

FCC Test Report (Sub-GHz)

(Spot Check)

Report No.: RF180830E03F-5

FCC ID: 2APLE18300398

Original FCC ID: 2APLE18300394

Test Model: VMB5000

Revision: Rev 5

Received Date: May 15, 2019

Test Date: May 20 to 27, 2019

Issued Date: June 12, 2019

Applicant: Arlo Technologies, Inc.

Address: 2200 Faraday Ave. Suite 150, Carlsbad, CA 92008, United States

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

Hsin Chu Laboratory

Lab Address: E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300,

Taiwan R.O.C.

Test Location: E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300,

Taiwan R.O.C.

FCC Registration /

723255 / TW2022 **Designation Number:**

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification. The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any government agencies.

Report No.: RF180830E03F-5 Page No. 1 / 30 Report Format Version: 6.1.1

Table of Contents

R	eleas	e Control Record	. 3
1	(Certificate of Conformity	. 4
2	5	Summary of Test Results	. 5
	2.1 2.2	Measurement Uncertainty	
3	(General Information	. 6
	3.1 3.2 3.2.1 3.3 3.4 3.4.1 3.5	General Description of EUT (Sub-GHz) Description of Test Modes Test Mode Applicability and Tested Channel Detail Duty Cycle of Test Signal Description of Support Units Configuration of System under Test General Description of Applied Standards	8 9 .10
4	٦	Test Types and Results	13
	4.1.3	Radiated Emission and Bandedge Measurement Limits of Radiated Emission and Bandedge Measurement Test Instruments Test Procedures Deviation from Test Standard	13 14 15
	4.1.5 4.1.6 4.1.7	Test Setup EUT Operating Conditions Test Results	16 17 18
	4.2.2 4.2.3	Conducted Emission Measurement	23 23 24
	4.2.5 4.2.6 4.2.7	Deviation from Test Standard Test Setup EUT Operating Conditions Test Results	24 24 25
	4.3.2	Conducted Output Power Measurement Limits of Conducted Output Power Measurement Test Setup Test Instruments	27
	4.3.5 4.3.6	Test Procedures Deviation from Test Standard EUT Operating Conditions Test Results	27 27
5		Pictures of Test Arrangements	
		dix – Information of the Testing Laboratories	

Release Control Record

Issue No.	Description	Date Issued
RF180830E03F-5	Original release.	June 12, 2019

Page No. 3 / 30 Report Format Version: 6.1.1

Report No.: RF180830E03F-5 Reference No.: 190515E14

1 Certificate of Conformity

Product: Alro Gen5 Entry Hub

Brand: Arlo

Test Model: VMB5000

Revision: Rev 5

Sample Status: Pre Production Unit

Applicant: Arlo Technologies, Inc.

Test Date: May 20 to 27, 2019

Standards: 47 CFR FCC Part 15, Subpart C (Section 15.247)

ANSI C63.10: 2013

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

:

Prepared by June 12, 2019

Wendy Wu / Specialist

Approved by : , **Date:** June 12, 2019

May Chen / Manager

2 Summary of Test Results

47 CFR FCC Part 15, Subpart C (Section 15.247)						
FCC Clause	Test Item	Result	Remarks			
15.207	AC Power Conducted Emission	PASS	Meet the requirement of limit. Minimum passing margin is -10.93dB at 0.46641MHz.			
15.205 / 15.209 / 15.247(d)	Radiated Emissions and Band Edge Measurement		Meet the requirement of limit. Minimum passing margin is -6.7dB at 64.53MHz.			
15.247(b)	Conducted power	PASS	Meet the requirement of limit.			

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expanded Uncertainty (k=2) (±)
Conducted Emissions at mains ports	150kHz ~ 30MHz	1.8 dB
Radiated Emissions up to 1 GHz	30MHz ~ 1GHz	5.1 dB
	1GHz ~ 6GHz	5.1 dB
Radiated Emissions above 1 GHz	6GHz ~ 18GHz	5.0 dB
	18GHz ~ 40GHz	5.2 dB

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT (Sub-GHz)

Product	Alro Gen5 Entry Hub			
Brand	Arlo			
Test Model	VMB5000			
Revision	Rev 5			
S/N	5GH2917EA29A4			
Status of EUT	Pre Production Unit			
Power Supply Rating	12Vdc from power adapter			
Modulation Type	O-QPSK			
Modulation Technology	DSSS			
Transfer Rate	100kbps			
Operating Frequency	915MHz			
Number of Channel	1			
Output Power	90.573mW			
Antenna Type	Refer to Note			
Antenna Connector	Refer to Note			
Accessory Device	Adapter x1			
Data Cable Supplied	NA			

Note:

- 1. Exhibit prepared for FCC Spot Check Verification report, the format, test items and amount of spot—check test data are decided by applicant's engineering judgment, for more details please refer to declaration letter exhibit.
- 2. There are WLAN, Z-Wave, Zigbee and Sub-GHz technology used for the EUT. The EUT has below radios as following table:

Radio 1	Radio 2	Radio 3	Radio 4
WLAN (2.4GHz+5GHz band)	Z-Wave	Zigbee	Sub-GHz

3. Simultaneously transmission condition.

\sim	. Onnandinocaci	transmission condition.						
	Condition	Technology						
	1	WLAN 2.4GHz	WLAN 5GHz	Z-Wave	Zigbee	Sub-GHz		
\overline{N}	Note: The emission of the simultaneous operation has been evaluated and no non-compliance was found.							

4. The EUT must be supplied with a power adapter and following different models could be chosen as following table:

No.	Brand	Model No.	Spec.		
			Input: 100-120Vac, 0.56A, 50/60Hz		
1	Arlo	AD2076F10	Output: 12Vdc, 1.5A		
			DC output cable (Unshielded, 1.8m)		
			Input: 100-240Vac, 1.0A, 50/60Hz		
2	Arlo	AD2067M20	Output: 12Vdc, 2.5A		
			DC output cable (Unshielded, 1.8m)		
			Input: 100-120Vac, 0.6A, 50/60Hz		
3	Arlo	2ABB018F 1 NJ	Output: 12Vdc, 1.5A		
			DC output cable (Unshielded, 1.8m)		
			Input: 100-240Vac, 1.0A, 50/60Hz		
4	Arlo	P030WM1251	Output: 12Vdc, 2.5A		
			DC output cable (Unshielded, 1.8m)		

Note: From the above models, the worst radiated emission and AC power conducted emission test was found in **Adapter 2**. Therefore only the test data of the modes were recorded in this report.

5. The antennas provided to the EUT, please refer to the following table:

5. THE	5. The antennas provided to the EOT, please refer to the following table.										
			S	ub-GH			_			-	
Ant		Brand	Model A		ntenna					na Connect	
No.			(dBI)			(MF		type			
1		NA	902P00214N		1.5		860~	930	PIFA	NA NA	
				Z-Wave			1		1	<u> </u>	
Ant		Brand	Model	A	ntenna			, ,		na Connect	
No.					(dBi)		(MF		type		
1		NA	902P00213N		2.5		860~	930	PIFA	NA NA	
				Zigbee	<u> </u>		1		1	1	
Ant					Ante		Frequen	cv rana	Anteni	na Connect	
No.		Brand	Model	Gain			(GHz)		type		
	INDAO TE	CHNOLOGY CO			(dE	SI <i>)</i>	,				
1	INPAQ TECHNOLOGY CO., LTD.		ACA-5036-A2	-cc-s	C-S 3.5		2.4~2.4835		CHIF	P NA	
				WLAN							
Ant			Antenna Net Frequenc		uency			Connector C		Cable Leng	
No.	Brand	Model	Gain		ng	Antenna type		type	(mm)		
			(dBi)	•	Hz)			171		()	
			2.5	2.4~2	2.4835						
			1.8	5.15	5.15~5.25		Dipole i				
1	NA	NA 9 07X01052X0		5.25	5.25~5.35				ex	75	
			2.2	5.47~	5.725		•				
			1.6	5.725	5.725~5.85						
			2.5	2.4~2	.4~2.4835						
			2.2	5.15	~5.25	1					
2	NA	9 07X00747X19	1.2	5.25	~5.35	D	ipole	i-pe	ex	90	
			3.2	5.47~	-5.725	1					
			3.5	5.725	5~5.85						

6. The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or user's manual.

3.2 Description of Test Modes

1 channel is provided to this EUT:

Channel	Frequency (MHz)		
1	915		

3.2.1 Test Mode Applicability and Tested Channel Detail

EUT CONFIGURE		APPLICABLE TO			DESCRIPTION	
MODE	RE≥1G	RE<1G	PLC	APCM	DESCRIPTION	
-	V	V	V	V	-	

Where

RE≥1G: Radiated Emission above 1GHz &

Bandedge Measurement

RE<1G: Radiated Emission below 1GHz

PLC: Power Line Conducted Emission

APCM: Antenna Port Conducted Measurement

Radiated Emission Test (Above 1GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE	DATA RATE (kbps)
1	1	DSSS	O-QPSK	100

Radiated Emission Test (Below 1GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE	DATA RATE (kbps)	
1	1	DSSS	O-QPSK	100	

Power Line Conducted Emission Test:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

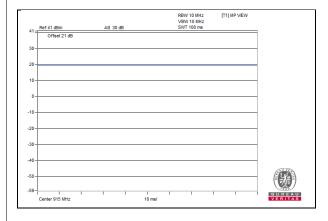
Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE	DATA RATE (kbps)	
1	1	DSSS	O-QPSK	100	

Report No.: RF180830E03F-5 Page No. 8 / 30 Report Format Version: 6.1.1

Antenna Port Conducted Measurement:

- This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode.
- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.


AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE	DATA RATE (kbps)	
1	1	DSSS	O-QPSK	100	

Test Condition:

APPLICABLE TO	ENVIRONMENTAL CONDITIONS	INPUT POWER	TESTED BY	
RE≥1G	22deg. C, 67%RH	120Vac, 60Hz	Rey Chen	
RE<1G	25deg. C, 65%RH	100\/ 00 -	Robert Cheng	
	23deg. C, 68%RH	120Vac, 60Hz	Ryan Du	
PLC	25deg. C, 75%RH	120Vac, 60Hz	Andy Ho	
APCM	25deg. C, 60%RH	120Vac, 60Hz	Nelson Teng	

3.3 Duty Cycle of Test Signal

Duty cycle of test signal is 100 %, duty factor is not required.

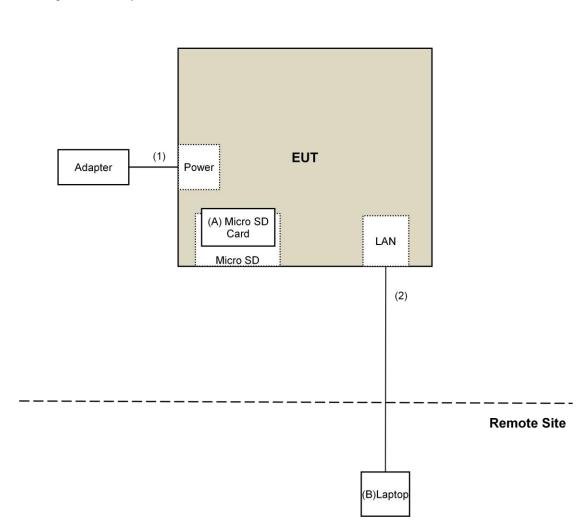
3.4 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

ID	Product	Brand	Model No. Serial No.		FCC ID	Remarks	
A.	MicroSD Card	SanDisk	8GB	NA	NA	Provided by Lab	
B.	Laptop	DELL	E6420	B92T3R1	FCC DoC	Provided by Lab	

Note:

1. All power cords of the above support units are non-shielded (1.8m).


ID	Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1.	DC Cable	1	1.8	No	0	Supplied by client
2.	RJ-45 Cable	1	10	No	0	Provided by Lab

Report No.: RF180830E03F-5 Page No. 10 / 30 Report Format Version: 6.1.1

Report No.: RF180830E03F-5 Reference No.: 190515E14

3.4.1 Configuration of System under Test

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C (15.247) KDB 558074 D01 15.247 Meas Guidance v05r02 ANSI C63.10-2013

General Description of Applied Standards

3.5

All test items have been performed and recorded as per the above standards.

Report No.: RF180830E03F-5 Page N Reference No.: 190515E14

4 Test Types and Results

4.1 Radiated Emission and Bandedge Measurement

4.1.1 Limits of Radiated Emission and Bandedge Measurement

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 20dB below the highest level of the desired power:

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

Note:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level $(dBuV/m) = 20 \log Emission level (uV/m)$.
- 3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

Report No.: RF180830E03F-5 Page No. 13 / 30 Report Format Version: 6.1.1

Report Format Version: 6.1.1

4.1.2 Test Instruments

DESCRIPTION &	MODEL NO.	SERIAL NO.	CALIBRATED	CALIBRATED
MANUFACTURER			DATE	UNTIL
Test Receiver Agilent	N9038A	MY50010156	July 12, 2018	July 11, 2019
Pre-Amplifier EMCI	EMC001340	980142	Jan. 25, 2019	Jan. 24, 2020
Loop Antenna Electro-Metrics	EM-6879	269	Sep. 07, 2018	Sep. 06, 2019
RF Cable	NA	LOOPCAB-001	Jan. 14, 2019	Jan. 13, 2020
RF Cable	NA	LOOPCAB-002	Jan. 14, 2019	Jan. 13, 2020
Pre-Amplifier Mini-Circuits	ZFL-1000VH2B	AMP-ZFL-05	Apr. 30, 2019	Apr. 29, 2020
Trilog Broadband Antenna SCHWARZBECK	VULB 9168	9168-361	Nov. 22, 2018	Nov. 21, 2019
RF Cable	8D	966-3-1	Mar. 18, 2019	Mar. 17, 2020
RF Cable	8D	966-3-2	Mar. 18, 2019	Mar. 17, 2020
RF Cable	8D	966-3-3	Mar. 18, 2019	Mar. 17, 2020
Fixed attenuator Mini-Circuits	UNAT-5+	PAD-3m-3-01	Sep. 27, 2018	Sep. 26, 2019
Horn_Antenna SCHWARZBECK	BBHA9120-D	9120D-406	Nov. 25, 2018	Nov. 24, 2019
Pre-Amplifier EMCI	EMC12630SE	980384	Jan. 28, 2019	Jan. 27, 2020
RF Cable	EMC104-SM-SM-1200	160922	Jan. 28, 2019	Jan. 27, 2020
RF Cable	EMC104-SM-SM-2000	180601	June 12, 2018	June 11, 2019
RF Cable	EMC104-SM-SM-6000	180602	June 12, 2018	June 11, 2019
Spectrum Analyzer Keysight	N9030A	MY54490679	July 23, 2018	July 22, 2019
Pre-Amplifier EMCI	EMC184045SE	980387	Jan. 28, 2019	Jan. 27, 2020
Horn_Antenna SCHWARZBECK	BBHA 9170	BBHA9170519	Nov. 25, 2018	Nov. 24, 2019
RF Cable	EMC102-KM-KM-1200	160924	Jan. 28, 2019	Jan. 27, 2020
RF Cable	EMC102-KM-KM-1200	160925	Jan. 28, 2019	Jan. 27, 2020
Software	ADT_Radiated_V8.7.08	NA	NA	NA
Antenna Tower & Turn Table Max-Full	MF-7802	MF780208406	NA	NA
Boresight Antenna Fixture	FBA-01	FBA-SIP01	NA	NA
Spectrum Analyzer R&S	FSV40	100964	June 20, 2018	June 19, 2019
Power meter Anritsu	ML2495A	1014008	May 13, 2019	May 12, 2020
Power sensor Anritsu	MA2411B	0917122	May 13, 2019	May 12, 2020

Note:

- 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 2. The test was performed in 966 Chamber No. 3.
- 3. Loop antenna was used for all emissions below 30 MHz.
- 4. Tested Date: May 20 to 27, 2019

4.1.3 Test Procedures

For Radiated emission below 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

Note:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

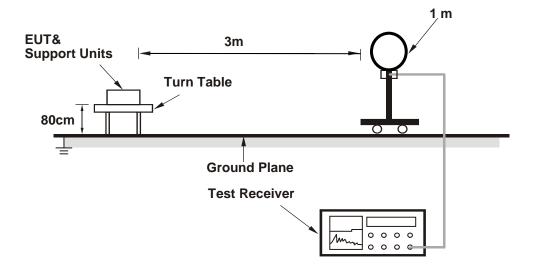
For Radiated emission above 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters (for 30MHz ~ 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detects function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

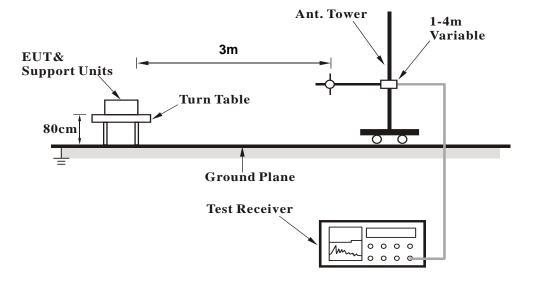
Note:

- The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is \geq 1/T (Duty cycle < 98%) or 10Hz (Duty cycle \geq 98%) for Average detection (AV) at frequency above 1GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported.

4.1.4 Deviation from Test Standard

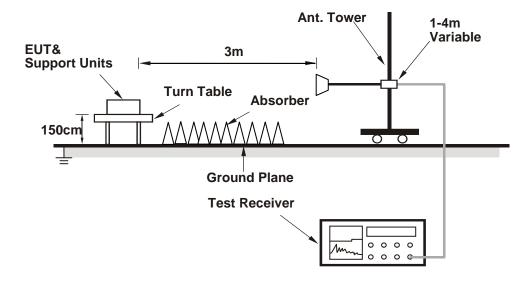

No deviation.

Report No.: RF180830E03F-5 Page No. 15 / 30 Report Format Version: 6.1.1



4.1.5 Test Setup

For Radiated emission below 30MHz



For Radiated emission 30MHz to 1GHz

For Radiated emission above 1GHz

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.1.6 EUT Operating Conditions

- a. Connected the EUT with the Laptop which is placed on remote site.
- b. Controlling software (Run teraturn paste TX command) has been activated to set the EUT on specific status.

4.1.7 Test Results

Above 1GHz Data:

CHANNEL	TX Channel 1	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 10GHz	FUNCTION	Average (AV)

ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M

	ANTENNATOLANTI & TEOT DIOTANOL. HONZONTAL AT SIN							
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	2745.00	41.7 PK	74.0	-32.3	1.54 H	201	43.3	-1.6
2	2745.00	37.3 AV	54.0	-16.7	1.54 H	201	38.9	-1.6
3	3660.00	48.9 PK	74.0	-25.1	1.53 H	21	49.1	-0.2
4	3660.00	47.0 AV	54.0	-7.0	1.53 H	21	47.2	-0.2
5	4575.00	38.2 PK	74.0	-35.8	1.61 H	59	36.5	1.7
6	4575.00	25.2 AV	54.0	-28.8	1.61 H	59	23.5	1.7
7	7320.00	43.8 PK	74.0	-30.2	1.53 H	100	35.8	8.0
8	7320.00	31.0 AV	54.0	-23.0	1.53 H	100	23.0	8.0
9	8235.00	49.2 PK	74.0	-24.8	1.48 H	355	40.6	8.6
10	8235.00	41.8 AV	54.0	-12.2	1.48 H	355	33.2	8.6
11	9150.00	45.5 PK	74.0	-28.5	1.47 H	360	35.6	9.9
12	9150.00	35.0 AV	54.0	-19.0	1.47 H	360	25.1	9.9
		ANTENNA	A POLARITY	/ & TEST DI	STANCE: V	ERTICAL A	T 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	2745.00	38.8 PK	74.0	-35.2	1.38 V	90	40.4	-1.6
2	2745.00	31.4 AV	54.0	-22.6	1.38 V	90	33.0	-1.6
3	3660.00	47.8 PK	74.0	-26.2	1.48 V	89	48.0	-0.2
4	3660.00	45.6 AV	54.0	-8.4	1.48 V	89	45.8	-0.2
5	4575.00	38.0 PK	74.0	-36.0	1.53 V	73	36.3	1.7
6	4575.00	25.2 AV	54.0	-28.8	1.53 V	73	23.5	1.7
7	7320.00	43.9 PK	74.0	-30.1	1.55 V	77	35.9	8.0
8	7320.00	31.1 AV	54.0	-22.9	1.55 V	77	23.1	8.0
9	8235.00	48.9 PK	74.0	-25.1	1.00 V	13	40.3	8.6
10	8235.00	41.6 AV	54.0	-12.4	1.00 V	13	33.0	8.6

REMARKS:

9150.00

9150.00

11

12

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

-28.8

-18.6

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

2.00 V

2.00 V

31

31

35.3

25.5

9.9

9.9

3. The other emission levels were very low against the limit.

74.0

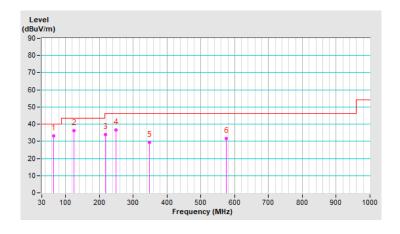
54.0

4. Margin value = Emission Level – Limit value

45.2 PK

35.4 AV

Report No.: RF180830E03F-5 Page No. 18 / 30 Report Format Version: 6.1.1


Below 1GHz Data:

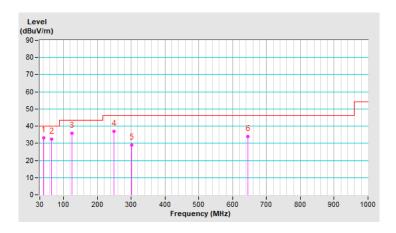
CHANNEL	TX Channel 1	DETECTOR	Overi Beek (OB)
FREQUENCY RANGE	9kHz ~ 1GHz	FUNCTION	Quasi-Peak (QP)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M									
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	64.53	33.3 QP	40.0	-6.7	1.00 H	153	47.9	-14.6		
2	125.25	36.3 QP	43.5	-7.2	3.55 H	224	51.0	-14.7		
3	217.73	33.9 QP	46.0	-12.1	1.50 H	200	49.0	-15.1		
4	249.99	36.5 QP	46.0	-9.5	2.60 H	321	50.0	-13.5		
5	348.51	29.3 QP	46.0	-16.7	1.53 H	264	40.0	-10.7		
6	575.02	31.8 QP	46.0	-14.2	2.05 H	250	37.1	-5.3		

REMARKS:

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz.
- 5. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

Report No.: RF180830E03F-5 Reference No.: 190515E14

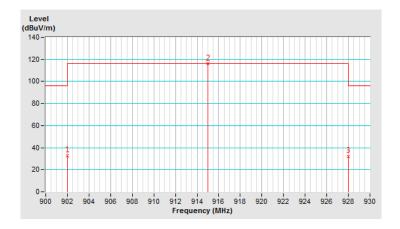


CHANNEL	TX Channel 1	DETECTOR	Ougai Pagis (OP)
FREQUENCY RANGE	9kHz ~ 1GHz	FUNCTION	Quasi-Peak (QP)

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M											
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)				
1	41.81	33.2 QP	40.0	-6.8	1.00 V	129	47.3	-14.1				
2	65.27	32.5 QP	40.0	-7.5	3.09 V	220	47.2	-14.7				
3	124.96	35.9 QP	43.5	-7.6	1.51 V	189	50.6	-14.7				
4	249.86	36.9 QP	46.0	-9.1	1.52 V	235	50.4	-13.5				
5	301.86	28.9 QP	46.0	-17.1	2.53 V	300	40.7	-11.8				
6	644.25	34.0 QP	46.0	-12.0	1.01 V	188	37.6	-3.6				

REMARKS:

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz.
- 5. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

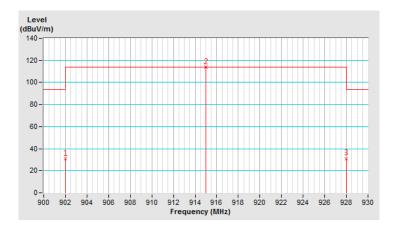


CHANNEL	TX Channel 1	DETECTOR	Ougsi Pask (OD)
FREQUENCY RANGE	900MHz ~ 930MHz	FUNCTION	Quasi-Peak (QP)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M											
NO.	FREQ. (MHz) EMISSION LIMIT (dBuV/m) M		MARGIN (dB)	HEIGHT ANGLE VALUE								
1	902.00	32.8 QP	96.3	-63.5	1.63 H	186	26.9	5.9				
2	*915.00	116.3 QP			1.63 H	186	109.9	6.4				
3	928.00	32.3 QP	96.3	-64.0	1.63 H	186	25.7	6.6				

REMARKS:

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. " * ": Fundamental frequency.



CHANNEL	TX Channel 1	DETECTOR	Ougsi Dook (OD)
FREQUENCY RANGE	900MHz ~ 930MHz	FUNCTION	Quasi-Peak (QP)

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M											
NO.	FREQ. (MHz)	· I LEVEL I		MARGIN (dB)	HEIGHT ANGLE VALU			CORRECTION FACTOR (dB/m)				
1	902.00	30.7 QP	93.7	-63.0	1.21 V	302	24.8	5.9				
2	*915.02	113.7 QP			1.21 V	302	107.3	6.4				
3	928.00	31.0 QP	93.7	-62.7	1.21 V	306	24.4	6.6				

REMARKS:

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. " * ": Fundamental frequency.

4.2 Conducted Emission Measurement

4.2.1 Limits of Conducted Emission Measurement

Fragues av (MILIT)	Conducted Limit (dBuV)				
Frequency (MHz)	Quasi-peak	Average			
0.15 - 0.5	66 - 56	56 - 46			
0.50 - 5.0	56	46			
5.0 - 30.0	60	50			

Note: 1. The lower limit shall apply at the transition frequencies.

4.2.2 Test Instruments

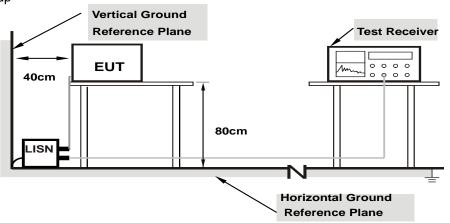
DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Test Receiver R&S	ESCS 30	847124/029	Oct. 24, 2018	Oct. 23, 2019
Line-Impedance Stabilization Network (for EUT) R&S	ESH3-Z5	848773/004	Oct. 22, 2018	Oct. 21, 2019
Line-Impedance Stabilization Network (for Peripheral) R&S	ESH3-Z5	835239/001	Mar. 17, 2019	Mar. 16, 2020
50 ohms Terminator	N/A	3	Oct. 22, 2018	Oct. 21, 2019
RF Cable	5D-FB	COCCAB-001	Sep. 28, 2018	Sep. 27, 2019
Fixed attenuator EMCI	STI02-2200-10	003	Mar. 14, 2019	Mar. 13, 2020
Software BVADT	BVADT_Cond_ V7.3.7.4	NA	NA	NA

Note:

- 1. The calibration interval of the above test instruments are 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 2. The test was performed in Conduction 1.
- 3 Tested Date: May 27, 2019

^{2.} The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

4.2.3 Test Procedures


- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded.

Note: The resolution bandwidth and video bandwidth of test receiver is 9kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15MHz-30MHz.

4.2.4 Deviation from Test Standard

No deviation.

4.2.5 Test Setup

Note: 1.Support units were connected to second LISN.

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.2.6 EUT Operating Conditions

Same as 4.1.6.

4.2.7 Test Results

Phase	Line (L)	Detector Function	Quasi-Peak (QP) / Average (AV)
-------	----------	-------------------	-----------------------------------

From		Corr.	Readin	Reading Value		Emission Level		Limit		Margin	
No	Freq.	Factor	[dB ((uV)]	[dB ((uV)]	[dB	(uV)]	(dl	3)	
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	
1	0.15000	10.03	42.24	26.15	52.27	36.18	66.00	56.00	-13.73	-19.82	
2	0.16953	10.04	38.60	21.07	48.64	31.11	64.98	54.98	-16.34	-23.87	
3	0.20078	10.05	34.30	20.46	44.35	30.51	63.58	53.58	-19.23	-23.07	
4	0.46641	10.09	28.25	23.75	38.34	33.84	56.58	46.58	-18.24	-12.74	
5	7.02734	10.51	22.44	17.08	32.95	27.59	60.00	50.00	-27.05	-22.41	
6	13.46094	10.93	15.69	9.96	26.62	20.89	60.00	50.00	-33.38	-29.11	

Remarks:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value

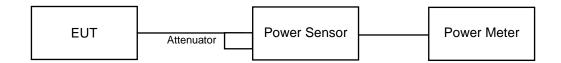
Phase	Neutral (N)	Detector Function	Quasi-Peak (QP) / Average (AV)

	Frog	Corr.	Readin	Reading Value		Emission Level		Limit		Margin	
No	Freq.	Factor	[dB	(uV)]	[dB	(uV)]	[dB	(uV)]	(dl	3)	
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	
1	0.15000	9.94	42.30	25.22	52.24	35.16	66.00	56.00	-13.76	-20.84	
2	0.17344	9.94	38.00	22.76	47.94	32.70	64.79	54.79	-16.85	-22.09	
3	0.23984	9.96	27.27	11.94	37.23	21.90	62.10	52.10	-24.87	-30.20	
4	0.46641	9.98	29.90	25.67	39.88	35.65	56.58	46.58	-16.70	-10.93	
5	3.62500	10.15	12.97	4.67	23.12	14.82	56.00	46.00	-32.88	-31.18	
6	7.37500	10.37	20.50	15.24	30.87	25.61	60.00	50.00	-29.13	-24.39	

Remarks:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value

Report No.: RF180830E03F-5 Reference No.: 190515E14



4.3 Conducted Output Power Measurement

4.3.1 Limits of Conducted Output Power Measurement

For systems using digital modulation in the 2400-2483.5 MHz bands: 1 Watt (30dBm)

4.3.2 Test Setup

4.3.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.3.4 Test Procedures

A peak power sensor was used on the output port of the EUT. A power meter was used to read the response of the peak power sensor. Record the power level.

Average power sensor was used to perform output power measurement, trigger and gating function of wide band power meter is enabled to measure max output power of TX on burst. Duty factor is not added to measured value.

4.3.5 Deviation from Test Standard

No deviation.

4.3.6 EUT Operating Conditions

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

Report No.: RF180830E03F-5 Page No. 27 / 30 Reference No.: 190515E14

4.3.7 Test Results

FOR PEAK POWER

Channel	Frequency (MHz)	Peak Power (mW)	Peak Power (dBm)	Limit (dBm)	Pass/Fail
1	915	90.573	19.57	30	Pass

FOR AVERAGE POWER

Channel	Frequency (MHz)	Average Power (mW)	Average Power (dBm)
1	915	89.125	19.50

Report No.: RF180830E03F-5 Reference No.: 190515E14

5 Pictures of Test Arrangements					
Please refer to the attached file (Test Setup Photo).					

Report No.: RF180830E03F-5 Page No. 29 / 30 Reference No.: 190515E14

Appendix - Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Lin Kou EMC/RF Lab

Hsin Chu EMC/RF/Telecom Lab

Tel: 886-2-26052180 Fax: 886-2-26051924 Tel: 886-3-6668565 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab

Tel: 886-3-3183232 Fax: 886-3-3270892

Email: service.adt@tw.bureauveritas.com
Web Site: www.bureauveritas-adt.com

The address and road map of all our labs can be found in our web site also.

--- END ---

Report No.: RF180830E03F-5 Page No. 30 / 30 Report Format Version: 6.1.1