Report No: CCISE181207607

FCC REPORT

Applicant: Shenzhen UMIDIGI company Limited

Address of Applicant: 406-407 Jinqi Zhigu Building, 4/F, 1 Tangling Road, Nanshan

District, Shenzhen City, PRC

Equipment Under Test (EUT)

Product Name: Smartphone

Model No.: One Max

Trade mark: UMIDIGI

FCC ID: 2APL8ONEMAX

Applicable standards: FCC CFR Title 47 Part 15 Subpart B

Date of sample receipt: 18 Dec., 2018

Date of Test: 18 Dec., 2018 to 21 Jan., 2019

Date of report issued: 21 Jan., 2019

Test Result: PASS *

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	21 Jan., 2019	Original

Test Engineer Date: Tested by: 21 Jan., 2019

Reviewed by: Date: 21 Jan., 2019

Project Engineer

3 Contents

		r	age
1	C	OVER PAGE	1
2	VI	ERSION	2
3	C	ONTENTS	3
4	Т	EST SUMMARY	4
5	G	ENERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	
	5.3	TEST MODE	
	5.4	MEASUREMENT UNCERTAINTY	
	5.5	DESCRIPTION OF SUPPORT UNITS	
	5.6	RELATED SUBMITTAL(S) / GRANT (S)	6
	5.7	DESCRIPTION OF CABLE USED	6
	5.8	LABORATORY FACILITY	6
	5.9	LABORATORY LOCATION	6
	5.10	TEST INSTRUMENTS LIST	7
6	TI	EST RESULTS AND MEASUREMENT DATA	8
	6.1	CONDUCTED EMISSION	8
	6.2	RADIATED EMISSION	11
7	TI	EST SETUP PHOTO	17
8	F	UT CONSTRUCTIONAL DETAILS	18

4 Test Summary

Test Item	Section in CFR 47	Result
Conducted Emission	Part 15.107	Pass
Radiated Emission	Part 15.109	Pass

Remark:

Pass: The EUT complies with the essential requirements in the standard.

N/A: The EUT not applicable of the test item.

5 General Information

5.1 Client Information

Applicant:	Shenzhen UMIDIGI company Limited
Address:	406-407 Jinqi Zhigu Building, 4/F, 1 Tangling Road, Nanshan District, Shenzhen City, PRC
Manufacturer:	Shenzhen UMIDIGI company Limited
Address:	406-407 Jinqi Zhigu Building, 4/F, 1 Tangling Road, Nanshan District, Shenzhen City, PRC

Report No: CCISE181207607

Project No.: CCISE1812076

5.2 General Description of E.U.T.

Product Name:	Smartphone	
Model No.:	One Max	
Power supply:	Rechargeable Li-ion Battery DC3.85V-4150mAh	
AC adapter :	Model: HJ-FC010K7-US Input: AC100-240V 50/60Hz, 0.6A Output: DC 5V, 2A DC 9V, 2A DC 12A, 1.5A	
Test Sample Condition:	The test samples were provided in good working order with no visible defects.	

5.3 Test Mode

Operating mode Detail description	
PC mode Keep the EUT in Downloading mode(Worst case)	
Charging+Recording mode	Keep the EUT in Charging+Recording mode
Charging+Playing mode	Keep the EUT in Charging+Playing mode
FM mode	Keep the EUT in FM receiver mode
GPS mode	Keep the EUT in GPS receiver mode

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

5.4 Measurement Uncertainty

-	
Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±2.22 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±2.76 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.28 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.72 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±2.88 dB (k=2)

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telaphana 198 (0) 755 2214 2222 Favy 186 (0) 755 2214 6266

Telephone: +86 (0) 755 2311 8282 Fax: +86 (0) 755 2311 6366 Page 5 of 18

Report No: CCISE181207607

5.5 Description of Support Units

Manufacturer	Description	Model	Serial Number	FCC ID/DoC
DELL	PC	OPTIPLEX745	N/A	DoC
DELL	MONITOR	E178FPC	N/A	DoC
DELL	KEYBOARD	SK-8115	N/A	DoC
DELL	MOUSE	MOC5UO	N/A	DoC
LENOVO	Laptop	SL510	2847A65	DoC

5.6 Related Submittal(s) / Grant (s)

This is an original grant, no related submittals and grants.

5.7 Description of Cable Used

Cable Type	Description	Length	From	То
Detached USB Cable	Shielding	1.0m	EUT	PC/Adapter

5.8 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 727551

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC (Federal Communications Commission). The Registration No. is 727551.

IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.9 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 2311 8282 Fax: +86 (0) 755 2311 6366

5.10 Test Instruments list

Radiated Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020
Loop Antenna	SCHWARZBECK	FMZB1519B	00044	03-16-2018	03-15-2019
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-16-2018	03-15-2019
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-16-2018	03-15-2019
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-22-2017	06-21-2020
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-21-2018	11-20-2019
EMI Test Software	AUDIX	E3	Version: 6.110919b		b
Pre-amplifier	HP	8447D	2944A09358	03-07-2018	03-06-2019
Pre-amplifier	CD	PAP-1G18	11804	03-07-2018	03-06-2019
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-07-2018	03-06-2019
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-21-2018	11-20-2019
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-07-2018	03-06-2019
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-07-2018	03-06-2019
Cable	MICRO-COAX	MFR64639	K10742-5	03-07-2018	03-06-2019
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-07-2018	03-06-2019

Conducted Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-07-2018	03-06-2019
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-07-2018	03-06-2019
LISN	CHASE	MN2050D	1447	03-19-2018	03-18-2019
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2018	07-20-2019
Cable	HP	10503A	N/A	03-07-2018	03-06-2019
EMI Test Software	AUDIX	E3	Version: 6.110919b		

6 Test results and Measurement Data

6.1 Conducted Emission

Test Requirement:	FCC Part 15 B Section 15.10	FCC Part 15 B Section 15.107			
Test Method:	ANSI C63.4:2014				
Test Frequency Range:	150kHz to 30MHz	150kHz to 30MHz			
Class / Severity:	Class B				
Receiver setup:	RBW=9kHz, VBW=30kHz				
Limit:	Frequency range (MHz)	Lir	mit (dBµV)		
	, , , ,	Quasi-peak	Average		
	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	0.5-30	60	50		
	* Decreases with the logarith				
Test setup:	Reference Plan	ne			
	AUX Filter AC power Equipment E.U.T Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m				
Test procedure	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network(L.I.S.N.). The provide a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refers to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement. 				
Test environment:	Temp.: 22.5 °C Humid.: 55% Press.: 101kPa				
Test Instruments:	Refer to section 5.9 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Pass				

Measurement data:

Product name:	Smartphone	Product mode	I: One Max		
Test by:	Yaro Test mode: PC mode				
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line		
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%		
80 Level (dBuV) 70 60 50 40 20 10 0.15 .2 Trace: 3	.5 1 Read LISN	7 9 8 10 2 Frequency (MHz) Cable L Loss Level	FCC PART15 B QP FCC PART15 B AV 11 20 30 imit Over Line Limit Remark dBuV dB		
1 0.1° 2 0.16 3 0.36 4 0.46 5 0.56 6 1.04 7 1.56 8 1.79 9 2.39 10 2.60 11 12.56 12 12.56	32 15.84 0.16 39 26.79 0.12 36 14.10 0.12 35 14.52 0.13 13 27.58 0.13 35 28.97 0.14 53 15.57 0.14 36 27.82 0.15 08 14.68 0.16 16 31.42 0.32	10.77 26.77 5 10.72 37.63 5 10.75 24.97 4 10.77 25.42 4 10.88 38.59 5 10.93 40.04 5 10.94 26.65 4 10.94 38.91 5 10.93 25.77 4 10.92 42.66 6	4.94 -22.59 QP 4.42 -27.65 Average 8.08 -20.45 QP 6.58 -21.61 Average 6.00 -20.58 Average 6.00 -17.41 QP 6.00 -15.96 QP 6.00 -19.35 Average 6.00 -17.09 QP 6.00 -20.23 Average 0.00 -17.34 QP 0.00 -19.15 Average		

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

roduct name:	me: Smartphone			Product me	odel:	One Max					
est by:	Yaro Test mode:					PC mode					
est frequency:	150 kHz ~ 30	MHz		Phase:		Neutral					
est voltage:	AC 120 V/60	Hz		Environme	nt:	Temp: 22.5°	C Huni: 55%				
80 Level (dBuV) 70 60 50 40 3 30 20		Aural portification	port of the bold of the work of	8 S S S S S S S S S S S S S S S S S S S	ulani khakil kalel		CC PART15 B QP				
10 0.15 .2	.5	1 LISN	Frequen	icy (MHz)	5 Limi	10 t Over	20 3				
Fre	Read q Level F		Loss	Level	Line		Remark				
Fre	q Level F		Loss	Level		e Limit	Remark				

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

6.2 Radiated Emission

FCC Part 15 B Section 15.109									
ANSI C63.4:201	ANSI C63.4:2014								
30MHz to 6000f	30MHz to 6000MHz								
Measurement D	Measurement Distance: 3m (Semi-Anechoic Chamber)								
Frequency			RBW			Remark			
30MHz-1GHz						Quasi-peak Value			
Above 1GHz						Peak Value			
Frequenc					12	Average Value Remark			
		LIIIII	•	20111)	C	Quasi-peak Value			
						Quasi-peak Value			
						Quasi-peak Value			
						Quasi-peak Value			
			54.0			Average Value			
Above 1Gr	72		74.0			Peak Value			
Ground Plane — Above 1GHz	4m A Im A EUT	Ground R	Horn Anter	Searc Anten RF Test Receiver	h na				
	ANSI C63.4:201 30MHz to 6000I Measurement D Frequency 30MHz-1GHz Above 1GHz Frequenc 30MHz-88M 88MHz-216M 216MHz-960 960MHz-1G Above 1GHz Below 1GHz Frequence 30MHz-1GHz Above 1GHz Above 1GHz	ANSI C63.4:2014 30MHz to 6000MHz Measurement Distance: 3 Frequency Detection Detect	ANSI C63.4:2014 30MHz to 6000MHz Measurement Distance: 3m (Se Frequency Detector 30MHz-1GHz Quasi-peak Above 1GHz RMS Frequency Limit 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz 960MHz-1GHz Above 1GHz Below 1GHz Below 1GHz Above 1GHz Above 1GHz	ANSI C63.4:2014 30MHz to 6000MHz Measurement Distance: 3m (Semi-Anechoi Frequency Detector RBW 30MHz-1GHz Quasi-peak 120kHz Above 1GHz Peak 1MHz RMS 1MHz Frequency Limit (dBuV/m @ 30MHz-88MHz 40.0 88MHz-216MHz 43.5 216MHz-960MHz 46.0 960MHz-1GHz 54.0 Above 1GHz 74.0 Below 1GHz Below 1GHz Above 1GHz Above 1GHz Above 1GHz Above 1GHz	ANSI C63.4:2014 30MHz to 6000MHz Measurement Distance: 3m (Semi-Anechoic Chan Frequency Detector RBW VBI 30MHz-1GHz Quasi-peak 120kHz 300k Above 1GHz Peak 1MHz 3MHz RMS 1MHz 3MHz RMS 1MHz 3MHz RMS 1MHz 3MHz Above 1GHz 43.5 216MHz-960MHz 44.0 960MHz-1GHz 54.0 Above 1GHz 74.0 Below 1GHz Antenna Ground Plane Above 1GHz Antenna Ground Plane Above 1GHz	ANSI C63.4:2014 30MHz to 6000MHz Measurement Distance: 3m (Semi-Anechoic Chamber) Frequency Detector RBW VBW 30MHz-1GHz Quasi-peak 120kHz 300kHz Above 1GHz Peak 1MHz 3MHz RMS 1MHz 3MHz Frequency Limit (dBuV/m @3m) 30MHz-88MHz 40.0 0 88MHz-216MHz 43.5 0 216MHz-960MHz 46.0 0 960MHz-1GHz 54.0 0 Above 1GHz 74.0 Below 1GHz Antenna Tower Ground Plane Above 1GHz Antenna Tower Antenna Tower			

	1								
Test Procedure:	 The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving 								
		ı, which was ı	•			-			
	 The antenna height is varied from one meter to four meters above ground to determine the maximum value of the field strength. Be horizontal and vertical polarizations of the antenna are set to ma measurement. 								
	4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.								
	5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.								
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.								
Test environment:	Temp.:	24 °C	Humid.:	57%	Press.:	1 01kPa			
Test Instruments:	Refer to section 5.9 for details								
Test mode:	Refer to section 5.3 for details								
Test results:	Passed								
Remark: All of the observed value above 6GHz ware the niose floor , where corded									

Measurement Data:

Below 1GHz:

Product Name:	Smartphone	Product model:	One Max
Test By:	Yaro	Test mode:	PC mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%
80 Level (dBuV/m)			
70			
60			
			FCC PART15 CLASS B
50			
40	2		
30	3	4 5	6
	M J May	سار ۱۸ اینتر	6 philippy with
20 Manually Mayby wager	Walley Warden	Manger of Manager and	NI MINISTRA
10	The same of the sa		
030 50	100	200	500 100
	Frequenc		
Fred	ReadAntenna Cable Pro Level Factor Loss Fac	eamp Lim: ctor Level Lim	
MH ₂	z dBuV dB/m dB	dB dBuV/m dBuV/	/m

Remark:

23

4

5

6

59.025

119.856

146.888

226.894

299.316

696.857

42.92

53.52

47.70

39.39

39.89

33.94

12.55

10.23

8.45

12.52

13.60

19.80

1.38

2.17

2.47

2.84

2.94

4.16

29.78

29.39

29.24

28.67

28.45

28.68

27.07

36.53

29.38

26.08

27.98

29.22

40.00 -12.93 QP

43.50 -6.97 QP

43.50 -14.12 QP

46.00 -19.92 QP

46.00 -18.02 QP

46.00 -16.78 QP

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Product N	lame:	Smartpho	ne		Pro	duct model	: 0	One Max		
Test By:	Yaro Test mode:		F	PC mode			PC mode			
Test Freq	uency:	30 MHz ~	1 GHz		Pola	arization:	H	Horizontal		
Test Volta	ige:	AC 120/6	0Hz		Env	rironment	: Т	emp: 24℃	Huni:	57%
80 Level 70 60 50 40 30	(dBuV/m)	1		2	Market Mark	Myself Mary for	5 hayardanana	FCC PA	RT15 CLAS	
10 majh	20 50	M. who	100	Fren	200 uency (MH			500		1000
		Readi	Intenna		Preamp	<i>L</i>)	Limit	Over		
	Freq		Factor		Factor	Level	Line		Remark	
	MHz	dBu√	<u>dB</u> /m	d <u>B</u>	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	<u>d</u> B		
1 2 3 4 5	58. 203 119. 856 174. 424 239. 987 306. 754 480. 528	37.62 41.24 46.93 40.43 42.11 34.95	12.68 10.23 9.58 12.97 13.74 16.97	1.37 2.17 2.69 2.82 2.96 3.46	29.78 29.39 29.02 28.59 28.47 28.92	21.89 24.25 30.18 27.63 30.34 26.46	43.50 43.50 46.00 46.00	-18.11 -19.25 -13.32 -18.37 -15.66 -19.54	QP QP QP	

Remark

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Above 1GHz:

Product	Name:	Smartpho	ne		Pro	duct mode	l:	One Max			
Test By:		Yaro			Tes	st mode:		PC mode			
Test Fre	quency:	1 GHz ~ 6	6 GHz		Pol	arization:		Vertical			
Test Vol	tage:	AC 120/6	0Hz	Environment: Temp: 24°C Hu					C Hun	i: 57%	
80 Leve	l (dBuV/m)					1921					
00								FC	C PART 1	5 (PK)	
70											
60								FC	C PART 1	5 (AV)	
50											
							3		5 HUMMANA	millioned	
40					in harry	hambe	production of the	Watth warner	6		
30 mm	and and a second	her many many	and behavior	NIN WAY	2	100	4	mapholisad			
20											
20											
10											
0 1000	1200	1500		2000					5000	6000	
1000	1200	1300	-		uency (MH	lz)			3000	0000	
	Freq		Intenna Factor		Preamp Factor		Limit Line		Remarl	ζ	
ĕ	MHz	dBu₹	<u>dB</u> /m	<u>d</u> B	<u>dB</u>	dBuV/m	dBuV/π	<u>ab</u>			
1 2 3 4 5	2405.992 2405.992 3268.571 3268.571 5311.742	46.31 36.57 46.83 37.15 47.43	27.40 27.40 28.77 28.77 32.22	4.71 4.71 5.50 5.50 7.10	41.39		54.00 74.00 54.00	-37.51 -27.25 -34.29 -23.97	Averag Peak Averag		
6	5311.742	37.83	32. 22	7. 10	41.90	35. 25		-18.75		ge	

Remark:

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

One Max

Product Name:

Smartphone

Гest By:	Yaro		Test mode:		PC mode Horizontal Temp: 24°C Huni: 57°		
Гest Frequency:	1 GHz ~ 6 GH	z	Polarization	า:			
Гest Voltage:	AC 120/60Hz		Environme	nt:			
Level (dBuV/m)							
80 Level (dbdviii)					FCC P	ART 15 (PK)	
70							
60							
F.0					FCC P	ART 15 (AV)	
50			4	3 .	manham	MANAGHANANANA	
30	and the second	and when with the state of	manuscraph and the second	AND SHAPE SHAPE	Aholysta		
20							
10							
0	1500	2000					

Product model:

				Frequ	iency (MHz)			
	Freq			ReadAntenna Cable Preamp Level Factor Loss Factor Level			Limit Line	Over Limit	Remark
	MHz	dBu∜	<u>dB</u> /π		<u>ab</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
1	2674.269	47.20	27.98	5.01	41.80	38.39	74.00	-35.61	Peak
2	2674.269	37.85	27.98	5.01	41.80	29.04	54.00	-24.96	Average
3	3387.825	46.81	28.84	5.61	41.35	39.91	74.00	-34.09	Peak
4	3387.825	37.15	28.84	5.61	41.35	30.25	54.00	-23.75	Average
5	5685.998	48.28	32.74	7.55	41.89	46.68	74.00	-27.32	Peak
6	5685.998	38.78	32.74	7.55	41.89	37.18	54.00	-16.82	Average

Project No.: CCISE1812076

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

The emission levels of other frequencies are very lower than the limit and not show in test report.