.439	1.80 dBm 97600 GHz
		1.1 ms 🖝 🗸		z Mode s M				
● 1Pk Max		1.1 ms • V	200 kH:	z Mode s M	1[1]			97600 GHz
IPk Max I0 dBm		1.1 ms • V		z Mode s M	1[1]			97600 GHz
IPk Max I0 dBm		1.1 ms • V		z Mode s M	1[1]	س ₁₂		97600 GHz
1Pk Max 10 dBm 0 dBm		1.1 ms • V		z Mode s M	1[1]	~~		97600 GHz
10 dBm 0 dBm -10 dBm -20 dBm		1.1 ms • •		z Mode s M	1[1]	12 T2		97600 GHz
10 dBm 0 dBm -10 dBm -20 dBm -30 dBm		1.1 ms • •		z Mode s M	1[1]	~T2	2.1898	997600 GHz 10190 MHz
10 dBm 0 dBm -10 dBm -20 dBm		1.1 ms • •		z Mode s M	1[1]	<u></u> ~15		997600 GHz 10190 MHz
10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm		1.1 ms • •		z Mode s M	1[1]	TI2	2.1898	997600 GHz 10190 MHz
10 dBm 0 dBm -10 dBm -20 dBm -30 dBm		1.1 ms • •		z Mode s M	1[1]	V T2	2.1898	997600 GHz 10190 MHz
10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm				z Mode s M	1[1]	~ ~	2.1898	997600 GHz 10190 MHz
1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -50 dBm				z Mode s M	1[1]		2.1898	997600 GHz 10190 MHz
10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm				z Mode s M	1[1]		2.1898	997600 GHz 10190 MHz
1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -50 dBm				2 Mode 9	1[1]		2.1898	997600 GHz 10190 MHz
10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm				2 Mode 9	1[1]	×~ ↓ ¹²	2.1898	997600 GHz 10190 MHz

Maximum Power Spectral Density Level

Condition	Mode	Frequency (MHz)	Antenna	Conducted PSD (dBm/3kHz)	Duty Factor (dB)	Total PSD (dBm/3kHz)	Limit (dBm/3kHz)	Verdict
NVNT	Zigbee	2405	Ant1	-10.41	0	-10.41	8	Pass
NVNT	Zigbee	2440	Ant1	-10.22	0	-10.22	8	Pass
NVNT	Zigbee	2480	Ant1	-10.52	0	-10.52	8	Pass

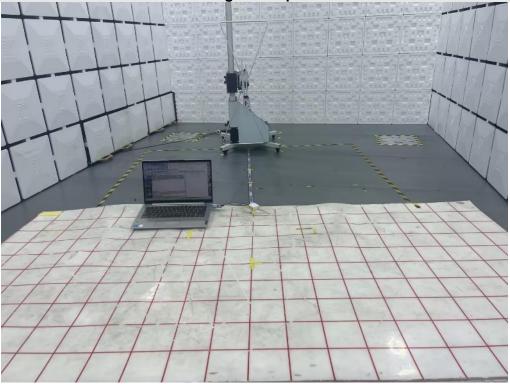

Band	Edge					
Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	Zigbee	2405	Ant1	-57.69	-20	Pass
NVNT	Zigbee	2480	Ant1	-53.75	-20	Pass

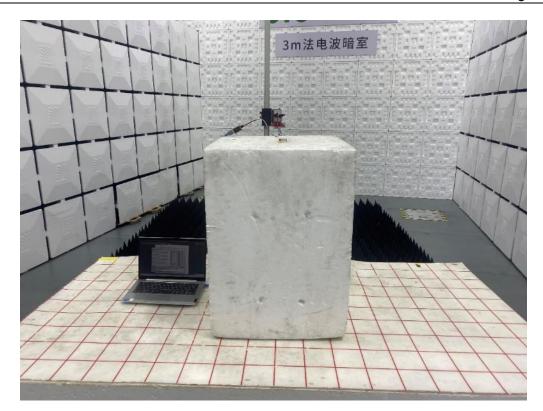

0		Bar	nd Edge	Test Gı NVNT Zigbe	e 2405MHz A	Ant1 Ref		
Spectrum		201	ugo					Ē
Ref Level				RBW 100 kHz				(°
Att SGL Count 1	30 d 100/100	B SWT	1 ms 👄	VBW 300 kHz	Mode Sweep			
∎1Pk Max	,							
					M1[1]		2,404	3.94 dBm 98400 GHz
10 dBm				M1			+ +	
0.40				1 1				
0 dBm				m	www			
-10 dBm				4	<u>_</u>			
					<u>\</u>			
-20 dBm								
-30 dBm		pm	M			1mm		
		m -	, i i i i i i i i i i i i i i i i i i i			NY.		
-40 dBm						<u>`</u>		
-50 d8m	www						www.	
							00.001	www
-60 dBm								
-70 dBm								
CF 2.405 GF	-			1001				n 8.0 MHz
01 2.100 01	12			1001	pcs		opai	10.0 0112
ate: 10.MAY	/		Edge NV	NT Zigbee :	2405MHz Ant	1 Emission	40	0.05.2024
Spectrum Ref Level	20.00 dBr	Band	2.52 dB 👄	RBW 100 kHz			6,46	0.05.2024
Spectrum	20.00 dBr 30 d	Band	2.52 dB 👄				6,46	.052024 // ⊽
Spectrum Ref Level Att	20.00 dBr 30 d	Band	2.52 dB 👄	RBW 100 kHz	Mode Sweep		6,46	
Spectrum Ref Level Att SGL Count 1 1Pk Max	20.00 dBr 30 d	Band	2.52 dB 👄	RBW 100 kHz				3.52 dBm 35000 GHz
Spectrum Ref Level Att SGL Count 1 1Pk Max	20.00 dBr 30 d	Band	2.52 dB 👄	RBW 100 kHz	Mode Sweep		-1	3.52 dBm 35000 GHz 53.75%dBm
Spectrum Ref Level Att SGL Count 1 1Pk Max	20.00 dBr 30 d	Band	2.52 dB 👄	RBW 100 kHz	Mode Sweep M1[1]		-1	3.52 dBm 35000 GHz 53.75%dBm
Spectrum Ref Level Att SGL Count 1 IPk Max 10 dBm 0 dBm -10 dBm	20.00 dBr 30 d	Band offset 2 swr	2.52 dB 👄	RBW 100 kHz	Mode Sweep M1[1]		-1	3.52 dBm 35000 GHz 53.75%dBm
Spectrum Ref Level Att SGL Count 1 PIPk Max 10 dBm- 0 dBm- -10 dBm-	20.00 dBr 30 d	Band offset 2 swr	2.52 dB 👄	RBW 100 kHz	Mode Sweep M1[1]		-1	3.52 dBm 35000 GHz 53.75%dBm
Spectrum Ref Level Att SGL Count 1 SGL Count 1 ID dBm 0 dBm -10 dBm -20 dBm	20.00 dBr 30 d	Band offset 2 swr	2.52 dB 👄	RBW 100 kHz	Mode Sweep M1[1]		-1	3.52 dBm 35000 GHz 53.75 ⁴ ₫Bm
Spectrum Ref Level Att SGL Count 1 IPk Max 10 dBm -10 dBm -20 dBm -30 dBm	20.00 dBr 30 d	Band offset 2 swr	2.52 dB 👄	RBW 100 kHz	Mode Sweep M1[1]		-1	3.52 dBm 35000 GHz 53.75 ⁴ ₫Bm
Spectrum Ref Level Att SGL Count 1 SGL Count 1 ID dBm 0 dBm -10 dBm -20 dBm	20.00 dBr 30 d	Band offset 2 swr	2.52 dB 👄	RBW 100 kHz	Mode Sweep M1[1]		-1	3.52 dBm 35000 GHz 53.75 ⁴ ₫Bm
Spectrum Ref Level Att SGL Count 1 SGL Count 2 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	20.00 dBr 30 d 100/100	Band	2.52 dB • 1 ms •	RBW 100 kHz	Mode Sweep M1[1] M2[1]		2.400	3.52 dBm 35000 GHz 53.75 ⁴ ₫Bm
Spectrum Ref Level Att SGL Count 1 SGL Count 2 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	20.00 dBr 30 d 100/100	Band	2.52 dB • 1 ms •	RBW 100 kHz	Mode Sweep M1[1]		2.400	3.52 dBm 35000 GHz 53.75 ⁴ ₫Bm
Spectrum Ref Level Att SGL Count 1 SGL Count 1 ID dBm 10 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm	20.00 dBr 30 d 100/100	Band	2.52 dB • 1 ms •	RBW 100 kHz	Mode Sweep M1[1] M2[1]		2.400	3.52 dBm 35000 GHz 53.75 ⁴ ₫Bm
Spectrum Ref Level Att SGL Count 1 SGL Count 2 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	20.00 dBr 30 d 100/100	Band	2.52 dB • 1 ms •	RBW 100 kHz	Mode Sweep M1[1] M2[1]		2.400	3.52 dBm 35000 GHz 53.75 ⁴ ₫Bm
Spectrum Ref Level Att SGL Count 1 SGL Count 1 IPk Max 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -70 dBm -70 dBm Start 2.309	20.00 dBr 30 d 100/100	Band	2.52 dB • 1 ms •	RBW 100 kHz	Mode Sweep		-3 2.400	3.52 dBm 35000 GHz 53.75 ⁴ ₫Bm
Spectrum Ref Level Att SGL Count 1 IPk Max I0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -70 dBm -50 dBm -50 dBm -50 dBm -50 dBm -50 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm	20.00 dBr 30 d 100/100	Band	2.52 dB • 1 m5 • 1 m5 • 1	RBW 100 kHz	Mode Sweep 	utiperi-tiperi-tiperi-	-3 2.4000	3.52 dBm 35000 GHz 33.7 <i>8</i> dBm 300000 GHz
Spectrum Ref Level Att SGL Count 1 SGL Count 1 ID dBm 10 dBm 10 dBm 20 d	20.00 dBr 30 d 100/100 01 -16.064 946 bid-306 946 bid-306 bid-306 946 bid-306 946 bid-306 946 bid-306 946 bid-306	Band	2.52 dB • 1 ms •	RBW 100 kHz VBW 300 kHz	Mode Sweep M1[1] M2[1]	utiperi-tiperi-tiperi-	-3 2.400	3.52 dBm 35000 GHz 33.7 <i>8</i> dBm 300000 GHz
Spectrum Ref Level Att SGL Count 1 FIR Max ID dBm O dBm O dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -50 dBm -70 dBm Type Ref	20.00 dBr 30 d 100/100 01 -16.064 54cb1d-304 GHz [Trc]	Band	2.52 dB • 1 ms • 1 ms •	RBW 100 kHz	Mode Sweep M1[1] M2[1] 	utiperi-tiperi-tiperi-	-3 2.4000	3.52 dBm 35000 GHz 33.7 <i>8</i> dBm 300000 GHz


	Dana Lugo	INVINI ZIGDee	2480MHz Ant1 Re	_
Spectrum				
RefLevel 20.00 dBr Att 30 d			Mode Sweep	
SGL Count 100/100				
			M1[1]	3.57 dBr
10 dBm				2.47996800 GH
		ML		
0 dBm		month	mo	
-10 dBm		~~~	- ⁻	
			Jr.	
-20 dBm				
-30 dBm				
-40 dBm				My l
	P-			the second
-SP.dBm				- Www. Www.
-60 dBm				
-70 dBm				
CF 2.48 GHz		1001 pts		Span 8.0 MHz
Y		1001 pts	Dondy	10.05.2024
RefLevel 20.00 dBr Att 30 d			Mada Swaan	
	B SWI INS	YDYY SUU KHZ	Mode Sweep	
SGL Count 100/100	9 0 9001 1005 -	YEN SUU KHZ	Houe Sweep	
SGL Count 100/100 PIPk Max			M1[1]	3.69 dBr 2 47005000 CH
SGL Count 100/100				2.47995000 GH -50.18 dBr
SGL Count 100/100 PIPk Max			M1[1]	2.47995000 GH
SGL Count 100/100 • 1Pk Max 10 _p dPm • dBm -10 dBm			M1[1]	2.47995000 GH -50.18 dBr
SGL Count 100/100 1Pk Max 10,dBm 0 dBm			M1[1]	2.47995000 GH -50.18 dBr
SGL Count 100/100			M1[1]	2.47995000 GH -50.18 dBr
SGL Count 100/100			M1[1]	2.47995000 GH -50.18 dBr
SGL Count 100/100			M1[1]	2.47995000 GH -50.18 dBr
SGL Count 100/100 ● 1Pk Max 10µdBm 0 dBm -10 dBm -20 dBm -20 dBm -40 dBm -40 dBm -40 dBm -40 dBm -40 dBm	8 dBm		M1[1] M2[1]	2.47995000 GH -50,18 dBr 2.48350000 GH
SGL Count 100/100	8 dBm		M1[1] M2[1]	2.47995000 GH -50.18 dBr
SGL Count 100/100 ● 1Pk Max 10µdBm 0 dBm -10 dBm -20 dBm -20 dBm -40 dBm -40 dBm -40 dBm -40 dBm -40 dBm	8 dBm		M1[1] M2[1]	2.47995000 GH -50,18 dBr 2.48350000 GH
SGL Count 100/100 ● 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -40 dBm -40 dBm -50 dBm -70 dBm -70 dBm -70 dBm -70 dBm	8 dBm		M1[1] M2[1]	2.47995000 GH -50,18 dBr 2.48350000 GH
SGL Count 100/100 ● 1Pk Max 10pdBm 0 dBm -10 dBm -20 dBm -20 dBm -40 dBm -40 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm	8 dBm		M1[1] M2[1]	2.47995000 GH -50.18 dBr 2.48350000 GH
SGL Count 100/100 1Pk Max 10pdBm 0 dBm -10 dBm -20 dBm -20 dBm -20 dBm -40 dBm -60 dBm -70 dBm Type Ref Trc M1 1	8 dBm א שיין א שיין א - volue	1001 pts 3.69 dBm	M1[1] M2[1]	2.47995000 GH -50.18 dBr 2.48350000 GH
SGL Count 100/100 ● 1Pk Max 10µdBm 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm	B dBm B dBm J J J J J J X-value []	۲-value	M1[1] M2[1]	2.47995000 GH -50.18 dBr 2.48350000 GH
SGL Count 100/100 10rk Max -10 dBm -20 dBm -40 dBm -50 dBm -60 dBm -70 dBm <td>8 dBm 8 dBm 2.47995 GHz 2.4835 GHz</td> <td>1001 pts 3.69 dbm -50.18 dbm</td> <td>M1[1] M2[1]</td> <td>2.47995000 GH -50.18 dBr 2.48350000 GH</td>	8 dBm 8 dBm 2.47995 GHz 2.4835 GHz	1001 pts 3.69 dbm -50.18 dbm	M1[1] M2[1]	2.47995000 GH -50.18 dBr 2.48350000 GH

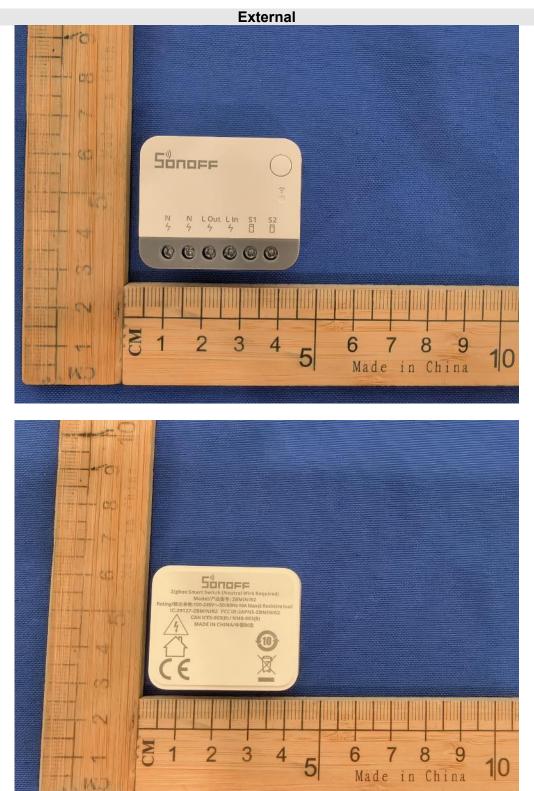
Conducted RF Spurious Emission

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	Zigbee	2405	Ant1	-53.58	-20	Pass
NVNT	Zigbee	2440	Ant1	-53.08	-20	Pass
NVNT	Zigbee	2480	Ant1	-53.48	-20	Pass

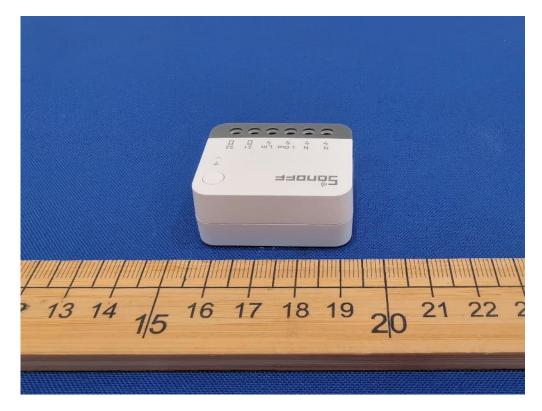


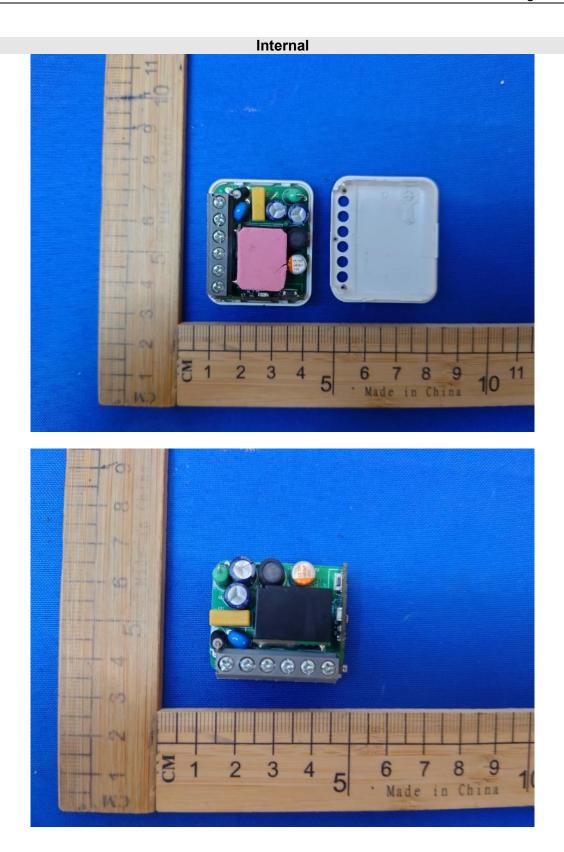

APPENDIX: PHOTOGRAPHS OF TEST CONFIGURATION

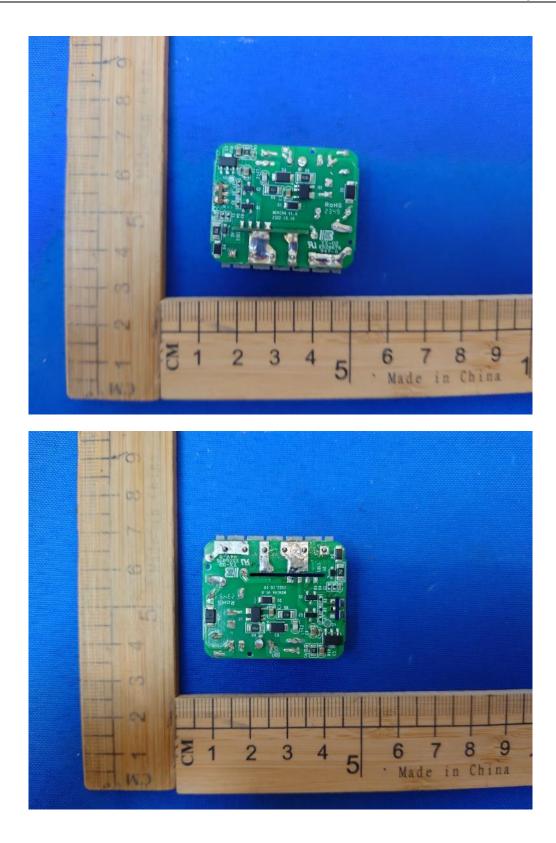
AC Power Line Conducted Emission

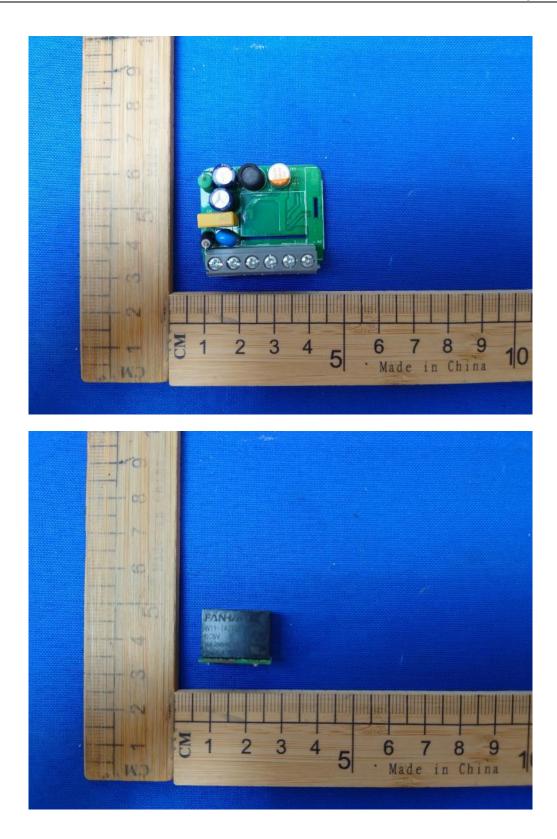


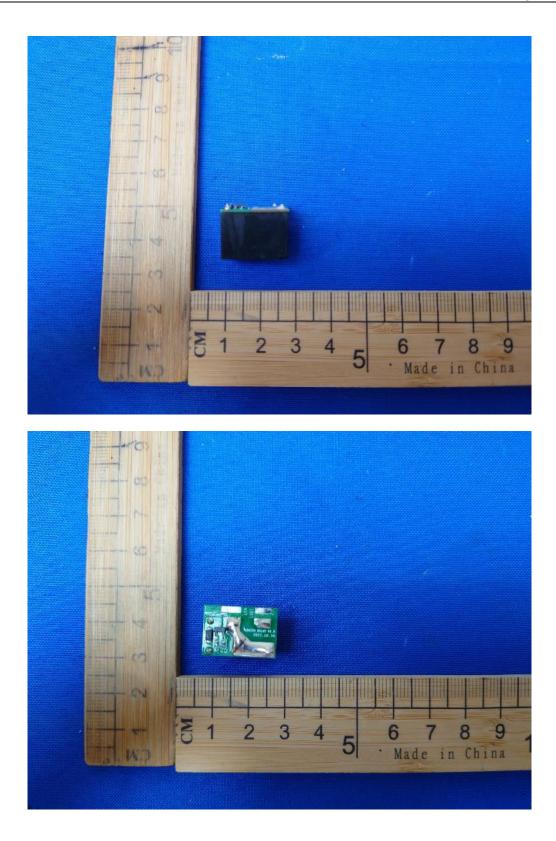
Radiated Band edge and Spurious Emission

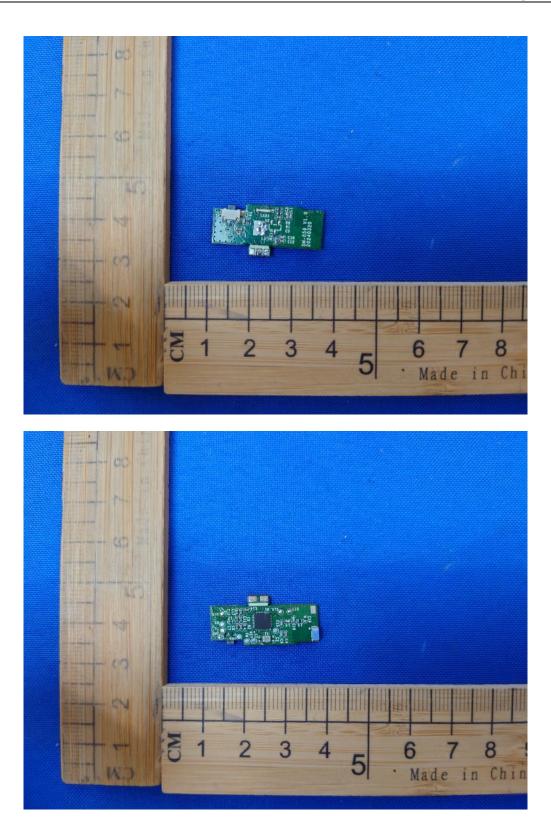

APPENDIX: PHOTOGRAPHS OF THE EUT

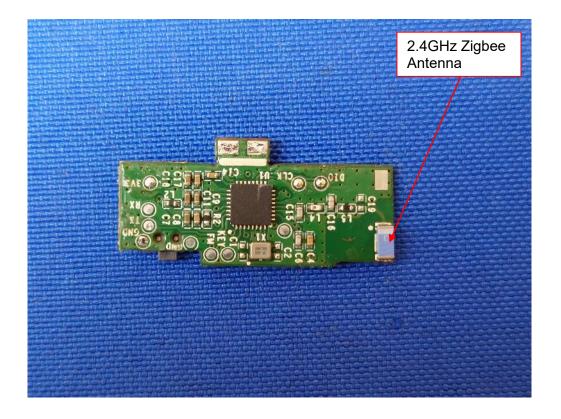





Global Testing , Great Quality.







END OF REPORT

TRF No.: 04-E001-0B

Global Testing , Great Quality.