

CTC Laboratories, Inc.

Room 101 Building B, No. 7, Langing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China

Tel: +86-755-27521059 Fax: +86-755-27521011 http://www.sz-ctc.org.cn

TEST REPORT

Report No. CTC20240774E09

FCC ID...... 2APN5-ECAM

Applicant----: Shenzhen Sonoff Technologies Co.,Ltd.

3F & 6F, Bldg A, No. 663, Bulong Rd, Shenzhen, Guangdong, Address-----:

China

Manufacturer-----: Shenzhen Sonoff Technologies Co.,Ltd.

3F & 6F, Bldg A, No. 663, Bulong Rd, Shenzhen, Guangdong, Address-----:

China

Wi-Fi Smart Security Camera Product Name·····:

Sonoff Sonoff Trade Mark·····:

Model/Type reference·····: E-CAM

Listed Model(s) ·····:

Standard----:: FCC CFR Title 47 Part 15 Subpart E Section 15.407

Date of receipt of test sample...: Mar. 15, 2024

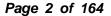
Date of testing..... Mar. 15, 2024 to May 9, 2024

Date of issue..... Jul. 17, 2024

PASS Result....:

Compiled by:

(Printed name+signature) Jim Jiang


Supervised by:

Approved by:

Jim Jiang Briczhang (Printed name+signature) Eric Zhang

(Printed name+signature) Totti Zhao

This test report may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by CTC. The test results in the report only apply to the tested sample. The test report shall be invalid without all the signatures of testing engineers, reviewer and approver. Any objections must be raised to CTC within 15 days since the date when the report is received. It will not be taken into consideration beyond this limit. The test report merely correspond to the test sample.

Table of Contents

Page

Report No.: CTC20240774E09

1. TE:	EST SUMMARY	
1.1.		
1.1. 1.2.	Test Standards	
1.3.	TEST DESCRIPTION	
1.4.	TEST FACILITY	
1.5.	Measurement Uncertainty	
1.6.	ENVIRONMENTAL CONDITIONS	5
2. GE	ENERAL INFORMATION	6
2.1.	CLIENT INFORMATION	
2.2.	GENERAL DESCRIPTION OF EUT	
2.3.	Accessory Equipment Information	
2.4.	OPERATION STATE	7
2.5.	MEASUREMENT INSTRUMENTS LIST	g
3. TE:	EST ITEM AND RESULTS	11
3.1.	CONDUCTED EMISSION	
3.2.	RADIATED EMISSION	
3.3.	Band Edge Emissions	
3.4.	Bandwidth Test	
3.5.	OUTPUT POWER TEST	146
3.6.	Power Spectral Density Test	149
3.7.	FREQUENCY STABILITY MEASUREMENT	153
3.8.	Antenna Requirement	158
2.0	DVNAMIC EDECLIENCY SCIECTION/DES)	150

Page 3 of 164

Report No.: CTC20240774E09

1. TEST SUMMARY

1.1. Test Standards

The tests were performed according to following standards:

<u>FCC Part 15, Subpart E(15.407)</u> — for 802.11a/n/ac, the test procedure follows the FCC KDB 789033 D02 General UNII Test Procedures New Rules V02r01.

RSS-247 Issue 3 — Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices

RSS-Gen — General Requirements for Compliance of Radio Apparatus

1.2. Report Version

Revised No.	Report No.	Date of issue	Description
01	CTC20240774E09	Jul. 17, 2024	Original

1.3. Test Description

FCC Part 15 Subpart E (15.407) / RSS-247 Issue 3							
Test Item	Test r	equire	Result	Test			
rest item	FCC IC		Result	Engineer			
Antenna Requirement	15.203	/	Pass	Jim Jiang			
Conducted Emission	15.207	RSS-Gen 8.8	Pass	Jim Jiang			
Band Edge Emissions	15.407(b)	RSS-247 6.2.1.2 RSS-247 6.2.2.2 RSS-247 6.2.4.2	Pass	Jim Jiang			
26dB Bandwidth & 99% Bandwidth	15.407(a) (5)	RSS-247 6.2.1.2	Pass	Jim Jiang			
6dB Bandwidth (only for UNII-3)	15.407(e)	RSS-247 6.2.4.1	Pass	Jim Jiang			
Peak Output Power	15.407(a)	RSS-247 6.2.1.1 RSS-247 6.2.4.1	Pass	Jim Jiang			
Power Spectral Density	15.407(a)	RSS-247 6.2	Pass	Jim Jiang			
Transmitter Radiated Spurious Emission	15.407(b) &15.209	RSS-Gen 8.9 RSS-247 6.2.1.2 RSS-247 6.2.4.2	Pass	Jim Jiang			
Frequency Stability	15.407(g)	/	Pass	Jim Jiang			
Dynamic Frequency Selection (DFS)	15.407(h)	RSS-247 6.3	N/A	N/A			

Note: "N/A" is not applicable.

The measurement uncertainty is not included in the test result.

Page 4 of 164

Report No.: CTC20240774E09

1.4. Test Facility

CTC Laboratories, Inc.

Add: Room 101 Building B, Room 107, 108, 207, 208, 303 Building A, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China (formerly 2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, High-Tech Park, Guanlan Sub-District, Longhua New District, Shenzhen, Guangdong, China)

Laboratory accreditation

The test facility is recognized, certified, or accredited by the following organizations:

A2LA-Lab Cert. No.: 4340.01

CTC Laboratories, Inc. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

Industry Canada (Registration No.: 9783A, CAB Identifier: CN0029)

CTC Laboratories, Inc. EMC Laboratory has been registered by Certification and Engineer Bureau of Indus try Canada for the performance of with Registration NO.: 9783A on Jan, 2016.

FCC (Registration No.: 951311, Designation Number CN1208)

CTC Laboratories, Inc. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained inour files. Registration 951311, Aug 26, 2017.

1.5. Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the CTC Laboratories, Inc. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Below is the best measurement capability for CTC Laboratories, Inc.

CTC Laboratories, Inc.

For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China: yz.cnca.cn

Notes Test Items Measurement Uncertainty Transmitter power conducted 0.42 dB (1) Transmitter power Radiated 2.14 dB (1) Conducted spurious emissions 9kHz~40GHz 1.60 dB (1) Radiated spurious emissions 9kHz~40GHz 2.20 dB (1) Conducted Emissions 9kHz~30MHz 3.20 dB (1) Radiated Emissions 30~1000MHz 4.70 dB (1) Radiated Emissions 1~18GHz 5.00 dB (1) Radiated Emissions 18~40GHz 5.54 dB (1) Occupied Bandwidth (1)

1.6. Environmental conditions

	Temperature	21°C~27°C
Normal Condition	Relative humidity	40%~60%
	Voltage	The equipment shall be the nominal voltage for which the equipment was designed.
Extreme Condition	Temperature	Measurements shall be made over the extremes of the operating temperature range as declared by the manufacturer
	Voltage	Measurements shall be made over the extremes of the operating temperature range as declared by the manufacturer

Normal Condition	T _N =Normal Temperature	25 °C
Evtrama Candition	T _L =Lower Temperature	-10 °C
Extreme Condition	T _H =Higher Temperature	45 °C

For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China: yz.cnca.cn

Note (1): This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Page 6 of 164

Report No.: CTC20240774E09

2. GENERAL INFORMATION

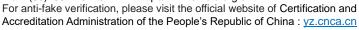

2.1. Client Information

Applicant:	Shenzhen Sonoff Technologies Co.,Ltd.
Address:	3F & 6F, Bldg A, No. 663, Bulong Rd, Shenzhen, Guangdong, China
Manufacturer:	Shenzhen Sonoff Technologies Co.,Ltd.
Address:	3F & 6F, Bldg A, No. 663, Bulong Rd, Shenzhen, Guangdong, China

2.2. General Description of EUT

Product Name:	Wi-Fi Smart Security Camera						
Trade Mark:	5°°)	Singer, Sonoff					
Model/Type reference:	E-CAM						
Listed Model(s):	/						
Model Differences:	/						
Power supply:	Input: 5V===2	A					
Hardware version:	V04						
Software version:	V1.6.8						
Technical index for 5G WIFI							
Operation Fraguency Bangas	U-NII-1:	5150MHz~52	50MHz				
Operation Frequency Range:	U-NII-3:	5725MHz~58	50MHz				
	802.11a	⊠ 20MHz					
Support bandwidth:	802.11n	⊠ 20MHz	⊠ 40MHz				
	802.11ac	⊠ 20MHz	⊠ 40MHz	⊠ 80MHz	☐ 160MHz		
Modulation:	802.11n: OFE	OM (BIT/SK, QP OM (BIT/SK, QP DM (BIT/SK, Q	SK, BPSK, 160	QAM, 64QAM)	, 256QAM)		
Bit Rate of Transmitter:	802.11n: up to	12/18/24/36/48/ o 300Mbps most 866.7 Mbp	•		·		
Antenna 1&2 type:	FPC Antenna						
Antenna 1 gain:	U-NII-1: 4.47dBi U-NII-3: 4.60dBi						
Antenna 2 gain:	U-NII-1: 4.94dBi U-NII-3: 4.08dBi						
Directional Gain:	U-NII-1: 7.720 U-NII-3: 7.350						

CTC Laboratories, Inc.


2.3. Accessory Equipment Information

Equipment Information							
Name Model S/N Manufacturer							
Notebook	ThinkPad T460s	/	Lenovo				
Cable Information							
Name	Shielded Type	Ferrite Core	Length				
USB Cable	Unshielded	NO	100cm				
Test Software Informat	Test Software Information						
Name Version / /							
adb tool	1	/	1				

2.4. Operation State

Operation Frequency List:

	20MHz Bandwidth		40MHz Bandwidth		80MHz Bandwidth	
Band (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
	36	6 5180 5400				
U-NII-1	40	5200	38	5190	42	5210
O-INII-1	44	5220	46	5230		
	48	5240				
	149	5745	151	5755		
	153	5765	151	3733		
U-NII-3	157	5785	159		155	5775
	161	5805		5795		
	165	5825				

Test channel is below:

Operating	Test	20MHz		40MHz		80MHz	
Band	Channel	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
	CH∟	36	5180	38	5190	/	/
U-NII-1	CH _M	40	5200	/	/	42	5210
	СНн	48	5240	46	5230	/	/
	CH∟	149	5745	151	5755	/	/
U-NII-3	CH _M	157	5785	/	/	155	5775
	СНн	165	5825	159	5795	/	/

Report No.: CTC20240774E09

Data Rated:

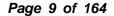
Preliminary tests were performed in different data rate, and found which the below bit rate is worst case mode, so only show data which it is a worst case mode.

Mode	Data rate (worst mode)
802.11a	6Mbps
802.11n(HT20)/ 802.11n(HT40)	HT-MCS0
802.11ac(VHT20)/ 802.11ac(VHT40)/ 802.11ac(VHT80)	VHT-MCS0

Test mode:

For RF test items

The engineering test program was provided and enabled to make EUT continuous transmit.

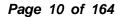

For AC power line conducted emissions:

The EUT was set to connect with the WLAN AP under large package sizes transmission.

For Radiated spurious emissions test item:

The engineering test program was provided and enabled to make EUT continuous transmit. The EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data Recorded in the report.

Tel.: (86)755-27521059



2.5. Measurement Instruments List

3.	. Tonscend RF Test System								
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated Until				
1	Spectrum Analyzer	R&S	FSV40-N	101331	Mar. 21, 2025				
2	Spectrum Analyzer	R&S	FSV40-N	101654	Aug. 07, 2024				
3	Spectrum Analyzer	R&S	FSU26	100105	Dec. 12, 2024				
4	MXA Signal Analyzer	Keysight	N9020A	MY46471737	Dec. 12, 2024				
5	MXA Signal Analyzer	Keysight	N9020A	MY52091402	Aug. 22, 2024				
6	MXG Vector Signal Generator	Agilent	N5182A	MY47420864	Dec. 12, 2024				
7	PSG Analog Signal Generator	Agilent	E8257D	MY46521908	Dec. 12, 2024				
8	EXG Analog Signal Generator	Keysight	N5173B	MY59100842	Dec. 12, 2024				
9	MXG Vector Signal Generator	Keysight	N5182B	MY59100212	Dec. 12, 2024				
10	USB Wideband Power Sensor	Keysight	U2021XA	MY55130004	Mar. 21, 2025				
11	USB Wideband Power Sensor	Keysight	U2021XA	MY55130006	Mar. 21, 2025				
12	Wideband Radio Communication Tester	R&S	CMW500	102257	May 25, 2024				
13	Wideband Radio Communication Tester	R&S	CMW500	102414	Dec. 12, 2024				
14	RF Control Unit	Tonscend	JS0806-2	/	Aug. 22, 2024				
15	High and low temperature test chamber	ESPEC	MT3035	/	Mar. 21, 2025				

Radiate	d Emission				
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated Until
1	Trilog-Broadband Antenna	Schwarzbeck	VULB 9163	01026	Dec. 18, 2024
2	Horn Antenna	Schwarzbeck	BBHA 9120D	9120D-647	Sep. 25, 2025
3	Test Receiver	Keysight	N9038A	MY56400071	Dec. 12, 2024
4	Broadband Amplifier	SCHWARZBECK	BBV9743B	259	Dec. 12, 2024
5	Mirowave Broadband Amplifier	SCHWARZBECK	BBV9718C	111	Dec. 12, 2024
6	3m chamber 3	YIHENG	EE106	/	Aug. 28, 2026
7	Test Software	FARA	EZ-EMC	FA-03A2	/

Conduc	Conducted Emission									
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated Until					
1	LISN	R&S	ENV216	101112	Dec. 12, 2024					
2	LISN	R&S	ENV216	101113	Dec. 12, 2024					
3	EMI Test Receiver	R&S	ESCS30	100353	Dec. 12, 2024					
4	ISN CAT6	Schwarzbeck	NTFM 8158	CAT6-8158-0046	Dec. 12, 2024					
5	ISN CAT5	Schwarzbeck	NTFM 8158	CAT5-8158-0046	Dec. 12, 2024					
6	Test Software	R&S	EMC32	6.10.10	/					

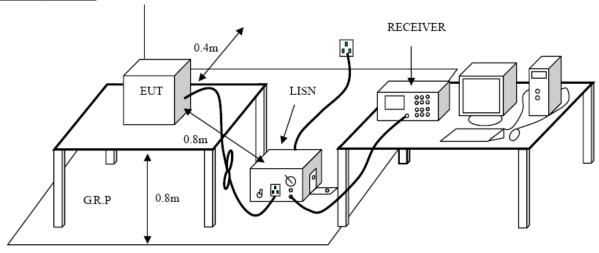
Note: 1. The Cal. Interval was one year.

- 2. The Cal. Interval was three years of the antenna.
- 3. The cable loss has been calculated in test result which connection between each test instruments.

Accreditation Administration of the People's Republic of China: yz.cnca.cn

3. TEST ITEM AND RESULTS

3.1. Conducted Emission


Limit

FCC CFR Title 47 Part 15 Subpart C Section 15.207/ RSS - Gen 8.8:

Fraguency range (MHz)	Limit (d	BuV)
Frequency range (MHz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

^{*} Decreases with the logarithm of the frequency.

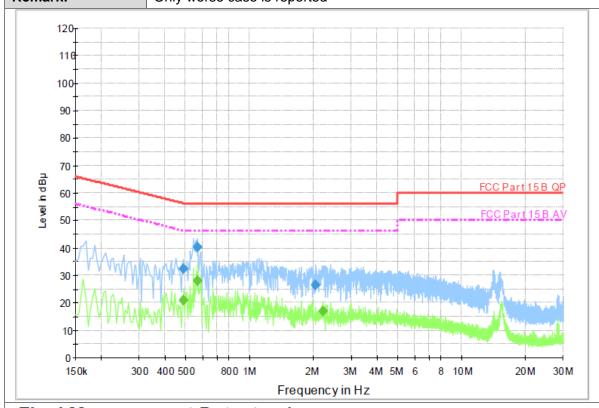
Test Configuration

Test Procedure

- 1. The EUT was setup according to ANSI C63.10:2013 requirements.
- 2. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.
- The EUT and simulators are connected to the main power through a line impedances stabilization 3. network (LISN). The LISN provides a 50 ohm /50uH coupling impedance for the measuring equipment.
 - The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs)
- Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was 4. individually connected through a LISN to the input power source.
- The excess length of the power cord between the EUT and the LISN receptacle were folded back and 5. forth at the center of the lead to form a bundle not exceeding 40 cm in length.
- Conducted Emissions were investigated over the frequency range from 0.15MHz to 30MHz using a 6. receiver bandwidth of 9 kHz.
- 7. During the above scans, the emissions were maximized by cable manipulation.

Test Mode

Please refer to the clause 2.4.


CTC Laboratories, Inc.

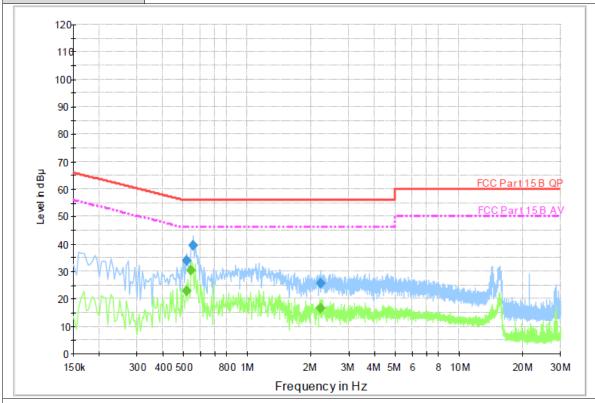
Test Results

Test Voltage:	AC 120V/60 Hz
Terminal:	Line
Remark:	Only worse case is reported

Report No.: CTC20240774E09

Final Measurement Detector 1

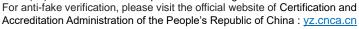
Frequency (MHz)	QuasiPeak (dBµ V)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµ V)	Comment
0.483000	32.4	1000.00	9.000	On	L1	9.5	23.9	56.3	
0.568500	40.4	1000.00	9.000	On	L1	9.5	15.6	56.0	
2.044500	26.4	1000.00	9.000	On	L1	9.5	29.6	56.0	


Final Measurement Detector 2

Frequency (MHz)	Average (dBµ V)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµ V)	Comment	
0.487500	21.0	1000.00	9.000	On	L1	9.5	25.2	46.2		
0.568500	28.1	1000.00	9.000	On	L1	9.5	17.9	46.0	·	
2.197500	16.9	1000.00	9.000	On	L1	9.5	29.1	46.0		

Emission Level = Read Level + Correct Factor

Test Voltage: AC 120V/60 Hz
Terminal: Neutral
Remark: Only worse case is reported


Final Measurement Detector 1

Frequency (MHz)	QuasiPeak (dBµ V)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµ V)	Comment
0.514500	33.9	1000.00	9.000	On	N	9.4	22.1	56.0	
0.555000	39.6	1000.00	9.000	On	N	9.4	16.4	56.0	
2.215500	25.7	1000.00	9.000	On	N	9.4	30.3	56.0	

Final Measurement Detector 2

Frequency (MHz)	Average (dBµ V)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµ V)	Comment
0.514500	22.9	1000.00	9.000	On	N	9.4	23.1	46.0	
0.541500	30.2	1000.00	9.000	On	N	9.4	15.8	46.0	
2.215500	16.7	1000.00	9.000	On	N	9.4	29.3	46.0	

Emission Level = Read Level + Correct Factor

3.2. Radiated Emission

Limit

FCC CFR Title 47 Part 15 Subpart C Section 15.209/ RSS-Gen 8.9

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009~0.490	2400/F (kHz)	300
0.490~1.705	24000/F (kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

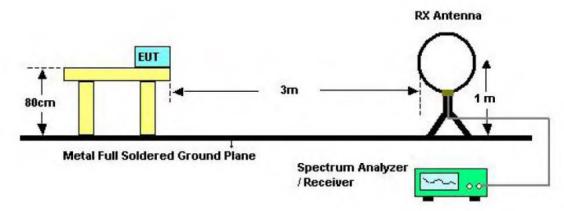
Fraguescy Dange (MIII)	dBµV/m	(at 3 meters)
Frequency Range (MHz)	Peak Average	
Above 1000	74	54

Note:

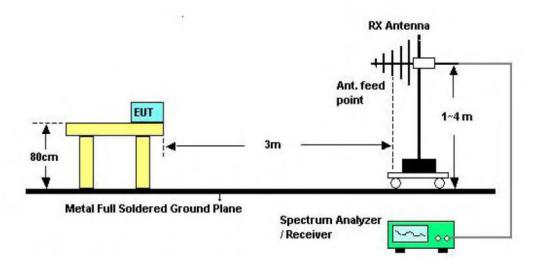
- (1) The tighter limit applies at the band edges.
- (2) Emission Level (dBuV/m)= 20log Emission Level (uV/m).

Limits of unwanted emission out of the restricted bands

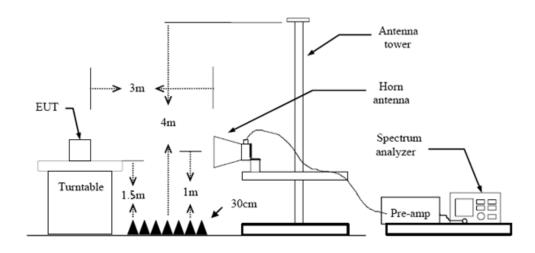
FCC CFR Title 47 Part 15 Subpart C Section 15.407(b)/ RSS-247 6.2.1.2 & RSS-247 6.2.4.2


Frequency (MHz)	EIRP Limits (dBm)	Equivalent Field Strength at 3m (dBuV/m)		
5150~5250	-27	68.2		
5250~5350	-27	68.2		
5470~5725	-27	68.2		
	-27(Note 2)	68.2		
5725~5825	10(Note 2)	105.2		
3723~3623	15.6(Note 2)	110.8		
	27(Note 2)	122.2		

Note: 1. The following formula is used to convert the equipment isotropic radiated power (eirp) to field uV/m, where P is the eirp (Watts)


2. According to FCC 16-24, All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27dBm/MHz at the band edge.

CTC Laboratories, Inc. Room 101 Building B, No. 7, Langing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059


For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China: yz.cnca.cn

Below 30MHz Test Setup

Below 1000MHz Test Setup



Above 1GHz Test Setup

Test Procedure

- 1. The EUT was setup and tested according to ANSI C63.10:2013
- 2. The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz, and 1.5 m for above 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level.

CTC Laboratories, Inc.

3. The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower.

Report No.: CTC20240774E09

- 4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 5. Set to the maximum power setting and enable the EUT transmit continuously.
- 6. Use the following spectrum analyzer settings
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) 9k 150kHz:

RBW=300 Hz, VBW=1 kHz, Sweep=auto, Detector function=peak, Trace=max hold

(3) 0.15M - 30MHz:

RBW=10 kHz, VBW=30 kHz, Sweep=auto, Detector function=peak, Trace=max hold

(4) 30M - 1 GHz:

RBW=120 kHz, VBW=300 kHz, Sweep=auto, Detector function=peak, Trace=max hold

If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

(5) From 1 GHz to 10th harmonic:

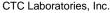
RBW=1MHz, VBW=3MHz Peak detector for Peak value.

RBW=1MHz, VBW see note 1 with Peak Detector for Average Value.

Note 1: For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause 3.8 Duty Cycle.

Test Mode

Please refer to the clause 2.4.

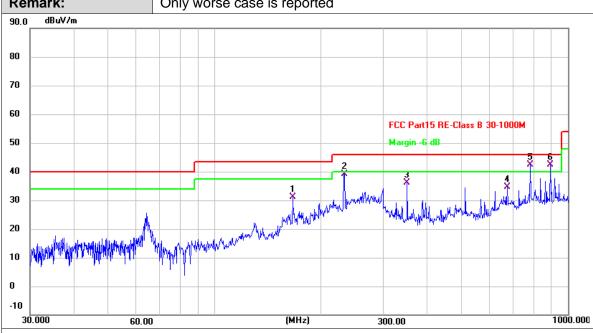

Test Result

9 KHz~30 MHz

From 9 KHz to 30 MHz: Conclusion: PASS

Note:

- 1. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.
- 2. Pre-scan all antenna, only show the test data for worse case antenna on the test report.



Ant No.: ANT1 Ant. Pol. Horizontal

Report No.: CTC20240774E09

Test Mode: TX 802.11a Mode 5180MHz (U-NII-1)

Remark: Only worse case is reported

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	166.0680	51.56	-20.48	31.08	43.50	-12.42	QP
2	233.3486	55.78	-16.72	39.06	46.00	-6.94	QP
3	350.4767	49.46	-13.34	36.12	46.00	-9.88	QP
4	672.8443	41.92	-7.32	34.60	46.00	-11.40	QP
5 *	782.3452	48.04	-5.59	42.45	46.00	-3.55	QP
6 !	890.7277	46.44	-4.15	42.29	46.00	-3.71	QP

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

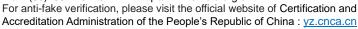
1000.000

Ant No.: ANT1 Ant. Pol. Vertical **Test Mode:** TX 802.11a Mode 5180MHz (U-NII-1) Remark: Only worse case is reported dBuV/m 90.0 80 70 60 FCC Part15 RE-Class B 30-1000M 50 Margin -6 dB 40 30 20 10 0

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	159.7844	51.86	-20.76	31.10	43.50	-12.40	QP
2	233.3487	50.38	-16.72	33.66	46.00	-12.34	QP
3	297.2240	48.10	-15.14	32.96	46.00	-13.04	QP
4	511.8352	49.25	-10.28	38.97	46.00	-7.03	QP
5	782.3453	44.24	-5.59	38.65	46.00	-7.35	QP
6 *	890.7277	46.75	-4.15	42.60	46.00	-3.40	QP

(MHz)

300.00


Remarks:

-10 30.000

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

60.00

Above 1GHz

Ant No.:	ANT1
Ant. Pol.:	Horizontal
Test Mode:	TX 802.11a Mode 5180MHz (U-NII-1)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

Report No.: CTC20240774E09

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	4732.583	41.80	1.86	43.66	74.00	-30.34	peak
2	6612.583	39.42	7.60	47.02	74.00	-26.98	peak
3	8030.417	39.25	10.79	50.04	74.00	-23.96	peak
4	9193.667	39.12	12.34	51.46	74.00	-22.54	peak
5	10776.000	38.98	14.41	53.39	74.00	-20.61	peak
6 *	12491.500	37.93	15.76	53.69	74.00	-20.31	peak

Remarks:

- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

Ant No.:	ANT1		
Ant. Pol.:	Vertical		
Test Mode:	TX 802.11a Mode 5180MHz (U-NII-1)		
Remark:	No report for the emission which more than 20 dB below the prescribed limit.		

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	1497.417	49.84	-6.88	42.96	74.00	-31.04	peak
2	3917.917	41.55	0.22	41.77	74.00	-32.23	peak
3	7247.083	39.31	10.04	49.35	74.00	-24.65	peak
4	9499.167	38.67	12.58	51.25	74.00	-22.75	peak
5	11253.833	38.69	14.79	53.48	74.00	-20.52	peak
6 *	12370.083	38.21	15.52	53.73	74.00	-20.27	peak

Remarks:

- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

Ant No.:	ANT1		
Ant. Pol.:	Horizontal		
Test Mode:	TX 802.11a Mode 5200MHz (U-NII-1)		
Remark:	No report for the emission which more than 20 dB below the prescribed limit.		

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	1501.333	47.87	-6.88	40.99	74.00	-33.01	peak
2	6436.333	39.58	7.16	46.74	74.00	-27.26	peak
3	7944.250	39.12	10.74	49.86	74.00	-24.14	peak
4	9189.750	38.95	12.33	51.28	74.00	-22.72	peak
5	11155.917	38.65	14.74	53.39	74.00	-20.61	peak
6 *	12385.750	38.09	15.52	53.61	74.00	-20.39	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant No.:	ANT1			
Ant. Pol.:	Vertical			
Test Mode:	TX 802.11a Mode 5200MHz (U-NII-1)			
Remark:	No report for the emission which more than 20 dB below the prescribed limit.			

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	1497.417	52.48	-6.88	45.60	74.00	-28.40	peak
2	3968.833	41.78	0.42	42.20	74.00	-31.80	peak
3	6373.667	39.06	6.96	46.02	74.00	-27.98	peak
4	7995.167	38.90	10.86	49.76	74.00	-24.24	peak
5	9178.000	40.46	12.30	52.76	74.00	-21.24	peak
6 *	12233.000	38.08	15.69	53.77	74.00	-20.23	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

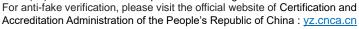
For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China: yz.cnca.cn

Ant No.:	ANT1			
Ant. Pol.:	Horizontal			
Test Mode:	TX 802.11a Mode 5240MHz (U-NII-1)			
Remark:	No report for the emission which more than 20 dB below the prescribed limit.			

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	4458.417	40.43	1.27	41.70	74.00	-32.30	peak
2	5985.917	39.42	5.60	45.02	74.00	-28.98	peak
3	7262.750	39.29	10.05	49.34	74.00	-24.66	peak
4	9213.250	38.66	12.38	51.04	74.00	-22.96	peak
5 *	10885.667	38.93	14.55	53.48	74.00	-20.52	peak
6	12135.083	37.76	15.63	53.39	74.00	-20.61	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor


2.Margin value = Level -Limit value

Ant No.:	ANT1
Ant. Pol.:	Vertical
Test Mode:	TX 802.11a Mode 5240MHz (U-NII-1)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	1501.333	54.20	-6.88	47.32	74.00	-26.68	peak
2	4650.333	41.01	1.70	42.71	74.00	-31.29	peak
3	7967.750	39.67	10.80	50.47	74.00	-23.53	peak
4	9201.500	39.75	12.37	52.12	74.00	-21.88	peak
5 *	11179.417	38.94	14.75	53.69	74.00	-20.31	peak
6	12605.083	37.44	16.09	53.53	74.00	-20.47	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant No.:	ANT1 + ANT2
Ant. Pol.:	Horizontal
Test Mode:	TX 802.11n(HT20) Mode 5180MHz (U-NII-1)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	1195.833	51.05	-7.73	43.32	74.00	-30.68	peak
2	5809.667	39.52	4.96	44.48	74.00	-29.52	peak
3	7282.333	39.35	10.05	49.40	74.00	-24.60	peak
4	9228.917	39.24	12.39	51.63	74.00	-22.37	peak
5	11183.333	38.38	14.75	53.13	74.00	-20.87	peak
6 *	12428.833	38.08	15.58	53.66	74.00	-20.34	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant No.:	ANT1 + ANT2
Ant. Pol.:	Vertical
Test Mode: TX 802.11n(HT20) Mode 5180MHz (U-NII-1)	
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	1493.500	50.08	-6.88	43.20	74.00	-30.80	peak
2	5974.167	40.41	5.56	45.97	74.00	-28.03	peak
3	7207.917	38.67	10.02	48.69	74.00	-25.31	peak
4	9131.000	38.78	12.14	50.92	74.00	-23.08	peak
5 *	10940.500	38.85	14.61	53.46	74.00	-20.54	peak
6	12244.750	37.70	15.67	53.37	74.00	-20.63	peak

Remarks:

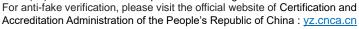
1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant No.:	ANT1 + ANT2
Ant. Pol.:	Horizontal
Test Mode:	TX 802.11n(HT20) Mode 5200MHz (U-NII-1)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	1497.417	50.17	-6.88	43.29	74.00	-30.71	peak
2	3957.083	41.42	0.37	41.79	74.00	-32.21	peak
3	6436.333	38.68	7.16	45.84	74.00	-28.16	peak
4	8003.000	40.47	10.86	51.33	74.00	-22.67	peak
5	10521.417	38.88	13.96	52.84	74.00	-21.16	peak
6 *	12389.667	38.23	15.51	53.74	74.00	-20.26	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor


2.Margin value = Level -Limit value

Ant No.:	ANT1 + ANT2		
Ant. Pol.:	Vertical		
Test Mode: TX 802.11n(HT20) Mode 5200MHz (U-NII-1)			
Remark:	No report for the emission which more than 20 dB below the prescribed limit.		

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	1497.417	49.86	-6.88	42.98	74.00	-31.02	peak
2	4991.083	41.01	2.25	43.26	74.00	-30.74	peak
3	6463.750	40.35	7.23	47.58	74.00	-26.42	peak
4	8441.667	39.16	10.62	49.78	74.00	-24.22	peak
5	11363.500	38.56	14.84	53.40	74.00	-20.60	peak
6 *	12225.167	37.87	15.69	53.56	74.00	-20.44	peak

Remarks:

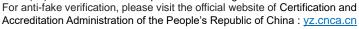
1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant No.:	ANT1 + ANT2		
Ant. Pol.:	Horizontal		
Test Mode: TX 802.11n(HT20) Mode 5240MHz (U-NII-1)			
Remark:	No report for the emission which more than 20 dB below the prescribed limit.		

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	1497.417	50.74	-6.88	43.86	74.00	-30.14	peak
2	5042.000	41.06	2.39	43.45	74.00	-30.55	peak
3	7207.917	39.15	10.02	49.17	74.00	-24.83	peak
4	8414.250	40.31	10.56	50.87	74.00	-23.13	peak
5	9914.333	39.21	13.08	52.29	74.00	-21.71	peak
6 *	11586.750	38.48	15.10	53.58	74.00	-20.42	peak

Remarks:

1. Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor


2.Margin value = Level -Limit value

Ant No.:	ANT1 + ANT2		
Ant. Pol.:	Vertical		
Test Mode: TX 802.11n(HT20) Mode 5240MHz (U-NII-1)			
Remark:	No report for the emission which more than 20 dB below the prescribed limit.		

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	1497.417	53.80	-6.88	46.92	74.00	-27.08	peak
2	3890.500	41.21	0.11	41.32	74.00	-32.68	peak
3	5993.750	40.80	5.63	46.43	74.00	-27.57	peak
4	8367.250	40.15	10.51	50.66	74.00	-23.34	peak
5	9651.917	38.37	12.69	51.06	74.00	-22.94	peak
6 *	11641.583	38.36	15.12	53.48	74.00	-20.52	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant No.:	ANT1 + ANT2
Ant. Pol.:	Horizontal
Test Mode:	TX 802.11ac(VHT20) Mode 5180MHz (U-NII-1)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	1497.417	48.83	-6.88	41.95	74.00	-32.05	peak
2	6475.500	39.33	7.26	46.59	74.00	-27.41	peak
3	7909.000	39.17	10.67	49.84	74.00	-24.16	peak
4	9475.667	38.89	12.57	51.46	74.00	-22.54	peak
5	11132.417	38.03	14.73	52.76	74.00	-21.24	peak
6 *	12244.750	37.81	15.67	53.48	74.00	-20.52	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant No.:	ANT1 + ANT2
Ant. Pol.:	Vertical
Test Mode:	TX 802.11ac(VHT20) Mode 5180MHz (U-NII-1)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	1497.417	50.29	-6.88	43.41	74.00	-30.59	peak
2	5171.250	40.35	2.78	43.13	74.00	-30.87	peak
3	7207.917	38.08	10.02	48.10	74.00	-25.90	peak
4	9886.917	39.27	13.04	52.31	74.00	-21.69	peak
5 *	10756.417	39.21	14.36	53.57	74.00	-20.43	peak
6	12452.333	37.87	15.65	53.52	74.00	-20.48	peak

Remarks:

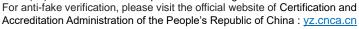
1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant No.:	ANT1 + ANT2
Ant. Pol.:	Horizontal
Test Mode:	TX 802.11ac(VHT20) Mode 5200MHz (U-NII-1)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	1497.417	52.92	-6.88	46.04	74.00	-27.96	peak
2	4293.917	40.71	0.91	41.62	74.00	-32.38	peak
3	6440.250	40.29	7.17	47.46	74.00	-26.54	peak
4	8006.917	40.84	10.85	51.69	74.00	-22.31	peak
5	9722.417	38.75	12.81	51.56	74.00	-22.44	peak
6 *	11183.333	39.00	14.75	53.75	74.00	-20.25	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor


2.Margin value = Level -Limit value

Ant No.:	ANT1 + ANT2
Ant. Pol.:	Vertical
Test Mode:	TX 802.11ac(VHT20) Mode 5200MHz (U-NII-1)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	1195.833	50.16	-7.73	42.43	74.00	-31.57	peak
2	3917.917	41.39	0.22	41.61	74.00	-32.39	peak
3	5159.500	41.15	2.76	43.91	74.00	-30.09	peak
4	7924.667	40.22	10.71	50.93	74.00	-23.07	peak
5	10427.417	39.56	13.90	53.46	74.00	-20.54	peak
6 *	12440.583	38.14	15.61	53.75	74.00	-20.25	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant No.:	ANT1 + ANT2
Ant. Pol.:	Horizontal
Test Mode:	TX 802.11ac(VHT20) Mode 5240MHz (U-NII-1)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	1195.833	52.14	-7.73	44.41	74.00	-29.59	peak
2	5555.083	40.63	3.95	44.58	74.00	-29.42	peak
3	7274.500	40.44	10.05	50.49	74.00	-23.51	peak
4	9373.833	39.19	12.52	51.71	74.00	-22.29	peak
5	11108.917	38.32	14.72	53.04	74.00	-20.96	peak
6 *	12440.583	37.86	15.61	53.47	74.00	-20.53	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant No.:	ANT1 + ANT2
Ant. Pol.:	Vertical
Test Mode:	TX 802.11ac(VHT20) Mode 5240MHz (U-NII-1)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	1493.500	51.15	-6.88	44.27	74.00	-29.73	peak
2	4004.083	40.57	0.54	41.11	74.00	-32.89	peak
3	5876.250	39.92	5.20	45.12	74.00	-28.88	peak
4	7697.500	39.55	10.24	49.79	74.00	-24.21	peak
5	9283.750	38.75	12.44	51.19	74.00	-22.81	peak
6 *	11300.833	38.91	14.81	53.72	74.00	-20.28	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

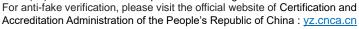
For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China: yz.cnca.cn

Ant No.:	ANT1 + ANT2
Ant. Pol.:	Horizontal
Test Mode:	TX 802.11n(HT40) Mode 5190MHz (U-NII-1)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	1493.500	50.86	-6.88	43.98	74.00	-30.02	peak
2	5128.167	40.96	2.66	43.62	74.00	-30.38	peak
3	8003.000	39.46	10.86	50.32	74.00	-23.68	peak
4	9307.250	39.95	12.46	52.41	74.00	-21.59	peak
5	10920.917	38.89	14.58	53.47	74.00	-20.53	peak
6 *	12385.750	38.11	15.52	53.63	74.00	-20.37	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor


2.Margin value = Level -Limit value

Ant No.:	ANT1 + ANT2
Ant. Pol.:	Vertical
Test Mode:	TX 802.11n(HT40) Mode 5190MHz (U-NII-1)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	1497.417	50.13	-6.88	43.25	74.00	-30.75	peak
2	3921.833	41.16	0.24	41.40	74.00	-32.60	peak
3	7153.083	38.93	9.77	48.70	74.00	-25.30	peak
4	9185.833	38.48	12.31	50.79	74.00	-23.21	peak
5	10830.833	38.97	14.50	53.47	74.00	-20.53	peak
6 *	11770.833	38.56	15.10	53.66	74.00	-20.34	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant No.:	ANT1 + ANT2
Ant. Pol.:	Horizontal
Test Mode:	TX 802.11n(HT40) Mode 5230MHz (U-NII-1)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	1497.417	53.90	-6.88	47.02	74.00	-26.98	peak
2	3890.500	41.71	0.11	41.82	74.00	-32.18	peak
3	7168.750	39.24	9.85	49.09	74.00	-24.91	peak
4	8261.500	39.65	10.41	50.06	74.00	-23.94	peak
5	10834.750	38.97	14.50	53.47	74.00	-20.53	peak
6 *	12558.083	37.54	15.95	53.49	74.00	-20.51	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant No.:	ANT1 + ANT2
Ant. Pol.:	Vertical
Test Mode:	TX 802.11n(HT40) Mode 5230MHz (U-NII-1)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	1493.500	51.85	-6.88	44.97	74.00	-29.03	peak
2	3917.917	43.13	0.22	43.35	74.00	-30.65	peak
3	7215.750	40.10	10.03	50.13	74.00	-23.87	peak
4	9659.750	38.76	12.70	51.46	74.00	-22.54	peak
5	10478.333	38.72	13.93	52.65	74.00	-21.35	peak
6 *	11676.833	38.48	15.12	53.60	74.00	-20.40	peak

Remarks:

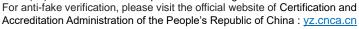
1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant No.:	ANT1 + ANT2
Ant. Pol.:	Horizontal
Test Mode:	TX 802.11ac(VHT40) Mode 5190MHz (U-NII-1)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	1493.500	49.91	-6.88	43.03	74.00	-30.97	peak
2	3902.250	41.86	0.16	42.02	74.00	-31.98	peak
3	7348.917	38.92	10.08	49.00	74.00	-25.00	peak
4	9197.583	39.13	12.35	51.48	74.00	-22.52	peak
5	10725.083	39.08	14.31	53.39	74.00	-20.61	peak
6 *	12119.417	38.05	15.61	53.66	74.00	-20.34	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor


2.Margin value = Level -Limit value

Ant No.:	ANT1 + ANT2
Ant. Pol.:	Vertical
Test Mode:	TX 802.11ac(VHT40) Mode 5190MHz (U-NII-1)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	1497.417	51.13	-6.88	44.25	74.00	-29.75	peak
2	4501.500	41.11	1.37	42.48	74.00	-31.52	peak
3	8018.667	40.17	10.81	50.98	74.00	-23.02	peak
4	9166.250	39.73	12.26	51.99	74.00	-22.01	peak
5	10494.000	38.75	13.94	52.69	74.00	-21.31	peak
6 *	11712.083	38.43	15.12	53.55	74.00	-20.45	peak

Remarks:

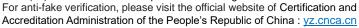
1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant No.:	ANT1 + ANT2
Ant. Pol.:	Horizontal
Test Mode:	TX 802.11ac(VHT40) Mode 5230MHz (U-NII-1)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	4019.750	40.74	0.56	41.30	74.00	-32.70	peak
2	5559.000	40.63	3.96	44.59	74.00	-29.41	peak
3	7282.333	38.56	10.05	48.61	74.00	-25.39	peak
4	9307.250	39.26	12.46	51.72	74.00	-22.28	peak
5	10866.083	38.89	14.52	53.41	74.00	-20.59	peak
6 *	11954.917	38.35	15.37	53.72	74.00	-20.28	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor


2.Margin value = Level -Limit value

Ant No.:	ANT1 + ANT2
Ant. Pol.:	Vertical
Test Mode:	TX 802.11ac(VHT40) Mode 5230MHz (U-NII-1)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	1497.417	53.21	-6.88	46.33	74.00	-27.67	peak
2	4720.833	41.20	1.84	43.04	74.00	-30.96	peak
3	7200.083	39.78	10.02	49.80	74.00	-24.20	peak
4	9240.667	38.98	12.40	51.38	74.00	-22.62	peak
5 *	11175.500	38.95	14.75	53.70	74.00	-20.30	peak
6	12295.667	37.89	15.62	53.51	74.00	-20.49	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant No.:	ANT1 + ANT2
Ant. Pol.:	Horizontal
Test Mode:	TX 802.11ac(VHT80) Mode 5210MHz (U-NII-1)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	1493.500	50.56	-6.88	43.68	74.00	-30.32	peak
2	7196.167	39.86	10.00	49.86	74.00	-24.14	peak
3	8285.000	40.52	10.43	50.95	74.00	-23.05	peak
4	9804.667	38.98	12.94	51.92	74.00	-22.08	peak
5	11332.167	38.62	14.82	53.44	74.00	-20.56	peak
6 *	12503.250	37.88	15.78	53.66	74.00	-20.34	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant No.:	ANT1 + ANT2
Ant. Pol.:	Vertical
Test Mode:	TX 802.11ac(VHT80) Mode 5210MHz (U-NII-1)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	1199.750	51.37	-7.71	43.66	74.00	-30.34	peak
2	5120.333	40.19	2.63	42.82	74.00	-31.18	peak
3	7807.167	39.81	10.43	50.24	74.00	-23.76	peak
4	9154.500	39.07	12.22	51.29	74.00	-22.71	peak
5	10913.083	38.67	14.58	53.25	74.00	-20.75	peak
6 *	12330.917	38.07	15.57	53.64	74.00	-20.36	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

CTC Laboratories, Inc.

Ant No.:	ANT1
Ant. Pol.:	Horizontal
Test Mode:	TX 802.11a Mode 5745MHz (U-NII-3)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	1497.417	53.59	-6.88	46.71	74.00	-27.29	peak
2	5641.250	41.73	4.28	46.01	74.00	-27.99	peak
3	7721.000	38.32	10.28	48.60	74.00	-25.40	peak
4	9193.667	38.90	12.34	51.24	74.00	-22.76	peak
5	10870.000	38.37	14.52	52.89	74.00	-21.11	peak
6 *	12522.833	37.77	15.84	53.61	74.00	-20.39	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant No.:	ANT1		
Ant. Pol.:	Vertical		
Test Mode: TX 802.11a Mode 5745MHz (U-NII-3)			
Remark:	No report for the emission which more than 20 dB below the prescribed limit.		

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	4297.833	41.50	0.93	42.43	74.00	-31.57	peak
2	5700.000	39.94	4.52	44.46	74.00	-29.54	peak
3	7098.250	39.46	9.47	48.93	74.00	-25.07	peak
4	8821.583	40.02	11.43	51.45	74.00	-22.55	peak
5 *	10858.250	39.02	14.52	53.54	74.00	-20.46	peak
6	12452.333	37.86	15.65	53.51	74.00	-20.49	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

CTC Laboratories, Inc.

Ant No.:	ANT1
Ant. Pol.:	Horizontal
Test Mode: TX 802.11a Mode 5785MHz (U-NII-3)	
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	1070.500	51.62	-8.14	43.48	74.00	-30.52	peak
2	4748.250	41.26	1.89	43.15	74.00	-30.85	peak
3	6424.583	39.51	7.13	46.64	74.00	-27.36	peak
4	7627.000	39.09	10.11	49.20	74.00	-24.80	peak
5	9138.833	39.22	12.16	51.38	74.00	-22.62	peak
6 *	11390.917	38.78	14.85	53.63	74.00	-20.37	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant No.:	ANT1
Ant. Pol.:	Vertical
Test Mode:	TX 802.11a Mode 5785MHz (U-NII-3)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	1501.333	50.85	-6.88	43.97	74.00	-30.03	peak
2	4810.917	40.97	2.00	42.97	74.00	-31.03	peak
3	6408.917	39.54	7.09	46.63	74.00	-27.37	peak
4	8093.083	39.81	10.63	50.44	74.00	-23.56	peak
5	9734.167	39.94	12.82	52.76	74.00	-21.24	peak
6 *	11625.917	38.56	15.12	53.68	74.00	-20.32	peak

Remarks:

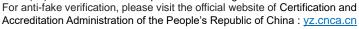
1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant No.:	ANT1
Ant. Pol.:	Horizontal
Test Mode:	TX 802.11a Mode 5825MHz (U-NII-3)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	1505.250	48.67	-6.89	41.78	74.00	-32.22	peak
2	3843.500	41.55	-0.07	41.48	74.00	-32.52	peak
3	6444.167	39.69	7.18	46.87	74.00	-27.13	peak
4	7932.500	39.71	10.71	50.42	74.00	-23.58	peak
5	11081.500	38.27	14.71	52.98	74.00	-21.02	peak
6 *	12550.250	37.42	15.94	53.36	74.00	-20.64	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor


2.Margin value = Level -Limit value

Ant No.:	ANT1
Ant. Pol.:	Vertical
Test Mode:	TX 802.11a Mode 5825MHz (U-NII-3)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	1497.417	54.34	-6.88	47.46	74.00	-26.54	peak
2	4803.083	41.17	1.99	43.16	74.00	-30.84	peak
3	7227.500	40.39	10.03	50.42	74.00	-23.58	peak
4	8715.833	39.55	11.25	50.80	74.00	-23.20	peak
5 *	11567.167	38.56	15.07	53.63	74.00	-20.37	peak
6	12558.083	37.65	15.95	53.60	74.00	-20.40	peak

Remarks:

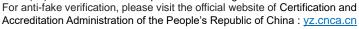
1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant No.:	ANT1 + ANT2		
Ant. Pol.:	Horizontal		
Test Mode: TX 802.11n(HT20) Mode 5745MHz (U-NII-3)			
Remark:	No report for the emission which more than 20 dB below the prescribed limit.		

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	1199.750	54.58	-7.71	46.87	74.00	-27.13	peak
2	5179.083	40.59	2.82	43.41	74.00	-30.59	peak
3	7215.750	40.63	10.03	50.66	74.00	-23.34	peak
4	9095.750	39.72	12.01	51.73	74.00	-22.27	peak
5 *	10713.333	39.12	14.28	53.40	74.00	-20.60	peak
6	12025.417	37.79	15.48	53.27	74.00	-20.73	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor


2.Margin value = Level -Limit value

Ant No.:	ANT1 + ANT2		
Ant. Pol.:	Vertical		
Test Mode: TX 802.11n(HT20) Mode 5745MHz (U-NII-3)			
Remark:	No report for the emission which more than 20 dB below the prescribed limit.		

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	1497.417	50.10	-6.88	43.22	74.00	-30.78	peak
2	6405.000	39.14	7.08	46.22	74.00	-27.78	peak
3	7728.833	39.46	10.29	49.75	74.00	-24.25	peak
4	9205.417	38.42	12.37	50.79	74.00	-23.21	peak
5 *	10909.167	39.17	14.57	53.74	74.00	-20.26	peak
6	12150.750	38.00	15.66	53.66	74.00	-20.34	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant No.:	ANT1 + ANT2
Ant. Pol.:	Horizontal
Test Mode:	TX 802.11n(HT20) Mode 5785MHz (U-NII-3)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	4395.750	41.11	1.11	42.22	74.00	-31.78	peak
2	6495.083	39.16	7.31	46.47	74.00	-27.53	peak
3	7764.083	39.76	10.36	50.12	74.00	-23.88	peak
4	8739.333	40.28	11.29	51.57	74.00	-22.43	peak
5	10262.917	39.22	13.67	52.89	74.00	-21.11	peak
6 *	12233.000	37.79	15.69	53.48	74.00	-20.52	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant No.:	ANT1 + ANT2
Ant. Pol.:	Vertical
Test Mode:	TX 802.11n(HT20) Mode 5785MHz (U-NII-3)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	1497.417	53.26	-6.88	46.38	74.00	-27.62	peak
2	4027.583	41.47	0.57	42.04	74.00	-31.96	peak
3	5739.167	40.24	4.68	44.92	74.00	-29.08	peak
4	8034.333	40.98	10.78	51.76	74.00	-22.24	peak
5 *	10697.667	39.48	14.25	53.73	74.00	-20.27	peak
6	12526.750	37.62	15.85	53.47	74.00	-20.53	peak

Remarks:

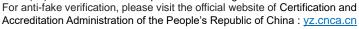
1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant No.:	ANT1 + ANT2
Ant. Pol.:	Horizontal
Test Mode:	TX 802.11n(HT20) Mode 5825MHz (U-NII-3)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	1195.833	52.75	-7.73	45.02	74.00	-28.98	peak
2	5257.417	40.83	3.02	43.85	74.00	-30.15	peak
3	6346.250	39.14	6.85	45.99	74.00	-28.01	peak
4	8061.750	39.88	10.71	50.59	74.00	-23.41	peak
5 *	10866.083	39.21	14.52	53.73	74.00	-20.27	peak
6	12468.000	37.70	15.69	53.39	74.00	-20.61	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor


2.Margin value = Level -Limit value

Ant No.:	ANT1 + ANT2
Ant. Pol.:	Vertical
Test Mode:	TX 802.11n(HT20) Mode 5825MHz (U-NII-3)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	1493.500	50.29	-6.88	43.41	74.00	-30.59	peak
2	5629.500	40.96	4.23	45.19	74.00	-28.81	peak
3	7752.333	40.14	10.34	50.48	74.00	-23.52	peak
4	9256.333	38.92	12.42	51.34	74.00	-22.66	peak
5	11159.833	38.33	14.74	53.07	74.00	-20.93	peak
6 *	12072.417	37.95	15.55	53.50	74.00	-20.50	peak

Remarks:

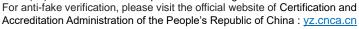
1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant No.:	ANT1 + ANT2
Ant. Pol.:	Horizontal
Test Mode:	TX 802.11ac(VHT20) Mode 5745MHz (U-NII-3)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	1497.417	51.98	-6.88	45.10	74.00	-28.90	peak
2	4979.333	41.52	2.23	43.75	74.00	-30.25	peak
3	6436.333	40.34	7.16	47.50	74.00	-26.50	peak
4	8026.500	39.35	10.80	50.15	74.00	-23.85	peak
5	9366.000	39.21	12.51	51.72	74.00	-22.28	peak
6 *	11680.750	38.30	15.11	53.41	74.00	-20.59	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor


2.Margin value = Level -Limit value

Ant No.:	ANT1 + ANT2
Ant. Pol.:	Vertical
Test Mode:	TX 802.11ac(VHT20) Mode 5745MHz (U-NII-3)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	1497.417	50.18	-6.88	43.30	74.00	-30.70	peak
2	6358.000	39.50	6.89	46.39	74.00	-27.61	peak
3	8116.583	40.03	10.57	50.60	74.00	-23.40	peak
4	9111.417	39.32	12.07	51.39	74.00	-22.61	peak
5	10674.167	38.80	14.19	52.99	74.00	-21.01	peak
6 *	12064.583	38.05	15.54	53.59	74.00	-20.41	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant No.:	ANT1 + ANT2
Ant. Pol.:	Horizontal
Test Mode:	TX 802.11ac(VHT20) Mode 5785MHz (U-NII-3)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	1497.417	51.21	-6.88	44.33	74.00	-29.67	peak
2	4572.000	40.38	1.54	41.92	74.00	-32.08	peak
3	7207.917	40.34	10.02	50.36	74.00	-23.64	peak
4	9166.250	38.64	12.26	50.90	74.00	-23.10	peak
5	10302.083	39.60	13.74	53.34	74.00	-20.66	peak
6 *	12295.667	37.78	15.62	53.40	74.00	-20.60	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant No.:	ANT1 + ANT2
Ant. Pol.:	Vertical
Test Mode:	TX 802.11ac(VHT20) Mode 5785MHz (U-NII-3)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	1497.417	55.72	-6.88	48.84	74.00	-25.16	peak
2	4387.917	41.32	1.11	42.43	74.00	-31.57	peak
3	7270.583	39.14	10.05	49.19	74.00	-24.81	peak
4	8473.000	39.85	10.68	50.53	74.00	-23.47	peak
5	10396.083	39.07	13.88	52.95	74.00	-21.05	peak
6 *	12076.333	37.83	15.55	53.38	74.00	-20.62	peak

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant No.:	ANT1 + ANT2
Ant. Pol.:	Horizontal
Test Mode:	TX 802.11ac(VHT20) Mode 5825MHz (U-NII-3)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	1086.167	50.77	-8.09	42.68	74.00	-31.32	peak
2	4015.833	40.88	0.56	41.44	74.00	-32.56	peak
3	6420.667	39.37	7.12	46.49	74.00	-27.51	peak
4	7697.500	39.35	10.24	49.59	74.00	-24.41	peak
5	9957.417	38.43	13.13	51.56	74.00	-22.44	peak
6 *	11962.750	38.38	15.38	53.76	74.00	-20.24	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant No.:	ANT1 + ANT2
Ant. Pol.:	Vertical
Test Mode:	TX 802.11ac(VHT20) Mode 5825MHz (U-NII-3)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	1501.333	55.36	-6.88	48.48	74.00	-25.52	peak
2	5578.583	40.10	4.04	44.14	74.00	-29.86	peak
3	7290.167	39.08	10.05	49.13	74.00	-24.87	peak
4	9256.333	39.73	12.42	52.15	74.00	-21.85	peak
5	10807.333	38.92	14.46	53.38	74.00	-20.62	peak
6 *	11994.083	38.23	15.44	53.67	74.00	-20.33	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant No.:	ANT1 + ANT2
Ant. Pol.:	Horizontal
Test Mode:	TX 802.11n(HT40) Mode 5755MHz (U-NII-3)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	3816.083	41.26	-0.18	41.08	74.00	-32.92	peak
2	5966.333	40.32	5.53	45.85	74.00	-28.15	peak
3	7196.167	39.37	10.00	49.37	74.00	-24.63	peak
4	8790.250	39.98	11.39	51.37	74.00	-22.63	peak
5	10791.667	38.40	14.44	52.84	74.00	-21.16	peak
6 *	12464.083	37.89	15.68	53.57	74.00	-20.43	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant No.:	ANT1 + ANT2
Ant. Pol.:	Vertical
Test Mode:	TX 802.11n(HT40) Mode 5755MHz (U-NII-3)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	1497.417	52.12	-6.88	45.24	74.00	-28.76	peak
2	3765.167	42.75	-0.34	42.41	74.00	-31.59	peak
3	7176.583	39.39	9.89	49.28	74.00	-24.72	peak
4	9244.583	40.11	12.41	52.52	74.00	-21.48	peak
5 *	11257.750	38.73	14.79	53.52	74.00	-20.48	peak
6	12710.833	37.17	16.34	53.51	74.00	-20.49	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant No.:	ANT1 + ANT2
Ant. Pol.:	Horizontal
Test Mode:	TX 802.11n(HT40) Mode 5795MHz (U-NII-3)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	1199.750	52.90	-7.71	45.19	74.00	-28.81	peak
2	4133.333	42.25	0.67	42.92	74.00	-31.08	peak
3	5974.167	39.53	5.56	45.09	74.00	-28.91	peak
4	7995.167	39.44	10.86	50.30	74.00	-23.70	peak
5	10803.417	39.03	14.46	53.49	74.00	-20.51	peak
6 *	12468.000	37.90	15.69	53.59	74.00	-20.41	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant No.:	ANT1 + ANT2
Ant. Pol.:	Vertical
Test Mode:	TX 802.11n(HT40) Mode 5795MHz (U-NII-3)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	1493.500	49.20	-6.88	42.32	74.00	-31.68	peak
2	5723.500	40.34	4.62	44.96	74.00	-29.04	peak
3	8003.000	40.38	10.86	51.24	74.00	-22.76	peak
4	9025.250	39.88	11.77	51.65	74.00	-22.35	peak
5 *	10353.000	39.66	13.82	53.48	74.00	-20.52	peak
6	12413.167	37.91	15.53	53.44	74.00	-20.56	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant No.:	ANT1 + ANT2
Ant. Pol.:	Horizontal
Test Mode:	TX 802.11ac(VHT40) Mode 5755MHz (U-NII-3)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	4434.917	40.67	1.22	41.89	74.00	-32.11	peak
2	7000.333	39.37	8.94	48.31	74.00	-25.69	peak
3	8061.750	38.62	10.71	49.33	74.00	-24.67	peak
4	9644.083	40.38	12.67	53.05	74.00	-20.95	peak
5 *	10815.167	39.01	14.47	53.48	74.00	-20.52	peak
6	12021.500	37.98	15.48	53.46	74.00	-20.54	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant No.:	ANT1 + ANT2
Ant. Pol.:	Vertical
Test Mode:	TX 802.11ac(VHT40) Mode 5755MHz (U-NII-3)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	1199.750	50.40	-7.71	42.69	74.00	-31.31	peak
2	3929.667	40.76	0.26	41.02	74.00	-32.98	peak
3	6060.333	40.69	5.83	46.52	74.00	-27.48	peak
4	7959.917	39.38	10.78	50.16	74.00	-23.84	peak
5	10008.333	39.07	13.20	52.27	74.00	-21.73	peak
6 *	11434.000	38.76	14.89	53.65	74.00	-20.35	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant No.:	ANT1 + ANT2
Ant. Pol.:	Horizontal
Test Mode:	TX 802.11ac(VHT40) Mode 5795MHz (U-NII-3)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	1493.500	51.55	-6.88	44.67	74.00	-29.33	peak
2	3867.000	41.23	0.02	41.25	74.00	-32.75	peak
3	5817.500	40.87	5.00	45.87	74.00	-28.13	peak
4	8120.500	39.45	10.56	50.01	74.00	-23.99	peak
5	9291.583	38.81	12.45	51.26	74.00	-22.74	peak
6 *	11567.167	38.49	15.07	53.56	74.00	-20.44	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant No.:	ANT1 + ANT2
Ant. Pol.:	Vertical
Test Mode:	TX 802.11ac(VHT40) Mode 5795MHz (U-NII-3)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	1493.500	48.97	-6.88	42.09	74.00	-31.91	peak
2	4274.333	41.77	0.88	42.65	74.00	-31.35	peak
3	7235.333	40.47	10.03	50.50	74.00	-23.50	peak
4	8449.500	40.59	10.63	51.22	74.00	-22.78	peak
5	10466.583	39.05	13.92	52.97	74.00	-21.03	peak
6 *	11551.500	38.64	15.05	53.69	74.00	-20.31	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant No.:	ANT1 + ANT2
Ant. Pol.:	Horizontal
Test Mode:	TX 802.11ac(VHT80) Mode 5775MHz (U-NII-3)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	1497.417	48.38	-6.88	41.50	74.00	-32.50	peak
2	5609.917	39.99	4.15	44.14	74.00	-29.86	peak
3	7188.333	39.39	9.95	49.34	74.00	-24.66	peak
4	9193.667	40.00	12.34	52.34	74.00	-21.66	peak
5	10341.250	39.23	13.80	53.03	74.00	-20.97	peak
6 *	12037.167	38.10	15.50	53.60	74.00	-20.40	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant No.:	ANT1 + ANT2			
Ant. Pol.:	Vertical			
Test Mode: TX 802.11ac(VHT80) Mode 5775MHz (U-NII-3)				
Remark:	No report for the emission which more than 20 dB below the prescribed limit.			

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	1493.500	49.29	-6.88	42.41	74.00	-31.59	peak
2	3588.917	42.50	-0.86	41.64	74.00	-32.36	peak
3	4893.167	40.51	2.11	42.62	74.00	-31.38	peak
4	6338.417	39.59	6.81	46.40	74.00	-27.60	peak
5	8813.750	39.91	11.43	51.34	74.00	-22.66	peak
6 *	11183.333	38.78	14.75	53.53	74.00	-20.47	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

CTC Laboratories, Inc.

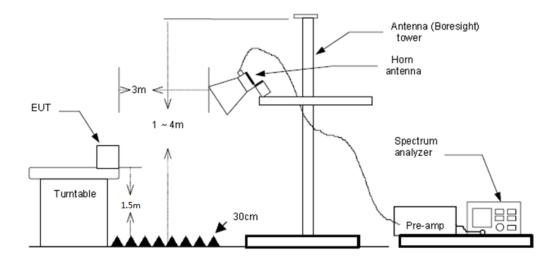
Accreditation Administration of the People's Republic of China: yz.cnca.cn

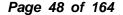
3.3. Band Edge Emissions

Limit

Limits of unwanted emission out of the restricted bands

FCC CFR Title 47 Part 15 Subpart C Section 15.407(b)/ RSS-247 6.2.1.2 & RSS-247 6.2.4.2


Frequency (MHz)	EIRP Limits (dBm)	Equivalent Field Strength at 3m (dBuV/m)		
5150~5250	-27	68.2		
5250~5350	-27	68.2		
5470~5725	-27	68.2		
	-27(Note 2)	68.2		
5725~5825	10(Note 2)	105.2		
5725~5625	15.6(Note 2)	110.8		
	27(Note 2)	122.2		


Note: 1. The following formula is used to convert the equipment isotropic radiated power (eirp) to field

 $\frac{1000000\sqrt{30P}}{\text{uV/m}}$ uV/m, where P is the eirp (Watts) strength: E=

2. According to FCC 16-24, All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27dBm/MHz at the band edge.

Test Configuration

Test Procedure

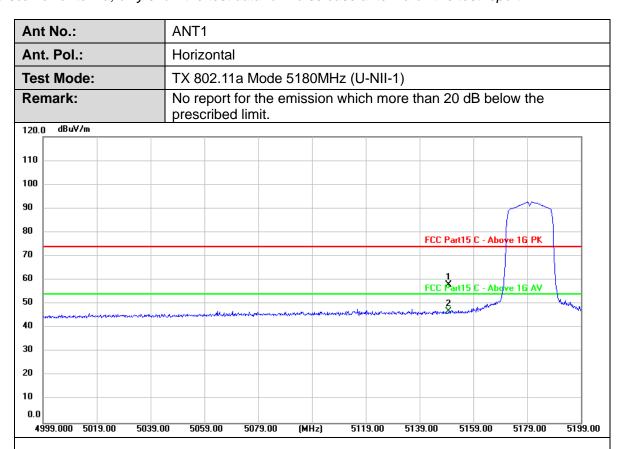
- 1. The EUT was setup and tested according to ANSI C63.10:2013 requirements.
- 2. The EUT is placed on a turn table which is 1.5 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.
- 4. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10:2013 on radiated measurement.
- 5. The receiver set as follow:

RBW=1MHz, VBW=3MHz PEAK detector for Peak value.

RBW=1MHz, VBW see note 1 with Peak Detector for Average Value.

Note 1: For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause Duty Cycle.

Test Mode


Please refer to the clause 2.4.

Test Results

Pre-scan all antenna, only show the test data for worse case antenna on the test report.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	5150.000	20.85	37.18	58.03	74.00	-15.97	peak
2 *	5150.000	9.75	37.18	46.93	54.00	-7.07	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

5183.00

5203.00

5163.00

Ant No.: ANT1 Ant. Pol.: Vertical Test Mode: TX 802.11a Mode 5180MHz (U-NII-1) Remark: No report for the emission which more than 20 dB below the prescribed limit. dBuV/m 120.0 110 100 90 80 FCC Part15 C - Al 70 X X 60 FCC Part15 50 40 30 20 10

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	5150.000	24.27	37.18	61.45	74.00	-12.55	peak
2 *	5150.000	9.10	37.18	46.28	54.00	-7.72	AVG

(MHz)

5123.00

5143.00

Remarks:

0.0

5003.000 5023.00

5043.00

5063.00

5083.00

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant No.:

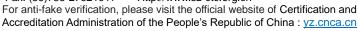
Ant. Pol.:

Horizontal

Test Mode:

TX 802.11a Mode 5240MHz (U-NII-1)

Remark:


No report for the emission which more than 20 dB below the prescribed limit.

ı											FCC F	Part15	C - Above 1G	PK	
	\dashv	-								1	ECC I	Part15	C - Above 1G	AV	-
		L.	~							<u>1</u>	1001	aitis	C - ADOTE IU		
1	h-all-		My Mary	and all the same of the same o	~~~	t-concernance.	 	<u></u>	desperand designation	 2	~~~	adjoined to the	Maria de Maria de Maria de Las	community and the	.,
ı															\neg
															-
															4
.0															

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	5350.000	16.70	37.40	54.10	74.00	-19.90	peak
2 *	5350.000	5.88	37.40	43.28	54.00	-10.72	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

5218.000 5238.00

ANT1 Ant No.: Ant. Pol.: Vertical **Test Mode:** TX 802.11a Mode 5240MHz (U-NII-1) No report for the emission which more than 20 dB below the Remark: prescribed limit. 120.0 dBuV/m 110 100 90 80 FCC Part15 C - Above 1G PK 70 60 FCC Part15 C - Above 1G AV 50

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	5350.000	15.82	37.40	53.22	74.00	-20.78	peak
2 *	5350.000	5.08	37.40	42.48	54.00	-11.52	AVG

(MHz)

5338.00

5358.00

5378.00

5398.00

5418.00

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

5278.00

5298.00

5258.00

5198.00

Ant No.: ANT1 + ANT2 Ant. Pol.: Horizontal **Test Mode:** TX 802.11n(HT20) Mode 5180MHz (U-NII-1) No report for the emission which more than 20 dB below the Remark: prescribed limit. 120.0 dBuV/m 110 100 90 80 FCC Part15 C - Above 1G PK 70 60 FCC Part15 C e 16 AV 50 40 30 20 10

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	5150.000	22.83	37.18	60.01	74.00	-13.99	peak
2 *	5150.000	9.84	37.18	47.02	54.00	-6.98	AVG

(MHz)

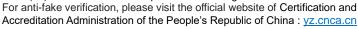
5118.00

5138.00

5158.00

5178.00

Remarks:


4998.000 5018.00

5038.00

5058.00

5078.00

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

4998.000 5018.00

Ant No.: ANT1 + ANT2 Ant. Pol.: Vertical **Test Mode:** TX 802.11n(HT20) Mode 5180MHz (U-NII-1) No report for the emission which more than 20 dB below the Remark: prescribed limit. 120.0 dBuV/m 110 100 90 80 FCC Part15 C - Above 1G PK 70 60 FCC Part15 C - Above 1G AV 50 40

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	5150.000	20.92	37.18	58.10	74.00	-15.90	peak
2 *	5150.000	9.13	37.18	46.31	54.00	-7.69	AVG

(MHz)

5118.00

5138.00

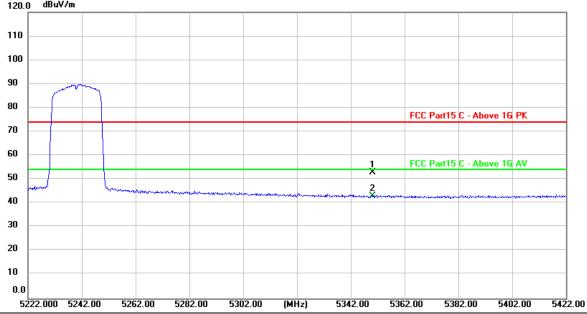
5158.00

5178.00

5198.00

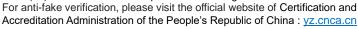
Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor


5058.00

5078.00

5038.00


Ant No.: ANT1 + ANT2 Ant. Pol.: Horizontal **Test Mode:** TX 802.11n(HT20) Mode 5240MHz (U-NII-1) No report for the emission which more than 20 dB below the Remark: prescribed limit. 120.0 dBuV/m

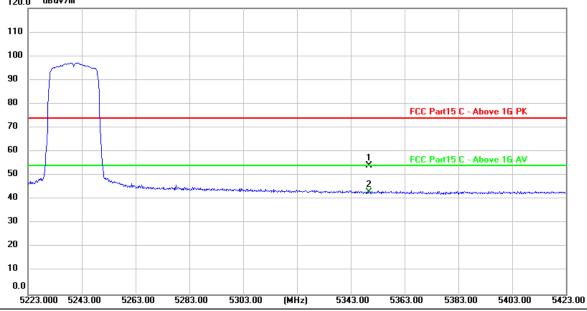
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	5350.000	15.44	37.40	52.84	74.00	-21.16	peak
2 *	5350.000	5.55	37.40	42.95	54.00	-11.05	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant No.:

ANT1 + ANT2

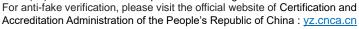

Vertical

Test Mode:

TX 802.11n(HT20) Mode 5240MHz (U-NII-1)

Remark:

No report for the emission which more than 20 dB below the prescribed limit.


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	5350.000	16.73	37.40	54.13	74.00	-19.87	peak
2 *	5350.000	5.51	37.40	42.91	54.00	-11.09	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

中国国家认证认可监督管理委员会

5194.00

Ant No.: ANT1 + ANT2 Ant. Pol.: Horizontal **Test Mode:** TX 802.11ac(VHT20) Mode 5180MHz (U-NII-1) No report for the emission which more than 20 dB below the Remark: prescribed limit. 120.0 dBuV/m 110 100 90 80 FCC Part15 C - Above 1G PK 70 60 FCC Part15 C 50 40 30 20 10

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	5150.000	23.32	37.18	60.50	74.00	-13.50	peak
2 *	5150.000	9.62	37.18	46.80	54.00	-7.20	AVG

(MHz)

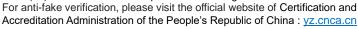
5114.00

5134.00

5154.00

5174.00

Remarks:


4994.000 5014.00

5034.00

5054.00

5074.00

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

4998.000 5018.00

Ant No.: ANT1 + ANT2 Ant. Pol.: Vertical **Test Mode:** TX 802.11ac(VHT20) Mode 5180MHz (U-NII-1) No report for the emission which more than 20 dB below the Remark: prescribed limit. 120.0 dBuV/m 110 100 90 80 FCC Part15 C - Above 1G PK 70 X 60 FCC Part15 C - Above 1G AV 50

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	5150.000	26.00	37.18	63.18	74.00	-10.82	peak
2 *	5150.000	9.64	37.18	46.82	54.00	-7.18	AVG

(MHz)

5118.00

5138.00

5158.00

5178.00

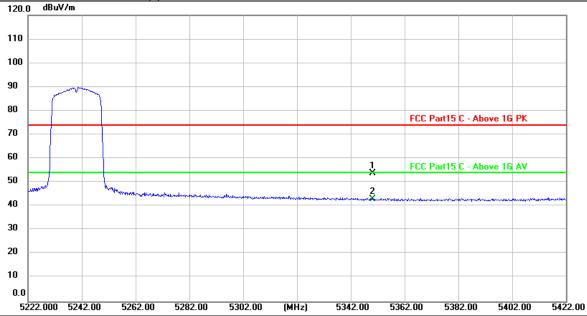
5198.00

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

5058.00

5078.00


5038.00

2.Margin value = Level -Limit value

中国国家认证认可监督管理委员会

Ant No.: ANT1 + ANT2 Ant. Pol.: Horizontal **Test Mode:** TX 802.11ac(VHT20) Mode 5240MHz (U-NII-1) No report for the emission which more than 20 dB below the Remark: prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	5350.000	16.37	37.40	53.77	74.00	-20.23	peak
2 *	5350.000	5.52	37.40	42.92	54.00	-11.08	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

5223.000 5243.00

5263.00

5283.00

5303.00

Ant No.: ANT1 + ANT2 Ant. Pol.: Vertical **Test Mode:** TX 802.11ac(VHT20) Mode 5240MHz (U-NII-1) No report for the emission which more than 20 dB below the Remark: prescribed limit. 120.0 dBuV/m 110 100 90 80 FCC Part15 C - Above 1G PK 70 60 FCC Part15 C - Above 1G AV 50

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	
1	5350.000	17.04	37.40	54.44	74.00	-19.56	peak	l
2 *	5350.000	5.75	37.40	43.15	54.00	-10.85	AVG	

(MHz)

5343.00

5363.00

5383.00

5403.00

5423.00

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

5215.00

Ant No.: ANT1 + ANT2 Ant. Pol.: Horizontal **Test Mode:** TX 802.11n(HT40) Mode 5190MHz (U-NII-1) No report for the emission which more than 20 dB below the Remark: prescribed limit. 120.0 dBuV/m 110 100 90 80 FCC Part 5 C 70 60 FCC Part 5 C - Above 16 AV 50 40 30 20 10

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	5150.000	23.17	37.18	60.35	74.00	-13.65	peak
2 *	5150.000	10.56	37.18	47.74	54.00	-6.26	AVG

(MHz)

5135.00

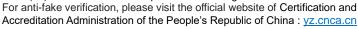
5155.00

5175.00

5195.00

Remarks:

0.0


5015.000 5035.00

5055.00

5075.00

5095.00

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant No.: ANT1 + ANT2 Ant. Pol.: Vertical **Test Mode:** TX 802.11n(HT40) Mode 5190MHz (U-NII-1) No report for the emission which more than 20 dB below the Remark: prescribed limit. 120.0 dBuV/m 110 100 90 80 FCC Part15 C - Above 1G PK 70 60 FCC Part15 C - Above 1G AV 50 40 30 20 10 0.0

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	5150.000	22.07	37.18	59.25	74.00	-14.75	peak
2 *	5150.000	10.75	37.18	47.93	54.00	-6.07	AVG

(MHz)

5136.00

5156.00

5176.00

5196.00

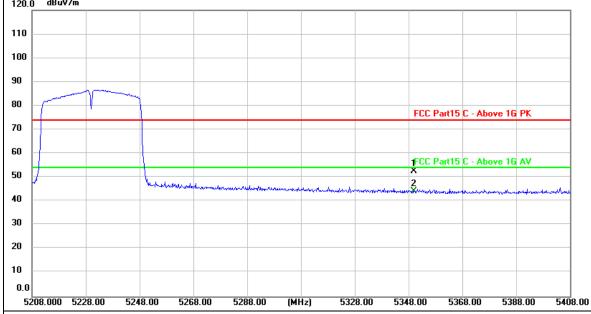
5216.00

Remarks:

5016.000 5036.00

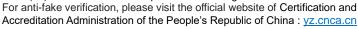
1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value


5056.00

5076.00

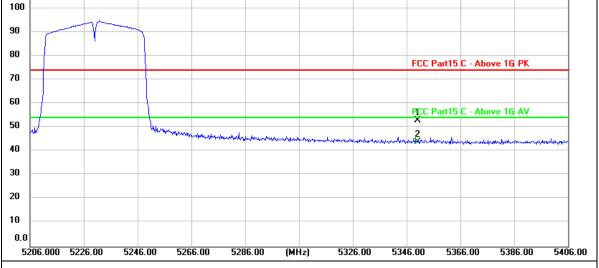
5096.00


Ant No.: ANT1 + ANT2 Ant. Pol.: Horizontal **Test Mode:** TX 802.11n(HT40) Mode 5230MHz (U-NII-1) No report for the emission which more than 20 dB below the Remark: prescribed limit. 120.0 dBuV/m

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	5350.000	15.35	37.40	52.75	74.00	-21.25	peak
2 *	5350.000	6.75	37.40	44.15	54.00	-9.85	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor



Ant. Pol.: Vertical

Test Mode: TX 802.11n(HT40) Mode 5230MHz (U-NII-1)

Remark: No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	5350.000	15.41	37.40	52.81	74.00	-21.19	peak
2 *	5350.000	6.58	37.40	43.98	54.00	-10.02	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

5216.00

Ant No.: ANT1 + ANT2 Ant. Pol.: Horizontal **Test Mode:** TX 802.11ac(VHT40) Mode 5190MHz (U-NII-1) No report for the emission which more than 20 dB below the Remark: prescribed limit. 120.0 dBuV/m 110 100 90 80 FCC Part15 C 70 60 FCC Par 15 C - Above 1G AV 50 40 30 20 10

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	5150.000	18.83	37.18	56.01	74.00	-17.99	peak
2 *	5150.000	11.48	37.18	48.66	54.00	-5.34	AVG

(MHz)

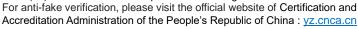
5136.00

5156.00

5176.00

5196.00

Remarks:


5016.000 5036.00

5056.00

5076.00

5096.00

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant No.: ANT1 + ANT2 Ant. Pol.: Vertical **Test Mode:** TX 802.11ac(VHT40) Mode 5190MHz (U-NII-1) No report for the emission which more than 20 dB below the Remark: prescribed limit. 120.0 dBuV/m 110 100 90 80 FCC Part15 C - Above 1G PK 70 60 FCC Part 5 C - Above 1G AV 50 40 30 20 10

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	5150.000	20.51	37.18	57.69	74.00	-16.31	peak
2 *	5150.000	12.01	37.18	49.19	54.00	-4.81	AVG

(MHz)

5134.00

5154.00

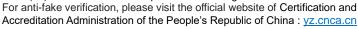
5174.00

5194.00

5214.00

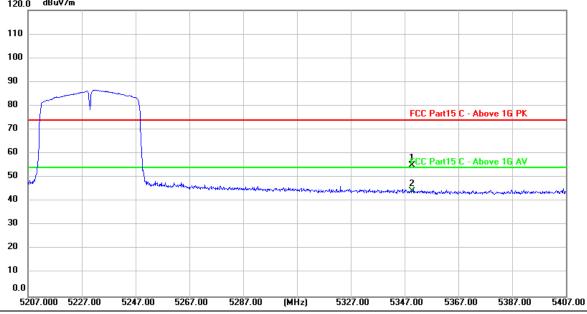
Remarks:

0.0


5014.000 5034.00

5054.00

5074.00


5094.00

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant No.: ANT1 + ANT2 Ant. Pol.: Horizontal **Test Mode:** TX 802.11ac(VHT40) Mode 5230MHz (U-NII-1) No report for the emission which more than 20 dB below the Remark: prescribed limit. 120.0 dBuV/m 110

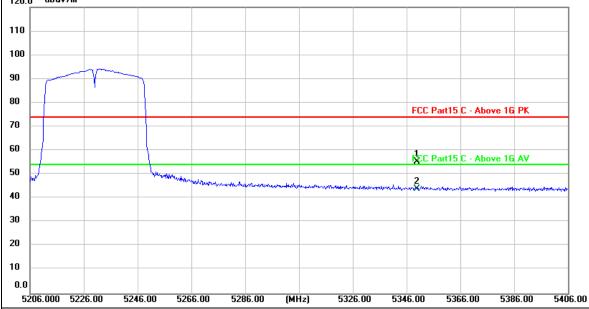
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	5350.000	17.53	37.40	54.93	74.00	-19.07	peak
2 *	5350.000	6.86	37.40	44.26	54.00	-9.74	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant. Pol.:

Ant. Pol.:

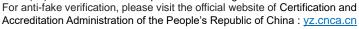

Vertical

Test Mode:

TX 802.11ac(VHT40) Mode 5230MHz (U-NII-1)

Remark:

No report for the emission which more than 20 dB below the prescribed limit.


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	5350.000	18.03	37.40	55.43	74.00	-18.57	peak
2 *	5350.000	6.56	37.40	43.96	54.00	-10.04	AVG

Remarks:

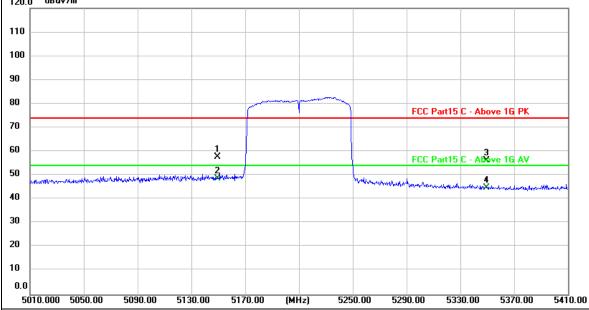
1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

中国国家认证认可监督管理委员会

Ant No.:

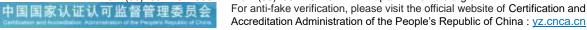
Ant. Pol.:


Horizontal

Test Mode:

TX 802.11ac(VHT80) Mode 5210MHz (U-NII-1)

Remark:


No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	5150.000	20.54	37.18	57.72	74.00	-16.28	peak
2 *	5150.000	11.60	37.18	48.78	54.00	-5.22	AVG
3	5350.000	18.97	37.40	56.37	74.00	-17.63	peak
4	5350.000	7.48	37.40	44.88	54.00	-9.12	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant No.: ANT1 + ANT2 Ant. Pol.: Vertical **Test Mode:** TX 802.11ac(VHT80) Mode 5210MHz (U-NII-1) No report for the emission which more than 20 dB below the Remark: prescribed limit. 120.0 dBuV/m 110 100 90 80 FCC Part15 C - Above 1G PK 70 60 FCC Part15 C - Above 16 AV 50 40 30 20

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	5150.000	22.69	37.18	59.87	74.00	-14.13	peak
2 *	5150.000	12.21	37.18	49.39	54.00	-4.61	AVG
3	5350.000	16.19	37.40	53.59	74.00	-20.41	peak
4	5350.000	7.62	37.40	45.02	54.00	-8.98	AVG

(MHz)

5250.00

5290.00

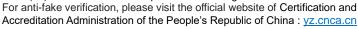
5330.00

5370.00

5410.00

Remarks:

10 0.0

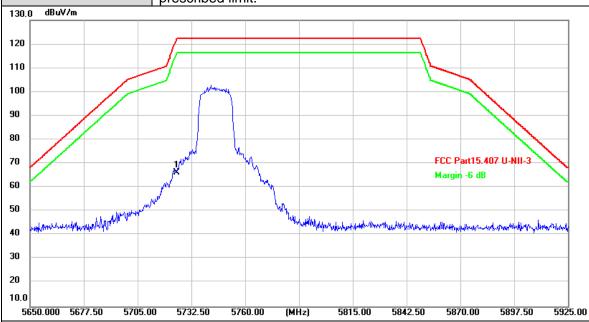

5010.000 5050.00

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

5130.00

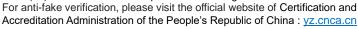
5170.00

5090.00



ANT1 Ant No.: Ant. Pol.: Horizontal **Test Mode:** TX 802.11a Mode 5745MHz (U-NII-3)

Report No.: CTC20240774E09


No report for the emission which more than 20 dB below the Remark: prescribed limit.

No.	Frequency (MHz)	_		Level (dBuV/m)		Margin (dB)	Detector	
1 *	5725.000	61.55	4.62	66.17	122.20	-56.03	peak	Ī

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

ANT1 Ant No.: Ant. Pol.: Vertical **Test Mode:** TX 802.11a Mode 5745MHz (U-NII-3) No report for the emission which more than 20 dB below the Remark: prescribed limit. 130.0 dBuV/m 120 110 100 90 80 FCC Part15.407 U-NII-3 70 Margin -6 dB 60 50 40 30 20

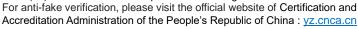
No.	Frequency (MHz)			Level (dBuV/m)		Margin (dB)	Detector	
1 *	5725.000	64.97	4.62	69.59	122.20	-52.61	peak	Ī

(MHz)

Remarks:

10.0

5650.000 5677.50


1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

5705.00

5732.50

5760.00

5842.50

5870.00

5897.50

5925.00

5815.00

5925.00

Ant No.: ANT1 Ant. Pol.: Horizontal **Test Mode:** TX 802.11a Mode 5825MHz (U-NII-3) No report for the emission which more than 20 dB below the Remark: prescribed limit. 130.0 dBuV/m 120 110 100 90 80 FCC Part15.407 U-NII-3 70 Margin -6 dB 60 50 40 30 20

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector	
1 *	5850.000	49.74	5.10	54.84	122.20	-67.36	peak	

(MHz)

5815.00

5842.50

5870.00

5897.50

Remarks:

5650.000 5677.50

5705.00

5732.50

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

5760.00

5650.000 5677.50

5705.00

5732.50

5760.00

ANT1 Ant No.: Ant. Pol.: Vertical **Test Mode:** TX 802.11a Mode 5825MHz (U-NII-3) No report for the emission which more than 20 dB below the Remark: prescribed limit. 130.0 dBuV/m 120 110 100 90 80 FCC Part15.407 U-NII-3 70 Margin -6 dB 60 50

No.	Frequency (MHz)			Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	5850.000	49.76	5.10	54.86	122.20	-67.34	peak

(MHz)

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

5842.50

5870.00

5897.50

5925.00

5815.00

5925.00

Ant No.: ANT1 + ANT2 Ant. Pol.: Horizontal **Test Mode:** TX 802.11n(HT20) Mode 5745MHz (U-NII-3) No report for the emission which more than 20 dB below the Remark: prescribed limit. 130.0 dBuV/m 120 110 100 90 80 FCC Part15.407 U-NII-3 70 Margin -6 dB 60 50 40 30 20

No.	Frequency (MHz)	_		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	
1 *	5725.000	52.36	4.62	56.98	122.20	-65.22	peak	

(MHz)

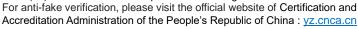
5815.00

5842.50

5870.00

5897.50

Remarks:


5650.000 5677.50

5705.00

5732.50

5760.00

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

5650.000 5677.50

Ant No.: ANT1 + ANT2 Ant. Pol.: Vertical **Test Mode:** TX 802.11n(HT20) Mode 5745MHz (U-NII-3) No report for the emission which more than 20 dB below the Remark: prescribed limit. 130.0 dBuV/m 120 110 100 90 80 FCC Part15.407 U-NII-3 70 Margin -6 dB 60

No.	Frequency (MHz)	_		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	5725.000	57.05	4.62	61.67	122.20	-60.53	peak

(MHz)

5815.00

5842.50

5870.00

5897.50

5925.00

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

5705.00

5732.50

5760.00

5925.00

Ant No.: ANT1 + ANT2 Ant. Pol.: Horizontal TX 802.11n(HT20) Mode 5825MHz (U-NII-3) **Test Mode:** No report for the emission which more than 20 dB below the Remark: prescribed limit. 130.0 dBuV/m 120 110 100 90 80 FCC Part15.407 U-NII-3 70 Margin -6 dB 60 50 40

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	
1 *	5850.000	45.22	5.10	50.32	122.20	-71.88	peak	

(MHz)

5815.00

5842.50

5870.00

5897.50

Remarks:

30 20

5650.000 5677.50

5705.00

5732.50

5760.00

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

5650.000 5677.50

5705.00

5732.50

5760.00

Ant No.: ANT1 + ANT2 Ant. Pol.: Vertical **Test Mode:** TX 802.11n(HT20) Mode 5825MHz (U-NII-3) No report for the emission which more than 20 dB below the Remark: prescribed limit. 130.0 dBuV/m 120 110 100 90 80 FCC Part15.407 U-NII-3 70 Margin -6 dB 60 50

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	
1 *	5850.000	47.45	5.10	52.55	122.20	-69.65	peak	

(MHz)

5815.00

5842.50

5870.00

5897.50

5925.00

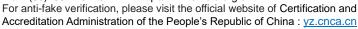
Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant No.:

Ant. Pol.:
Horizontal

Test Mode:
TX 802.11ac(VHT20) Mode 5745MHz (U-NII-3)


Remark:
No report for the emission which more than 20 dB below the prescribed limit.

1				morning					1/	
Y	$/\!\!-$			N	\				art15.407 L 1 -6 dB	I-NII-3
K			1,//	,,	Wy			maiyii	1 -0 UD	
-					M					
***	de strategich de	exactions, they become	Warn-Ald		Makadau	Uhberralish sendapish plan	majla jartanti sisulian in	Haydroodsonty, belgage,	war war and water	orași de contra de la contra del contra de la contra de la contra del la contra de la contra de
ŀ										
ŀ										
0										

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	
1 *	5725.000	52.96	4.62	57.58	122.20	-64.62	peak	

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

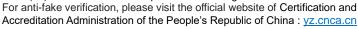
Ant No.:	ANT1 + ANT2						
Ant. Pol.:	Vertical						
Test Mode:	TX 802.11ac(VHT20) Mode 5745MHz (U-NII-3)						
Remark:	No report for the emission which more than 20 dB below the prescribed limit.						
130.0 dBuV/m							
120							
110							
100	many land						
90							
70	FCC Part15.407 U-NII-3						
60	Margin -6 dB						
50							
40 May & May	Martin 1 Mar						
30							
20							
10.0 5650.000 5677.50 5709	5.00 5732.50 5760.00 (MHz) 5815.00 5842.50 5870.00 5897.50 5925.1						

No.	Frequency (MHz)			Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	
1 *	5725.000	55.28	4.62	59.90	122.20	-62.30	peak	


Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant No.: ANT1 + ANT2 Ant. Pol.: Horizontal **Test Mode:** TX 802.11ac(VHT20) Mode 5825MHz (U-NII-3) No report for the emission which more than 20 dB below the Remark:


Report No.: CTC20240774E09

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	
1 *	5850.000	40.46	5.10	45.56	122.20	-76.64	peak	

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant No.: ANT1 + ANT2 Ant. Pol.: Vertical **Test Mode:** TX 802.11ac(VHT20) Mode 5825MHz (U-NII-3) No report for the emission which more than 20 dB below the Remark: prescribed limit. 130.0 dBuV/m 120 110 100 90 80 FCC Part15.407 U-NII-3 70 Margin -6 dB 60 50 40 30 20

No.	Frequency (MHz)			Level (dBuV/m)		Margin (dB)	Detector	
1 *	5850.000	42.95	5.10	48.05	122.20	-74.15	peak	Ī

(MHz)

5815.00

5842.50

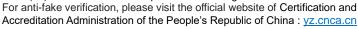
5870.00

5897.50

5925.00

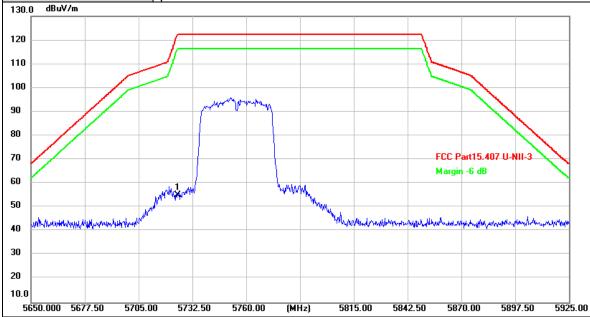
Remarks:

10.0

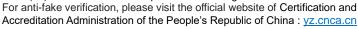

5650.000 5677.50

5705.00

5732.50


5760.00

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor


Ant No.: ANT1 + ANT2 Ant. Pol.: Horizontal TX 802.11n(HT40) Mode 5755MHz (U-NII-3) **Test Mode:** No report for the emission which more than 20 dB below the Remark: prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	
1 *	5725.000	50.67	4.62	55.29	122.20	-66.91	peak	

Remarks:

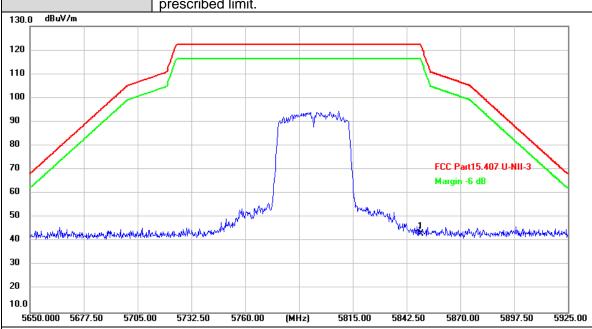
1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant No.: ANT1 + ANT2 Ant. Pol.: Vertical **Test Mode:** TX 802.11n(HT40) Mode 5755MHz (U-NII-3) No report for the emission which more than 20 dB below the Remark: prescribed limit. 130.0 dBuV/m 120 110 100

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	5725.000	52.67	4.62	57.29	122.20	-64.91	peak

Remarks:

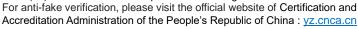
1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor



Test Mode:

Ant No.: ANT1 + ANT2 Ant. Pol.: Horizontal

Report No.: CTC20240774E09


TX 802.11n(HT40) Mode 5795MHz (U-NII-3) No report for the emission which more than 20 dB below the Remark: prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector	
1 *	5850.000	38.15	5.10	43.25	122.20	-78.95	peak	

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

5650.000 5677.50

5705.00

5732.50

5760.00

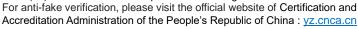
Ant No.: ANT1 + ANT2 Ant. Pol.: Vertical **Test Mode:** TX 802.11n(HT40) Mode 5795MHz (U-NII-3) No report for the emission which more than 20 dB below the Remark: prescribed limit. 130.0 dBuV/m 120 110 100 90 80 FCC Part15.407 U-NII-3 70 Margin -6 dB 60 50

No.	Frequency (MHz)			Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	5850.000	41.86	5.10	46.96	122.20	-75.24	peak

(MHz)

5815.00

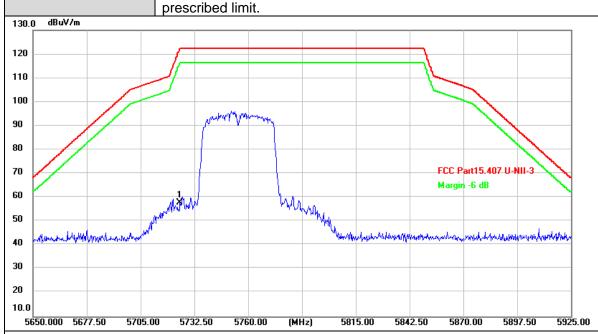
5842.50


5870.00

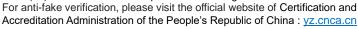
5897.50

5925.00

Remarks:


1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant No.: ANT1 + ANT2 Ant. Pol.: Horizontal **Test Mode:** TX 802.11ac(VHT40) Mode 5755MHz (U-NII-3) No report for the emission which more than 20 dB below the Remark:


Report No.: CTC20240774E09

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	
1 *	5725.000	53.26	4.62	57.88	122.20	-64.32	peak	

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

5650.000 5677.50

Ant No.: ANT1 + ANT2 Ant. Pol.: Vertical **Test Mode:** TX 802.11ac(VHT40) Mode 5755MHz (U-NII-3) No report for the emission which more than 20 dB below the Remark: prescribed limit. 130.0 dBuV/m 120 110 100 90 80 FCC Part15.407 U-NII-3 70 Month May Mary Margin -6 dB 60 50

No.	Frequency (MHz)			Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	
1 *	5725.000	54.67	4.62	59.29	122.20	-62.91	peak	Ī

(MHz)

5815.00

5842.50

5870.00

5897.50

5925.00

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

5705.00

5732.50

5760.00

Ant No.:	ANT1 + ANT2					
Ant. Pol.:	lorizontal					
Test Mode:	TX 802.11ac(VHT40) Mode 5795MHz (U-NII-3)					
Remark: No report for the emission which more than 20 dB below the prescribed limit.						
130.0 dBuV/m						
110 1100 90	The state of the s					
70	FCC Part15.407 U-NII-3 Margin -6 dB					
40 Alleridandrephonethyward-ghirocochoscor	And the state of t					
30						
20						

No.	Frequency (MHz)	_		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	
1 *	5850.000	38.72	5.10	43.82	122.20	-78.38	peak	

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant No.: ANT1 + ANT2 Ant. Pol.: Vertical **Test Mode:** TX 802.11ac(VHT40) Mode 5795MHz (U-NII-3) No report for the emission which more than 20 dB below the Remark: prescribed limit. 130.0 dBuV/m 120 110 100 90 80 FCC Part15.407 U-NII-3 70 Margin -6 dB 60 MANAMAN 50 40 30

No.	Frequency (MHz)	_		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	
1 *	5850.000	39.65	5.10	44.75	122.20	-77.45	peak	

(MHz)

5815.00

5842.50

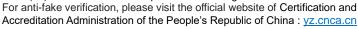
5870.00

5897.50

5925.00

Remarks:

20 10.0


5650.000 5677.50

5705.00

5732.50

5760.00

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

5650.000 5677.50

5705.00

5732.50

5760.00

Ant No.: ANT1 + ANT2 Ant. Pol.: Horizontal **Test Mode:** TX 802.11ac(VHT80) Mode 5775MHz (U-NII-3) No report for the emission which more than 20 dB below the Remark: prescribed limit. 130.0 dBuV/m 120 110 100 90 80 FCC Part15.407 U-NII-3 70 Margin -6 dB 60 and the many port of the part of the part

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	5725.000	47.11	4.62	51.73	122.20	-70.47	peak
2	5850.000	45.34	5.10	50.44	122.20	-71.76	peak

(MHz)

5815.00

5842.50

5870.00

5897.50

5925.00

Remarks:

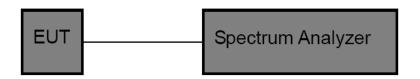
1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant No.:	ANT1 + ANT2				
Ant. Pol.: Vertical					
Test Mode:	TX 802.11ac(VHT80) Mode 5775MHz (U-NII-3)				
Remark:	No report for the emission which more than 20 dB below the prescribed limit.				
130.0 dBuV/m					
120					
110					
100					
90	many many many many many many many many				
80					
70	FCC Part15.407 U-NII-3 Margin -6 dB				
60					
50 Mary Mary Mary	When you a should be a should				
50 A WANTER WATER AND A STATE OF THE STATE O	The second secon				
30					
20					
10.0					

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	5725.000	49.44	4.62	54.06	122.20	-68.14	peak
2	5850.000	47.53	5.10	52.63	122.20	-69.57	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor



3.4. Bandwidth Test

Limit

FCC Part 15 Subpart C(15.407)/ RSS-247					
Test Item	Limit	Frequency Range (MHz)			
26 Bandwidth		5150~5250			
	N/A	5250~5350			
		5500~5700			
6 dB Bandwidth	>500kHz	5725~5850			

Test Configuration

Test Procedure

Please refer to According to KDB789033 D02, for the measurement methods.

The setting of the spectrum analyser as below:

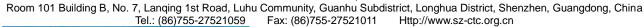
26dB Bandwidth Test					
Spectrum Parameters	Setting				
Attenuation	Auto				
Span	>26 dB Bandwidth				
RBW	Approximately 1% of the emission bandwidth				
VBW	VBW>RBW				
Detector	Peak				
Trace	Max Hold				
Sweep Time	Auto				

For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China: yz.cnca.cn

6dB Bandwidth Test						
Spectrum Parameters	Setting					
Attenuation	Auto					
Span	>6 dB Bandwidth					
RBW	100 kHz					
VBW	VBW>=3*RBW					
Detector	Peak					
Trace	Max Hold					
Sweep Time	Auto					
99% Occupied Bandwidth Test						
Spectrum Parameters	Setting					
Attenuation	Auto					
RBW	1% to 5% of the OBW					
VBW	≥ 3RBW					
Detector	Peak					
Trace	Max Hold					

Note: The EUT was set to continuously transmitting in each mode and low, Middle and high channel for the test.

Test Mode


Please refer to the clause 2.4.

Test Results

26dB Bandwidth

Test Mode	Antenna	Freq(MHz)	26dB EBW [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
	Ant1	5180	18.440	5170.880	5189.320		
	Ant2	5180	18.280	5170.920	5189.200		
	Ant1	5200	18.320	5190.920	5209.240		
	Ant2	5200	18.240	5190.920	5209.160		
	Ant1	5240	18.360	5230.880	5249.240		
11A	Ant2	5240	19.040	5230.040	5249.080		
IIA	Ant1	5745	21.480	5735.760	5757.240		
	Ant2	5745	28.440	5731.520	5759.960		
	Ant1	5785	20.360	5775.480	5795.840		
	Ant2	5785	25.240	5771.280	5796.520		
	Ant1	5825	18.720	5815.560	5834.280		
	Ant2	5825	19.760	5814.520	5834.280		
	Ant1	5180	19.120	5170.400	5189.520		
	Ant2	5180	19.360	5170.280	5189.640		
	Ant1	5200	19.280	5190.400	5209.680		
	Ant2	5200	19.440	5190.280	5209.720		
	Ant1	5240	19.160	5230.400	5249.560		
11N20MIMO	Ant2	5240	19.160	5230.480	5249.640		
TTINZUIVIIVIO	Ant1	5745	19.200	5735.400	5754.600		
	Ant2	5745	24.120	5733.480	5757.600		
	Ant1	5785	19.440	5775.200	5794.640		
	Ant2	5785	19.400	5775.240	5794.640		
	Ant1	5825	19.680	5815.280	5834.960		
	Ant2	5825	19.320	5815.320	5834.640		

CTC Laboratories, Inc.

Ant1

Ant2

Ant1

Ant2

Ant1

Ant2

11AC80MIMO

5795

5795

5210

5210

5775

5775

Page 95 of 164

Report No.: CTC20240774E09

Ant1 5190 39.040 5170.480 5209.520 Ant2 5190 38.800 5170.560 5209.360 ------5230 38.880 5210.480 5249.360 Ant1 Ant2 5230 38.800 5210.640 5249.440 11N40MIMO 38.960 5774.440 Ant1 5755 5735.480 Ant2 5755 38.800 5735.560 5774.360 Ant1 5795 39.200 5775.480 5814.680 Ant2 5795 5775.560 5814.520 38.960 ------Ant1 5180 19.320 5170.320 5189.640 ------5170.200 Ant2 5180 19.400 5189.600 Ant1 5200 19.160 5190.400 5209.560 19.200 Ant2 5200 5190.360 5209.560 Ant1 5240 19.360 5230.320 5249.680 19.240 Ant2 5240 5230.320 5249.560 11AC20MIMO Ant1 5745 19.160 5735.360 5754.520 Ant2 5745 19.360 5735.280 5754.640 ------Ant1 5785 19.240 5775.360 5794.600 579<u>4.560</u> Ant2 5785 19.280 5775.280 Ant1 5825 19.680 5815.280 5834.960 Ant2 5825 19.280 5815.320 5834.600 Ant1 5190 38.880 5170.560 5209.440 Ant2 5190 38.800 5170.560 5209.360 Ant1 5230 38.960 5210.480 5249.440 ------Ant2 5230 38.800 5210.480 5249.280 ---11AC40MIMO Ant1 5755 38.800 5735.560 5774.360 Ant2 5755 38.720 5774.440

39.280

38.960

81.280

80.960

82.400

81.760

5735.720

5775.320

5775.480

5169.840

5169.680

5734.200

5734.680

5814.600

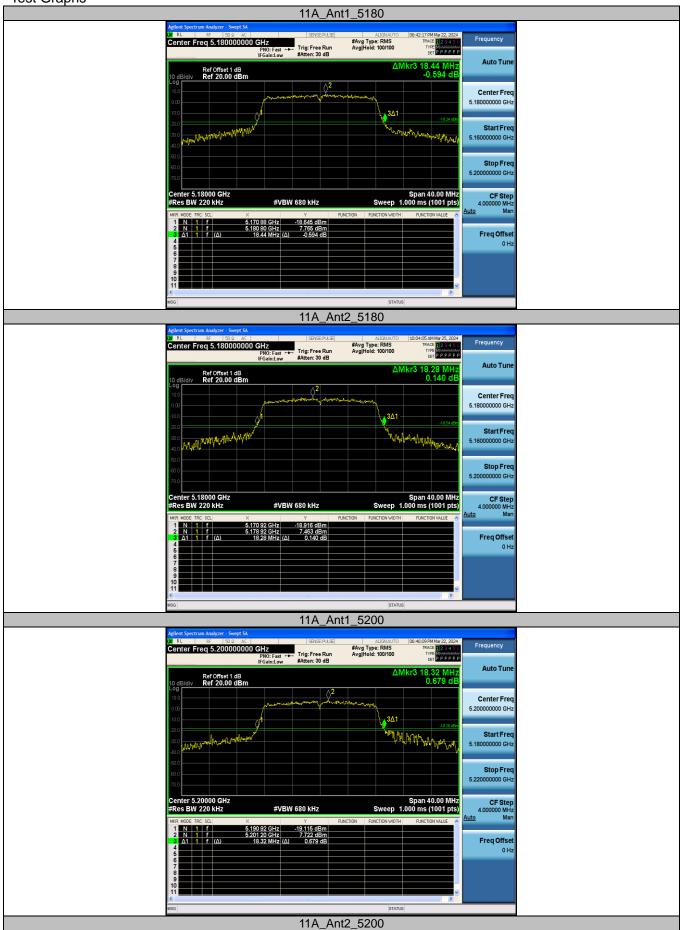
5814.440

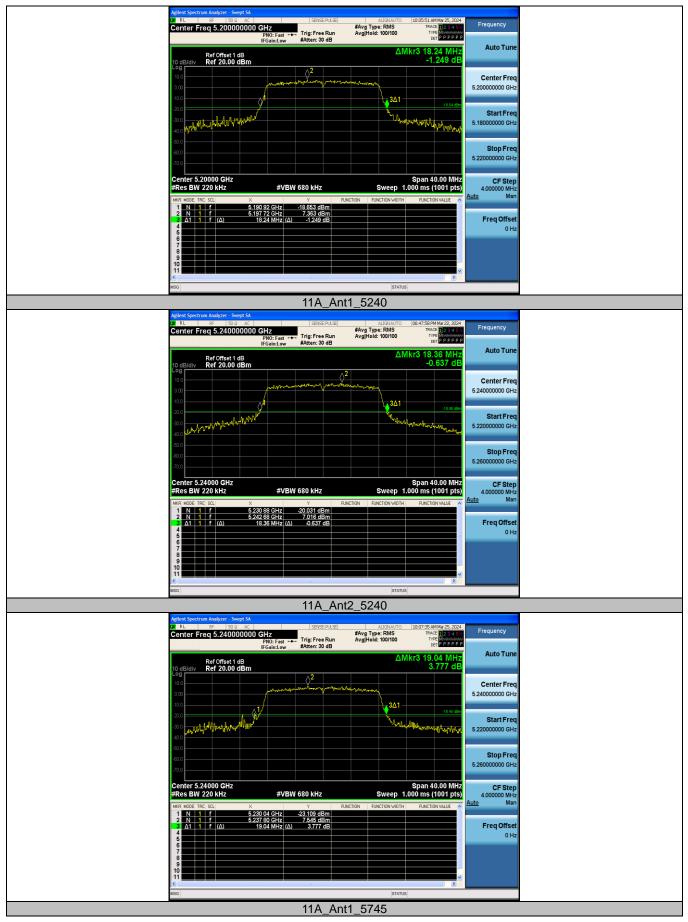
5251.120

5250.640

5816.600

5816.440




CTC Laboratories, Inc.

Accreditation Administration of the People's Republic of China: yz.cnca.cn

