

RADIO TEST REPORT FCC ID: 2APMJTAB6

Product: 4G Tablet Trade Mark: Blackview Model No.: Tab 6 Family Model: Tab 11, Tab 6 Kids, Tab 12, Tab 13, Tab 15, Tab 10 Pro Report No.: STR220224007002E Issue Date: Apr 13, 2022

Prepared for

Shenzhen DOKE Electronic Co., Ltd

13th Floor, Weidonglong commercial building B, Meilong avenue, Longhua New District, Shenzhen, China

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China Tel. 400-800-6106, 0755-2320 0050, 0755-2320 0090 Website: http://www.ntek.org.cn

TABLE OF CONTENTS

1	TEST RESULT CERTIFICATION	
2	SUMMARY OF TEST RESULTS	5
3	FACILITIES AND ACCREDITATIONS	6
	3.1 FACILITIES	
	3.2 LABORATORY ACCREDITATIONS AND LISTINGS	
	3.3 MEASUREMENT UNCERTAINTY	
4	GENERAL DESCRIPTION OF EUT	
	GENERAL DESCRIPTION OF EUT	
5		
6	SETUP OF EQUIPMENT UNDER TEST	
	6.1 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM	
	6.2 SUPPORT EQUIPMENT.	
(6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS	
7	TEST REQUIREMENTS	
,	7.1 CONDUCTED EMISSIONS TEST	14
	7.1.1 Applicable Standard	
	7.1.2 Conformance Limit	
	7.1.3 Measuring Instruments	
	7.1.4 Test Configuration	
	7.1.5 Test Procedure	
-	7.1.6 Test Results	
,	7.2 RADIATED SPURIOUS EMISSION	
	7.2.1 Applicable Standard	
	7.2.2 Conformance Limit	
	7.2.3 Measuring Instruments7.2.4 Test Configuration	18
	7.2.4 Test Configuration	
	7.2.6 Test Results	
,	7.3 6DB BANDWIDTH	
	7.3.1 Applicable Standard	
	7.3.2 Conformance Limit	
	7.3.3 Measuring Instruments	
	7.3.4 Test Setup	
	7.3.5 Test Procedure	
	7.3.6 Test Results	
,	7.4 DUTY CYCLE	27
	7.4.1 Applicable Standard	27
	7.4.2 Conformance Limit	27
	7.4.3 Measuring Instruments	
	7.4.4 Test Setup	
	7.4.5 Test Procedure	
	7.4.6 Test Results	
,	7.5 PEAK OUTPUT POWER	
	7.5.1 Applicable Standard	
	7.5.2 Conformance Limit	
	7.5.3 Measuring Instruments	
	7.5.4 Test Setup	
	7.5.5 Test Procedure 7.5.6 Test Results	
		29

Report No.: STR220224007002E

7.6 P	OWER SPECTRAL DENSITY	30
7.6.1	Applicable Standard	
7.6.2	Conformance Limit	
7.6.3	Measuring Instruments	
7.6.4	Test Setup	
7.6.5	Test Procedure	
7.6.6	Test Results	
	CONDUCTED BAND EDGE MEASUREMENT	
7.7.1	Applicable Standard	
7.7.2	Conformance Limit	
7.7.3	Measuring Instruments	
7.7.4	Test Setup	
7.7.5	Test Procedure	
7.7.6	Test Results	
7.8 S	PURIOUS RF CONDUCTED EMISSIONS	
7.8.1	Conformance Limit	
7.8.2	Measuring Instruments	
7.8.3	Test Setup	. 33
7.8.4	Test Procedure	
7.8.5	Test Results	. 33
7.9 A	NTENNA APPLICATION	.34
7.9.1	Antenna Requirement	
7.9.2	Result	. 34
8 TEST	RESULTS	.35
8.1.3	MAXIMUM POWER SPECTRAL DENSITY LEVEL BAND EDGE	
8.1.4	CONDUCTED RF SPURIOUS EMISSION	
	MAXIMUM CONDUCTED OUTPUT POWER	
8.1.0 8.1.7		
8.1.8	MAXIMUM POWER SPECTRAL DENSITY LEVEL	
8.1.0 8.1.9		
) CONDUCTED RF SPURIOUS EMISSION	
0.1.10		.01

1 TEST RESULT CERTIFICATION

Applicant's name:	Shenzhen DOKE Electronic Co., Ltd
Address:	13th Floor, Weidonglong commercial building B, Meilong avenue, Longhua New District, Shenzhen, China
Manufacturer's Name	Shenzhen DOKE Electronic Co.,Ltd
Address:	801, Building3, 7th Industrial Zone, Yulv Community, Yutang Road, Guangming District, Shenzhen, China
Product description	
Product name:	4G Tablet
Model and/or type reference:	Tab 6
Family Model	Tab 11, Tab 6 Kids, Tab 12, Tab 13, Tab 15, Tab 10 Pro

Measurement Procedure Used:

APPLICABLE STANDARDS

APPLICABLE STANDARD/ TEST PROCEDURE	TEST RESULT
FCC 47 CFR Part 2, Subpart J	
FCC 47 CFR Part 15, Subpart C	Complied
ANSI C63.10-2013	Complied
KDB 558074 D01 15.247 Meas Guidance v05r02	

This device described above has been tested by Shenzhen NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK Testing Technology Co., Ltd., this document may be altered or revised by Shenzhen NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

The test results of this report relate only to the tested sample identified in this report.

Date of Test	:	Feb 25. 2022 ~ Apr 12, 2022	
Testing Engineer	:	Aven lin	
		(Allen Liu)	
Authorized Signatory	:	Alex	
		(Alex Li)	

Version.1.3

	FCC Part15 (15.247), Subpart	С		
Standard Section	Test Item	Verdict	Remark	
15.207	Conducted Emission	PASS		
15.247 (a)(2)	6dB Bandwidth	PASS		
15.247 (b)	b) Peak Output Power PASS			
15.209 (a) 15.205 (a)	Radiated Spurious Emission	PASS		
15.247 (e)	Power Spectral Density	PASS		
15.247 (d) Band Edge Emission PASS				
15.247 (d)	Spurious RF Conducted Emission	PASS		
15.203	Antenna Requirement	PASS		

Remark:

 "N/A" denotes test is not applicable in this Test Report.
 All test items were verified and recorded according to the standards and without any deviation during the test.

3 FACILITIES AND ACCREDITATIONS

3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

3.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description	
CNAS-Lab. :	The Certificate Registration Number is L5516.
IC-Registration	The Certificate Registration Number is 9270A.
	CAB identifier:CN0074
FCC- Accredited	Test Firm Registration Number: 463705.
	Designation Number: CN1184
A2LA-Lab.	The Certificate Registration Number is 4298.01
	This laboratory is accredited in accordance with the recognized
	International Standard ISO/IEC 17025:2005 General requirements for
	the competence of testing and calibration laboratories.
	This accreditation demonstrates technical competence for a defined
	scope and the operation of a laboratory quality management system
	(refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).
Name of Firm :	Shenzhen NTEK Testing Technology Co., Ltd.
Site Location :	1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang
	Street, Bao'an District, Shenzhen 518126 P.R. China.
	International Štandard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009). Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang

3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	±2.80dB
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(30MHz~1GHz)	±2.64dB
5	All emissions, radiated(1GHz~6GHz)	±2.40dB
6	All emissions, radiated(>6GHz)	±2.52dB
7	Temperature	±0.5°C
8	Humidity	±2%
9	All emissions, radiated(9KHz~30MHz)	±6dB

4 GENERAL DESCRIPTION OF EUT

Product Feature and Specification				
Equipment	4G Tablet			
Trade Mark	Blackview			
FCC ID	2APMJTAB6			
Model No.	Tab 6			
Family Model	Tab 11, Tab 6 Kids, Tab 12, Tab 13, Tab 15, Tab 10 Pro			
Model Difference	All models are the same circuit, RF module, motherboard and antenna, only appearance, color and model name are different			
Operating Frequency	2402MHz~2480MHz			
Modulation	GFSK			
Number of Channels	40 Channels			
Antenna Type	PIFA Antenna			
Antenna Gain	1.18dBi			
Power supply	DC 3.8V/5580mAh from battery or DC 5V from Adapter.			
Adapter	Model: HJ-0501000E1-US Input: 100-240V~50/60Hz 0.2A Output: 5V1000mA			
HW Version	S866T-T310-V1.0			
SW Version	Tab6_US_S886T_V1.0			

Note 1: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.

Note 2: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

Revision History				
Report No.	Version	Description	Issued Date	
STR220224007002E	Rev.01	Initial issue of report	Apr 13, 2022	
	<u> </u>			

5 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

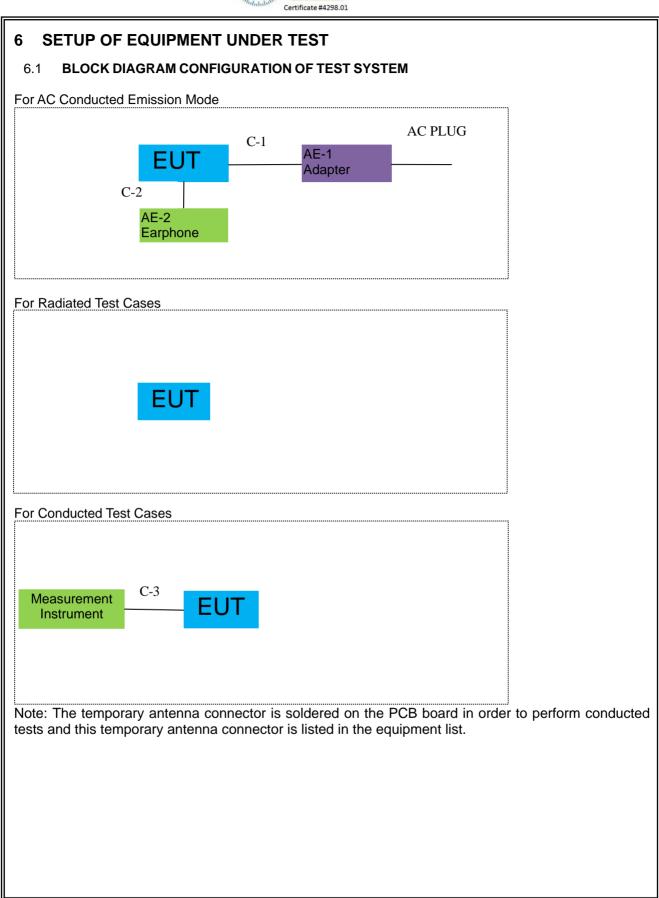
Those data rates (1Mbps/2Mbps for GFSK modulation) were used for all test.

The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement -X, Y, and Z-plane. The X-plane results were found as the worst case and were shown in this report.

Carrier Frequency and Channel list:

Channel	Frequency(MHz)
0	2402
1	2404
19	2440
20	2442
38	2478
39	2480

Note: fc=2402MHz+kx2MHz k=0 to 39


The following summary table is showing all test modes to demonstrate in compliance with the standard.

Test Cases		
Test Item	Data Rate/ Modulation	
AC Conducted Emission	Mode 1: normal link mode	
	Mode 1: normal link mode	
Radiated Test	Mode 2: GFSK Tx Ch00_2402MHz_1Mbps/2Mbps	
Cases	Mode 3: GFSK Tx Ch19_2440MHz_1Mbps/2Mbps	
	Mode 4: GFSK Tx Ch39_2480MHz_1Mbps/2Mbps	
Conducted Test	Mode 2: GFSK Tx Ch00_2402MHz_1Mbps/2Mbps	
Conducted Test Cases	Mode 3: GFSK Tx Ch19_2440MHz_1Mbps/2Mbps	
Cases	Mode 4: GFSK Tx Ch39_2480MHz_1Mbps/2Mbps	

Note:

1. The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode(duty cycle =100% during the test)

- 2. AC power line Conducted Emission was tested under maximum output power.
- 3. For radiated test cases, the worst mode data rate 1Mbps was reported only, because this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.
- 4. EUT built-in battery-powered, the battery is fully-charged.

®

NTEK 北测

6.2 SUPPORT EQUIPMENT

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Model/Type No.	Series No.	Note
AE-1	Adapter	HJ-0501000E1-US	N/A	Peripherals
AE-2	Earphone	N/A	N/A	Peripherals

Item	Cable Type	Shielded Type	Ferrite Core	Length
C-1	USB Cable	YES	NO	1.0m
C-2	Earphone Cable	NO	NO	1.2m
C-3	RF Cable	YES	NO	0.1m

Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in [Length] column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation& Conducted Test equipment

Laulati		iest equipment					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibrati on period
1	Spectrum Analyzer	Aglient	E4407B	MY45108040	2021.04.27	2022.04.26	1 year
2	Spectrum Analyzer	Agilent	N9020A	MY49100060	2021.04.27	2022.04.26	1 year
3	Spectrum Analyzer	R&S	FSV40	101417	2021.04.27	2022.04.26	1 year
4	Test Receiver	R&S	ESPI7	101318	2021.04.27	2022.04.26	1 year
5	Bilog Antenna	TESEQ	CBL6111D	31216	2021.03.29 2022/03/30	2022.03.28 2023.03.29	1 year
6	50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2020.05.11	2023.05.10	3 year
7	Horn Antenna	EM	EM-AH-1018 0	2011071402	2021.03.29 2022/03/30	2022.03.28 2023.03.29	1 year
8	Broadband Horn Antenna	SCHWARZBE CK	BBHA 9170	803	2021.11.07	2022.11.06	1 year
9	Amplifier	EMC	EMC051835 SE	980246	2021.07.01	2022.06.30	1 year
10	Active Loop Antenna	SCHWARZBE CK	FMZB 1519 B	055	2021.11.07	2022.11.06	1 year
11	Power Meter	DARE	RPR3006W	15I00041SN 084	2021.11.07	2022.11.06	1 year
12	Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2019.08.06	2022.08.05	3 year
13	Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2019.08.06	2022.08.05	3 year
14	High Test Cable(1G-40G Hz)	N/A	R-03	N/A	2019.06.28	2022.06.27	3 year
15	Filter	TRILTHIC	2400MHz	29	2021.11.07	2022.11.06	1 year
16	temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

AC Co	AC Conduction Test equipment						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Test Receiver	R&S	ESCI	101160	2021.04.27	2022.04.26	1 year
2	LISN	R&S	ENV216	101313	2021.04.27	2022.04.26	1 year
3	LISN	SCHWARZBE CK	NNLK 8129	8129245	2021.04.27	2022.04.26	1 year
4	50Ω Coaxial Switch	ANRITSU CORP	MP59B	6200983704	2020.05.11	2023.05.10	3 year
5	Test Cable (9KHz-30MH z)	N/A	C01	N/A	2020.05.11	2023.05.10	3 year
6	Test Cable (9KHz-30MH z)	N/A	C02	N/A	2020.05.11	2023.05.10	3 year
7	Test Cable (9KHz-30MH z)	N/A	C03	N/A	2020.05.11	2023.05.10	3 year

Note: Each piece of equipment is scheduled for calibration once a year except the Aux Equipment & Test Cable which is scheduled for calibration every 2 or 3 years.

7 TEST REQUIREMENTS

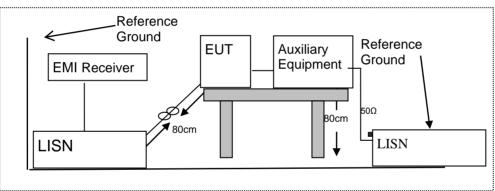
7.1 CONDUCTED EMISSIONS TEST

7.1.1 Applicable Standard

According to FCC Part 15.207(a)

7.1.2 Conformance Limit

	Conducted Emission Limit		
Frequency(MHz)	Quasi-peak	Average	
0.15-0.5	66-56*	56-46*	
0.5-5.0	56	46	
5.0-30.0	60	50	


Note: 1. *Decreases with the logarithm of the frequency

- 2. The lower limit shall apply at the transition frequencies
 - 3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

7.1.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

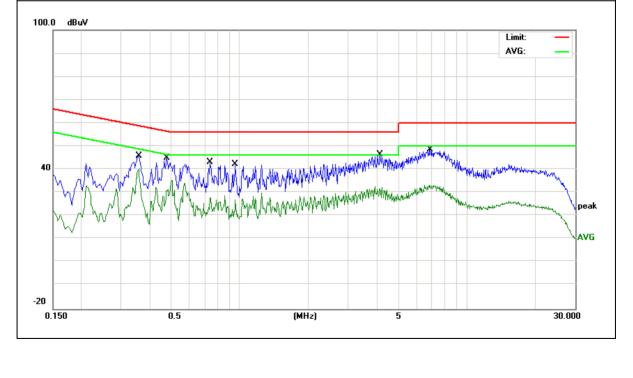
7.1.4 Test Configuration

7.1.5 Test Procedure

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- 5. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item -EUT Test Photos.

7.1.6 Test Results


EUT:	4G Tablet	Model Name :	Tab 6
Temperature:	22 ℃	Relative Humidity:	57%
Pressure:	1010hPa	Phase :	L
	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Mode 1

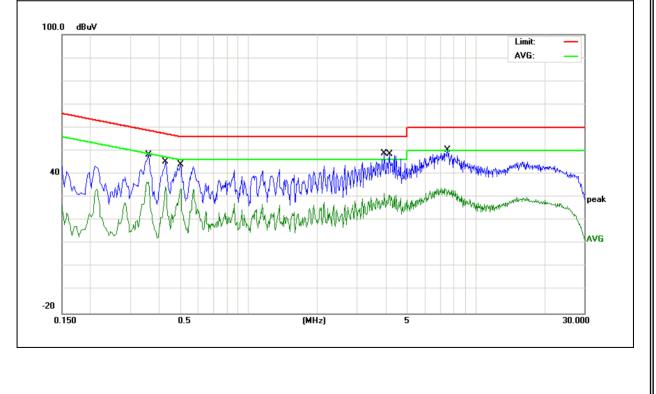
Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Domork
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.3579	36.35	9.64	45.99	58.78	-12.79	QP
0.3579	25.72	9.64	35.36	48.78	-13.42	AVG
0.4779	35.37	9.64	45.01	56.38	-11.37	QP
0.4779	26.05	9.64	35.69	46.38	-10.69	AVG
0.7378	33.37	9.74	43.11	56.00	-12.89	QP
0.7378	23.91	9.74	33.65	46.00	-12.35	AVG
0.9579	32.48	9.75	42.23	56.00	-13.77	QP
0.9579	22.90	9.75	32.65	46.00	-13.35	AVG
4.1418	36.79	9.67	46.46	56.00	-9.54	QP
4.1418	27.02	9.67	36.69	46.00	-9.31	AVG
6.8818	38.90	9.69	48.59	60.00	-11.41	QP
6.8818	28.89	9.69	38.58	50.00	-11.42	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.

Version.1.3



EUT:	EUT: 4G Tablet		Model Na	me :	Tab 6	
Temperature: 22°C			Relative Humidity:		57%	
Pressure:	1010hP	a	Phase :		N	
Test Voltage :	DC 5V f AC 120	rom Adapter //60Hz	om Adapter Test Mode.		Mode 1	
Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Demente
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.3619	38.49	9.69	48.18	58.68	-10.50	QP
0.3619	28.67	9.69	38.36	48.68	-10.32	AVG
0.4299	35.68	9.72	45.40	57.25	-11.85	QP
0.4299	25.64	9.72	35.36	47.25	-11.89	AVG
0.5020	34.39	9.74	44.13	56.00	-11.87	QP
0.5020	24.91	9.74	34.65	46.00	-11.35	AVG
3.9500	39.09	9.77	48.86	56.00	-7.14	QP
3.9500	28.82	9.77	38.59	46.00	-7.41	AVG
4.1658	38.91	9.77	48.68	56.00	-7.32	QP
4.1658	28.82	9.77	38.59	46.00	-7.41	AVG
7.5138	40.44	9.80	50.24	60.00	-9.76	QP
7.5138	30.45	9.80	40.25	50.00	-9.75	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.

Version.1.3

7.2 RADIATED SPURIOUS EMISSION

7.2.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and ANSI C63.10-2013

7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

According to 1 OC 1 art 15.205, Restricted bands			
MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(2)
13.36-13.41			

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009~0.490	2400/F(KHz)	20 log (uV/m)	300
0.490~1.705	24000/F(KHz)	20 log (uV/m)	30
1.705~30.0	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

Limits of Radiated Emission Measurement(Above 1000MHz)

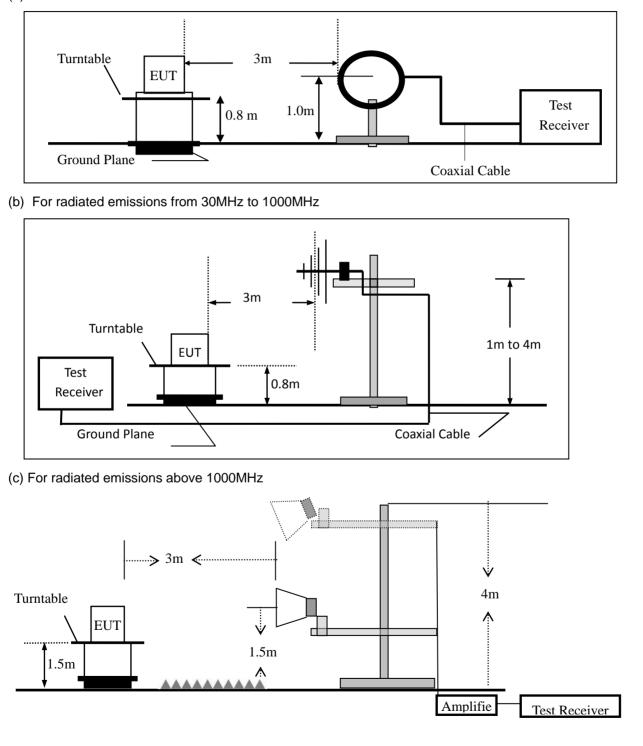
	Class B (dBuV/m) (at 3M)		
Frequency(MHz)	PEAK	AVERAGE	
Above 1000	74	54	

Remark :1. Emission level in dBuV/m=20 log (uV/m)

2. Measurement was performed at an antenna to the closed point of EUT distance of meters.

3. For Frequency 9kHz~30MHz: Distance extrapolation factor =40log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor.

For Frequency above 30MHz: Distance extrapolation factor =20log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor.



7.2.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.2.4 Test Configuration

(a) For radiated emissions below 30MHz

7.2.5 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m. The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 1MHz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- e. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- f. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- g. For the actual test configuration, please refer to the related Item –EUT Test Photos.
 - Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

uring the radiated emission test, the Spectrum Analyzer was set with the following configurations:								
Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth					
30 to 1000	QP	120 kHz	300 kHz					
Above 1000	Peak	1 MHz	1 MHz					
Above 1000	Average	1 MHz	1 MHz					

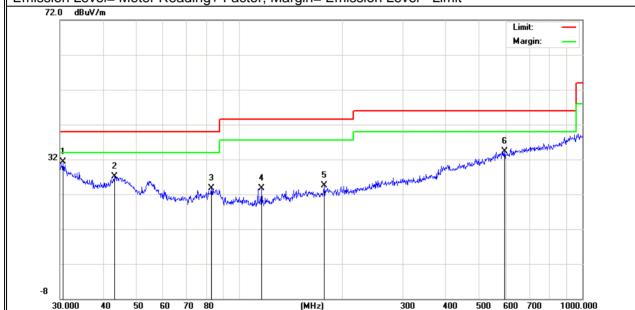
Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz]). , the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

7.2.6 Test Results

EUT:	4G Tablet	Model No.:	Tab 6
Temperature:	20 ℃	Relative Humidity:	48%
Lest Mode.	Mode1/Mode2/Mode3/ Mode4	Test By:	Allen Liu

Freq.	Ant.Pol.	Emission L	.evel(dBuV/m)	Limit 3	m(dBuV/m)	Over(dB)		
(MHz)	H/V	PK	AV	PK	AV	PK	AV	

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.



Spurious Emission below 1GHz (30MHz to 1GHz) All the modulation modes have been tested, and the worst result was report as below: EUT: 4G Tablet Model Name : Tab 6 **25** ℃ 55% Temperature: Relative Humidity: Test Mode: Mode 1 Pressure: 1010hPa DC 3.8V Test Voltage : Meter Emission Frequency Factor Limits Margin Polar Reading Level Remark

(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
V	30.6379	8.10	23.28	31.38	40.00	-8.62	QP
V	43.2017	9.97	17.10	27.07	40.00	-12.93	QP
V	82.9385	9.33	14.31	23.64	40.00	-16.36	QP
V	116.1321	8.80	14.81	23.61	43.50	-19.89	QP
V	176.8878	7.53	16.91	24.44	43.50	-19.06	QP
V	593.0497	7.09	27.13	34.22	46.00	-11.78	QP
Pomark	•						

Remark:

Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark	
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	rtomant	
Н	30.6378	6.05	23.28	29.33	40.00	-10.67	QP	
Н	56.5929	7.65	14.37	22.02	40.00	-17.98	QP	
Н	126.3285	6.29	15.43	21.72	43.50	-21.78	QP	
Н	290.0172	6.85	20.19	27.04	46.00	-18.96	QP	
Н	501.1789	7.07	25.79	32.86	46.00	-13.14	QP	
H Remark	1000.000	6.74	32.54	39.28	54.00	-14.72	QP	
<u>Emissio</u> 72.0						Limit: Margin: 	6	
-8 30	.000 40 50	60 70 80	[M]	12]	300 400 500	600 700	1000.000	

Spurious	■ Spurious Emission Above 1GHz (1GHz to 25GHz)										
EUT:	40	G Tablet		ſ	Mode	el No.:		Tab	6		
Temperature	e: 20) °C		F	Rela	tive Humidi	ty:	48%			
Test Mode:	М	Mode2/Mode3/Mode4 Test By:						Aller	n Liu		
						•					
Frequency	Read Level	Cable loss	Antenna Factor	Prear Fact		Emission Level	Lim	its	Margin	Remark	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dB	3)	(dBµV/m)	(dBµ	√/m)	(dB)		
	Low Channel (2402 MHz)(GFSK)Above 1G										
4804.338	61.84	5.21	35.59	44.3	30	58.34	74.	00	-15.66	Pk	Vertical
4804.338	42.20	5.21	35.59	44.3	30	38.70	54.	00	-15.30	AV	Vertical
7206.107	61.40	6.48	36.27	44.6	60	59.55	74.	00	-14.45	Pk	Vertical
7206.107	41.85	6.48	36.27	44.6	60	40.00	54.	00	-14.00	AV	Vertical
4804.169	63.71	5.21	35.55	44.3	30	60.17	74.	00	-13.83	Pk	Horizontal
4804.169	41.78	5.21	35.55	44.3	30	38.24	54.	00	-15.76	AV	Horizontal
7206.214	60.84	6.48	36.27	44.5	52	59.07	74.	00	-14.93	Pk	Horizontal
7206.214	40.90	6.48	36.27	44.5		39.13	54.		-14.87	AV	Horizontal
	Mid Channel (2440 MHz)(GFSK)Above 1G										
4880.473	64.25	5.21	35.66	44.2	20	60.92	74.	00	-13.08	Pk	Vertical
4880.473	43.01	5.21	35.66	44.2	20	39.68	54.	00	-14.32	AV	Vertical
7320.265	65.02	7.10	36.50	44.4	13	64.19	74.	00	-9.81	Pk	Vertical
7320.265	42.06	7.10	36.50	44.4	13	41.23	54.	00	-12.77	AV	Vertical
4880.366	63.29	5.21	35.66	44.2	20	59.96	74.	00	-14.04	Pk	Horizontal
4880.366	41.09	5.21	35.66	44.2	20	37.76	54.	00	-16.24	AV	Horizontal
7320.234	60.35	7.10	36.50	44.4		59.52	74.	00	-14.48	Pk	Horizontal
7320.234	44.46	7.10	36.50	44.4		43.63	54.		-10.37	AV	Horizontal
		1		annel (2	2480	MHz)(GFSK	() Abo	ove 10	3	[
4960.482	63.76	5.21	35.52	44.2	21	60.28	74.	00	-13.72	Pk	Vertical
4960.482	43.15	5.21	35.52	44.2	21	39.67	54.	00	-14.33	AV	Vertical
7440.131	65.45	7.10	36.53	44.6	60	64.48	74.	00	-9.52	Pk	Vertical
7440.131	48.40	7.10	36.53	44.6		47.43	54.		-6.57	AV	Vertical
4960.326	64.34	5.21	35.52	44.2		60.86	74.		-13.14	Pk	Horizontal
4960.326	44.80	5.21	35.52	44.2		41.32	54.		-12.68	AV	Horizontal
7440.199	64.58	7.10	36.53	44.6	60	63.61	74.	00	-10.39	Pk	Horizontal
7440.199	45.20	7.10	36.53	44.6	60	44.23	54.	00	-9.77	AV	Horizontal

Note:

(1) Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor

(2)All other emissions more than 20dB below the limit.

(3)Only the worst data is recorded in the report, the data rates (1Mbps for GFSK modulation) test result is the worst

Εl	JT:	Mission ir				Model No.:		Tab 6				
	emperature:	20 ℃							48%			
	est Mode:	Mode2/	Mode4				Test By: Allen Liu			Liu		
								-				
	Frequency	Meter Reading	Cable Loss	Antenna Factor		eamp actor	Emission Level	Lin	nits	Margin	Detector	Comment
	(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµ	ıV/m)	(dB)	Туре	
		11					s(GFSK)					
	2310.00	64.10	2.97	27.80	43	3.80	51.07	7	' 4	-22.93	Pk	Horizontal
	2310.00	42.54	2.97	27.80	43	3.80	29.51	5	54	-24.49	AV	Horizontal
	2310.00	62.31	2.97	27.80	43	3.80	49.28	7	'4	-24.72	Pk	Vertical
	2310.00	42.87	2.97	27.80	43	3.80	29.84	5	54	-24.16	AV	Vertical
	2390.00	64.00	3.14	27.21	43	3.80	50.55	7	'4	-23.45	Pk	Vertical
	2390.00	42.50	3.14	27.21	43	3.80	29.05	5	54	-24.95	AV	Vertical
	2390.00	63.36	3.14	27.21	43	3.80	49.91	7	' 4	-24.09	Pk	Horizontal
	2390.00	43.33	3.14	27.21	43	3.80	29.88	5	54	-24.12	AV	Horizontal
	2483.50	61.35	3.58	27.70	44	4.00	48.63	7	'4	-25.37	Pk	Vertical
	2483.50	43.08	3.58	27.70	44	4.00	30.36	5	54	-23.64	AV	Vertical
	2483.50	64.29	3.58	27.70	44	4.00	51.57	7	' 4	-22.43	Pk	Horizontal
	2483.50	43.14	3.58	27.70	44	4.00	30.42	5	54	-23.58	AV	Horizontal

Note: (1) All other emissions more than 20dB below the limit.

(2)Only the worst data is recorded in the report, the data rates (1Mbps for GFSK modulation) test result is the worst

UT:	4G Tab	olet			Model No.:			Tab 6			
emperature:	e: 20 °C Relative I					ive Humidit	y:	48%			
est Mode:	Mode2	/ Mode4	ŀ		Test	Test By: Allen Liu					
Frequency	Reading Level	Cable Loss	Antenna Factor		eamp Emission Limit		nits	Margin	Detector	Comment	
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµ	ıV/m)	(dB)	Туре	
3260	63.69	4.04	29.57	4	4.70	52.60	7	' 4	-21.40	Pk	Vertical
3260	57.19	4.04	29.57	4	4.70	46.10	5	54	-7.90	AV	Vertical
3260	65.54	4.04	29.57	4	4.70	54.45	7	'4	-19.55	Pk	Horizontal
3260	58.21	4.04	29.57	4	4.70	47.12	5	54	-6.88	AV	Horizontal
3332	65.62	4.26	29.87	4	4.40	55.35	7	'4	-18.65	Pk	Vertical
3332	56.53	4.26	29.87	4	4.40	46.26	5	54	-7.74	AV	Vertical
3332	66.18	4.26	29.87	4	4.40	55.91	7	' 4	-18.09	Pk	Horizontal
3332	52.69	4.26	29.87	4	4.40	42.42	5	54	-11.58	AV	Horizontal
17797	46.27	10.99	43.95	4	3.50	57.71	7	'4	-16.29	Pk	Vertical
17797	35.43	10.99	43.95	43	3.50	46.87	5	54	-7.13	AV	Vertical
17788	45.34	11.81	43.69	4	4.60	56.24	7	'4	-17.76	Pk	Horizontal
17788	37.41	11.81	43.69	4	4.60	48.31	5	54	-5.69	AV	Horizontal

Note: (1) All other emissions more than 20dB below the limit.

(2)Only the worst data is recorded in the report, the data rates (1Mbps for GFSK modulation) test result is the worst

7.3 6DB BANDWIDTH

7.3.1 Applicable Standard

According to FCC Part 15.247(a)(2) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.2.

7.3.2 Conformance Limit

The minimum permissible 6dB bandwidth is 500 kHz.

7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.3.4 Test Setup

Please refer to Section 6.1 of this test report.

7.3.5 Test Procedure

The testing follows Subclause 11.8 of ANSI C63.10

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

a) Set RBW = 100 kHz.

- b) Set the video bandwidth (VBW) \geq 3*RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.

g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

7.3.6 Test Results

EUT:	4G Tablet	Model No.:	Tab 6
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

7.4 DUTY CYCLE

7.4.1 Applicable Standard

According to KDB 558074 D01 15.247 Meas Guidance v05r02s Section 6.

7.4.2 Conformance Limit

No limit requirement.

7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

7.4.5 Test Procedure

The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on and off times of the transmitted signal. Set the center frequency of the instrument to the center frequency of the transmission. Set RBW \geq OBW if possible; otherwise, set RBW to the largest available value. Set VBW \geq RBW. Set detector = peak or average. The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring duty cycle shall not be used if T \leq 16.7 microseconds.)

The transmitter output is connected to the Spectrum Analyzer. We tested accroding to the zero-span measurement method, 6.0)b) in KDB 558074

The largest available value of RBW is 8 MHz and VBW is 50 MHz. The zero-span method of measuring duty cycle shall not be used if $T \le 6.25$ microseconds. (50/6.25 = 8)

The zero-span method was used because all measured T data are > 6.25 microseconds and both RBW and VBW are > 50/T.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = Zero Span RBW = 8MHz(the largest available value) VBW = 8MHz (\geq RBW) Number of points in Sweep >100 Detector function = peak Trace = Clear write Measure T_{total} and T_{on} Calculate Duty Cycle = T_{on} / T_{total}

7.4.6 Test Results

EUT:	4G Tablet	Model No.:	Tab 6
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	N/A	Test By:	N/A

Note: Not Applicable

7.5 PEAK OUTPUT POWER

7.5.1 Applicable Standard

According to FCC Part 15.247(b)(3) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.3.1.

7.5.2 Conformance Limit

The maximum peak conducted output power of the intentional radiator for systems using digital modulation in the 2400 - 2483.5 MHz bands shall not exceed: 1 Watt (30dBm). If transmitting antenna of directional gain greater than 6dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

7.5.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.5.4 Test Setup

Please refer to Section 6.1 of this test report.

7.5.5 Test Procedure

The testing follows Subclause 11.9.1.1 of ANSI C63.10 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Set the RBW \geq DTS bandwidth. Set VBW =3*RBW. Set the span \geq 3*RBW Set Sweep time = auto couple. Set Detector = peak. Set Trace mode = max hold. Allow trace to fully stabilize. Use peak marker function to determine the peak amplitude level.

7.5.6 Test Results

EUT:	4G Tablet	Model No.:	Tab 6
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

7.6 **POWER SPECTRAL DENSITY**

7.6.1 Applicable Standard

According to FCC Part 15.247(e) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.4.

7.6.2 Conformance Limit

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

7.6.5 Test Procedure

The testing follows Measurement Procedure Subclause 11.10.2 of ANSI C63.10 This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance, and is optional if the maximum conducted (average) output power was used to demonstrate compliance.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

a) Set analyzer center frequency to DTS channel center frequency.

b) Set the span to 1.5*DTS bandwidth.

c) Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.

- d) Set the VBW \geq 3 RBW.
- e) Detector = peak.
- f) Sweep time = auto couple.

g) Trace mode = max hold.

h) Allow trace to fully stabilize.

i) Use the peak marker function to determine the maximum amplitude level within the RBW.

j) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

7.6.6 Test Results

EUT:	4G Tablet	Model No.:	Tab 6
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

7.7 CONDUCTED BAND EDGE MEASUREMENT

7.7.1 Applicable Standard

According to FCC Part 15.247(d) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.7.

7.7.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

7.7.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

7.7.5 Test Procedure

The testing follows FCC KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.7.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.

Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

7.7.6 Test Results

EUT:	4G Tablet	Model No.:	Tab 6
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode4	Test By:	Allen Liu

7.8 SPURIOUS RF CONDUCTED EMISSIONS

7.8.1 Conformance Limit

1. Below -20dB of the highest emission level in operating band.

2. Fall in the restricted bands listed in section 15.205. The maximum permitted average field strength is listed in section 15.209.

7.8.2 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.8.3 Test Setup

Please refer to Section 6.1 of this test report.

7.8.4 Test Procedure

The Spurious RF conducted emissions compliance of RF radiated emission should be measured by following the guidance in ANSI C63.10-2013 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization etc. Set RBW=100kHz and VBW= 300KHz to measure the peak field strength , and measure frequency range from 30MHz to 26.5GHz.

7.8.5 Test Results

Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.

7.9 ANTENNA APPLICATION

7.9.1 Antenna Requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

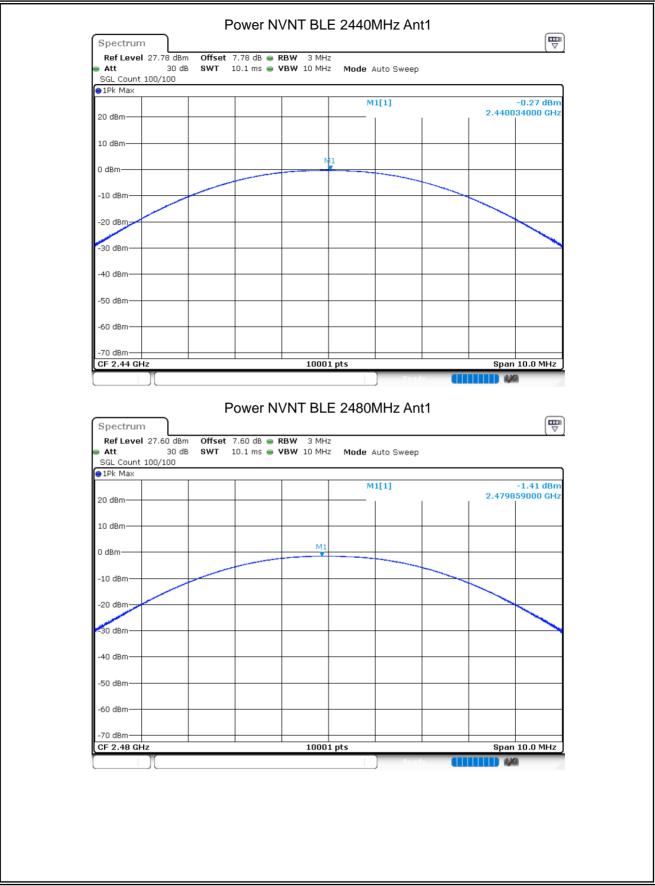
7.9.2 Result

The EUT antenna is permanent attached PIFA antenna (Gain: 1.18 dBi). It comply with the standard requirement.

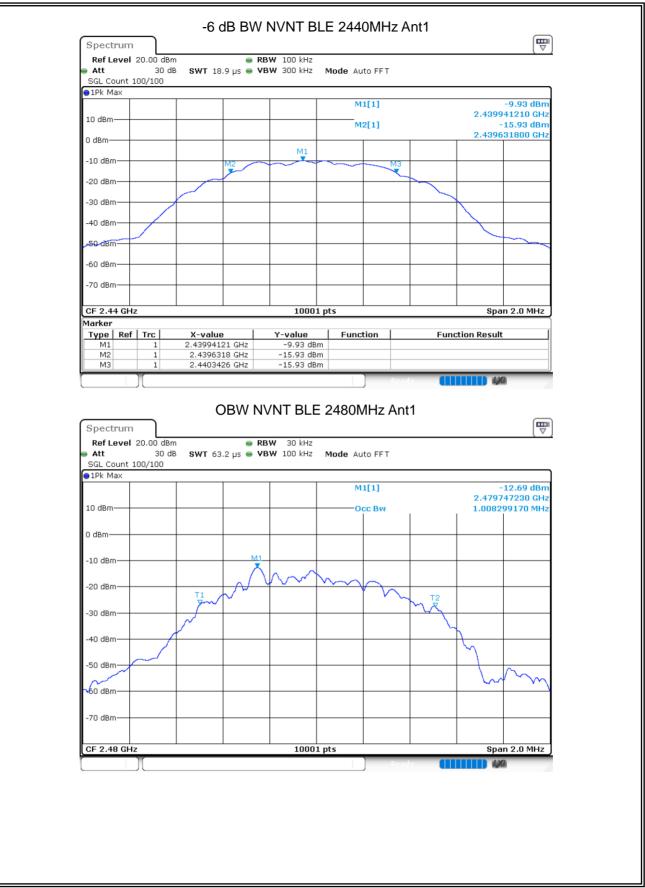
8 TEST RESULTS

1M:

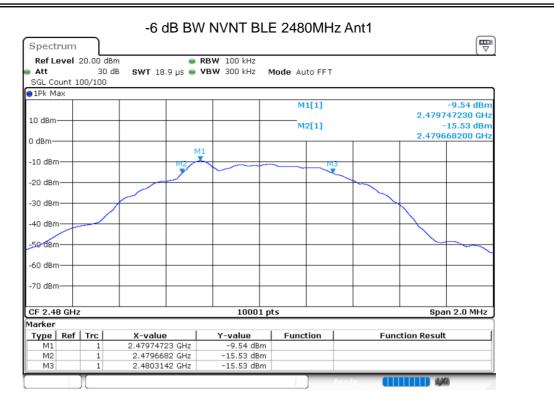
8.1.1 MAXIMUM CONDUCTED OUTPUT POWER

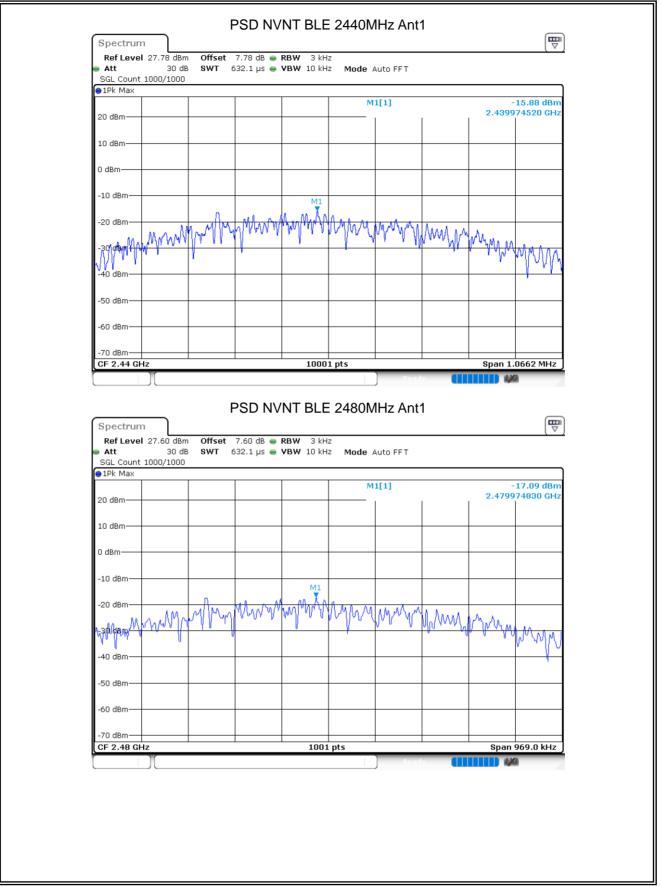

Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	BLE	2402	Ant 1	-0.965	30	Pass
NVNT	BLE	2440	Ant 1	-0.266	30	Pass
NVNT	BLE	2480	Ant 1	-1.413	30	Pass

Power NVNT BLE 2402MHz Ant1

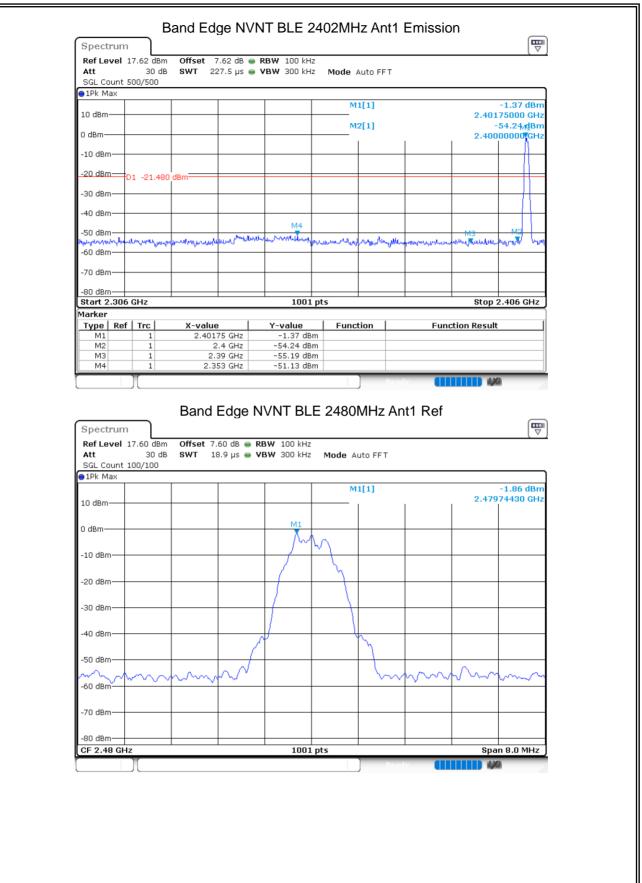

8.1.2 OCCUPIED CHANNEL BANDWIDTH

Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdic
NVNT	BLE	2402	Ant 1	0.9853	0.6486	0.5	Pass
NVNT	BLE	2440	Ant 1	0.9981	0.7108	0.5	Pass
NVNT	BLE	2480	Ant 1	1.0083	0.646	0.5	Pass
	👄 Att	el 20.00 dBm	● RBW 63.2 µs ● VBW	30 kHz 100 kHz Mode Au	uto FFT		
	10 dBm-				11[1] cc Bw	-12.07 dBm 2.401747830 GHz 985.301469853 kHz	
	0 dBm						
	-10 dBm—		M1	\sim			
	-20 dBm—	Ţ			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
					<u> </u>		
	-40 dBm—					\sim	
	-50 dBm						



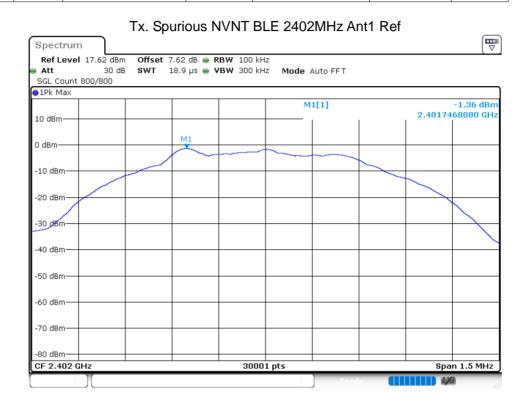


ondition	Mode	Frequency (MHz)	Antenna	Max PSD (dBm/3kHz)	Limit (dBm/3kHz)	Verc
NVNT	BLE	2402	Ant 1	-16.509	8	Pas
NVNT	BLE	2440	Ant 1	-15.885	8	Pas
NVNT	BLE	2480	Ant 1	-17.09	8	Pas
	● Att SGL Co ● 1Pk Ma 20 dBm- 10 dBm- -10 dBm-	evel 27.62 dBm Offset 7.6 30 dB SWT 631. unt 1000/1000 ax	2 dB ● RBW 3 8 µs ● VBW 10	KHz Mode Auto FFT	-16.51 dBm 2.4019744150 GHz	
	-50 dBm -60 dBm -70 dBm					
	CF 2.40		10	001 pts	Span 972.9 kHz	
				Ready		

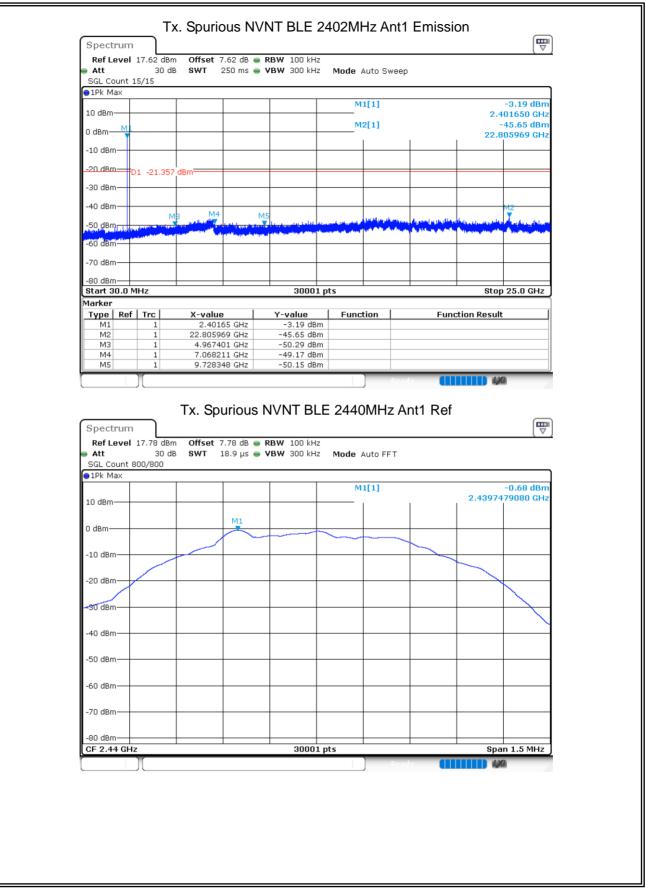


8.1.4 BAND EDGE

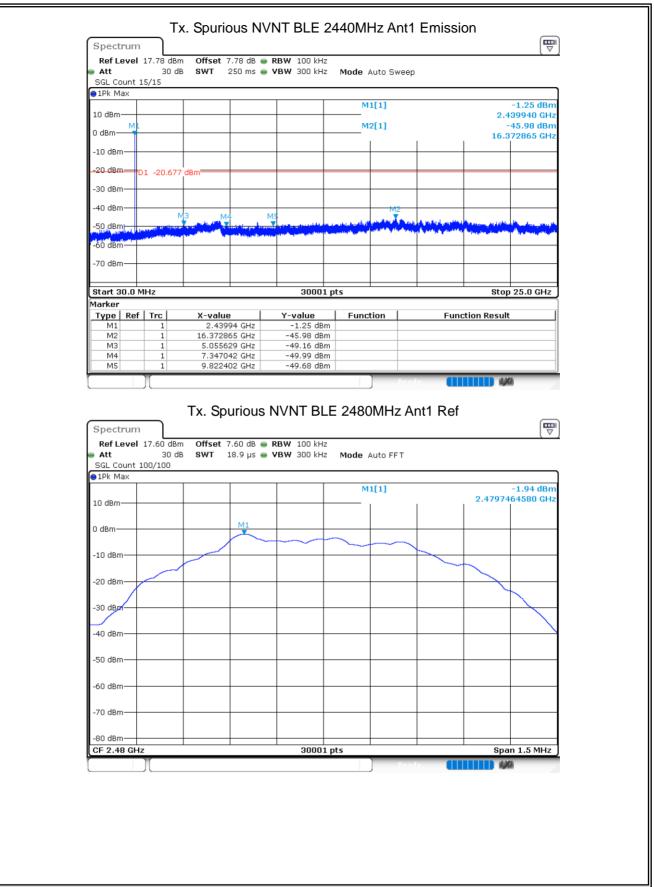
WNT BLE 2480 Ant 1 -50.81 -20 Pass Band Edge NVNT BLE 2402MHz Ant1 Ref Ref Level 17.62 dbm Offset 7.62 db @ RBW 100 kHz Image: Colspan="2">Mede Auto FFT SGL Count 100/100 MI[1] -1.48 dBm 10 dBm MI[1] 2.40174430 GHz -20 dBm MI[1] 2.40174430 GHz -30 dBm MI[1] Span B.0 MHz	Condition NVNT	Mode BLE	24	cy (MHz) 02	Antenna Ant 1	Max Valu -49	.64	-20	Pass
Spectrum Image: Construction of the sector of	NVNT	BLE	24	80	Ant 1	-50	.81	-20	Pass
Spectrum Image: Construct 100,100 Offset 7.62 dB • RBW 100 kHz Mode Auto FFT SGL Count 100/100 SWT 18.9 µs • VBW 300 kHz Mode Auto FFT •10 dBm -1.48 dBm -1.48 dBm 10 dBm M1 -1.49 dBm -10 dBm M1 -1.49 dBm -20 dBm -30 dBm -1.49 dBm -30 dBm -1.0 dBm -1.0 dBm -50 dBm -1.0 dBm -1.0 dBm -50 dBm -1.0 dBm -1.0 dBm -60 dBm -1.0 dBm -1.0 dBm -70 dBm -1.0 dBm -1.0 dBm -80 dBm -1.0 dBm -1.0 dBm				Pond Ed			MU- Ant	1 Dof	
Ref Level 17.62 dBm Offset 7.62 dB RBW 100 kHz Mode Auto FFT SGL Count 100/100 91Pk Max -1.48 dBm -1.48 dBm 10 dBm M1[1] -1.48 dBm 2.40174430 GHz 0 dBm M1 -1.48 dBm -1.48 dBm -10 dBm M1 -1.48 dBm -1.48 dBm -20 dBm -30 dBm -1.48 dBm -1.48 dBm -30 dBm -0.08 m -0.08 m -0.08 m -30 dBm -0.08 m -0.08 m -0.08 m -50 dBm -0.08 m -0.08 m -0.08 m -70 dBm -70 dBm -0.01 pts Span 8.0 MHz		Const		Danu Eu				i Kei	Ē
Att 30 dB SWT 18.9 µs VBW 300 kHz Mode Auto FFT SGL Count 100/100 IN Max IN dBm IN dBm				Offset 7.62	HB 👄 RBW 100	kHz			
		Att	30 dB				uto FFT		
10 dBm 2.40174430 GHz 0 dBm M1 -10 dBm									
10 dBm M1 0 dBm M1 -10 dBm -10 dBm -20 dBm -10 dBm -30 dBm -10 dBm -30 dBm -10 dBm -50 dBm -10 dBm -60 dBm -10 dBm -60 dBm -10 dBm -70 dBm -10 dBm -70 dBm -10 dBm -70 dBm -10 dBm -80 dBm -10 dBm -90 dBm						M	1[1]	2 4	
-10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -40 dBm -50 dBm -60 dBm -70 dBm -70 dBm -80		10 dBm						2."	
-20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -60 dBm -70 dBm -70 dBm -80		0 dBm-			M	1			
-20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm -80 dB					j j	mn I			
-30 dBm -40 dBm -50 dBm -50 dBm -60 dBm -70 dBm -70 dBm -80		-10 dBn	n			- \ <u>\</u>			
-40 dBm -50 dBm -60 dBm -70 dBm -80 dBm CF 2.402 GHz 1001 pts Span 8.0 MHz		-20 dBn	n		/				
-40 dBm -50 dBm -60 dBm -70 dBm -80 dBm CF 2.402 GHz 1001 pts Span 8.0 MHz		00.40-	_						
-50 dBm -60 dBm -70 dBm -80 dBm CF 2.402 GHz 1001 pts Span 8.0 MHz		-30 dBn	1		X				
-60 dBm -70 dBm -80 dBm CF 2.402 GHz 1001 pts Span 8.0 MHz		-40 dBn	n		_/				
-60 dBm -70 dBm -80 dBm CF 2.402 GHz 1001 pts Span 8.0 MHz									
-60 dBm -70 dBm -80 dBm CF 2.402 GHz 1001 pts Span 8.0 MHz		-50 aBn		hon A	m		him		
-80 dBm		-60 dBn		-v v~ v				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	V WWW
-80 dBm CF 2.402 GHz 1001 pts Span 8.0 MHz									
CF 2.402 GHz 1001 pts Span 8.0 MHz		-/11 040	n — — — — — — — — — — — — — — — — — — —						
		-70 dBn	n						
		-80 dBn	n						
		-80 dBn	n		1(001 pts) Ready	3	
		-80 dBn	n		1(001 pts	Beady	3 ((((((((((((((((((((((((((((((((((((
		-80 dBn	n		1(001 pts	Peadv	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
		-80 dBn	n		1(D01 pts	Ready		
		-80 dBn	n		1(D01 pts	Beady	3 (1111111)	
		-80 dBn	n		1(001 pts	Beady	3	
		-80 dBn	n		1	001 pts	Peadv		
		-80 dBn	n			D01 pts	Deady		
		-80 dBn	n			D01 pts	Beady		
		-80 dBn	n			D01 pts	Beady		
		-80 dBn	n			001 pts	Beady		
		-80 dBn	n			D01 pts	Deady		
		-80 dBn	n			D01 pts	Beady		
		-80 dBn	n			D01 pts	Beady		
		-80 dBn	n			D01 pts	Beady		
		-80 dBn	n			001 pts	Peadv		
		-80 dBn	n			D01 pts	Deady		

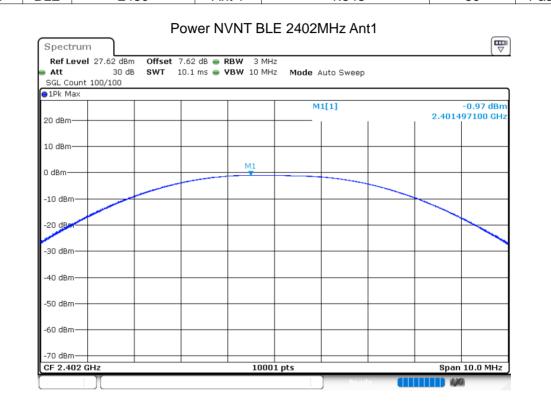


Spectrum	В	and Edg	ge NV	NT BLE 2	2480M	Hz Ar	nt1 E	Emissic	n	
Ref Level 17. Att SGL Count 500	30 dB		_	RBW 100 kH VBW 300 kH		Auto Ff	= T			[]
●1Pk Max	5,000			1						
10 dBm						M1[1]			0.470	-1.87 dBm
						M2[1]				975000 GHz -54.05 dBm
0 dam										850000 GHz
-10 dBm										
-20 dBm-01	-21.864	d8m								
	-21.004	ubiii								
-30 dBm										
-40 dBm										
	M4									
-50 dBm		M3	Jam Munu	when yolughow men	يولية والمحادث	A Lat. I I			when our property	March also and a state of the
-60 dBm	on the second	monoquere	00000	. According and	-	Jappmen	ula na	e son apacation		
oo abiii										
-70 dBm						_				
00.45-										
-80 dBm Start 2.476 GI	Hz			1001	nts				Ston	2.576 GHz
Marker				1001					0100	
Type Ref	Trc	X-value	1	Y-value	Fur	ction	1	Fun	tion Result	t [
M1	1	2.4797	75 GHz	-1.87 dB	m					
M2	1		35 GHz	-54.05 dB						
M3 M4	1		.5 GHz 35 GHz	-54.55 dB -52.68 dB						
IV14	1	2.493	oo GHZ	-52.08 QB						
										a

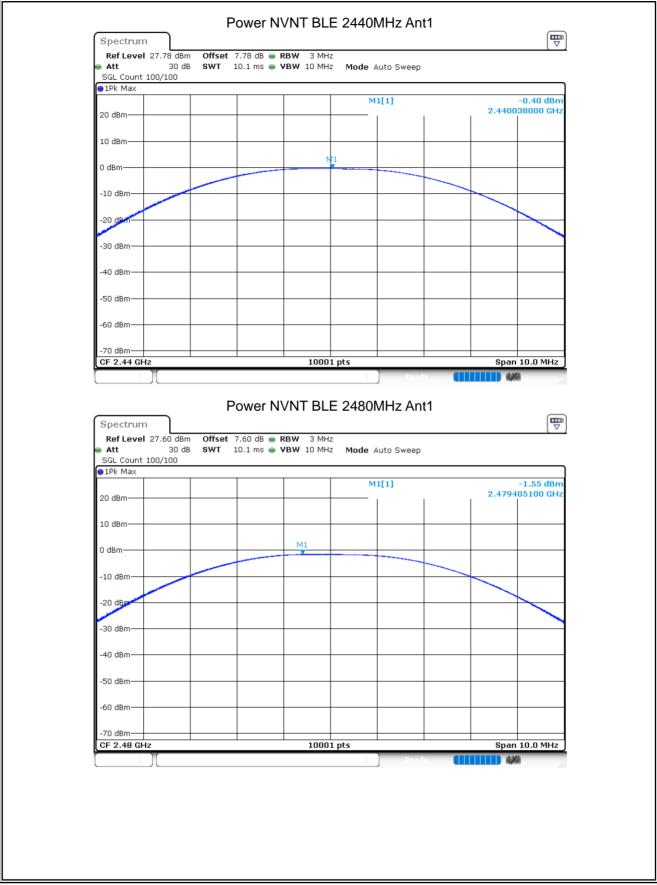


8.1.5 CONDUCTED RF SPURIOUS EMISSION

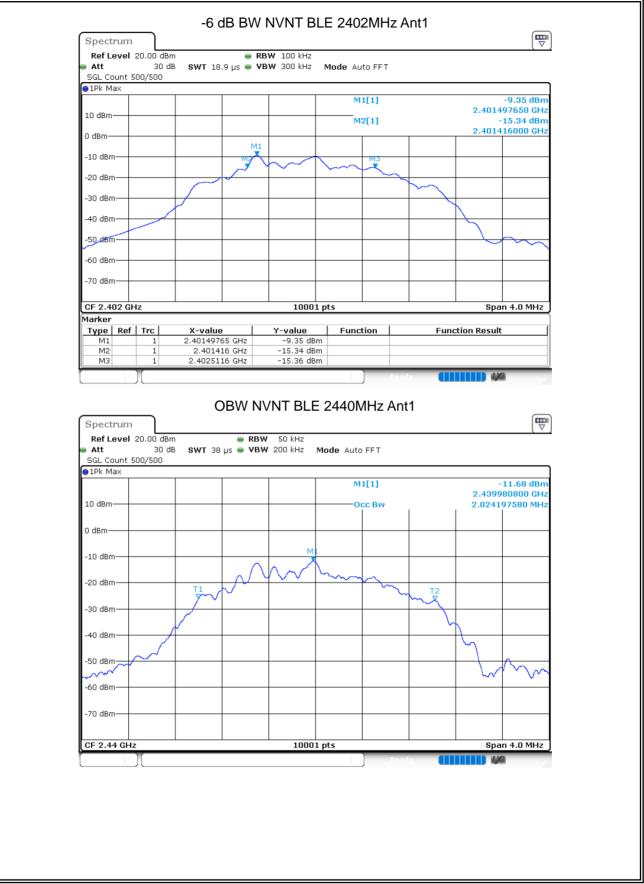

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE	2402	Ant 1	-44.29	-20	Pass
NVNT	BLE	2440	Ant 1	-45.3	-20	Pass
NVNT	BLE	2480	Ant 1	-43.23	-20	Pass

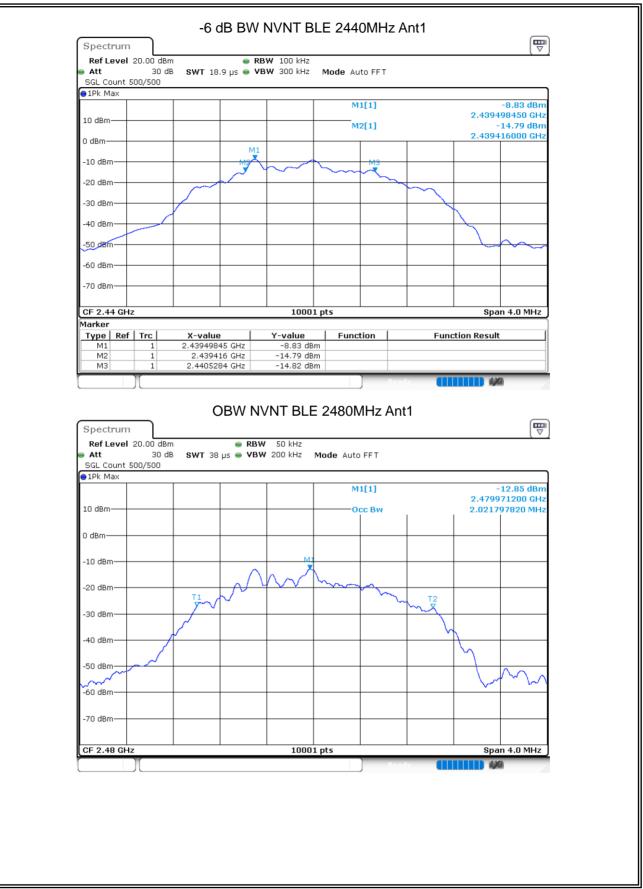

		Tx. Spuric	us N	VNT BLE 2	2480M⊢	lz Ant	1 Emiss	ion	_
Spectrum									
Ref Level	17.60	dBm Offset 7	.60 dB (• RBW 100 kHz					
Att	3	DdB SWT 2	250 ms (VBW 300 kHz	Mode A	uto Swe	ер		
SGL Count 1	5/15						-		
1Pk Max									
					M1	[1]			-3.55 dBm
LO dBm									479890 GHz
) dBm M					M2	[1]			-45.18 dBm
, ubiii—								16.	282141 GHz
-10 dBm									
-20 dBm — 0	1 -21.	937 dBm							
-30 dBm									
-30 UBIII									
-40 dBm						M2			
		МЗ _М4		M5					
-50 dBm	A standar	and the second	de l'antenna du	and a second public	المراقعي أقصافه وم	بالربان وتعاصيه	nan kanalariya da ka	a di secologi da la s	na dhuithe the stars
60 dBm	and the second s	dense plater i de la del	and the second						
-60 aBm									
-70 dBm									
/0 0.0									
-80 dBm									
Start 30.0 M	1Hz			30001	pts			Sto	p 25.0 GHz
1arker									
Type Ref	Trc	X-value		Y-value	Functi	ion	Fun	ction Resul	t [
M1	1	2.4798		-3.55 dBm					
M2	1	16.28214		-45.18 dBm					
MЗ	1	5.05063		-49.90 dBm					
M4	1	7.3104		-50.15 dBm					
M5	1	10.04879	96 GHz	-48.93 dBm					
						Re	ady		0

2M:

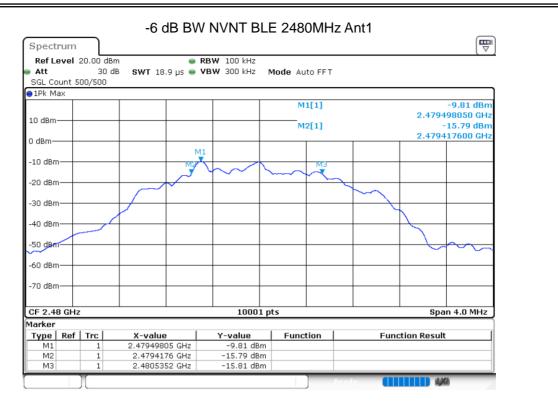

8.1.6 MAXIMUM CONDUCTED OUTPUT POWER

Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	BLE	2402	Ant 1	-0.971	30	Pass
Condition NVNT NVNT NVNT	BLE	2440	Ant 1	-0.402	30	Pass
NVNT	BLE	2480	Ant 1	-1.548	30	Pass

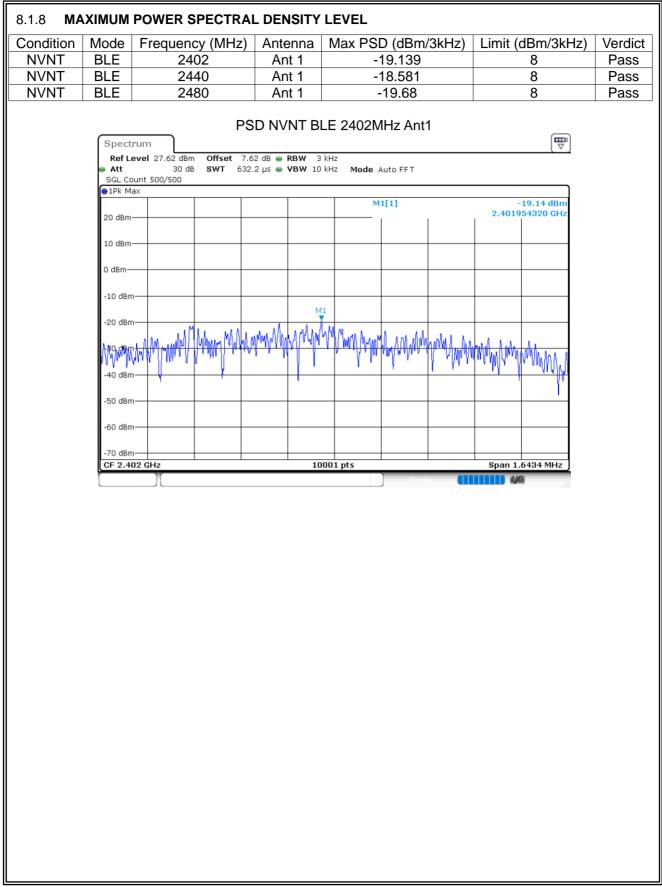



8.1.7 OCCUPIED CHANNEL BANDWIDTH

Condition	Mode	Frequency	Antenna	99%	-6 dB	Limit -6 dB	Verdict
		(MHz)		OBW	Bandwidth	Bandwidth	
		0.400		(MHz)	(MHz)	(MHz)	
NVNT	BLE	2402	Ant 1	2.021	1.0956	0.5	Pass
NVNT	BLE	2440	Ant 1	2.0242	1.1124	0.5	Pass
NVNT	BLE	2480	Ant 1	2.0218	1.1176	0.5	Pass
			OBM NAN	T BLE 2402	MHZ ANTI		
	Spectru			0.141-			
	er Leve	el 20.00 dBm 30 dB SWT :	RBW 5 ھ 🖷 38 א S		to FFT		
	SGL Coun	t 500/500	-				
	TEK Max				M1[1]	-12.45 dBm	
	10 dBm				Occ Bw	2.401498850 GHz 2.020997900 MHz	
	10 ubiii					2.020997900 MH2	
	0 dBm		_				
			M1				
	-10 dBm—		× a				
	-20 dBm—			$\sim \sim$			
			\sim		T2		
	-30 dBm—				+ \		
	-40 dBm—				↓ V		
	-40 0011					\mathcal{V}	
	-50 dBm						
	~~~~					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
	-60 dBm—						
	-70 dBm—						
		1					

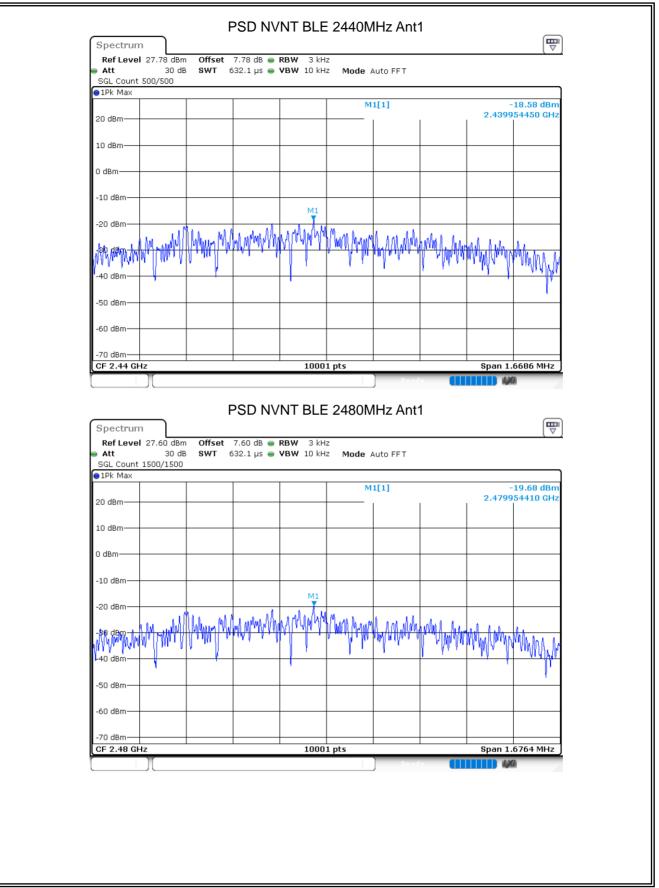








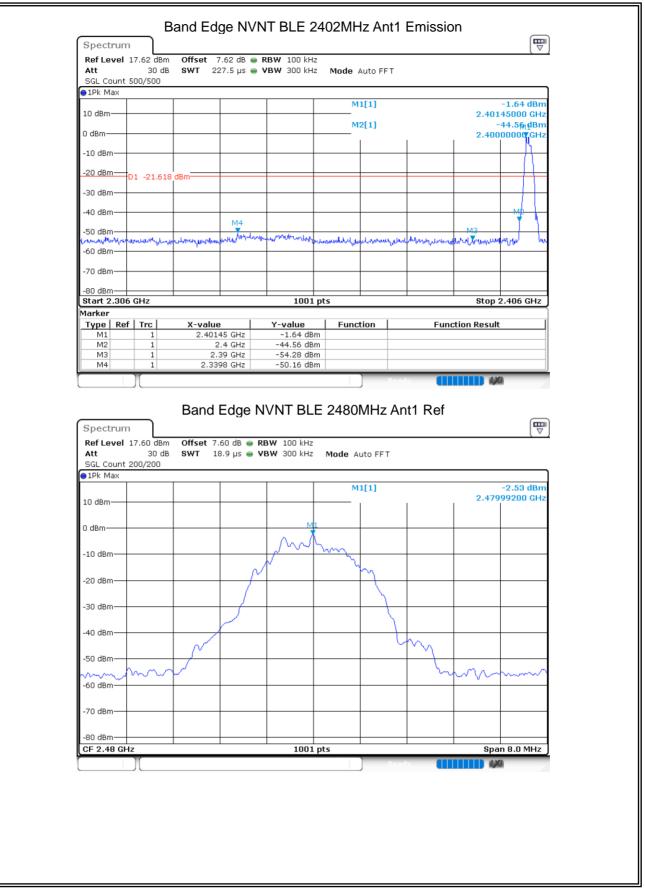











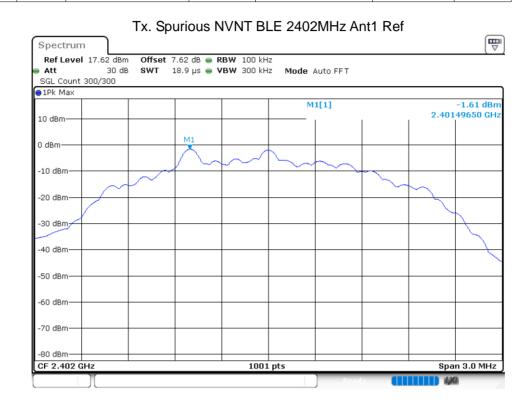



#### 8.1.9 BAND EDGE

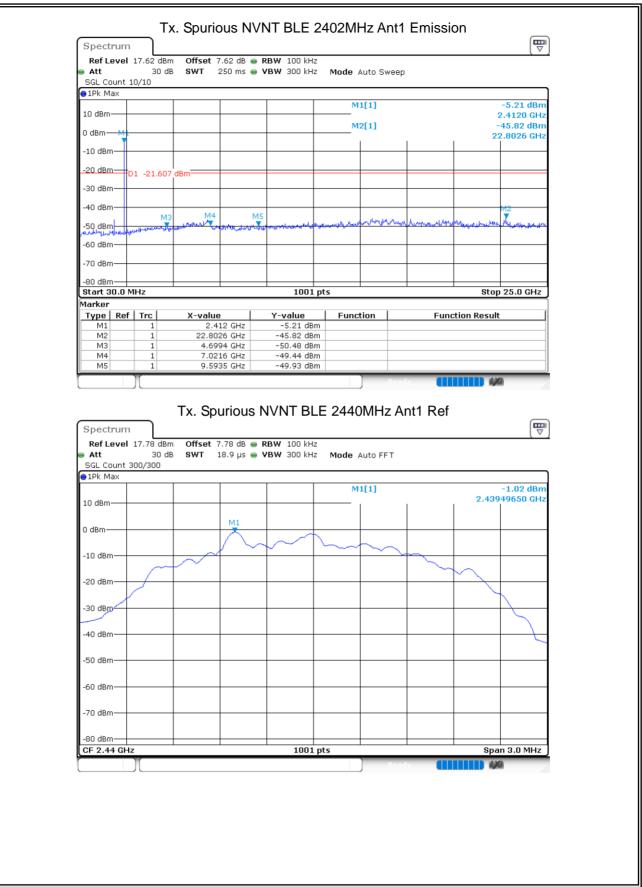
VNT       BLE       2402       Ant 1       -48.54       -20       Pass         VNT       BLE       2480       Ant 1       -50.02       -20       Pass         Band Edge NVNT BLE 2402MHz Ant1 Ref         Spectrum       Image: Colspan="2">Image: Colspan="2" Image: Colspa=	/NT         BLE         2480         Ant 1         -50.02         -20         Pass           Band Edge NVNT BLE 2402MHz Ant1 Ref           Spectrum         Image: Colspan="2">Image: Colspan="2" Image: Colspa="2" Image: Colspa="2" Image: Colspan="2" Image: Colspa	ondition	Mode	Frequen	cy (MHz)	Antenna	Max Valu	e (dBc)	Limit	: (dBc)	Verdict
Band Edge NVNT BLE 2402MHz Ant1 Ref         Spectrum         Ref Level 17.62 dB e RBW 100 kHz att 30 dB SWT 18.9 µs e VBW 300 kHz Mode Auto FFT SGL Count 200/200         ● 1Pk Max       -1.62 dBm         10 dBm       M1[1]       -1.62 dBm         0 dBm       M1       0         -10 dBm       M1       0         -20 dBm       0       M1       0         -30 dBm       0       M1       0         -10 dBm       0       M1       0         -20 dBm       0       0       0         -30 dBm       0       0       0         -20 dBm       0       0       0         -20 dBm       0       0       0       0         -30 dBm       0       0       0       0         -20 dBm       0       0       0       0         -30 dBm       0       0       0       0       0         -50 dBm       0       0       0       0       0       0       0         -70 dBm       0       0       0       0       0       0       0       0       0       0       0       0       0	Band Edge NVNT BLE 2402MHz Ant1 Ref         Spectrum         Ref Level 17.52 dB e RBW 100 kHz         Att or 30 dB SWT 18.9 µs e VBW 300 kHz Mode Auto FFT         SGL Count 200/200         PIPK Max         10 dBm         M1[1]         -1.62 dBm         0 dBm         -1.62 dBm         0 dBm         0 dBm         -0 dBm         -0 dBm         -20 dBm         -0 dBm <td< th=""><th>NVNT</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>	NVNT									
Spectrum         Image: Control with the state of t	Spectrum         Image: Construction of the construle of the construction of the construle of the construction of	VNT	BLE	24	-80	Ant 1	-50.0	02	-2	20	Pass
10 dBm       M1         -10 dBm       -10 dBm         -20 dBm       -20 dBm         -30 dBm       -30 dBm         -30 dBm       -30 dBm         -40 dBm       -40 dBm         -50 dBm       -50 dBm         -70 dBm       -70 dBm         -70 dBm       -70 dBm         -80 dBm       -1001 pts       Span 8.0 MHz	10 dBm       M1         0 dBm       M1         -10 dBm       -10 dBm         -20 dBm       -10 dBm         -30 dBm       -10 dBm         -50 dBm       -10 dBm         -50 dBm       -10 dBm         -70 dBm		Ref Le Att SGL Co	vel 17.62 dBm 30 dB ount 200/200	Offset 7.62	dB 🖷 RBW 100	kHz kHz <b>Mode</b> Aut	to FFT	Ref		-1.62 dBm
0 dBm       -10 dBm         -10 dBm       -20 dBm         -20 dBm       -30 dBm         -30 dBm       -30 dBm         -40 dBm       -40 dBm         -50 dBm       -40 dBm         -50 dBm       -40 dBm         -50 dBm       -50 dBm         -60 dBm       -60 dBm         -70 dBm       -70 dBm         -80 dBm       -80 dBm         -80 dBm       -80 dBm	0 dBm       -10 dBm         -10 dBm       -20 dBm         -20 dBm       -30 dBm         -30 dBm       -40 dBm         -40 dBm       -40 dBm         -50 dBm       -40 dBm         -50 dBm       -40 dBm         -50 dBm       -40 dBm         -50 dBm       -50 dBm         -60 dBm       -50 dBm         -70 dBm       -50 dBm         -70 dBm       -50 dBm         -80 dBm       -50 dBm         -70 dBm       -50 dBm         -80 dBm       -50 dBm         -70 dBm       -50 dBm         -7					M1				2.401	49650 GHZ
-20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -80 dBm -80 dBm -80 dBm -80 dBm -70	-20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -70 dBm -70 dBm -70 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -50 dBm -50 dBm -70			,		Å	m				
-40 dBm -50 dBm -50 dBm -60 dBm -70 dBm -70 dBm -60 dBm -70 dBm -70 dBm -70 dBm -80 dBm -70 dBm -80 dBm -70 dB	-40 dBm -50 dBm -60 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -80 dBm -70 dBm -80 dBm -70 dB							~			
-50 dBm -60 dBm -70 dBm -70 dBm -80 dBm -60 dBm -70 dBm -70 dBm -70 dBm -70 dBm -80	-50 dBm -60 dBm -70 dBm -80 dBm (CF 2.402 GHz) 1001 pts Span 8.0 MHz		-30 dBn	ı				$\rightarrow$			
-70 dBm -80 dBm CF 2.402 GHz 1001 pts Span 8.0 MHz	-70 dBm -80 dBm -70 dB		-40 dBn	۱ <u> </u>				$-\psi$	Λ		
-60 dBm -70 dBm -80 dBm CF 2.402 GHz 1001 pts Span 8.0 MHz	-60 dBm -70 dBm -80 dBm CF 2.402 GHz 1001 pts Span 8.0 MHz		-50 dBn	ı—							
-70 dBm -80 dBm CF 2.402 GHz 1001 pts Span 8.0 MHz	-70 dBm -80 dBm CF 2.402 GHz 1001 pts Span 8.0 MHz				<b>⊷</b> ∕				5	$\sim$	h
-80 dBm CF 2.402 GHz 1001 pts Span 8.0 MHz	-80 dBm CF 2.402 GHz 1001 pts Span 8.0 MHz										
CF 2.402 GHz 1001 pts Span 8.0 MHz	CF 2.402 GHz 1001 pts Span 8.0 MHz										
Contraction of the second seco				۱							
				۱		1	001 pts	Ready			
				۱		1	DO1 pts	Ready			
				۱		1	001 pts	Readv			
				۱		1	DO1 pts	Ready			
				۱		1	DO1 pts	Ready			
				۱		1	DO1 pts	Ready			
				۱			DO1 pts	Ready			
				۱			DO1 pts	Ready			
				۱			DO1 pts	Ready	•••		



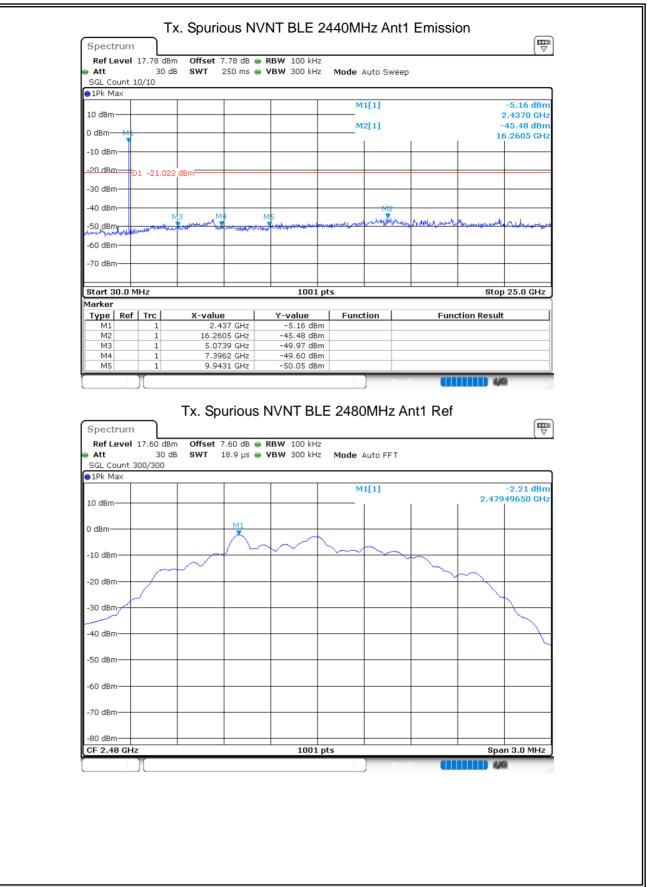





Ref Level         17.60 dBm         Offset         7.60 dB         RBW 100 kHz           Att         30 dB         SWT         227.5 µs         VBW 300 kHz         Mode Auto FFT           SGL Count 100/100         Image: Count 100/100         Image: Count 100/100         Image: Count 100/100         Image: Count 100/100           IPk Max         Image: Count 100/100		E	Band Edge	NVNT BLE	2480MF	Iz Ant1	Emissio	n	
Att         30 dB         SWT         227.5 µs         VBW 300 kHz         Mode Auto FFT           SGL Count 100/100         100/100         112         -2.45 dBm         -2.45 dBm           10 dBm         2.47945000 GHz         -55.64 dBm         2.48350000 GHz           -10 dBm         0 dBm         2.48350000 GHz         -55.64 dBm           -10 dBm         0 dBm         0 dBm         0 dBm         0 dBm           -20 dBm         0 -22.532 dBm         0 dBm         0 dBm         0 dBm           -30 dBm         0 dBm         0 dBm         0 dBm         0 dBm         0 dBm           -30 dBm         0 dBm         0 dBm         0 dBm         0 dBm         0 dBm         0 dBm           -50 dBm         0 dBm         0 dBm         0 dBm         0 dBm         0 dBm         0 dBm           -70 dBm         0 dBm	Spectrum	]							
SGL Count 100/100       • 1Pk Max       10 dBm     M1[1]       • 2.47945000 GHz       • 0 dBm       • 2.4835000 GHz       • 10 dBm       • 20 dBm       • 40 dBm       • 50 dBm       • 70 dBm       • 80 dBm       • 80 dBm       • 70 dBm <td< td=""><td>Ref Level 1</td><td>17.60 dBm</td><td>Offset 7.60</td><td>) dB 👄 <b>RBW</b> 100 ki</td><td>Ηz</td><td></td><td></td><td></td><td></td></td<>	Ref Level 1	17.60 dBm	Offset 7.60	) dB 👄 <b>RBW</b> 100 ki	Ηz				
1Pk Max         M1[1]         -2.45 dBm           10 dBm	Att	30 dB	SWT 227.5	5 µs 👄 <b>VBW</b> 300 ki	Hz Mode	Auto FFT			
10 dBm     M1[1]     -2.45 dBm       10 dBm     M2[1]     -55.64 dBm       0 dBm     2.47945000 GHz       -10 dBm     2.48350000 GHz       -20 dBm     2.48350000 GHz       -20 dBm     -10       -30 dBm     -10       -40 dBm     -10       -50 dBm     -10       -70 dBm     -10       -70 dBm     -10       -70 dBm     -1001 pts       Start 2.476 GHz     1001 pts       Type     Ref       Type     Ref		100/100							
10 dBm       2.47945000 GHz         0 dBm       M2[1]         -55.64 dBm         -10 dBm       2.48350000 GHz         -20 dBm       0         -20 dBm       0         -20 dBm       0         -30 dBm       0         -40 dBm       0         -30 dBm       0         -40 dBm       0         -50 dBm2       M42         -40 dBm       0         -50 dBm2       M42         -70 dBm       0	1Pk Max								
0 dtm     M2[1]     -55.64 dtm       -10 dtm     2.48350000 GHz       -10 dtm     -20 dtm       -20 dtm     01 -22.532 dtm       -30 dtm     -30 dtm       -40 dtm     -30 dtm       -50 dtm     -30 dtm       -50 dtm     -30 dtm       -70 dtm     -30 dtm       -30 dtm     -30 dtm       -30 dtm     -30 dtm       -30 dtm     -30 dtm       -40 dtm     -30 dtm       -50 dtm     -50 dtm					N N	1[1]			
0 dBm     2.48350000 GHz       -10 dBm     2.48350000 GHz       -20 dBm     01 -22.532 dBm       -30 dBm     -10 -22.532 dBm       -40 dBm     -10 -22.532 dBm       -50 dBm     -10 -22.532 dBm       -50 dBm     -10 -22.532 dBm       -70 dBm     -1001 pts       Stop 2.576 GHz     1001 pts       Yarker     -1001 pts	10 dBm				<u> </u>				
10     dBm     10     1000000000000000000000000000000000000					N N	2[1]			
-20 dBm D1 -22.532 dBm						1	1	2.403	30000 GH2
-30 dBm     -30 dBm       -30 dBm     -30 dBm       -40 dBm     -40 dBm       -50 dBm2     N32       -60 dBm     -60 dBm       -70 dBm     -70 dBm       -80 dBm2     1001 pts       Start 2.476 GHz     1001 pts       Start 2.476 GHz     1001 pts       Type     Ref       Type     Ref	-10 dBm-+								
-30 dBm     -30 dBm       -30 dBm     -30 dBm       -40 dBm     -40 dBm       -50 dBm     -40 dBm       -60 dBm     -40 dBm       -70 dBm     -40 dBm									
-30 dBm	-20 dBm	01 -22.53	2 dBm						
-40 dBm									
-50 dBm2     Mds     Image: Constraint of the second of the secon	-30 upin								
-60 dBm -70 dBm -80 dBm -80 dBm -70	-40 dBm								
-60 dBm -70 dBm -80 dBm -80 dBm -70	$\{ \Lambda \}$								
-60 dBm	-\$0 dB <mark>mr2  </mark>			halabara a		1		Lunita I. and	
-70 dBm	N WARK	www.MAMYMUM	warden ward all the form	Marrier Marriel Mallel	Journa marked	montenden	Knowhandream	Mullin and the	mondurya
-80 dBm Stor 2.476 GHz Stop 2.576 GHz Type Ref Trc X-value Y-value Function Function Result	-60 aBm								
-80 dBm Stor 2.476 GHz Stop 2.576 GHz Aarker Type Ref Trc X-value Y-value Function Function Result	-70 dBm								
Start 2.476 GHz 1001 pts Stop 2.576 GHz Marker Type   Ref   Trc   X-value   Y-value   Function   Function Result	, o abiii								
Marker Type   Ref   Trc   X-value   Y-value   Function   Function Result	-80 dBm								
Type   Ref   Trc   X-value   Y-value   Function   Function Result	Start 2.476	GHz		100	1 pts			Stop 2	2.576 GHz
	larker								
M1 1 2.47945 GHz -2.45 dBm						tion	Func	tion Result	
M2         1         2.4835 GHz         -55.64 dBm           M3         1         2.5 GHz         -54.59 dBm									
M3         1         2.5 GHz         -54.59 dBm           M4         1         2.4992 GHz         -52.55 dBm									
		<u> </u>	2.4992 0	one	un l	-			




# 8.1.10 CONDUCTED RF SPURIOUS EMISSION


Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE	2402	Ant 1	-44.21	-20	Pass
NVNT	BLE	2440	Ant 1	-44.46	-20	Pass
NVNT	BLE	2480	Ant 1	-43.12	-20	Pass













Offset 7.60 dB SWT 250 ms	<ul> <li>RBW 100 kHz</li> <li>VBW 300 kHz</li> </ul>	Mode Auto S	ween	
			weep	
		M1[1]		-5.31 dBm 2.4870 GHz -45.34 dBm
				22.7277 GHz
IBm				
Ma Manual Manual Andrews	MS	وو و المراجع ا	hallen hours	H2 Mundan Kulker
	1001 pt			Stop 25.0 GHz
	1001 pt	.5		atop 23.0 GH2
X-value	Y-value	Function	Fun	ction Result
2.487 GHz	-5.31 dBm			
10.018 GHz	-50.16 dBm			
	X-value 2.487 GHz 2.7277 GHz 4.999 GHz 7.2963 GHz	Ministry         MS           James, James	Model         Model           Model <td>Bm         MS           Image: Market and the second sec</td>	Bm         MS           Image: Market and the second sec

END OF REPORT

Version.1.3