

Report No: CCISE181207208

FCC REPORT

Applicant:	Shenzhen UMIDIGI company Limited
Address of Applicant:	406-407 Jinqi Zhigu Building, 4/F, 1 Tangling Road, Nanshan District, Shenzhen City, China
Equipment Under Test (E	EUT)
Product Name:	Smartphone
Model No.:	F1, F1 Play, S3 Pro
Trade mark:	UMIDIGI
FCC ID:	2APL8F1
Applicable standards:	FCC CFR Title 47 Part 15 Subpart B
Date of sample receipt:	18 Dec., 2018
Date of Test:	18 Dec., 2018 to 21 Jan., 2019
Date of report issued:	25 Jan., 2019
Test Result:	PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	25 Jan., 2019	Original

Tested by:

ang Test Engineer

Date:

Date:

25 Jan., 2019

25 Jan., 2019

Reviewed by:

Dimer hand

Project Engineer

<u>CCIS</u>

Report No: CCISE181207208

3 Contents

		Pa	je
1	С	OVER PAGE	.1
2	v	ERSION	.2
3	С	ONTENTS	.3
4	т	EST SUMMARY	.4
5		ENERAL INFORMATION	
	5.1	CLIENT INFORMATION	.5
	5.2	GENERAL DESCRIPTION OF E.U.T.	
	5.3	Test Mode	
	5.4	Measurement Uncertainty	.5
	5.5	DESCRIPTION OF SUPPORT UNITS	.6
	5.6	Related Submittal(s) / Grant (s)	
	5.7	DESCRIPTION OF CABLE USED	.6
	5.8	LABORATORY FACILITY	.6
	5.9	LABORATORY LOCATION	.6
	5.10	Test Instruments list	.7
6	т	EST RESULTS AND MEASUREMENT DATA	.8
	6.1	CONDUCTED EMISSION	
	6.2	Radiated Emission	
7	т	EST SETUP PHOTO	17
8	Е	UT CONSTRUCTIONAL DETAILS	18

4 Test Summary

Test Item	Section in CFR 47	Result		
Conducted Emission	Part 15.107	Pass		
Radiated Emission	Part 15.109	Pass		
Remark: Pass: The EUT complies with the essential requirements in the standard. N/A: The EUT not applicable of the test item.				

5 General Information

5.1 Client Information

Applicant:	Shenzhen UMIDIGI company Limited
Address:	406-407 Jinqi Zhigu Building, 4/F, 1 Tangling Road, Nanshan District, Shenzhen City, China
Manufacturer:	Shenzhen UMIDIGI company Limited
Address:	406-407 Jinqi Zhigu Building, 4/F, 1 Tangling Road, Nanshan District, Shenzhen City, China

5.2 General Description of E.U.T.

Product Name:	Smartphone		
Model No.:	F1, F1 Play, S3 Pro		
Power supply:	Rechargeable Li-ion Battery DC3.85V-5150mAh		
AC adapter :	Model: HJ-FC010K7-US Input: AC100-240V, 50/60Hz, 0.6A Output: DC 5.0V, 2A DC 9.0V, 2A DC 12.0V, 1.5A		
Test Sample Condition:	The test samples were provided in good working order with no visible defects.		
Remarks:	item No.: F1,F1 Play,S3 Pro were identical inside, the electrical circuit design, layout, components used and internal wiring, with only difference being model name.		

5.3 Test Mode

Detail description
Keep the EUT in Downloading mode(Worst case)
Keep the EUT in Charging+Recording mode
Keep the EUT in Charging+Playing mode
Keep the EUT in FM receiver mode
Keep the EUT in GPS receiver mode

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

5.4 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±2.22 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±2.76 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.28 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.72 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±2.88 dB (k=2)

Project No.: CCISE1812072

5.5 Description of Support Units

Manufacturer	Description	Model	Serial Number	FCC ID/DoC
DELL	PC	OPTIPLEX745	N/A	DoC
DELL	MONITOR	E178FPC	N/A	DoC
DELL	KEYBOARD	SK-8115	N/A	DoC
DELL	MOUSE	MOC5UO	N/A	DoC
LENOVO	Laptop	SL510	2847A65	DoC

5.6 Related Submittal(s) / Grant (s)

This is an original grant, no related submittals and grants.

5.7 Description of Cable Used

Cable Type	Description	Length	From	То
Detached USB Cable	Shielding	1.0m	EUT	PC/Adapter

5.8 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 727551

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC (Federal Communications Commission). The Registration No. is 727551.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

• A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: <u>https://portal.a2la.org/scopepdf/4346-01.pdf</u>

5.9 Laboratory Location

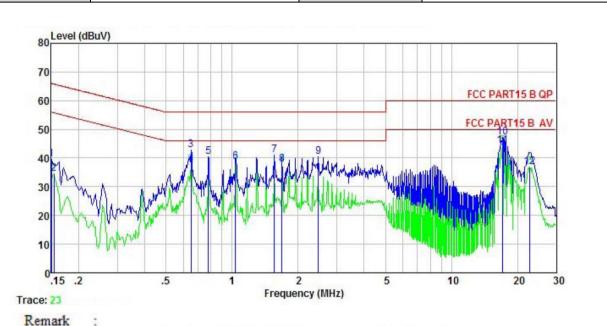
Shenzhen Zhongjian Nanfang Testing Co., Ltd. Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366 Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

5.10 Test Instruments list

Radiated Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020	
Loop Antenna	SCHWARZBECK	FMZB1519B	00044	03-16-2018	03-15-2019	
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-16-2018	03-15-2019	
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-16-2018	03-15-2019	
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-22-2017	06-21-2020	
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-21-2018	11-20-2019	
EMI Test Software	AUDIX	E3	Version: 6.110919b		b	
Pre-amplifier	HP	8447D	2944A09358	03-07-2018	03-06-2019	
Pre-amplifier	CD	PAP-1G18	11804	03-07-2018	03-06-2019	
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-07-2018	03-06-2019	
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-21-2018	11-20-2019	
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-07-2018	03-06-2019	
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-07-2018	03-06-2019	
Cable	MICRO-COAX	MFR64639	K10742-5	03-07-2018	03-06-2019	
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-07-2018	03-06-2019	

Conducted Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-07-2018	03-06-2019	
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-07-2018	03-06-2019	
LISN	CHASE	MN2050D	1447	03-19-2018	03-18-2019	
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2018	07-20-2019	
Cable	HP	10503A	N/A	03-07-2018	03-06-2019	
EMI Test Software	AUDIX	E3	Version: 6.110919b			

6 Test results and Measurement Data


6.1 Conducted Emission

Test Requirement:	FCC Part 15 B Section 15.10	17	
Test Method:	ANSI C63.4:2014		
	150kHz to 30MHz		
Test Frequency Range:			
Class / Severity:	Class B		
Receiver setup:	RBW=9kHz, VBW=30kHz		
Limit:	Frequency range (MHz)	Limit (Quasi-peak	(dBµV)
	0.15-0.5	66 to 56*	Average 56 to 46*
	0.5-5	56	46
	0.5-30	60	50
	* Decreases with the logarith	nm of the frequency.	
Test setup:	Reference Pla	ne	
	LISN 40cm 80c AUX Equipment E.U.T Test table/Insulation plane Test table/Insulation plane Remark: E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m	EMI Receiver	
Test procedure	 The E.U.T and simulators line impedance stabilization 500hm/50uH coupling impedance The peripheral devices are a LISN that provides a 500 termination. (Please refers photographs). Both sides of A.C. line are interference. In order to fir positions of equipment an according to ANSI C63.4: 	on network(L.I.S.N.). The bedance for the measure also connected to the ohm/50uH coupling imp s to the block diagram of e checked for maximum and the maximum emiss d all of the interface ca	ne provide a ring equipment. a main power through bedance with 500hm of the test setup and n conducted ion, the relative bles must be changed
Test environment:	Temp.: 22.5 °C Hun	nid.: 55% Pro	ess.: 101kPa
Test Instruments:	Refer to section 5.9 for detai	ls	1
Test mode:	Refer to section 5.3 for detai	ls	
Test results:	Pass		

Measurement data:

Product name:	Smartphone	Product model:	F1
Test by:	YT	Test mode:	PC mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBuV	dB	dB	dBuV	dBuV	āB	
1	0.150	28.72	0.18	10.78	39.68	66.00	-26.32	QP
2	0.154	23.61	0.18	10.78	34.57	55.78	-21.21	Average
3	0.651	31.91	0.13	10.77	42.81	56.00	-13.19	QP
4	0.651	26.95	0.13	10.77	37.85	46.00	-8.15	Average
5	0.779	29.40	0.13	10.80	40.33	56.00	-15.67	QP
1 2 3 4 5 6 7 8 9	1.037	27.56	0.13	10.87	38.56	46.00	-7.44	Average
7	1.560	29.82	0.14	10.93	40.89	56.00	-15.11	QP
8	1.689	26.70	0.14	10.94	37.78	46.00	-8.22	Average
9	2.474	29.31	0.15	10.94	40.40	56.00	-15.60	QP
10	17.109	36.09	0.30	10.91	47.30	60.00	-12.70	QP
11	17.109	33.12	0.30	10.91	44.33	50.00	-5.67	Average
12	22.775	25.75	0.31	10.90	36.96	50.00	-13.04	Average

Notes:

1. An initial pre-scan was performed on the line and neutral lines with peak detector.

2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.

3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Product name:	Smartp	hone			Product n	nodel:	F1		
Test by:	YT			•	Test mod	e:	PC mode Neutral Temp: 22.5℃ Huni: 55%		
Test frequency:	150 kH	z ~ 30 M	Hz	1	Phase:				
Test voltage:	AC 120) V/60 Hz	<u>.</u>	1	Environm	ent:			
80 Level	(dBuV)			1	1				
70									
60							F	CC PART15 B QP	
-							EC	C PART15 B AV	
50			3 4	6	0			A	
40		1		1.1.174	MANMAN	AL DR		(MAR)	
30	0 0	1 and	MA MW	MAN WAR		Mar William	1 Distant		
301 41	Mh anto	WANNA		L. MAR	Mandriner	Prese Martin		We have	
	101113020094 c 1		12 190	WWW P		41	1 Houd		
20	AL W	1.100 10	M YAY LU						
· V	milim	Wenter	M WY UP						
20	Man	Water	M W W						
10	Min	5	M W V	2		5	10	20 30	1
10 0.15 .2	2	.5	1	2 Frequenc	y (MHz)	5	10	20 30)
10 0.15 .2 Trace: 21	2	.5	1	_	y (MHz)	5	10	20 30)
10 0.15 .2	2 :			Frequenc	y (MHz)			20 30)
10 0.15 .2 Trace: 21	:	Read	LISN	Frequenc		Limit	Over)
10 0.15 .2 Trace: 21	: Freq	Read Level	LISN Factor	Frequenc Cable Loss	Level	Limit Line	Over Limit	20 30 Remark)
10 0.15 .2 Trace: 21	:	Read	LISN	Frequenc		Limit	Over)
10 0.15 .2 Trace: 21 Remark	: Freq	Read Level	LISN Factor dB	Frequenc Cable Loss	Level	Limit Line dBuV	Over Limit	Remark)
10 0.15 .2 Trace: 21 Remark	: Freq MHz 0.150 0.651	Read Level dBuV 30.90 23.66	LISN Factor dB 0.99 0.63	Frequence Cable Loss dB 10.78 10.77	Level dBuV 42.67 35.06	Limit Line dBuV 66.00 46.00	Over Limit 	Remark QP Average	0
10 0.15 .2 Trace: 21 Remark	: Freq MHz 0.150 0.651 0.654	Read Level dBuV 30.90 23.66 32.42	LISN Factor dB 0.99 0.63 0.97	Frequenc Cable Loss dB 10.78 10.77 10.77	Level dBuV 42.67 35.06 44.16	Limit Line dBuV 66.00 46.00 56.00	Over Limit -23.33 -10.94 -11.84	Remark QP Average QP)
10 0.15 .2 Trace: 21 Remark	: Freq MHz 0.150 0.651 0.654 1.037	Read Level dBuV 30.90 23.66 32.42 31.31	LISN Factor dB 0.99 0.63 0.97 0.97	Frequence Cable Loss dB 10.78 10.77 10.77 10.87	Level dBuV 42.67 35.06 44.16 43.15	Limit Line dBuV 66.00 46.00 56.00 56.00	Over Limit -23.33 -10.94 -11.84 -12.85	Remark QP Average QP QP)
10 0.15 Trace: 21 Remark 1 2 3 4 5	: MHz 0.150 0.651 0.654 1.037 1.037	Read Level dBuV 30.90 23.66 32.42 31.31 26.72	LISN Factor dB 0.99 0.63 0.97 0.97 0.97 0.67	Frequenc Cable Loss dB 10.78 10.77 10.77 10.87 10.87 10.87	Level dBuV 42.67 35.06 44.16 43.15 38.26	Limit Line dBuV 66.00 46.00 56.00 56.00 46.00	Over Limit -23.33 -10.94 -11.84 -12.85 -7.74	Remark QP Average QP QP Average)
10 0.15 Trace: 21 Remark 1 2 3 4 5	: MHz 0.150 0.651 0.654 1.037 1.037 1.560	Read Level dBuV 30.90 23.66 32.42 31.31 26.72 30.71	LISN Factor dB 0.99 0.63 0.97 0.97 0.67 0.98	Frequence Cable Loss dB 10.78 10.77 10.77 10.87 10.87 10.93	Level dBuV 42.67 35.06 44.16 43.15 38.26 42.62	Limit Line dBuV 66.00 46.00 56.00 56.00 46.00 56.00	Over Limit -23.33 -10.94 -11.84 -12.85 -7.74 -13.38	Remark QP Average QP QP Average QP)
10 0.15 Trace: 21 Remark 1 2 3 4 5 6 7	Freq MHz 0.150 0.651 0.654 1.037 1.037 1.560 1.949	Read Level dBuV 30.90 23.66 32.42 31.31 26.72 30.71 24.41	LISN Factor dB 0.99 0.63 0.97 0.97 0.97 0.67 0.98 0.67	Frequence Cable Loss dB 10.78 10.77 10.77 10.87 10.87 10.93 10.96	Level dBuV 42.67 35.06 44.16 43.15 38.26 42.62 36.04	Limit Line dBuV 66.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00	Over Limit -23.33 -10.94 -11.84 -12.85 -7.74 -13.38 -9.96	Remark QP Average QP Average QP Average Average)
10 0.15 .2 Trace: 21 Remark 1 2 3 4 5 6 7 8	Freq MHz 0.150 0.651 0.654 1.037 1.037 1.560 1.949 2.594	Read Level dBuV 30.90 23.66 32.42 31.31 26.72 30.71 24.41 29.83	LISN Factor dB 0.99 0.63 0.97 0.97 0.67 0.98 0.67 0.99	Frequence Cable Loss dB 10.78 10.77 10.77 10.87 10.87 10.93 10.96 10.93	Level dBuV 42.67 35.06 44.16 43.15 38.26 42.62 36.04 41.75	Limit Line dBuV 66.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00	Over Limit -23.33 -10.94 -11.84 -12.85 -7.74 -13.38 -9.96 -14.25	Remark Average QP Average QP Average QP Average QP)
10 0.15 .2 Trace: 21 Remark 1 2 3 4 5 6 7 8 9	Freq MHz 0.150 0.651 0.654 1.037 1.037 1.560 1.949 2.594 8.592	Read Level dBuV 30.90 23.66 32.42 31.31 26.72 30.71 24.41 29.83 23.86	LISN Factor dB 0.99 0.63 0.97 0.97 0.97 0.67 0.98 0.67 0.99 0.69	Frequence Cable Loss dB 10.78 10.77 10.77 10.87 10.87 10.93 10.96 10.93 10.88	Level dBuV 42.67 35.06 44.16 43.15 38.26 42.62 36.04 41.75 35.43	Limit Line dBuV 66.00 46.00 56.00 46.00 56.00 46.00 56.00 56.00 50.00	Over Limit -23.33 -10.94 -11.84 -12.85 -7.74 -13.38 -9.96 -14.25 -14.57	Remark QP Average QP Average QP Average QP Average QP Average	5
10 0.15 .2 Trace: 21 Remark 1 2 3 4 5 6 7 8 9 10	Freq MHz 0.150 0.651 0.654 1.037 1.037 1.560 1.949 2.594 8.592 17.291	Read Level dBuV 30.90 23.66 32.42 31.31 26.72 30.71 24.41 29.83 23.86 37.31	LISN Factor dB 0.99 0.63 0.97 0.97 0.97 0.97 0.98 0.67 0.99 0.69 0.80	Frequence Cable Loss dB 10.78 10.77 10.77 10.87 10.93 10.93 10.93 10.93 10.88 10.91	Level dBuV 42.67 35.06 44.16 43.15 38.26 42.62 36.04 41.75 35.43 49.02	Limit Line dBuV 66.00 46.00 56.00 56.00 46.00 56.00 56.00 56.00 56.00 50.00 60.00	Over Limit -23.33 -10.94 -11.84 -12.85 -7.74 -13.38 -9.96 -14.25 -14.57 -10.98	Remark QP Average QP Average QP Average QP Average QP	5
10 0.15 .2 Trace: 21 Remark 1 2 3 4 5 6 7 8 9	Freq MHz 0.150 0.651 0.654 1.037 1.037 1.560 1.949 2.594 8.592	Read Level dBuV 30.90 23.66 32.42 31.31 26.72 30.71 24.41 29.83 23.86	LISN Factor dB 0.99 0.63 0.97 0.97 0.97 0.67 0.98 0.67 0.99 0.69	Frequence Cable Loss dB 10.78 10.77 10.77 10.87 10.87 10.93 10.96 10.93 10.88	Level dBuV 42.67 35.06 44.16 43.15 38.26 42.62 36.04 41.75 35.43	Limit Line dBuV 66.00 46.00 56.00 56.00 56.00 56.00 56.00 56.00 50.00 50.00 50.00	Over Limit -23.33 -10.94 -11.84 -12.85 -7.74 -13.38 -9.96 -14.25 -14.57 -10.98 -7.87	Remark QP Average QP Average QP Average QP Average QP Average	5

2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.

3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

CCIS

6.2 Radiated Emission

Test Requirement:	FCC Part 15 B	Section 15	5.109					
Test Method:	ANSI C63.4:201	14						
Test Frequency Range:	30MHz to 6000	MHz						
Test site:	Measurement D	istance: 3	3m (Se	mi-Anechoi	c Chan	nber)		
Receiver setup:	Frequency							
	30MHz-1GHz	Quasi-p		ak 120kHz 300k			Quasi-peak Value	
	Above 1GHz	k o	1MHz 3MH			Peak Value		
		RM		1MHz	3MF	HZ	Average Value	
Limit:	Frequenc 30MHz-88M		LIMIL	(dBuV/m @ 40.0	/3111)	0	Remark Quasi-peak Value	
	88MHz-216M			40.0			Quasi-peak Value	
	216MHz-960			46.0			Quasi-peak Value	
	960MHz-1G			54.0			Quasi-peak Value	
				54.0			Average Value	
	Above 1G	HZ		74.0			Peak Value	
Test setup:	EUT Turn 0.8 Ground Plane – Above 1GHz		\sim		Antenna			

Test Procedure:	 The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specifie 						
	 Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10d margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. 						
Test environment:	Temp.:	24 °C	Humid.:	57%	Press.:	1 01kPa	
Test Instruments:	Refer to se	ection 5.9 for	details				
Test mode:	Refer to se	ection 5.3 for	details				
Test results:	Passed						
Remark:	All of the c recorded	bserved valu	e above 6GH	Iz ware the r	niose floor,	which were no	

Measurement Data:

Below 1GHz:

roduct Name:	Smar	phone			Pro	Product model:			F1		
est By:	YT				Test	t mode:		PC mode			
Test Frequency:	30 Mł	lz ~ 1 GI	Hz		Pola				Vertical		
Fest Voltage:	AC 12	20/60Hz			Env				Temp: 24℃ Huni: 57		
80 Level	l (dBuV/m)										
70											
60								_			
								FCC PART	T15 CLA	ASSB	
50											
40											
401									-	0	
40		1				4			9	2	
30		1		2	3	4			Juniha	hel	
30		Å		mh/141		AL A	h. how at	Manholem	milantha	when	
	athen much	Å	hur	mult	how	Mummer	histowers	ndurinam	milanta	wathing	
30	alliniana	Am	mon	mh All	Mr Mary	Allower	historical	uluminum	mlankhah	worken	
30 20 10	athing	Á.	mm	m	M	Munu	historical	uluminum	- Junita		
30 20 Walthu	M. Markan Mark	Åm	100	Freque	200	Num	hickment	500	milanthan	1000	
30 20 10	n Mundana M 50	Å	100	Frequ	200 uency (MHz	Allower A	hickness	500	mlanha		
30 20 10		CCIS			uency (MHz		historica				
30 20 10 0 30	•	Read	Antenna	Cable	Preamp		Limit	Over		1000	
30 20 10 0 30	: Freq	Read/ Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Line	Over Limit	Кета	1000	
30 20 10 0 30	•	Read	Antenna Factor	Cable	Preamp Factor		Line	Over Limit	Кета	1000	
30 20 10 0 30 REMARK	: Freq	Read/ Level	Antenna Factor dB/m	Cable Loss dB	Preamp Factor dB	Level dBuV/m	Line dBuV/m	Over Limit	Rema	1000	
30 20 10 0 30 REMARK	: Freq MHz 59.025 136.460	Read# Level dBuV 45.56 47.67	Antenna Factor 	Cable Loss dB 1.38 2.36	Preamp Factor 29.78 29.29	Level dBuV/m 29.71 29.05	Line dBuV/m 40.00 43.50	Over Limit dB -10.29 -14.45	Rema QP QP	1000	
30 20 10 0 30 REMARK	: Freq MHz 59.025 136.460 199.286	Read/ Level dBuV 45.56 47.67 41.12	Antenna Factor <u>dB/m</u> 12.55 8.31 11.48	Cable Loss dB 1.38 2.36 2.86	Preamp Factor 29.78 29.29 28.83	Level dBuV/m 29.71 29.05 26.63	Line dBuV/m 40.00 43.50 43.50	Over Limit 	Rema QP QP QP	1000	
30 20 10 0 30 REMARK	: Freq MHz 59.025 136.460	Read/ Level dBuV 45.56 47.67 41.12 41.56	Antenna Factor 	Cable Loss dB 1.38 2.36	Preamp Factor 29.78 29.29 28.83 28.47	Level dBuV/m 29.71 29.05 26.63 29.79	Line dBuV/m 40.00 43.50	Over Limit -10.29 -14.45 -16.87 -16.21	Rema QP QP QP QP QP	1000	

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Smar	tphone			Pro	Product model:			F1		
Test By:	YT				Tes	Test mode:			PC mode		
Test Frequency:	30 M	Hz ~ 1 G	Hz		Pol	Polarization:			Horizontal		
Test Voltage:	AC 1	20/60Hz			Env	Environment:			Temp: 24℃ Huni: 57%		
80 Level	l (dBuV/m)										
70											
60								_			
								FCC PART	15 CLAS	SSB	
50											
40	_									6	
					2	2			5		
30		-1			2	3 h. M	N o	4	Junalah	and the second	
30 20 0		1			AND THE W	What have the	1	4 Alexandra	and an pie la	ne the second	
20	Jerrogensterme	Am	n ulmun	anten Josha	AND	Nothing May	have	4	and are plante	not and	
20	noteroperture	Am	nuthing	antina faither	AND	ANN MAN MAN	J. Anno	4 John Stranger and the	and ana point in	WAY BUN	
20 10 - 1444		Im	"kut"	orthur Joshow		Althoung the	Whene		S mainte	1000	
20	nnterneperternen 50	Am	n	4.	2 200 200 uency (MHz	MUAT	John and	4 100	are langed a la	1000	
20 10 0 30	50		"kut"	4.	200	MUAT	John me		New Jampin La	1000	
20 10 0 30	50	CCIS ReadA	"kut"	Freq	200 uency (MH2	· · · · · · · · · · · · · · · · · · ·	Limit			1000	
20 10 0 30	50		100 Intenna	Freq	200 uency (MH2	;)		500			
20 10 0 30	50	ReadA Level	100 Intenna	Freq	200 uency (MHz Preamp Factor	;)	Line	500 Over Limit	Remai		
20 10 0 30 REMARK	50 - : Freq MHz	ReadA Level dBuV	100 Intenna Factor dB/m	Freq Cable Loss dB	200 uency (MHz Preamp Factor dB	Level	Line dBuV/m	500 Over Limit dB	Remai		
20 10 30 REMARK	50 - : Freq MHz 59.025	ReadA Level dBuV 43.11	100 Intenna Factor dB/m 12.55	Freq Cable Loss dB 1.38	200 uency (MHz Preamp Factor dB 29.78	Level dBuV/m 27.26	Line <u>dBuV/m</u> 40.00	500 Over Limit 	Remai		
20 10 30 REMARK	50 : Freq MHz 59.025 176.269 298.268	Read& Level dBuV 43.11 47.44 40.93	100 100 100 Factor 12.55 9.65 13.59	Freq Cable Loss dB 1.38 2.70 2.93	200 uency (MHz Preamp Factor dB 29.00 28.45	Level dBuV/m 27.26 30.79 29.00	Line dBuV/m 40.00 43.50 46.00	500 Over Limit -12.74 -12.71 -17.00	Remai QP QP QP QP		
20 10 30 REMARK	50 Freq MHz 59.025 176.269 298.268 485.609	Read& Level 	100 100 Tactor 12.55 9.65 13.59 17.11	Freq Cable Loss dB 1.38 2.70 2.93 3.50	200 uency (MHz Preamp Factor 29.78 29.00 28.45 28.93	Level dBuV/m 27.26 30.79 29.00 26.26	Line dBuV/m 40.00 43.50 46.00 46.00	500 Over Limit -12.74 -12.71 -17.00 -19.74	Remai QP QP QP QP QP		
20 10 30 REMARK 	50 : Freq MHz 59.025 176.269 298.268	Read& Level dBuV 43.11 47.44 40.93	100 100 100 Factor 12.55 9.65 13.59	Freq Cable Loss dB 1.38 2.70 2.93	200 uency (MHz Preamp Factor 29.78 29.00 28.45 28.93 28.67	Level dBuV/m 27.26 30.79 29.00 26.26	Line dBuV/m 40.00 43.50 46.00 46.00 46.00	500 Over Limit -12.74 -12.71 -17.00	Remai QP QP QP QP QP QP QP		

Above 1GHz:

Product Name:	Smart	phone			Pro	Product model:			F1		
Test By:	YT				Tes	t mode:		PC mode			
Test Frequency:	1 GHz	z ~ 6 GH	Z		Pola	arization	:	Vertical			
Test Voltage:	AC 12	0/60Hz			Env	vironment:		Temp: 24℃ Huni:		i: 57%	
80 Leve	el (dBuV/m)										
								FCC P	ART 15 (PK)		
70											
60											
50								FCC P	ART 15 (AV)		
50						1	A water	3 manual and	Winner and a water		
40			monteres	and working	www.Warthow	Monten france	and a second sec	4	6		
30	articity was have defined to a service and	Andrew party and									
20											
10											
0											
01000	1200	1500	20	000 Frequ	ency (MHz)			:	5000 6000		
					1000						
REMAR	K :	Read	Intenna	Cable	Preamo		Limit	Over			
	Freq		Factor					Limit	Remark		
	MHz	 dBu∛		āĒ	āB	dBuV/m	dBuV/m	āĒ			
1	3121.637	47.78	28.68	5.39	41.45	42.37	74,00	-31.63	Peak		
2	3121.637	40.78	28.68	5.39	41.45	35.37	54.00	-18.63	Average		
3		47.46	30.61	6.43	41.82	44.95	74.00	-29.05	Peak		
4	4220.584		30.61	6.43					Average		
2	5008.886		31.91 31.91	6.94 6.94		47.64			Average		
5	5008.886	30 56									

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Smar	tphone			Pro	duct mo	del:	F1			
Test By:	YT				Tes	t mode:		PC mode			
Test Frequency:	1 GH	z ~ 6 GH	z		Pola	Polarization:			Horizontal		
Test Voltage:	AC 1	20/60Hz			Env	rironmen	it:	Temp: 2	Temp: 24℃ Huni: 57%		
80 Level (dBuV/m)										
80								FCC P	ART 15 (PK)		
70											
60		<u>.</u>									
	_					_			ART 15 (AV)		
50								3	5 White managements and the second s		
40					- A week work of the	- for all and a start and	whichenpities	Wardening	6		
30 Marchand	when the ment of the stroke	and the representation of the	para welling provide the	Martin Martin	Argun	1					
20											
10								-			
0											
1000	1200	1500	20	00 Freque	ncy (MHz)			5	6000 6000		
REMARK	1										
IVE WALK	:		ntenna				Limit	Over			
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark		
	rrod										
	MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	dB			
	MHz					and the second second			Peak		
2 2	MHz 887.875 887.875	46.85 39.88	28.39 28.39	5.23 5.23	41.59 41.59	40.73 33.76	74.00 54.00	-33.27 -20.24	Average		
2 2 3 4	MHz 887.875	46.85	28.39	5.23	41.59 41.59	40.73 33.76 43.04	74.00 54.00 74.00	-33.27 -20.24 -30.96	Average		
2 2 3 4 4 4 5 4	MHz 887.875 887.875 091.203	46.85 39.88 46.02	28.39 28.39 30.37	5.23 5.23 6.23	41.59 41.59 41.81 41.81	40.73 33.76 43.04 34.87 45.94	74.00 54.00 74.00 54.00 74.00	-33.27 -20.24 -30.96 -19.13 -28.06	Average Peak Average		