

FCC Test Report

	(Spot Check)
Report No.:	RF180830E03F-1
FCC ID:	2APLE18300398
Original FCC ID:	2APLE18300394
Test Model:	VMB5000
Revision:	Rev 5
Received Date:	May 15, 2019
Test Date:	May 19 to 27, 2019
Issued Date:	June 12, 2019
Applicant:	Arlo Technologies, Inc.
Address:	2200 Faraday Ave. Suite 150, Carlsbad, CA 92008, United States
Issued By:	Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch Hsin Chu Laboratory
Lab Address:	E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300, Taiwan R.O.C.
Test Location:	E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300, Taiwan R.O.C.
FCC Registration / Designation Number:	723255 / TW2022

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification. The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any government agencies.

Table of Contents

Rele	ase Control Record	3
1	Certificate of Conformity	4
2	Summary of Test Results	5
2.1 2.2		
3	General Information	6
3.1 3.2 3.2 3.2 3.2 3.4 3.4	 Description of Test Modes	9 . 10 . 12 . 13 . 14 . 15
4	Test Types and Results	
4.1 4.1 4.1 4.1 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2	 Limits of Radiated Emission and Bandedge Measurement Test Instruments Test Procedure Deviation from Test Standard Test Setup EUT Operating Condition Test Results Conducted Emission Measurement Limits of Conducted Emission Measurement Test Instruments Test Procedure Deviation from Test Standard Test Procedure EUT Operating Condition Measurement EUT Determine Standard Test Results Conducted Emission Measurement Eutropy Test Standard Test Procedure Test Procedure Deviation from Test Standard Test Setup EUT Operating Condition Test Results 	. 16 . 17 . 18 . 19 . 20 . 21 . 29 . 29 . 29 . 29 . 30 . 30 . 30 . 30 . 30 . 30 . 33 . 33
5	Pictures of Test Arrangements	
Anne	ex A- Radiated Out of Band Emission (OOBE) Measurement (For U-NII-3 band)	. 36
Арре	endix – Information of the Testing Laboratories	. 37

	Re	lease Control R	ecord	
Issue No.	Description			Date Issued
RF180830E03F-1	Original release.			June 12, 2019
		Dama Na. 2 / 27		

Certificate of Co	onformity
Product:	Alro Gen5 Entry Hub
Brand:	
Test Model:	VMB5000
Revision:	Rev 5
Sample Status:	Pre Production Unit
Applicant:	Arlo Technologies, Inc.
Test Date:	May 19 to 27, 2019
Standard:	47 CFR FCC Part 15, Subpart E (Section 15.407)
	ANSI C63.10: 2013

1

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Prepared by :	Wondy	$\mathcal{M}_{\mathcal{M}}$, Da	te: June 12, 2019	_
	Wendy Wu / Spe	cialist		
Approved by :	\mathcal{M}	, Da	te: June 12, 2019	
· • • • • • • • • • • • • • • • • • • •	May Chen / Man		,	•

2 Summary of Test Results

47 CFR FCC Part 15, Subpart E (Section 15.407)							
FCC Clause	Test Item	Remarks					
15.407(b)(6)	15.407(b)(6)AC Power Conducted Emissions15.407(b)Radiated Emissions & Band Edge Measurement*		Meet the requirement of limit. Minimum passing margin is -11.7dB at 0.46641MHz.				
· · ·			Meet the requirement of limit. Minimum passing margin is -0.6dB at 5150.00MHz.				
15.407(a)(1/2/ 3)	Max Average Transmit Power	Pass	Meet the requirement of limit.				

*For U-NII-3 band compliance with rule part 15.407(b)(4)(i), the OOBE test plots were recorded in Annex A.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expanded Uncertainty (k=2) (±)
Conducted Emissions at mains ports	150kHz ~ 30MHz	1.8 dB
Radiated Emissions up to 1 GHz	30MHz ~ 1GHz	5.1 dB
	1GHz ~ 6GHz	5.1 dB
Radiated Emissions above 1 GHz	6GHz ~ 18GHz	5.0 dB
	18GHz ~ 40GHz	5.2 dB

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT (WLAN)

Product	Alro Gen5 Entry Hub				
Brand	Arlo				
Test Model	VMB5000				
Revision	Rev 5				
S/N	5GH2917EA29A4				
Status of EUT	Pre Production Unit				
Power Supply Rating	12Vdc from power adapter				
Modulation Type	CCK, DQPSK, DBPSK for DSSS 64QAM, 16QAM, QPSK, BPSK for OFDM 256QAM for OFDM in 11ac mode only				
Modulation Technology	DSSS, OFDM				
Transfer Rate	802.11b: up to 11Mbps 802.11a/g: up to 54Mbps 802.11n: up to 300Mbps 802.11ac: up to 866.7Mbps				
Operating Frequency	2.4GHz: 2.412 ~ 2.462GHz 5GHz: 5.18~ 5.24GHz, 5.745 ~ 5.825GHz				
Number of Channel	2.4GHz: 802.11b, 802.11g, 802.11n (HT20): 11 802.11n (HT40): 7 5GHz: 802.11a, 802.11n (HT20), 802.11ac (VHT20): 9 802.11n (HT40), 802.11ac (VHT40): 4 802.11ac (VHT80): 2				
Output Power	2.412 ~ 2.462GHz: 966.14mW 5.18 ~ 5.24GHz: 548.367mW 5.745 ~ 5.825GHz: 477.757mW				
Antenna Type	Refer to Note				
Antenna Connector	Refer to Note				
Accessory Device	Adapter x1				
Data Cable Supplied	NA				

Note:

- 1. Exhibit prepared for FCC Spot Check Verification report, the format, test items and amount of spot–check test data are decided by applicant's engineering judgment, for more details please refer to declaration letter exhibit.
- 2. There are WLAN, Z-Wave, Zigbee and Sub-GHz technology used for the EUT. The EUT has below radios as following table:

Radio 1	Radio 2	Radio 3	Radio 4
WLAN (2.4GHz+5GHz band)	Z-Wave	Zigbee	Sub-GHz

3. Simultaneously transmission condition.

Condition	Technology							
1	WLAN 2.4GHz WLAN 5GHz Z-Wave Zigbee							
Note: The emission of the simultaneous operation has been evaluated and no non-compliance was found.								

4.	The EUT must be supplied with a power adapter and following different models could be chosen as	
	following table:	

follo	owing table	: <u> </u>									
No.	Brand	Model No.			:	Spec.					
1	Arlo	AD2076F10	AD2076F10 AD2076					1.5A	5A		
2	Arlo	AD2067M20	AD2067M20				Input: 100-240Vac, 1.0A, 50/60Hz Output: 12Vdc, 2.5A DC output cable (Unshielded, 1.8m)				
3	Arlo	2ABB018F 1	NJ			Input: 100-120Vac, 0.6A, 50/60Hz Output: 12Vdc, 1.5A DC output cable (Unshielded, 1.8m)					
4	Arlo	P030WM1251				Outpu	100-240\ t: 12Vdc, tput cable	2.5A			
		bove models, the w 2 . Therefore only t								test was	
5. The	e antennas	provided to the EU	T, please refer	to th	e followin	ng tabl	e:				
			S	Sub-G							
Ant No.		Brand	Model		Antenna (dBi)		Frequen (MF	• •	Antenr type		
1		NA	902P00214	N0	1.5		860~	·930	PIFA	NA NA	
				Z-Wa	ve						
Ant		Brand	Model Antenna G				Antenr	na Connector			
No.			(1		(dBi)			/ /			
1		NA	902P00213N	P00213N0 2.5			860~930		PIFA	NA NA	
			1	Zigbe	ee						
Ant No.		Brand	Model		Ante Ga (dE	ain	in Frequency		Antenr type	na Connector type	
1	INPAQ TE	ECHNOLOGY CO., LTD.	ACA-5036-A2	2-CC-	-CC-S 3.5		2.4~2.4835		CHIF	P NA	
				WLA	N						
Ant No.	Brand	Model	Antenna Net Gain (dBi)		equency rang GHz)	Ante	nna type	Conne typ		Cable Length (mm)	
			2.5	2.4	~2.4835						
			1.8	5.1	5~5.25						
1	NA	9 07X01052X0	2	5.2	25~5.35	D	ipole	i-pe	ex	75	
			2.2		7~5.725	-5.725		•			
			1.6		25~5.85						
			2.5	2.4	~2.4835						
			2.2		5.15~5.25						
2	NA	9 07X00747X19	1.2		25~5.35	D	ipole	i-pex		90	
			3.2		7~5.725						
			3.5	5.72	25~5.85						
k		•	•	•		•					

2.4GHz Band						
MODULATION MODE	DATA RATE (MCS)	TX & RX CON	FIGURATION			
802.11b	1 ~ 11Mbps	2TX	2RX			
802.11g	6 ~ 54Mbps	2TX	2RX			
902 44m (UT20)	MCS 0~7	2TX	2RX			
802.11n (HT20)	MCS 8~15	2TX	2RX			
802.11n (HT40)	MCS 0~7	2TX	2RX			
о 02.1111 (П140)	MCS 8~15	2TX	2RX			
5GHz Band						
MODULATION MODE	DATA RATE (MCS)	TX & RX CON	FIGURATION			
802.11a	6 ~ 54Mbps	2TX	2RX			
802.11n (HT20)	MCS 0~7	2TX	2RX			
о 02.1111 (П120)	MCS 8~15	2TX	2RX			
802.11n (HT40)	MCS 0~7	2TX	2RX			
о 02.1111 (П140)	MCS 8~15	2TX	2RX			
802.11ac (VHT20)	MCS0~8 Nss=1	2TX	2RX			
002.11aC (VH120)	MCS0~8 Nss=2	2TX	2RX			
802.11ac (VHT40)	MCS0~9 Nss=1	2TX	2RX			
002.11aC (VH140)	MCS0~9 Nss=2	2TX	2RX			

6. The EUT incorporates a MIMO function.

Note:

 The modulation and bandwidth are similar for 802.11n mode for 20MHz (40MHz) and 802.11ac mode for 20MHz (40MHz), therefore investigated worst case to representative mode in test report. (Final test mode refer section 3.2.1)

7. The above EUT information is declared by manufacturer and for more detailed features description, please refers to the manufacturer's specifications or user's manual.

3.2 Description of Test Modes

FOR 5180 ~ 5240MHz

4 channels are provided for 802.11a, 802.11n (HT20), 802.11ac (VHT20):

Channel	Frequency	Channel	Frequency	
36	5180 MHz	44	5220 MHz	
40	5200 MHz	48	5240 MHz	

2 channels are provided for 802.11n (HT40), 802.11ac (VHT40):

Channel	Frequency	Channel	Frequency	
38	5190 MHz	46	5230 MHz	

FOR 5745 ~ 5825MHz:

5 channels are provided for 802.11a, 802.11n (HT20), 802.11ac (VHT20):

Channel	Frequency	Channel	Frequency
149	5745 MHz	161	5805 MHz
153	5765 MHz	165	5825 MHz
157	5785 MHz		

2 channels are provided for 802.11n (HT40), 802.11ac (VHT40):

Channel	Frequency	Channel	Frequency	
151	5755 MHz	159	5795 MHz	

3.2.1 Test Mode Applicability and Tested Channel Detail

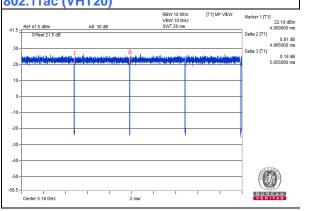
EUT Configure		Appl	icable To			Dec	variation	
Mode	RE≥1G	RE<1G	PLC	APCM		Description		
1	\checkmark	\checkmark		\checkmark			-	
	E≥1G: Radiate C: Power Line					ted Emission below 1G a Port Conducted Meas		
Radiated Em	ission Tes	t (Above 1	GHz):					
between architect	available r ure).	nodulations	s, data rates a	and antenna	por	mode from all pose ts (if EUT with ante is listed below.		IS
Mode		Q. Band MHz)	Available Channel	Tested Chan	nel	Modulation Technology	Modulation Type	Data Rat (Mbps)
802.11ac (VHT)	20) 518	30-5240	36 to 48	36, 40, 48		OFDM	BPSK	6.5
802.11ac (VHT	20) 574	45-5825	149 to 165	149, 157, 16	65	OFDM	BPSK	6.5
architect	g channel(s	Q. Band	Available	or the final te		s listed below.	Modulation Type	Data Rat
Mode	(MHz)	Channel	Tested Chan	nel	Technology	Modulation Type	(Mbps)
802.11ac (VHT	20)	30-5240 45-5825	36 to 48, 149 to 165	40		OFDM	BPSK	6.5
between architect	n has been available r ure).	conducted nodulations	to determine s, data rates a	and antenna	port	mode from all pose ts (if EUT with ante s listed below.		S
Mode		Q. Band MHz)	Available Channel	Tested Chan	nel	Modulation Technology	Modulation Type	Data Ra (Mbps)
802.11ac (VHT)	20)	80-5240, 45-5825	36 to 48, 149 to 165	40		OFDM	BPSK	6.5

Antenna Port Conducted Measurement:

- This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode.
- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

Mode	FREQ. Band (MHz)	Available Channel	Tested Channel	Modulation Technology	Modulation Type	Data Rate (Mbps)
802.11ac (VHT20)	5180-5240	36 to 48	36, 40, 48	OFDM	BPSK	6.5
802.11ac (VHT20)	5745-5825	149 to 165	149, 157, 165	OFDM	BPSK	6.5

Test Condition:


Applicable To	Environmental Conditions	Input Power	Tested By
RE≥1G	22deg. C, 67%RH	120Vac, 60Hz	Robert Cheng
RE<1G	23deg. C, 68%RH	120Vac, 60Hz	Robert Cheng
PLC	PLC 25deg. C, 75%RH		Andy Ho
APCM 25deg. C, 60%RH		120Vac, 60Hz	Anderson Chen

3.3 Duty Cycle of Test Signal

If duty cycle of test signal is \geq 98 %, duty factor is not required.

802.11ac (VHT20): Duty cycle = 4.965 ms/5.055 ms = 0.982 802.11ac (VHT20)

3.4 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
Α.	MicroSD Card	SanDisk	8GB	NA	NA	Provided by Lab
В.	Laptop	DELL	E6420	B92T3R1	FCC DoC	Provided by Lab

Note:

1. All power cords of the above support units are non-shielded (1.8m).

ID	Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1.	DC Cable	1	1.8	No	0	Supplied by client
2.	RJ-45 Cable	1	10	No	0	Provided by Lab

Configuration of System under Test 3.4.1 EUT (1) Power Adapter (A) Micro SD Card LAN Micro SD (2) **Remote Site** (B)Laptop

3.5 General Description of Applied Standard

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart E (15.407) KDB 789033 D02 General UNII Test Procedure New Rules v02r01 KDB 662911 D01 Multiple Transmitter Output v02r01 ANSI C63.10-2013

All test items have been performed and recorded as per the above standards.

4 Test Types and Results

4.1 Radiated Emission and Bandedge Measurement

4.1.1 Limits of Radiated Emission and Bandedge Measurement

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table.

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

Limits of unwanted emission out of the restricted bands

Applic	cable	То	Limit		
789033 D02 Genera	al UN	II Test Procedure	Field Strength at 3m		
New Rules v02r01			PK:74 (dBμV/m)	AV:54 (dBµV/m)	
Frequency Band		Applicable To	EIRP Limit	Equivalent Field Strength at 3m	
5150~5250 MHz		15.407(b)(1)			
5250~5350 MHz		15.407(b)(2)	PK:-27 (dBm/MHz)	PK:68.2(dBµV/m)	
5470~5725 MHz		15.407(b)(3)			
5725~5850 MHz		15.407(b)(4)(i)	PK:-27 (dBm/MHz) ^{*1} PK:10 (dBm/MHz) ^{*2} PK:15.6 (dBm/MHz) ^{*3} PK:27 (dBm/MHz) ^{*4}	PK: 68.2(dBμV/m) ^{*1} PK:105.2 (dBμV/m) ^{*2} PK: 110.8(dBμV/m) ^{*3} PK:122.2 (dBμV/m) ^{*4}	
		15.407(b)(4)(ii)	Emission limits in	limits in section 15.247(d)	
^{*1} beyond 75 MHz or ^{*3} below the band ed of 15.6 dBm/MHz a	ge in	creasing linearly to	a level ^{*4} from 5 MHz above	ge increasing linearly to 10 Iz above. or below the band edge to a level of 27 dBm/MHz at	

Note:

The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength:

 $E = \frac{1000000\sqrt{30P}}{3} \quad \mu V/m, \text{ where P is the eirp (Watts).}$

4.1.2 Test Instruments

DESCRIPTION &			CALIBRATED	CALIBRATED
MANUFACTURER	MODEL NO.	SERIAL NO.	DATE	UNTIL
Test Receiver	N9038A	MY50010156	July 12, 2018	July 11, 2019
Agilent	NSOSOA	10100010100	50ly 12, 2010	50ly 11, 2015
Pre-Amplifier	EMC001340	980142	Jan. 25, 2019	Jan. 24, 2020
EMCI		000112	0am 20, 2010	04111 2 1, 2020
Loop Antenna	EM-6879	269	Sep. 07, 2018	Sep. 06, 2019
Electro-Metrics				-
RF Cable	NA	LOOPCAB-001	Jan. 14, 2019	Jan. 13, 2020
RF Cable	NA	LOOPCAB-002	Jan. 14, 2019	Jan. 13, 2020
Pre-Amplifier Mini-Circuits	ZFL-1000VH2B	AMP-ZFL-05	Apr. 30, 2019	Apr. 29, 2020
Trilog Broadband Antenna SCHWARZBECK	VULB 9168	9168-361	Nov. 22, 2018	Nov. 21, 2019
RF Cable	8D	966-3-1	Mar. 18, 2019	Mar. 17, 2020
RF Cable	8D	966-3-2	Mar. 18, 2019	Mar. 17, 2020
RF Cable	8D	966-3-3	Mar. 18, 2019	Mar. 17, 2020
Fixed attenuator Mini-Circuits	UNAT-5+	PAD-3m-3-01	Sep. 27, 2018	Sep. 26, 2019
Horn_Antenna SCHWARZBECK	BBHA9120-D	9120D-406	Nov. 25, 2018	Nov. 24, 2019
Pre-Amplifier EMCI	EMC12630SE	980384	Jan. 28, 2019	Jan. 27, 2020
RF Cable	EMC104-SM-SM-1200	160922	Jan. 28, 2019	Jan. 27, 2020
RF Cable	EMC104-SM-SM-2000	180601	June 12, 2018	June 11, 2019
RF Cable	EMC104-SM-SM-6000	180602	June 12, 2018	June 11, 2019
Spectrum Analyzer Keysight	N9030A	MY54490679	July 23, 2018	July 22, 2019
Pre-Amplifier EMCI	EMC184045SE	980387	Jan. 28, 2019	Jan. 27, 2020
Horn_Antenna SCHWARZBECK	BBHA 9170	BBHA9170519	Nov. 25, 2018	Nov. 24, 2019
RF Cable	EMC102-KM-KM-1200	160924	Jan. 28, 2019	Jan. 27, 2020
RF Cable	EMC102-KM-KM-1200	160925	Jan. 28, 2019	Jan. 27, 2020
Software	ADT_Radiated_V8.7.08	NA	NA	NA
Antenna Tower & Turn Table Max-Full	MF-7802	MF780208406	NA	NA
Boresight Antenna Fixture	FBA-01	FBA-SIP01	NA	NA
Spectrum Analyzer R&S	FSV40	100964	June 20, 2018	June 19, 2019
Power meter Anritsu	ML2495A	1014008	May 13, 2019	May 12, 2020
Power sensor Anritsu	MA2411B	0917122	May 13, 2019	May 12, 2020

Note:

- 2. The test was performed in 966 Chamber No. 3.
- 3. Loop antenna was used for all emissions below 30 MHz.
- 4. Tested Date: May 19 to 27, 2019

^{1.} The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

4.1.3 Test Procedure

For Radiated emission below 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

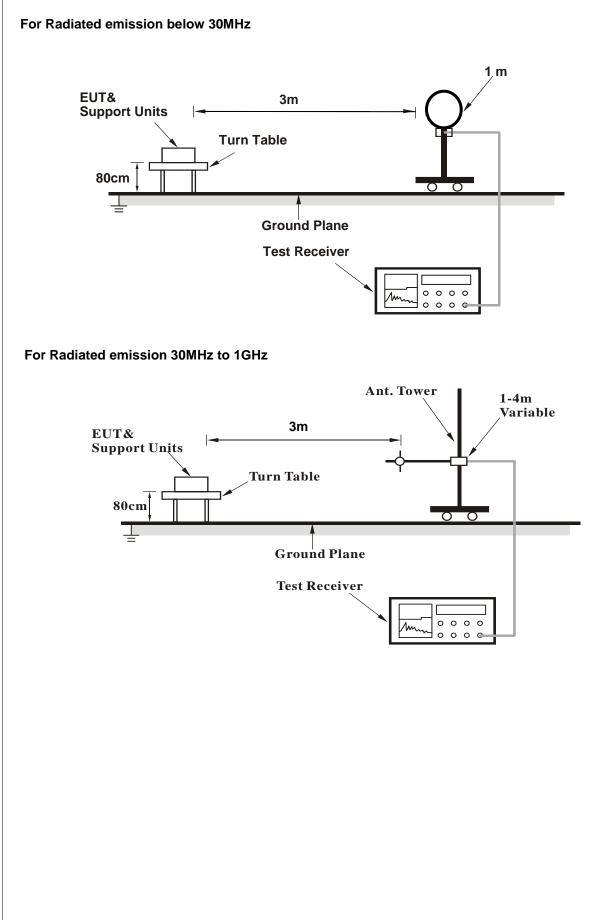
Note:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

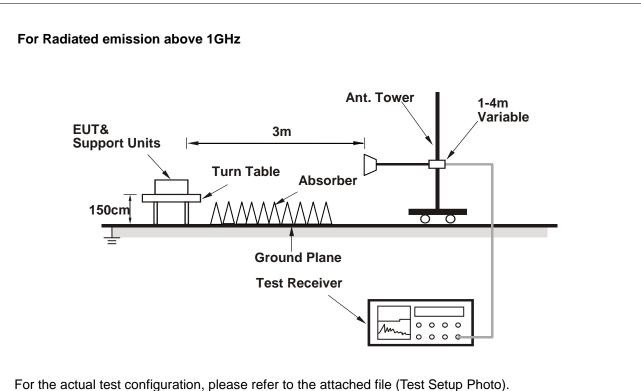
For Radiated emission above 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters (for 30MHz ~ 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detects function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Note:


- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is ≥ 1/T (Duty cycle < 98%) or 10Hz (Duty cycle ≥ 98%) for Average detection (AV) at frequency above 1GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported.

4.1.4 Deviation from Test Standard


No deviation.

4.1.5 Test Setup

- 4.1.6 EUT Operating Condition
- a. Connected the EUT with the Laptop which is placed on remote site.
- b. Controlling software (QDART-connectivity (1.0.40)) has been activated to set the EUT on specific status.

4.1.7 Test Results

Above 1GHz Data:

802.11ac (VHT20)

CHANNEL	TX Channel 36	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 40GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M									
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	5150.00	64.3 PK	74.0	-9.7	1.35 H	243	61.2	3.1		
2	5150.00	48.1 AV	54.0	-5.9	1.35 H	243	45.0	3.1		
3	*5180.00	108.3 PK			1.35 H	243	105.2	3.1		
4	*5180.00	98.2 AV			1.35 H	243	95.1	3.1		
5	#10360.00	47.5 PK	68.2	-20.7	1.65 H	207	35.2	12.3		
6	15540.00	50.4 PK	74.0	-23.6	1.68 H	20	37.4	13.0		
7	15540.00	38.8 AV	54.0	-15.2	1.68 H	20	25.8	13.0		
	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M									
	FREQ.	EMISSION	LIMIT	MARGIN	ANTENNA	TABLE	RAW	CORRECTION		

NO.	FREQ. (MHz)	LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	HEIGHT (m)	ANGLE (Degree)	VALUE (dBuV)	FACTOR (dB/m)
1	5150.00	68.3 PK	74.0	-5.7	1.85 V	261	65.2	3.1
2	5150.00	53.4 AV	54.0	-0.6	1.85 V	261	50.3	3.1
3	*5180.00	117.1 PK			1.85 V	261	114.0	3.1
4	*5180.00	106.4 AV			1.85 V	261	103.3	3.1
5	#10360.00	47.2 PK	68.2	-21.0	1.67 V	327	34.9	12.3
6	15540.00	51.9 PK	74.0	-22.1	1.43 V	342	38.9	13.0
7	15540.00	37.8 AV	54.0	-16.2	1.43 V	342	24.8	13.0

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.
- 5. " * ": Fundamental frequency.
- 6. " # ": The radiated frequency is out of the restricted band.

CHANNEL	TX Channel 40	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 40GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M									
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	*5200.00	110.1 PK			1.40 H	255	107.1	3.0		
2	*5200.00	99.9 AV			1.40 H	255	96.9	3.0		
3	#10400.00	47.1 PK	68.2	-21.1	1.60 H	194	34.4	12.7		
4	15600.00	50.3 PK	74.0	-23.7	1.63 H	17	36.8	13.5		
5	15600.00	38.5 AV	54.0	-15.5	1.63 H	17	25.0	13.5		
		ANTENNA	POLARITY	& TEST DI	STANCE: V	ERTICAL A	Т 3 М			
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	*5200.00	118.1 PK			1.86 V	256	115.1	3.0		
2	*5200.00	108.1 AV			1.86 V	256	105.1	3.0		
3	#10400.00	47.1 PK	68.2	-21.1	1.65 V	325	34.4	12.7		
4	15600.00	52.1 PK	74.0	-21.9	1.45 V	352	38.6	13.5		
5	15600.00	38.2 AV	54.0	-15.8	1.45 V	352	24.7	13.5		

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level – Limit value

4. The other emission levels were very low against the limit.

5. " * ": Fundamental frequency.

CHANNEL	TX Channel 48	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 40GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M									
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	*5240.00	109.3 PK			1.39 H	248	106.6	2.7		
2	*5240.00	99.0 AV			1.39 H	248	96.3	2.7		
3	5350.00	51.4 PK	74.0	-22.6	1.39 H	248	48.5	2.9		
4	5350.00	39.1 AV	54.0	-14.9	1.39 H	248	36.2	2.9		
5	#10480.00	47.1 PK	68.2	-21.1	1.59 H	203	34.6	12.5		
6	15720.00	50.7 PK	74.0	-23.3	1.59 H	25	38.2	12.5		
7	15720.00	38.9 AV	54.0	-15.1	1.59 H	25	26.4	12.5		
		ANTENNA	POLARITY	' & TEST DI	STANCE: V	ERTICAL A	T 3 M			
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	*5240.00	117.8 PK			1.86 V	259	115.1	2.7		
2	*5240.00	107.3 AV			1.86 V	259	104.6	2.7		
3	5350.00	51.7 PK	74.0	-22.3	1.86 V	259	48.8	2.9		
4	5350.00	39.3 AV	54.0	-14.7	1.86 V	259	36.4	2.9		
5	#10480.00	47.1 PK	68.2	-21.1	1.70 V	337	34.6	12.5		
6	15720.00	51.6 PK	74.0	-22.4	1.48 V	340	39.1	12.5		
7	15720.00	37.7 AV	54.0	-16.3	1.48 V	340	25.2	12.5		

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level – Limit value

4. The other emission levels were very low against the limit.

5. " * ": Fundamental frequency.

CHANNEL	TX Channel 149	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 40GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M									
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	#5579.33	51.4 PK	68.2	-16.8	3.54 H	121	48.2	3.2		
2	*5745.00	106.3 PK			3.54 H	121	102.8	3.5		
3	*5745.00	95.5 AV			3.54 H	121	92.0	3.5		
4	#5929.55	52.5 PK	68.2	-15.7	3.54 H	121	48.6	3.9		
5	11490.00	47.4 PK	74.0	-26.6	1.70 H	356	34.4	13.0		
6	11490.00	34.0 AV	54.0	-20.0	1.70 H	356	21.0	13.0		
7	#17235.00	65.3 PK	68.2	-2.9	1.49 H	309	49.1	16.2		
		ANTENNA	POLARITY	' & TEST DI	STANCE: V	ERTICAL A	Т 3 М			
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	#5580.70	53.0 PK	68.2	-15.2	2.07 V	170	49.8	3.2		
2	*5745.00	119.5 PK			2.07 V	170	116.0	3.5		
3	*5745.00	109.7 AV			2.07 V	170	106.2	3.5		
4	#5969.79	52.4 PK	68.2	-15.8	2.07 V	170	48.5	3.9		
5	11490.00	48.2 PK	74.0	-25.8	1.64 V	95	35.2	13.0		
6	11490.00	34.5 AV	54.0	-19.5	1.64 V	95	21.5	13.0		
7	#17235.00	65.4 PK	68.2	-2.8	1.43 V	340	49.2	16.2		

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level – Limit value

4. The other emission levels were very low against the limit.

5. " * ": Fundamental frequency.

CHANNEL	TX Channel 157		
CHANNEL		DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 40GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M									
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	#5585.62	51.8 PK	68.2	-16.4	3.36 H	131	48.6	3.2		
2	*5785.00	106.2 PK			3.36 H	131	102.5	3.7		
3	*5785.00	95.8 AV			3.36 H	131	92.1	3.7		
4	#5948.60	52.2 PK	68.2	-16.0	3.36 H	131	48.2	4.0		
5	11570.00	46.8 PK	74.0	-27.2	1.65 H	350	34.1	12.7		
6	11570.00	33.6 AV	54.0	-20.4	1.65 H	350	20.9	12.7		
7	#17355.00	65.4 PK	68.2	-2.8	1.54 H	323	48.7	16.7		
		ANTENNA	POLARITY	' & TEST DI	STANCE: V	ERTICAL A	Т 3 М			
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	#5642.73	52.9 PK	68.2	-15.3	2.06 V	169	49.7	3.2		
2	*5785.00	119.9 PK			2.06 V	169	116.2	3.7		
3	*5785.00	109.6 AV			2.06 V	169	105.9	3.7		
4	#5964.45	53.5 PK	68.2	-14.7	2.06 V	169	49.5	4.0		
5	11570.00	48.2 PK	74.0	-25.8	1.62 V	100	35.5	12.7		
6	11570.00	34.5 AV	54.0	-19.5	1.62 V	100	21.8	12.7		
7	#17355.00	65.6 PK	68.2	-2.6	1.48 V	326	48.9	16.7		

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level – Limit value

4. The other emission levels were very low against the limit.

5. " * ": Fundamental frequency.

CHANNEL	TX Channel 165	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 40GHz	FUNCTION	Average (AV)

		ANTENNA	POLARITY	& TEST DIS	TANCE: HO	RIZONTAL	AT 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	#5588.93	51.5 PK	68.2	-16.7	3.37 H	135	48.3	3.2
2	*5825.00	105.2 PK			3.37 H	135	101.5	3.7
3	*5825.00	95.1 AV			3.37 H	135	91.4	3.7
4	#5953.73	51.9 PK	68.2	-16.3	3.37 H	135	47.9	4.0
5	11650.00	47.0 PK	74.0	-27.0	1.66 H	358	34.3	12.7
6	11650.00	33.8 AV	54.0	-20.2	1.66 H	358	21.1	12.7
7	#17475.00	65.2 PK	68.2	-3.0	1.52 H	313	47.2	18.0
		ANTENNA	POLARITY	' & TEST DI	STANCE: V	ERTICAL A	Т 3 М	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	#5633.31	52.2 PK	68.2	-16.0	2.04 V	168	49.0	3.2
2	*5825.00	119.8 PK			2.04 V	168	116.1	3.7
3	*5825.00	109.5 AV			2.04 V	168	105.8	3.7
4	#5952.68	53.3 PK	68.2	-14.9	2.04 V	168	49.3	4.0
5	11650.00	48.3 PK	74.0	-25.7	1.66 V	106	35.6	12.7
6	11650.00	34.8 AV	54.0	-19.2	1.66 V	106	22.1	12.7
7	#17475.00	65.7 PK	68.2	-2.5	1.53 V	318	47.7	18.0

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level – Limit value

4. The other emission levels were very low against the limit.

5. " * ": Fundamental frequency.

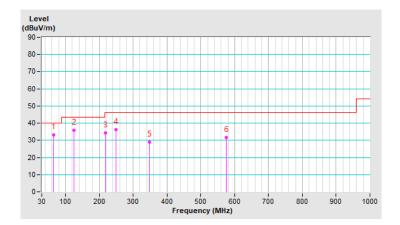
Below 1GHz Data:

802.11ac (VHT20)

CHANNEL	TX Channel 40	DETECTOR	Quesi Deck (QD)
FREQUENCY RANGE	9kHz ~ 1GHz	FUNCTION	Quasi-Peak (QP)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M										
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)			
1	64.05	33.2 QP	40.0	-6.8	1.01 H	146	47.7	-14.5			
2	124.81	35.9 QP	43.5	-7.6	3.51 H	218	50.6	-14.7			
3	218.04	34.4 QP	46.0	-11.6	1.44 H	210	49.4	-15.0			
4	249.56	36.2 QP	46.0	-9.8	2.56 H	330	49.7	-13.5			
5	348.07	29.1 QP	46.0	-16.9	1.50 H	267	39.8	-10.7			
6	574.70	31.5 QP	46.0	-14.5	2.06 H	264	36.8	-5.3			

REMARKS:


1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

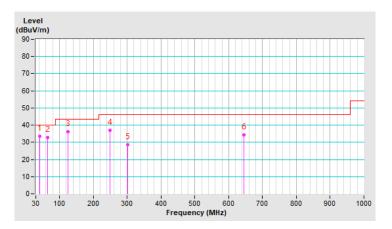
3. Margin value = Emission Level - Limit value

4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz.

5. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

CHANNEL	TX Channel 40	DETECTOR	
FREQUENCY RANGE	9kHz ~ 1GHz	FUNCTION	Quasi-Peak (QP)

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M										
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)			
1	41.50	33.4 QP	40.0	-6.6	1.01 V	142	47.5	-14.1			
2	65.23	32.8 QP	40.0	-7.2	3.08 V	205	47.5	-14.7			
3	124.69	36.2 QP	43.5	-7.3	1.51 V	184	50.9	-14.7			
4	249.89	37.0 QP	46.0	-9.0	1.54 V	225	50.5	-13.5			
5	302.08	28.7 QP	46.0	-17.3	2.54 V	293	40.5	-11.8			
6	644.60	34.3 QP	46.0	-11.7	1.03 V	189	37.9	-3.6			


1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level – Limit value

4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz.

5. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

4.2 Conducted Emission Measurement

4.2.1 Limits of Conducted Emission Measurement

	Conducted Limit (dBuV)				
Frequency (MHz)	Quasi-peak	Average			
0.15 - 0.5	66 - 56	56 - 46			
0.50 - 5.0	56	46			
5.0 - 30.0	60	50			

Note: 1. The lower limit shall apply at the transition frequencies.

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

4.2.2 Test Instruments

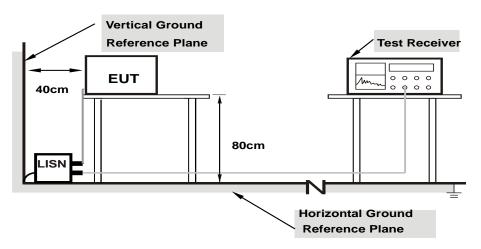
DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Test Receiver R&S	ESCS 30	847124/029	Oct. 24, 2018	Oct. 23, 2019
Line-Impedance Stabilization Network (for EUT) R&S	ESH3-Z5	848773/004	Oct. 22, 2018	Oct. 21, 2019
Line-Impedance Stabilization Network (for Peripheral) R&S	ESH3-Z5	835239/001	Mar. 17, 2019	Mar. 16, 2020
50 ohms Terminator	N/A	3	Oct. 22, 2018	Oct. 21, 2019
RF Cable	5D-FB	COCCAB-001	Sep. 28, 2018	Sep. 27, 2019
Fixed attenuator EMCI	STI02-2200-10	003	Mar. 14, 2019	Mar. 13, 2020
Software BVADT	BVADT_Cond_ V7.3.7.4	NA	NA	NA

Note:

1. The calibration interval of the above test instruments are 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

- 2. The test was performed in Conduction 1.
- 3 Tested Date: May 27, 2019

4.2.3 Test Procedure


- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded.

Note: All modes of operation were investigated and the worst-case emissions are reported.

4.2.4 Deviation from Test Standard

No deviation.

4.2.5 Test Setup

Note: 1.Support units were connected to second LISN.

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.2.6 EUT Operating Condition

Same as 4.1.6.

4.2.7 Test Results

Phase	9	Li	ne (L)		C	etector Fu	nction	Peak (QP) / le (AV)		
	Free	Corr.	Readin	g Value	Emiss	ion Level	Lir	nit	Mar	gin
No	Freq.	Factor [dB (uV		(uV)]	[dB	(uV)]	[dB ([uV)]	(dl	B)
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.15000	10.03	42.77	27.14	52.80	37.17	66.00	56.00	-13.20	-18.83
2	0.16953	10.04	39.18	21.82	49.22	31.86	64.98	54.98	-15.76	-23.12
3	0.20469	10.05	33.40	18.02	43.45	28.07	63.42	53.42	-19.97	-25.35
4	0.48203	10.09	27.60	22.99	37.69	33.08	56.30	46.30	-18.61	-13.22
5	7.37500	10.53	22.43	16.09	32.96	26.62	60.00	50.00	-27.04	-23.38
6	13.55469	10.93	17.97	12.17	28.90	23.10	60.00	50.00	-31.10	-26.90

Remarks:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value

Phase Neutral (N)					[Detector Function Quasi-Peak (QP) / Average (AV)				/
	Free	Corr.	Readin	g Value	Emiss	sion Level	Lir	nit	Mar	gin
No	Freq.	Factor	[dB ((uV)]	[dE	3 (uV)]	[dB ([uV)]	(dl	3)
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.15000	9.94	42.87	26.31	52.81	36.25	66.00	56.00	-13.19	-19.75
2	0.18516	9.95	35.76	17.52	45.71	27.47	64.25	54.25	-18.54	-26.78
3	0.30625	9.97	20.39	7.60	30.36	17.57	60.07	50.07	-29.71	-32.50
4	0.46641	9.98	29.68	24.90	39.66	34.88	56.58	46.58	-16.92	-11.70
5	7.32813	10.37	19.09	12.97	29.46	23.34	60.00	50.00	-30.54	-26.66
6	27.12109	11.26	11.73	6.23	22.99	17.49	60.00	50.00	-37.01	-32.51

Remarks:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value

4.3 Transmit Power Measurement

4.3.1 Limits of Transmit Power Measurement

Operation Band		EUT Category	Limit
U-NII-1		Outdoor Access Point	$\begin{array}{rl} 1 \mbox{ Watt (30 dBm)} \\ \mbox{(Max. e.i.r.p} & \leq 125 \mbox{mW}(21 \mbox{ dBm}) \mbox{ at any elevation} \\ \mbox{ angle above 30 degrees as measured from the} \\ \mbox{ horizon)} \end{array}$
		Fixed point-to-point Access Point	1 Watt (30 dBm)
	\checkmark	Indoor Access Point	1 Watt (30 dBm)
		Client device	250mW (24 dBm)
U-NII-2A			250mW (24 dBm) or 11 dBm+10 log B*
U-NII-2C			250mW (24 dBm) or 11 dBm+10 log B*
U-NII-3	\checkmark		1 Watt (30 dBm)

*B is the 26 dB emission bandwidth in megahertz

Per KDB 662911 Method of conducted output power measurement on IEEE 802.11 devices,

Array Gain = 0 dB (i.e., no array gain) for $N_{ANT} \le 4$;

Array Gain = 0 dB (i.e., no array gain) for channel widths \geq 40 MHz for any N_{ANT};

Array Gain = 5 log(N_{ANT}/N_{SS}) dB or 3 dB, whichever is less for 20-MHz channel widths with $N_{ANT} \ge 5$.

For power measurements on all other devices: Array Gain = $10 \log(N_{ANT}/N_{SS}) dB$.

4.3.2 Test Setup

4.3.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.3.4 Test Procedure

Method PM is used to perform output power measurement, trigger and gating function of wide band power meter is enabled to measure max output power of TX on burst. Duty factor is not added to measured value.

4.3.5 Deviation from Test Standard

No deviation.

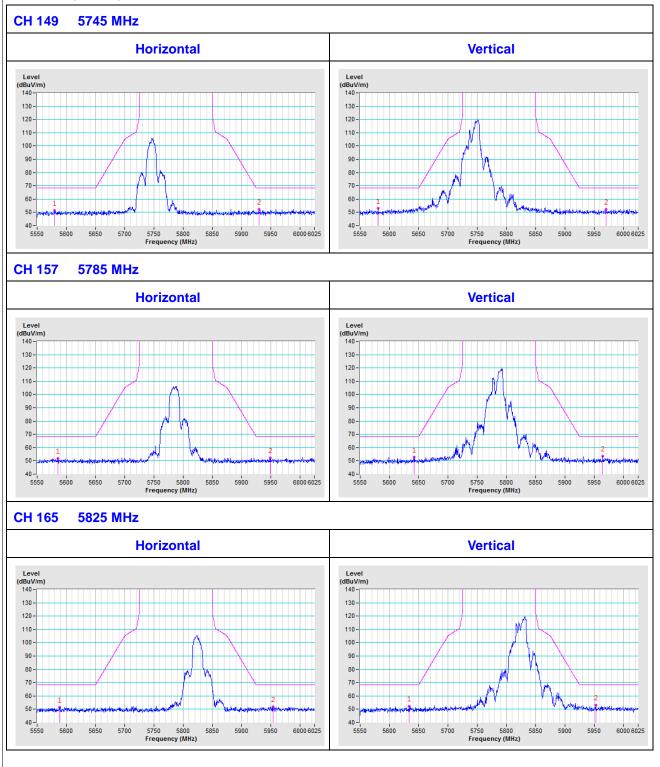
4.3.6 EUT Operating Condition

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

4.3.7 Test Results

802.11ac (VHT20)

Chan.	Chan.	Maximum Cor	Total Power	Total Power	Limit	Pass / Fail		
Chan.	Freq. (MHz)	Chain 0	Chain 1	(mW)	(dBm)	(dBm)	r ass / 1 all	
36	5180	20.40	20.06	211.039	23.24	30.00	Pass	
40	5200	24.44	24.32	548.367	27.39	30.00	Pass	
48	5240	22.76	22.38	361.781	25.58	30.00	Pass	
149	5745	24.09	23.45	477.757	26.79	30.00	Pass	
157	5785	23.56	23.10	431.16	26.35	30.00	Pass	
165	5825	23.45	23.01	421.295	26.25	30.00	Pass	


5 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo).

Annex A- Radiated Out of Band Emission (OOBE) Measurement (For U-NII-3 band)

802.11ac (VHT20)

Appendix – Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Lin Kou EMC/RF Lab

Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF/Telecom Lab Tel: 886-3-6668565 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab Tel: 886-3-3183232 Fax: 886-3-3270892

Email: <u>service.adt@tw.bureauveritas.com</u> Web Site: <u>www.bureauveritas-adt.com</u>

The address and road map of all our labs can be found in our web site also.

--- END ---