

Test Report (Bluetooth)

Applicant:	OCEAN NK DIGITAL TECHNOLOGY LIMITED			
Address of Applicant:	BLK. F, 7/F., WAH HING INDUSTRIAL MANSIONS, 36 TAI YAU STREET, SAN PO KONG, KOWLOON, Hong Kong			
Manufacturer/Factory:	NK (ShenZhen) Co.,Ltd			
Address of Manufacturer/Factory:	No.8,Lanjin Seven Road,Pingshan District, Shenzhen City,Guangdong Province 518118 China			
Equipment Under Test (El	JT)			
Product Name:	Bluetooth Earphone			
Model No.:	RZE-BT1050E			
Trade Mark:	TOSHIBA			
FCC ID:	2APKZ-BT1050E			
IC:	23811-BT1050E			
Applicable standards:	FCC CFR Title 47 Part 15 Subpart C Section 15.247 RSS-247 Issue 2 RSS-Gen Issue 5			
Date of sample receipt:	June 16, 2020			
Date of Test:	June 16-24, 2020			
Date of report issued:	June 24, 2020			
Test Result :	PASS *			

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Laboratory Manager

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver. Page 1 of 50

Version 2

Version No.	Date	Description
00	June 24, 2020	Original

Prepared By:

hant Ou

Date:

June 24, 2020

June 24, 2020

Project Engineer

Check By:

Date: obinson \mathcal{C}

Reviewer

3 Contents

1	CO	/ER PAGE	. 1
2	VER	SION	. 2
3	CO	NTENTS	. 3
4	TES	T SUMMARY	. 4
5	GEN	IERAL INFORMATION	. 5
	5.1	GENERAL DESCRIPTION OF EUT	. 5
	5.2	Test mode	
	5.3	DESCRIPTION OF SUPPORT UNITS	
	5.4	DEVIATION FROM STANDARDS	
	5.5	ABNORMALITIES FROM STANDARD CONDITIONS	
	5.6	TEST FACILITY	
	5.7		
	5.8	Additional Instructions	
6	TES	T INSTRUMENTS LIST	. 8
7	TES	T RESULTS AND MEASUREMENT DATA	10
7	TES 7.1	T RESULTS AND MEASUREMENT DATA	-
7	-		10
7	7.1	ANTENNA REQUIREMENT CONDUCTED EMISSIONS CONDUCTED PEAK OUTPUT POWER	10 11 14
7	7.1 7.2 7.3 7.4	ANTENNA REQUIREMENT CONDUCTED EMISSIONS CONDUCTED PEAK OUTPUT POWER	10 11 14 18
7	7.1 7.2 7.3	ANTENNA REQUIREMENT CONDUCTED EMISSIONS CONDUCTED PEAK OUTPUT POWER	10 11 14 18 22
7	7.1 7.2 7.3 7.4 7.5 7.6	ANTENNA REQUIREMENT CONDUCTED EMISSIONS CONDUCTED PEAK OUTPUT POWER	10 11 14 18 22 26
7	7.1 7.2 7.3 7.4 7.5 7.6 7.7	ANTENNA REQUIREMENT CONDUCTED EMISSIONS CONDUCTED PEAK OUTPUT POWER	10 11 14 18 22 26 28
7	7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8	ANTENNA REQUIREMENT CONDUCTED EMISSIONS CONDUCTED PEAK OUTPUT POWER 20DB EMISSION BANDWIDTH & 99% OCCUPY BANDWIDTH CARRIER FREQUENCIES SEPARATION HOPPING CHANNEL NUMBER DWELL TIME PSEUDORANDOM FREQUENCY HOPPING SEQUENCE	10 11 14 18 22 26 28 30
7	7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9	ANTENNA REQUIREMENT CONDUCTED EMISSIONS CONDUCTED PEAK OUTPUT POWER 20DB EMISSION BANDWIDTH & 99% OCCUPY BANDWIDTH CARRIER FREQUENCIES SEPARATION HOPPING CHANNEL NUMBER DWELL TIME PSEUDORANDOM FREQUENCY HOPPING SEQUENCE BAND EDGE	10 11 14 18 22 26 28 30 31
7	7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 7.9.	ANTENNA REQUIREMENT CONDUCTED EMISSIONS CONDUCTED PEAK OUTPUT POWER 20DB EMISSION BANDWIDTH & 99% OCCUPY BANDWIDTH CARRIER FREQUENCIES SEPARATION HOPPING CHANNEL NUMBER DWELL TIME PSEUDORANDOM FREQUENCY HOPPING SEQUENCE BAND EDGE	10 11 14 18 22 26 28 30 31 31 31
7	7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 7.9. 7.9.	ANTENNA REQUIREMENT CONDUCTED EMISSIONS CONDUCTED PEAK OUTPUT POWER 20DB EMISSION BANDWIDTH & 99% OCCUPY BANDWIDTH CARRIER FREQUENCIES SEPARATION HOPPING CHANNEL NUMBER DWELL TIME PSEUDORANDOM FREQUENCY HOPPING SEQUENCE BAND EDGE 1 Conducted Emission Method 2 Radiated Emission Method	10 11 14 18 22 26 28 30 31 31 35
7	7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 7.9. 7.9. 7.9. 7.10	ANTENNA REQUIREMENT CONDUCTED EMISSIONS CONDUCTED PEAK OUTPUT POWER 20DB EMISSION BANDWIDTH & 99% OCCUPY BANDWIDTH CARRIER FREQUENCIES SEPARATION HOPPING CHANNEL NUMBER DWELL TIME PSEUDORANDOM FREQUENCY HOPPING SEQUENCE BAND EDGE 1 Conducted Emission Method SPURIOUS EMISSION	10 11 14 18 22 26 28 30 31 31 35 38
7	7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 7.9. 7.9. 7.9. 7.10 7.10	ANTENNA REQUIREMENT CONDUCTED EMISSIONS CONDUCTED PEAK OUTPUT POWER 20DB EMISSION BANDWIDTH & 99% OCCUPY BANDWIDTH CARRIER FREQUENCIES SEPARATION HOPPING CHANNEL NUMBER DWELL TIME PSEUDORANDOM FREQUENCY HOPPING SEQUENCE BAND EDGE 1 Conducted Emission Method SPURIOUS EMISSION 0.1 Conducted Emission Method	10 11 14 18 22 26 28 30 31 <i>31</i> <i>35</i> 38 38
7	7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 7.9. 7.9. 7.9. 7.10	ANTENNA REQUIREMENT CONDUCTED EMISSIONS CONDUCTED PEAK OUTPUT POWER 20DB EMISSION BANDWIDTH & 99% OCCUPY BANDWIDTH CARRIER FREQUENCIES SEPARATION HOPPING CHANNEL NUMBER DWELL TIME PSEUDORANDOM FREQUENCY HOPPING SEQUENCE BAND EDGE 1 Conducted Emission Method 2 Radiated Emission Method 0.1 Conducted Emission Method 0.2 Radiated Emission Method	10 11 14 18 22 26 28 30 31 31 35 38 38 38 40
	7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 7.9 7.9. 7.9. 7.10 7.10 7.10 7.11	ANTENNA REQUIREMENT CONDUCTED EMISSIONS CONDUCTED PEAK OUTPUT POWER 20DB EMISSION BANDWIDTH & 99% OCCUPY BANDWIDTH CARRIER FREQUENCIES SEPARATION HOPPING CHANNEL NUMBER DWELL TIME PSEUDORANDOM FREQUENCY HOPPING SEQUENCE BAND EDGE 1 Conducted Emission Method 2 Radiated Emission Method SPURIOUS EMISSION 0.1 Conducted Emission Method 0.2 Radiated Emission Method FREQUENCY STABILITY	10 11 14 18 22 26 28 30 31 35 38 38 38 40 48
8	7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 7.9 7.9. 7.9. 7.10 7.10 7.10 7.11	ANTENNA REQUIREMENT CONDUCTED EMISSIONS CONDUCTED PEAK OUTPUT POWER 20DB EMISSION BANDWIDTH & 99% OCCUPY BANDWIDTH CARRIER FREQUENCIES SEPARATION HOPPING CHANNEL NUMBER DWELL TIME PSEUDORANDOM FREQUENCY HOPPING SEQUENCE BAND EDGE 1 Conducted Emission Method 2 Radiated Emission Method 0.1 Conducted Emission Method 0.2 Radiated Emission Method	10 11 14 18 22 26 28 30 31 35 38 38 38 40 48

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna Requirement	15.203/15.247 (c) RSS-Gen Section 6.8	Pass
AC Power Line Conducted Emission	15.207 RSS-Gen Section 8.8	Pass
Conducted Peak Output Power	15.247 (b)(1) RSS-247 Section 5.4(b)	Pass
20dB Occupied Bandwidth & 99% Occupy Bandwidth	15.247 (a)(1) RSS-247 Section 5.1(a) RSS-Gen Section 6.7	Pass
Carrier Frequencies Separation	15.247 (a)(1) RSS-247 Section 5.1(b)	Pass
Hopping Channel Number	15.247 (a)(1) RSS-247 Section 5.1(d)	Pass
Dwell Time	15.247 (a)(1) RSS-247 Section 5.1(d)	Pass
Pseudorandom Frequency Hopping Sequence	15.247(b)(4) RSS-247 Section 5.1	Pass
Radiated Emission	15.205/15.209 Pass Section 3.3 & RSS-Gen Section 8.9	
Band Edge	15.247(d) Pass RSS-247 Section 5.5	
Frequency stability	RSS-Gen Section 6.11& Section 8.11	Pass

Remarks:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. Test according to ANSI C63.10:2013 and RSS-Gen.

Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes		
Radiated Emission	30MHz-200MHz	3.8039dB	(1)		
Radiated Emission	200MHz-1GHz 3.9679dB		(1)		
Radiated Emission	1GHz-18GHz	4.29dB	(1)		
Radiated Emission	18GHz-40GHz	3.30dB	(1)		
AC Power Line Conducted Emission	0.15MHz ~ 30MHz	3.44dB (1)			
Note (1): The measurement uncertainty is for coverage factor of k=2 and a level of confidence of 95%.					

5 General Information

5.1 General Description of EUT

Product Name:	Bluetooth Earphone
Model No.:	RZE-BT1050E
Test sample(s) ID:	GTS202006000172-1
Sample(s) Status:	Engineer sample
Serial No.:	200600001W0
Operation Frequency:	2402MHz~2480MHz
Channel numbers:	79
Channel separation:	1MHz
Modulation type:	GFSK, π/4-DQPSK, 8-DPSK
Antenna Type:	Integral Antenna
Antenna gain:	2.5dBi(declare by applicant)
Power supply:	Charge box: Battery DC 3.7V, 450mAh, 1.665Wh
	Earphone: Battery DC 3.7V, 50mAh, 0.185Wh

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2441MHz
The Highest channel	2480MHz

Global United Technology Services Co., Ltd. No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

5.2 Test mode

Transmitting mode Keep the EUT in continuously transmitting mode.	
.	the test voltage was tuned from AC120V to AC240V, and found that the worst o the report just shows that condition's data.

5.3 Description of Support Units

Manufacturer	Description	Model	Serial Number
APPLE	USB Charger	A1399	N/A

5.4 Deviation from Standards

None.

5.5 Abnormalities from Standard Conditions

None.

5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC —Registration No.: 381383

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 381383.

• IC — Registration No.: 9079A

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A

• NVLAP (LAB CODE:600179-0)

Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP). LAB CODE:600179-0

5.7 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd. Address: No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Tel: 0755-27798480 Fax: 0755-27798960

5.8 Additional Instructions

Test Software	Special test command provided by manufacturer
Power level setup	Default

6 Test Instruments list

Rad	Radiated Emission:							
ltem	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	3m Semi- Anechoic Chamber ZhongYu Electron 9.		9.2(L)*6.2(W)* 6.4(H)	GTS250	July. 03 2015	July. 02 2020		
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A		
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June. 26 2019	June. 25 2020		
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June. 26 2019	June. 25 2020		
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	June. 26 2019	June. 25 2020		
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	June. 26 2019	June. 25 2020		
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
8	Coaxial Cable	GTS	N/A	GTS213	June. 26 2019	June. 25 2020		
9	Coaxial Cable	GTS	N/A	GTS211	June. 26 2019	June. 25 2020		
10	Coaxial cable	GTS	N/A	GTS210	June. 26 2019	June. 25 2020		
11	Coaxial Cable	GTS	N/A	GTS212	June. 26 2019	June. 25 2020		
12	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June. 26 2019	June. 25 2020		
13	Amplifier(2GHz-20GHz)	HP	84722A	GTS206	June. 26 2019	June. 25 2020		
14	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June. 26 2019	June. 25 2020		
15	Band filter	Amindeon	82346	GTS219	June. 26 2019	June. 25 2020		
16	Power Meter	Anritsu	ML2495A	GTS540	June. 26 2019	June. 25 2020		
17	Power Sensor	Anritsu	MA2411B	GTS541	June. 26 2019	June. 25 2020		
18	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	June. 26 2019	June. 25 2020		
19	Splitter	Agilent	11636B	GTS237	June. 26 2019	June. 25 2020		
20	Loop Antenna	ZHINAN	ZN30900A	GTS534	June. 26 2019	June. 25 2020		
21	Breitband hornantenne	SCHWARZBECK	BBHA 9170	GTS579	Oct. 19 2019	Oct. 18 2020		
22	Amplifier	TDK	PA-02-02	GTS574	Oct. 19 2019	Oct. 18 2020		
23	Amplifier	TDK	PA-02-03	GTS576	Oct. 19 2019	Oct. 18 2020		
24	PSA Series Spectrum Analyzer	Rohde & Schwarz	FSP	GTS578	June. 26 2019	June. 25 2020		

Con	Conducted Emission					
ltem	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May.15 2019	May.14 2022
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 26 2019	June. 25 2020
3	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June. 26 2019	June. 25 2020
4	ENV216 2-L-V- NETZNACHB.DE	ROHDE&SCHWARZ	ENV216	GTS226	June. 26 2019	June. 25 2020
5	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
7	Thermo meter	KTJ	TA328	GTS233	June. 26 2019	June. 25 2020
8	Absorbing clamp	Elektronik- Feinmechanik	MDS21	GTS229	June. 26 2019	June. 25 2020
9	ISN	SCHWARZBECK	NTFM 8158	GTD565	June. 26 2019	June. 25 2020

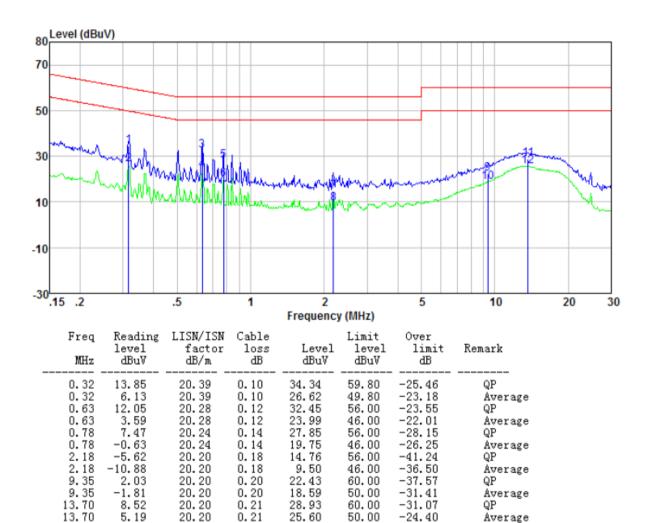
RF C	onducted Test:					
ltem	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	June. 26 2019	June. 25 2020
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 26 2019	June. 25 2020
3	Spectrum Analyzer	Agilent	E4440A	GTS533	June. 26 2019	June. 25 2020
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	June. 26 2019	June. 25 2020
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	June. 26 2019	June. 25 2020
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	June. 26 2019	June. 25 2020
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	June. 26 2019	June. 25 2020
8	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	June. 26 2019	June. 25 2020

Gene	General used equipment:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	Humidity/ Temperature Indicator	KTJ	TA328	GTS243	June. 26 2019	June. 25 2020		
2	Barometer	ChangChun	DYM3	GTS255	June. 26 2019	June. 25 2020		

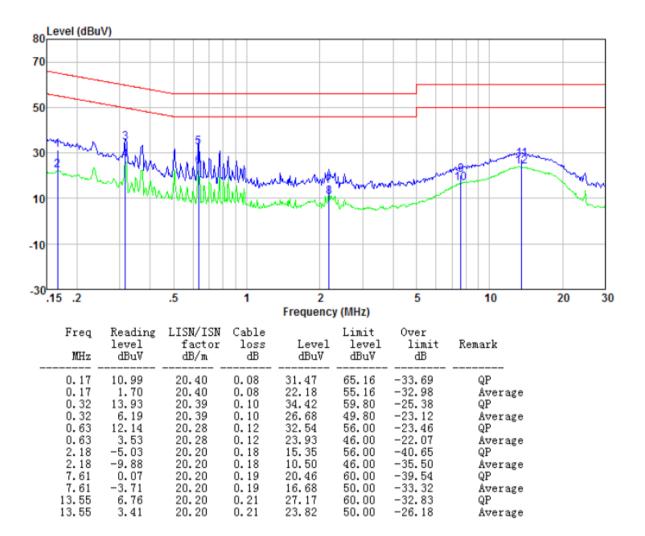
7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement:	FCC Part15 C Section 15.203 /247(c)					
15.203 requirement:						
responsible party shall be u antenna that uses a unique	An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.					
15.247(c) (1)(i) requiremer	nt:					
operations may employ tran maximum conducted output	(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.					
Standard requirement:	RSS-Gen Section 6.8					
When a measurement at the gain of the device's antenna manufacturer. For transmitte antenna gain that is in exce output power to demonstrat standard. For transmitters of	old or operated with antennas with which it was approved. e antenna connector is used to determine RF output power, the effective a shall be stated, based on measurement or on data from the antenna ers of RF output power of 10 milliwatts or less, only the portion of the ss of 6 dBi (6 dB above isotropic gain) shall be added to the measured RF e compliance with the radiated power limits specified in the applicable of output power greater than 10 milliwatts, the total antenna gain shall be output power to demonstrate compliance to the specified radiated power					
E.U.T Antenna:	· · · · · · · · ·					
The antenna is integral anten details	na, the best case gain of the antenna is 2.5dBi, reference to the appendix II for					


Test Requirement:	FCC Part15 C Section 15.207					
	RSS-Gen S	Section 8.8				
Test Method:	ANSI C63.1	10:2013 and I	RSS-Gen			
Test Frequency Range:	150KHz to	150KHz to 30MHz				
Class / Severity:	Class B					
Receiver setup:	RBW=9KH	z, VBW=30KI	Hz, Sweep ti	me=auto		
Limit:	Froquon	ov rango (ME	I-7)	Limit	(dBuV)	
	Frequency range (MHz)Quasi-peakAverage0.15-0.566 to 56*56 to 46*				rage	
					o 46*	
	0.5-5 56 46					
		5-30		60	5	0
	* Decrease	s with the log	arithm of the	frequency.		
Test setup:	Reference Plane					
Test procedure.	Image: stable /insulation plane Image: stable /insulation plane Remark E.U.T. Equipment Under Test LISN Filter AC power					through a
Test procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted 					
	interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement.					
 Test Instruments:	Refer to see	ction 6.0 for c	letails			
Test mode:	Refer to section 5.2 for details					
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar
Test results:	Pass					

7.2 Conducted Emissions


Measurement data:

Line:

Neutral:

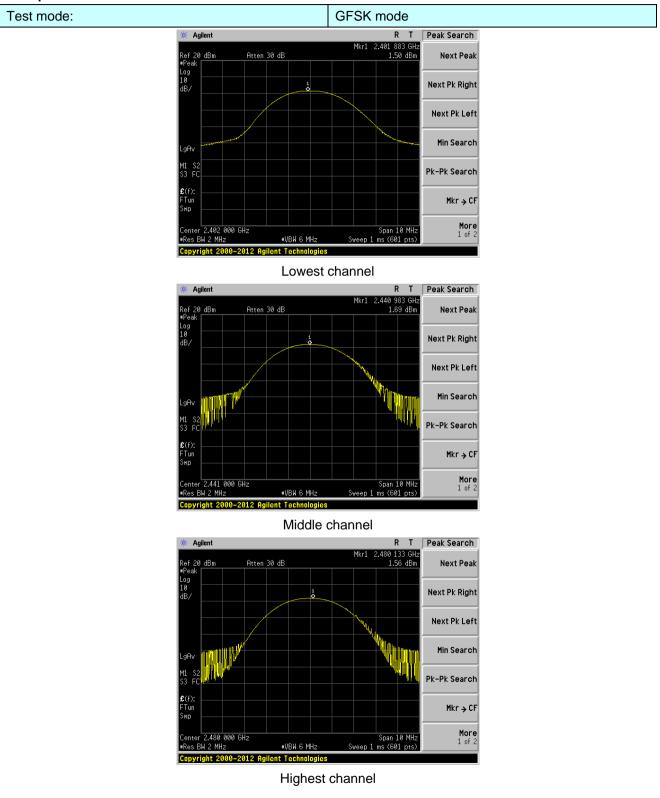
Notes:

1. An initial pre-scan was performed on the line and neutral lines with peak detector.

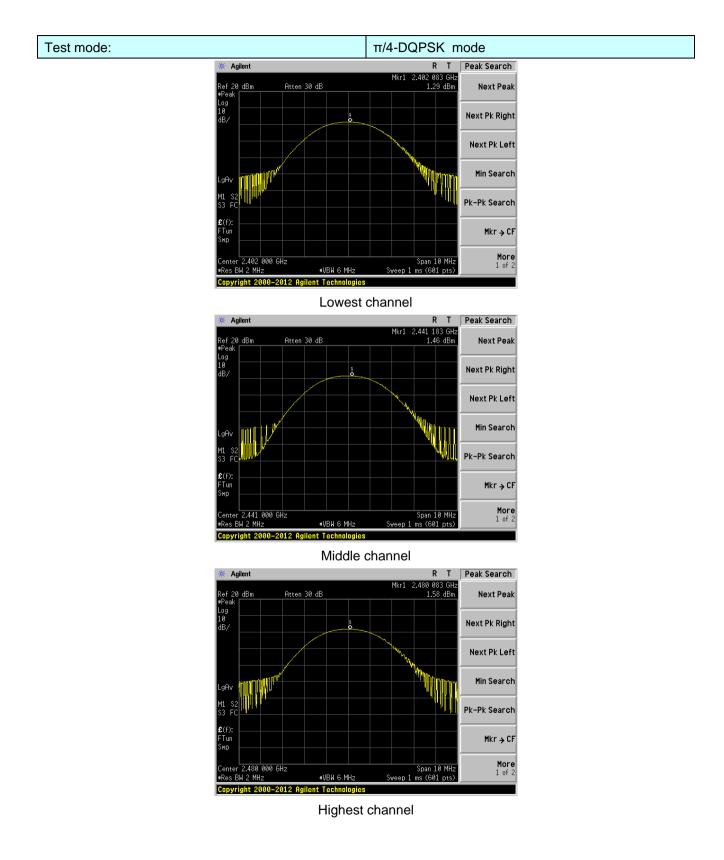
2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.

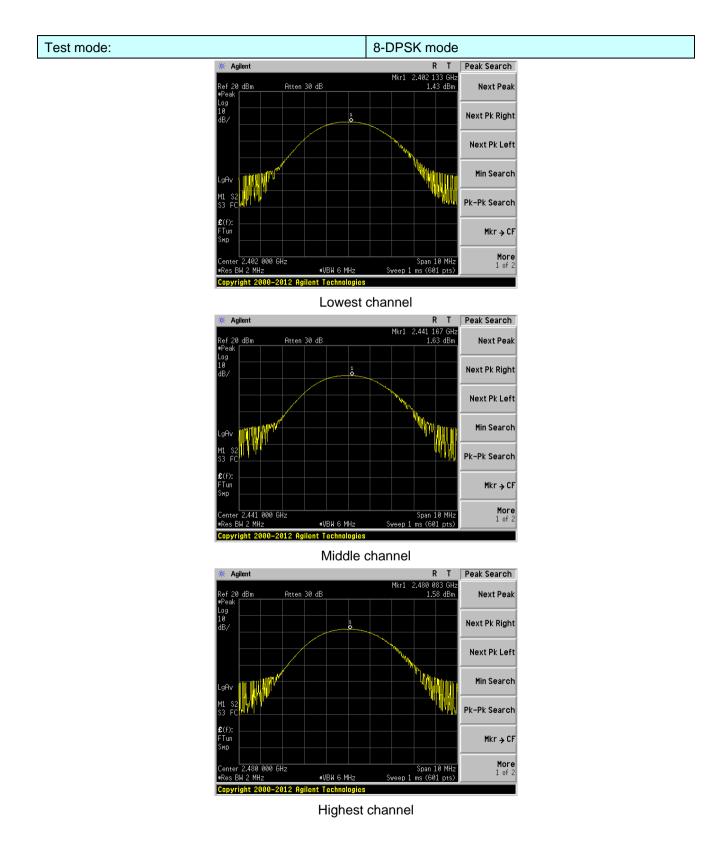
3. Final Level =Receiver Read level + LISN Factor + Cable Loss

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)		
	RSS-247 Section 5.4(b)		
Test Method:	ANSI C63.10:2013 and RSS-Gen		
Limit:	20.97dBm		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		


7.3 Conducted Peak Output Power

Measurement Data


Mode	Test channel	Peak Output Power (dBm)	Limit (dBm)	Result
	Lowest	1.50		
GFSK	Middle	1.69	20.97	Pass
	Highest	1.56		
	Lowest	1.29		Pass
π/4-DQPSK	Middle	1.46	20.97	
	Highest	1.58		
	Lowest	1.43		
8-DPSK	Middle	1.63	20.97	Pass
	Highest	1.58		


Test plot as follows:

7.4 20dB Emission Bandwidth & 99% Occupy Bandwidth

	15		
Test Requirement:	FCC Part15 C Section 15.247 (a)(2)		
	RSS-Gen Section 6.7 & RSS-247 Section 5.1(a)		
Test Method:	ANSI C63.10:2013 and RSS-Gen		
Limit:	N/A		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		

Measurement Data

Test CH	20dB E	mission Bandwidth (M	Hz)	Deput
Test CH	GFSK	π/4-DQPSK	8-DPSK	Result
Lowest	1.047	1.186	1.180	
Middle	1.043	1.182	1.182	Pass
Highest	1.046	1.188	1.180	

Test CH	99% C	ccupy Bandwidth (MH	łz)	Deput
Test CH	GFSK	π/4-DQPSK	8-DPSK	Result
Lowest	0.957	1.1148	1.0941	
Middle	0.957	1.1177	1.0967	Pass
Highest	0.938	1.1192	1.1008	



Test plot as follows:

Test mode:

	GFSK mode	
* Agilent	RT	Meas Setup
Ch Freq 2.402 GHz Occupied Bandwidth	Trig Free	Avg Number 10 On <u>Off</u>
		Avg Mode Exp Repeat
Ref 10 dBm Atten 20 dB Peak Log 10 + March Atten 20 dB	× 2	Max Hold On Off
dB/		Occ BW % Pwr 99.00 %
Center 2.402 000 GHz	Span 3 MHz	OBW Span 3.00000000 MHz
	Sweep 3.2 ms (601 pts) Occ BW % Pwr 99.00 %	x dB –20.00 dB
957.0284 kHz Transmit Freq Error 3.479 kHz × dB Bandwidth 1.047 MHz	x dB -20.00 dB	Optimize Ref Level

Lowest channel

Middle channel

Test mode: π/4-DQPSK mode Meas Setup 🔆 Agilent R T Avg Number Ch Freq 2.402 GHz Trig Free 10 <u>Off</u> Occupied Bandwidth Avg Mode Repeat Ехр Ref 10 dBn Atten 20 dB Max Hold Ûn Occ BW % Pwr 99.00 % **OBW Span** 3.00000000 MHz nter 2.402 000 GHz es BW 30 kHz Snan 3 MHz ∎VBW 100 kHz (601 pts **x dB** –20.00 dB Occupied Bandwidth Осс ВМ % Рwr ×dB -20.00 dE 1.1148 MHz Optimize RefLevel Transmit Freq Error × dB Bandwidth -940.119 Hz 1.186 MHz Copyright 2000–2012 Agilent Technologies

Lowest channel

* Agilent R T	Meas Setup
Ch Freq 2.441 GHz Trig Free Occupied Bandwidth	Avg Number 10 On <u>Off</u>
	Avg Mode Exp Repeat
Ref 10 dBm Atten 20 dB +Peak Log 10	Max Hold On Off
	Occ BW % Pwr 99.00 %
Center 2.441 000 GHz Span 3 MHz Sweep 3.2 ms (601 pts)	OBW Span 3.00000000 MHz
Оссирied Bandwidth Осс вн % Рыг 99.00 % 1.1177 MHz × dB -20.00 dB	x dB -20.00 dB
Transmit Freq Error -1.884 kHz x dB Bandwidth 1.182 MHz Copyright 2000-2012 Agilent Technologies	Optimize Ref Level

Middle channel

8-DPSK mode Test mode: R T 🔆 Agilent Meas Setup Avg Number Ch Freq 2.402 GHz Trig Free 10 <u>Off</u> Occupied Bandwidth Avg Mode Repeat Ехр Ref 10 dBn Atten 20 dB Max Hold Ûn Occ BW % Pwr 99.00 % **OBW Span** 3.00000000 MHz nter 2.402 000 GHz es BW 30 kHz Snan 3 MHz ∎VBW 100 kHz (601 pts **x dB** –20.00 dB Occupied Bandwidth Осс ВМ % Рwr ×dB -20.00 dE 1.0941 MHz Optimize RefLevel Transmit Freq Error × dB Bandwidth 9.050 kHz 1.180 MHz Copyright 2000–2012 Agilent Technologies

Lowest channel

Ch Freq 2.441 GHz Trig Free Occupied Bandwidth	Avg Number 10 On <u>Off</u>
	Avg Mode Exp Repeat
Ref 10 dBm Atten 20 dB =Peak Log 10	Max Hold On Off
dB/	Occ BW % Pwr 99.00 %
Center 2.441 000 GHz Span 3 MHz •Res BW 30 kHz •VBW 100 kHz Sweep 3.2 ms (601 pts)	OBW Span 3.00000000 MHz
Occupied Bandwidth Occ BH % Pwr 99.00 % 1.0967 MHz × dB -20.00 dB	x dB –20.00 dB
Transmit Freq Error 10.668 kHz x dB Bandwidth 1.182 MHz Copyright 2000-2012 Agilent Technologies	Optimize RefLevel

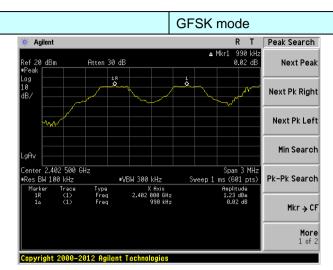
Middle channel

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)		
	RSS-247 Section 5.1(b)		
Test Method:	ANSI C63.10:2013 and RSS-Gen		
Receiver setup:	RBW=100KHz, VBW=300KHz, detector=Peak		
Limit:	0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		

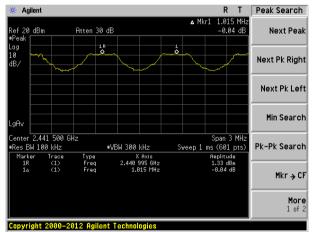
7.5 Carrier Frequencies Separation

Measurement Data

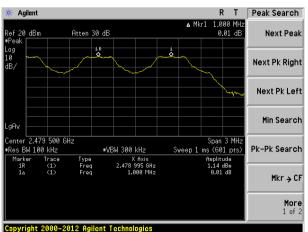
Mode	Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result
	Lowest	990	698	Pass
GFSK	Middle	1015	698	Pass
	Highest	1000	698	Pass
	Lowest	1010	792	Pass
π/4-DQPSK	Middle	1010	792	Pass
	Highest	1000	792	Pass
	Lowest	1005	788	Pass
8-DPSK	Middle	1005	788	Pass
	Highest	1010	788	Pass

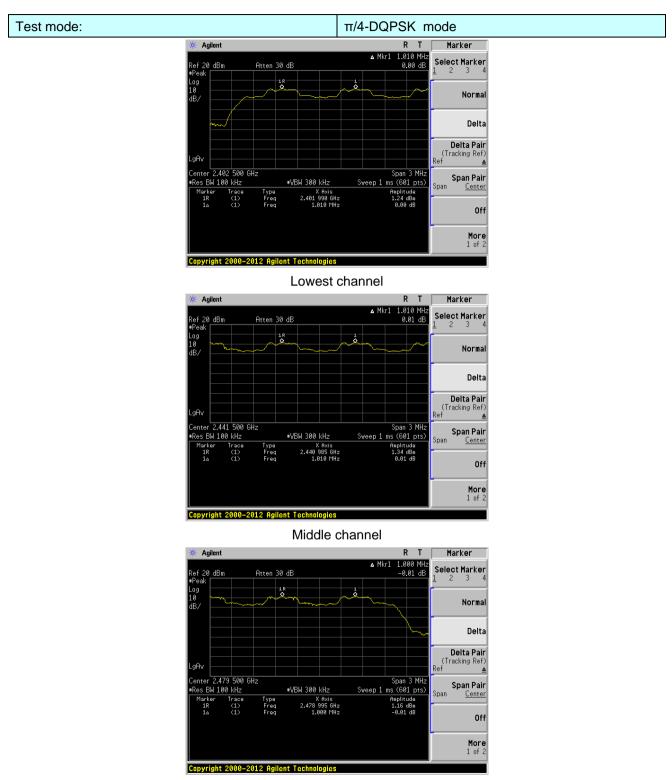

Note: According to section 7.4

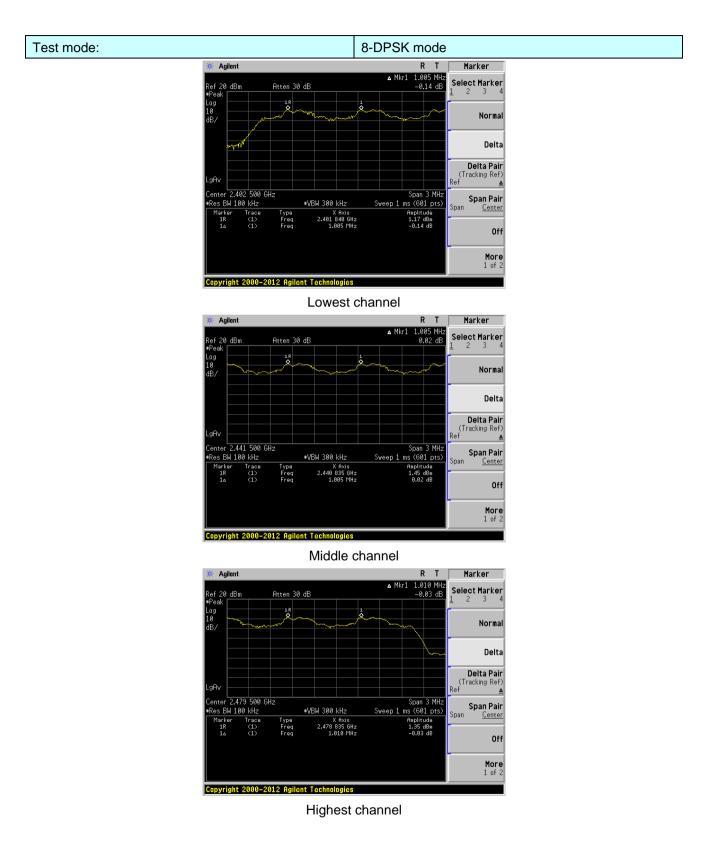
Mode	20dB bandwidth (kHz) (worse case)	Limit (kHz) (Carrier Frequencies Separation)
GFSK	1047	698
π/4-DQPSK	1188	792
8-DPSK	1182	788

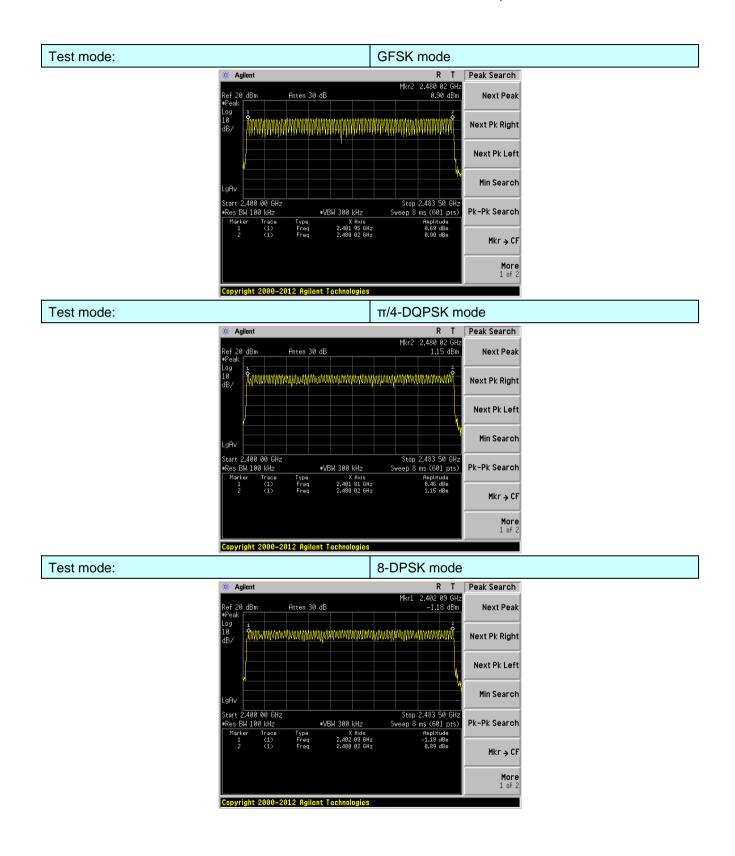


Test plot as follows:


Test mode:


Lowest channel


Middle channel


Test Requirement:	FCC Part15 C Section 15.247 (a)(1)			
	RSS-247 Section 5.1(d)			
Test Method:	ANSI C63.10:2013 and RSS-Gen			
Receiver setup:	RBW=100kHz, VBW=300kHz, Frequency range=2400MHz-2483.5MHz, Detector=Peak			
Limit:	15 channels			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 6.0 for details			
Test mode:	Refer to section 5.2 for details			
Test results:	Pass			

7.6 Hopping Channel Number

Measurement Data:

Mode	Hopping channel numbers	Limit	Result
GFSK	79	15	Pass
π/4-DQPSK	79	15	Pass
8-DPSK	79	15	Pass

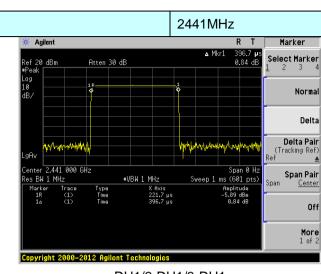
7.7 Dwell Time

Test Requirement:	FCC Part15 C Section 15.247 (a)(1) RSS-247 Section 5.1(d)				
Test Method:	ANSI C63.10:2013 and RSS-Gen				
Receiver setup:	RBW=1MHz, VBW=1MHz, Span=0Hz, Detector=Peak				
Limit:	0.4 Second				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.2 for details				
Test results:	Pass				

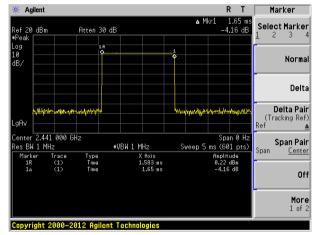
Measurement Data

Frequency	Packet	Dwell time(ms)	Limit(ms)	Result
2441MHz	DH1/2-DH1/3-DH1	126.94	400	Pass
2441MHz	DH3/2-DH3/3-DH3	264.00	400	Pass
2441MHz	DH5/2-DH5/3-DH5	309.33	400	Pass

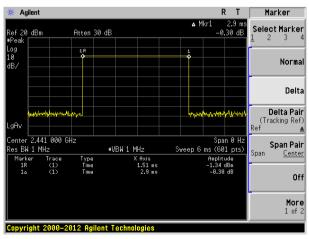
The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s


Test channel: 2441MHz as blow

DH1/2-DH1/3-DH1 time slot=0.3967(ms)*(1600/ (2*79))*31.6=126.94ms DH3/2-DH3/3-DH3 time slot=1.65(ms)*(1600/ (4*79))*31.6=264.00ms DH5/2-DH5/3-DH5 time slot=2.90(ms)*(1600/ (6*79))*31.6=309.33ms



Test plot as follows:


Test channel:

DH1/2-DH1/3-DH1

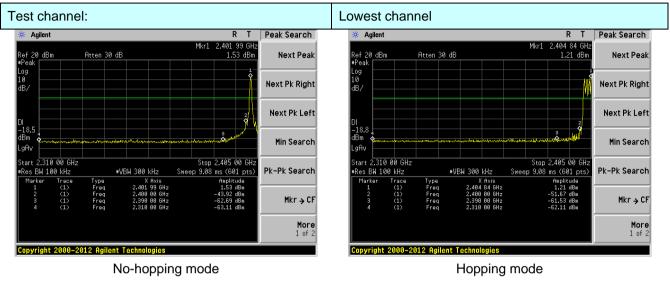
DH3/2-DH3/3-DH3

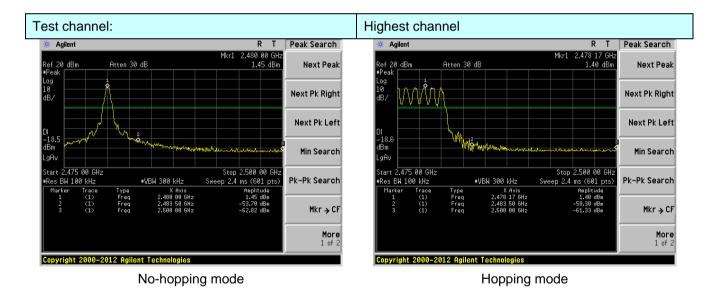
DH5/2-DH5/3-DH5

-	Test Requirement:	RSS-247 Section 5.1
		FCC Part15 C Section 15.247 (a)(1)/g/h requirement:
	or the 20 dB bandwidth of the h Alternatively. Frequency hoppin carrier frequencies that are sep whichever is greater, provided t hop to channel frequencies that hopping frequencies. Each freq receivers shall have input band	ns shall have hopping channel carrier frequencies separated by a minimum of 25 opping channel, whichever is greater. Ing systems operating in the 2400-2483.5 MHz band may have hopping channel arated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, the systems operate with an output power no greater than 125 mW. The systems is are selected at the system hopping rate from a Pseudorandom ordered list of uency must be used equally on the average by each transmitter. The system widths that match the hopping channel bandwidths of their corresponding uencies in synchronization with the transmitted signals.
(() 1	each transmission. However, th comply with all of the regulation information) stream. In addition,	spectrum systems are not required to employ all available hopping channels durin the system, consisting of both the transmitter and the receiver, must be designed t the in this section should the transmitter be presented with a continuous data (or a system employing short transmission bursts must comply with the definition of must distribute its transmissions over the minimum number of hopping channels
	recognize other users within the hopsets to avoid hopping on oc	ence within a frequency hopping spread spectrum system that permits the system e spectrum band so that it individually and independently chooses and adapts its cupied channels is permitted. The coordination of frequency hopping systems in urpose of avoiding the simultaneous occupancy of individual hopping frequencies nitted.
	EUT Pseudorandom Frequ	ency Hopping Sequence
; 	added in a modulo-two addition with the first ONE of 9 consecut • Number of shift register stages • Length of pseudo-random seq	uence: $2^9 - 1 = 511$ bits
á	added in a modulo-two addition with the first ONE of 9 consecut • Number of shift register stages	stage. And the result is fed back to the input of the first stage. The sequence begive ONEs; i.e. the shift register is initialized with nine ones. s: 9 iuence: 2 ⁹ -1 = 511 bits
; 	added in a modulo-two addition with the first ONE of 9 consecut • Number of shift register stages • Length of pseudo-random seq • Longest sequence of zeros: 8	stage. And the result is fed back to the input of the first stage. The sequence betwee ONEs; i.e. the shift register is initialized with nine ones. s: 9 uence: 2 ⁹ -1 = 511 bits (non-inverted signal)
	added in a modulo-two addition with the first ONE of 9 consecut • Number of shift register stages • Length of pseudo-random seq • Longest sequence of zeros: 8 Linear Feedback Sh	stage. And the result is fed back to the input of the first stage. The sequence bey tive ONEs; i.e. the shift register is initialized with nine ones. s: 9 iuence: 2 ⁹ -1 = 511 bits (non-inverted signal) ift Register for Generation of the PRBS sequence
	added in a modulo-two addition with the first ONE of 9 consecut • Number of shift register stages • Length of pseudo-random seq • Longest sequence of zeros: 8 Linear Feedback Sh	stage. And the result is fed back to the input of the first stage. The sequence betwee ONEs; i.e. the shift register is initialized with nine ones. s: 9 uence: 2 ⁹ -1 = 511 bits (non-inverted signal)
	added in a modulo-two addition with the first ONE of 9 consecut • Number of shift register stages • Length of pseudo-random seq • Longest sequence of zeros: 8 Linear Feedback Sh An example of Pseudorandom I	stage. And the result is fed back to the input of the first stage. The sequence betwee ONEs; i.e. the shift register is initialized with nine ones. s: 9 uence: 2 ⁹ -1 = 511 bits (non-inverted signal) ift Register for Generation of the PRBS sequence Frequency Hopping Sequence as follow:
	added in a modulo-two addition with the first ONE of 9 consecut • Number of shift register stages • Length of pseudo-random seq • Longest sequence of zeros: 8 Linear Feedback Sh An example of Pseudorandom I 0 2 4 6	stage. And the result is fed back to the input of the first stage. The sequence be tive ONEs; i.e. the shift register is initialized with nine ones. s: 9 uence: 2 ⁹ -1 = 511 bits (non-inverted signal)
	added in a modulo-two addition with the first ONE of 9 consecut • Number of shift register stages • Length of pseudo-random seq • Longest sequence of zeros: 8 Linear Feedback Sh An example of Pseudorandom I 0 2 4 6 Each frequency used equally or	stage. And the result is fed back to the input of the first stage. The sequence begins of t
	added in a modulo-two addition with the first ONE of 9 consecut • Number of shift register stages • Length of pseudo-random seq • Longest sequence of zeros: 8 Linear Feedback Sh An example of Pseudorandom I 0 2 4 6 Each frequency used equally or The system receivers have input	stage. And the result is fed back to the input of the first stage. The sequence betwee ONEs; i.e. the shift register is initialized with nine ones. s: 9 nuence: 2 ⁹ -1 = 511 bits (non-inverted signal) ift Register for Generation of the PRBS sequence Frequency Hopping Sequence as follow: 62 64 78 1 73 75 77 the average by each transmitter. at bandwidths that match the hopping channel bandwidths of their corresponding
	added in a modulo-two addition with the first ONE of 9 consecut • Number of shift register stages • Length of pseudo-random seq • Longest sequence of zeros: 8 Linear Feedback Sh An example of Pseudorandom I 0 2 4 6 Each frequency used equally or The system receivers have inputransmitters and shift frequencies	stage. And the result is fed back to the input of the first stage. The sequence betwee ONEs; i.e. the shift register is initialized with nine ones. s: 9 nuence: 2 ⁹ - 1 = 511 bits (non-inverted signal)

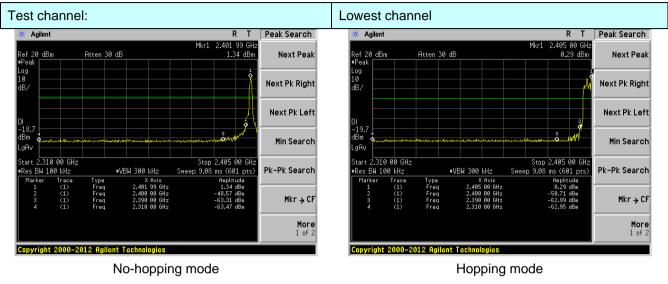
. .

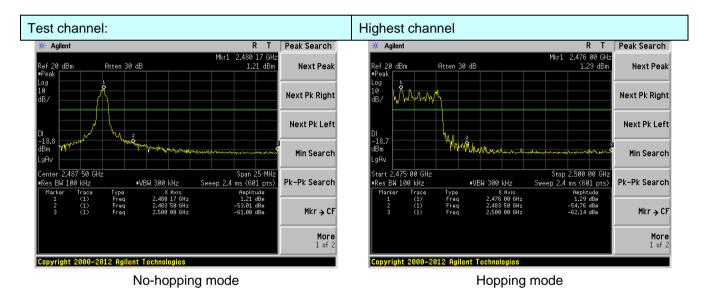
7.9 Band Edge


7.9.1 Conducted Emission Method

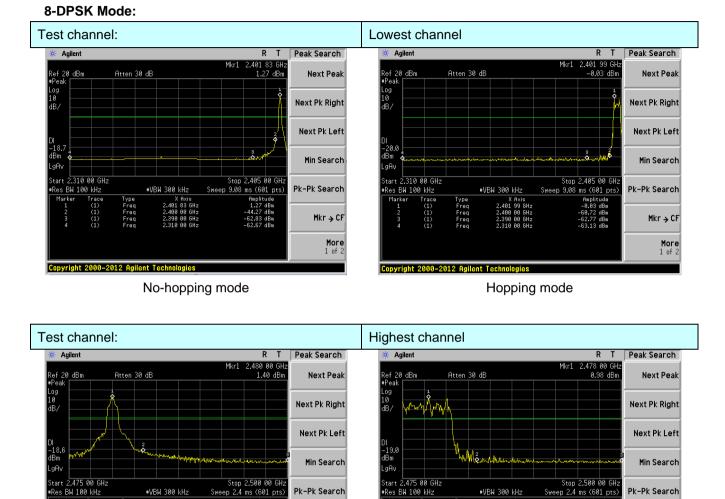

Test Requirement:	FCC Part15 C Section 15.247 (d)			
	RSS-247 Section 5.5			
Test Method:	ANSI C63.10:2013 & RSS-Gen			
Receiver setup:	RBW=100kHz, VBW=300kHz, Detector=Peak			
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 6.0 for details			
Test mode:	Refer to section 5.2 for details			
Test results:	Pass			

Test plot as follows:


GFSK Mode:



π/4-DQPSK Mode:


Type Freq Freq

Copyright 2000–2012 Agilent Technologies

2.480 00 GHz 2.483 50 GHz

No-hopping mode

Report No.: GTS202006000172-01

Mkr→CF

More 1 of 2

Global United Technology Services Co., Ltd. No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Amplitude 0.98 dBm -62.74 dBm -63.88 dB

Mkr → CF

More 1 of 2

lype Freq Freq Freq

Copyright 2000-2012 Agilent Technologies

2.478 00 GHz 2.483 50 GHz

Hopping mode

7.9.2 Radiated Emission M	lethou						
Test Requirement:	Requirement: FCC Part15 C Section 15.209 and 15.205						
	Section 3.3 & RSS-Gen Section 8.9						
Test Method:	ANSI C63.10:20	ANSI C63.10:2013 & RSS-Gen					
Test Frequency Range:	All of the restrict bands were tested, only the worst band's (2310MHz to 2500MHz) data was showed.						
Test site:	Measurement Distance: 3m						
Receiver setup:	Frequency Detector RBW VBW Remark						
	Above 1GHz	Peak 1MHz 3MHz Peak Value					
Limit:	Freque		Limit (dBuV/		Remark		
	Above 1		54.0 74.0	0	Average Value Peak Value		
	$\begin{array}{c} < 3m > \\ \hline \\ Test Antenna+ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$						
Test Procedure:	 Receivery Preamplifiery The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. 						
Test Instruments:	Refer to section						
Test mode:	Refer to section	5.2 for details	S				
Test results:	Pass						

7.9.2 Radiated Emission Method

Measurement Data

Test channel: Lowest channel								
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2310.00	34.81	27.59	5.38	30.18	37.60	74.00	-36.40	Horizontal
2390.00	38.34	27.59	5.38	30.18	41.13	74.00	-32.87	Horizontal
2400.00	54.48	27.58	5.39	30.18	57.27	74.00	-16.73	Horizontal
2310.00	34.23	27.59	5.38	30.18	37.02	74.00	-36.98	Vertical
2390.00	38.45	27.59	5.38	30.18	41.24	74.00	-32.76	Vertical
2400.00	56.03	27.58	5.39	30.18	58.82	74.00	-15.18	Vertical
Average val	ue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2310.00	26.28	27.59	5.38	30.18	29.07	54.00	-24.93	Horizontal
2390.00	29.91	27.59	5.38	30.18	32.70	54.00	-21.30	Horizontal
2400.00	40.88	27.58	5.39	30.18	43.67	54.00	-10.33	Horizontal
2310.00	26.54	27.59	5.38	30.18	29.33	54.00	-24.67	Vertical
2390.00	29.53	27.59	5.38	30.18	32.32	54.00	-21.68	Vertical
2400.00	42.10	27.58	5.39	30.18	44.89	54.00	-9.11	Vertical

Test channe								
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	39.90	27.53	5.47	29.93	42.97	74.00	-31.03	Horizontal
2500.00	39.94	27.55	5.49	29.93	43.05	74.00	-30.95	Horizontal
2483.50	39.99	27.53	5.47	29.93	43.06	74.00	-30.94	Vertical
2500.00	40.50	27.55	5.49	29.93	43.61	74.00	-30.39	Vertical
Average val	ue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	32.69	27.53	5.47	29.93	35.76	54.00	-18.24	Horizontal
2500.00	31.34	27.55	5.49	29.93	34.45	54.00	-19.55	Horizontal
2483.50	33.52	27.53	5.47	29.93	36.59	54.00	-17.41	Vertical
2500.00	30.88	27.55	5.49	29.93	33.99	54.00	-20.01	Vertical

Remarks:

1. Final Level =Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

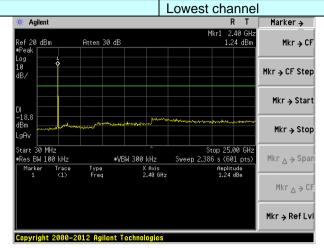
3. The pre-test were performed on lowest, middle and highest frequencies, only the worst case's (lowest and highest frequencies) data was showed.

4. During the test, pre-scan the GFSK, π/4-DQPSK, 8-DPSK modulation, and found the GFSK modulation which it is worse case.

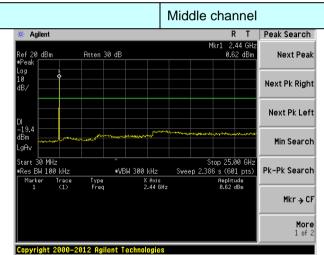
7.10 Spurious Emission

7.10.1 Conducted Emission Method

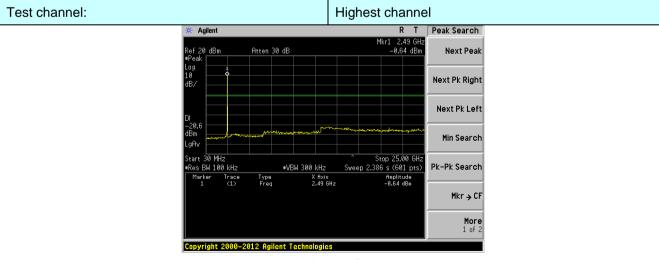
Test Requirement:	FCC Part15 C Section 15.247 (d)						
	RSS-247 Section 5.5						
Test Method:	ANSI C63.10:2013 & RSS-Gen						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 6.0 for details						
Test mode:	Refer to section 5.2 for details						
Test results:	Pass						


Remark:

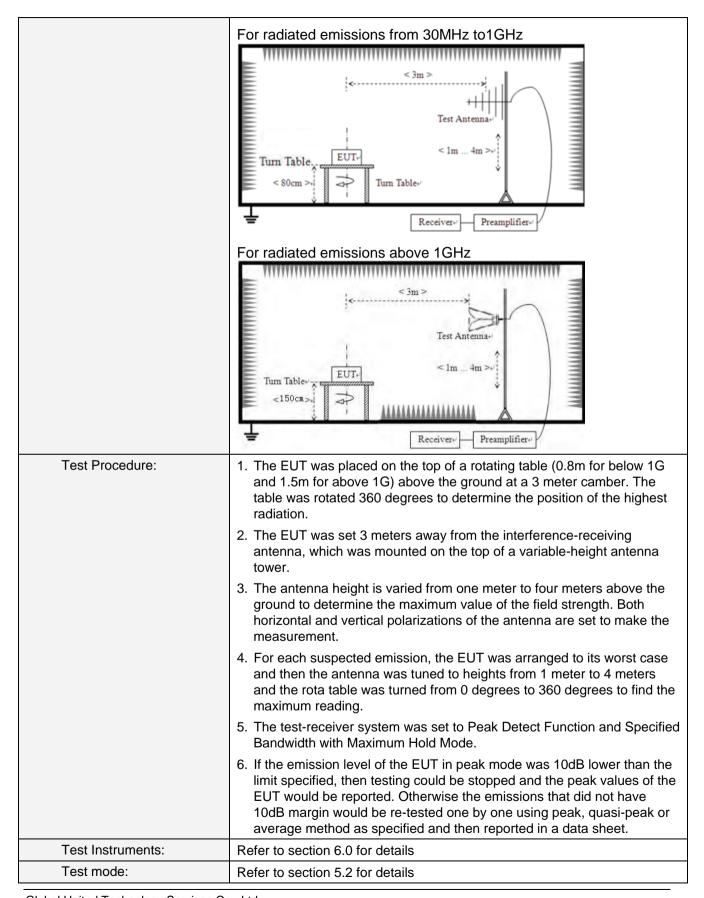
During the test, pre-scan the GFSK, π /4-DQPSK, 8-DPSK modulation, and found the GFSK modulation which it is worse case.



Test channel:


Test channel:

30MHz~25GHz


30MHz~25GHz

³⁰MHz~25GHz

Test Requirement:	FCC Part15 C Section 15.209								
	Section 3.3 & RSS-0	Gen S	Section 8.9						
Test Method:	ANSI C63.10:2013 8	& RS	S-Gen						
Test Frequency Range:	9kHz to 25GHz								
Test site:	Measurement Distance: 3m								
Receiver setup:	Frequency	٦	Detector	RB	W	VBW	'	Value	
	9KHz-150KHz	Qı	lasi-peak	200	Hz	600H:	z	Quasi-peak	
	150KHz-30MHz	Qı	lasi-peak	9Kł	Ηz	30KH	z	Quasi-peak	
	30MHz-1GHz	Qı	lasi-peak	120k	Ήz	300K⊦	lz	Quasi-peak	
	Above 1GHz		Peak	1MI	Ηz	3MHz	z	Peak	
	Above IGI12		Peak	1M	Ηz	10Hz		Average	
Limit:	Frequency		Limit (u\	//m)	V	alue	Ν	leasurement Distance	
	0.009MHz-0.490M	lHz	2400/F(k	′F(KHz)		QP		300m	
	0.490MHz-1.705M	lHz	24000/F(KHz)		QP		30m		
	1.705MHz-30MH	z	30		QP		30m		
	30MHz-88MHz		100			QP			
	88MHz-216MHz		150		QP				
	216MHz-960MH		200		QP			3m	
	960MHz-1GHz		500		QP			•	
	Above 1GHz		500		Average				
			5000		Peak				
Test setup:	For radiated emiss	sions	from 9kH	z to 30	OMH	Z		_	
	<pre></pre>								

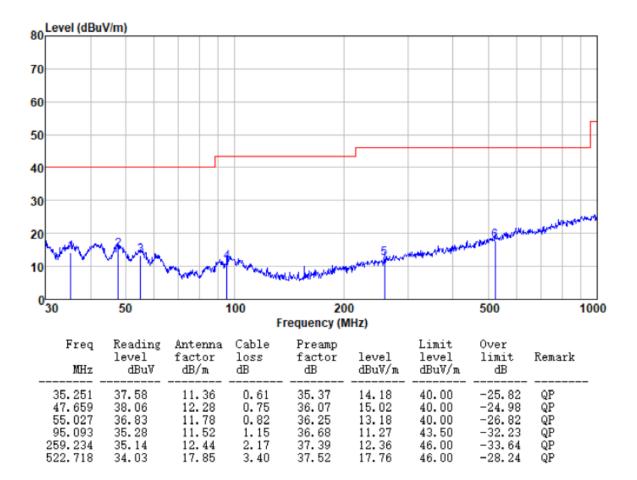
Global United Technology Services Co., Ltd. No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar
Test results:	sults: Pass					

Measurement data:

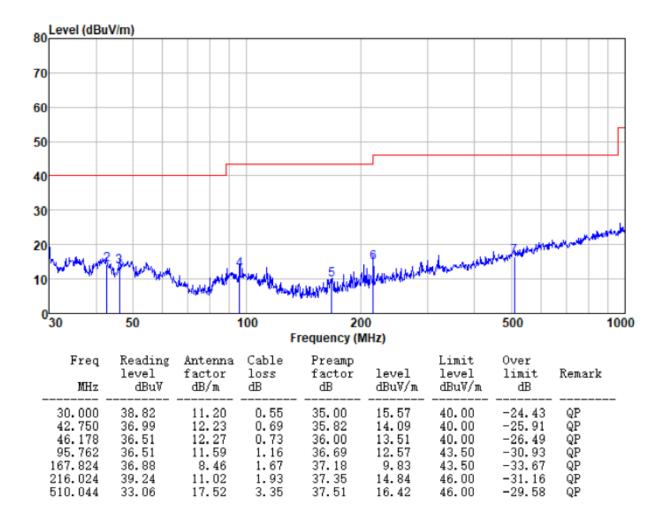
Remarks:

- 1. During the test, pre-scan the GFSK, π /4-DQPSK, 8-DPSK modulation, and found the GFSK modulation which it is worse case.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.


■ 9kHz~30MHz

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.

Below 1GHz


Pre-scan all test modes, found worst case at GFSK 2480MHz, and so only show the test result of GFSK 2480MHz

Horizontal:

Vertical:

Above 1GHz

Test channel	Test channel: Lowest channel							
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4804.00	35.54	31.78	8.60	32.09	43.83	74.00	-30.17	Vertical
7206.00	30.66	36.15	11.65	32.00	46.46	74.00	-27.54	Vertical
9608.00	30.42	37.95	14.14	31.62	50.89	74.00	-23.11	Vertical
12010.00	*					74.00		Vertical
14412.00	*					74.00		Vertical
4804.00	39.46	31.78	8.60	32.09	47.75	74.00	-26.25	Horizontal
7206.00	32.26	36.15	11.65	32.00	48.06	74.00	-25.94	Horizontal
9608.00	29.68	37.95	14.14	31.62	50.15	74.00	-23.85	Horizontal
12010.00	*					74.00		Horizontal
14412.00	*					74.00		Horizontal
Average val	ue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4804.00	24.69	31.78	8.60	32.09	32.98	54.00	-21.02	Vertical
7206.00	19.54	36.15	11.65	32.00	35.34	54.00	-18.66	Vertical
9608.00	18.73	37.95	14.14	31.62	39.20	54.00	-14.80	Vertical
12010.00	*					54.00		Vertical
14412.00	*					54.00		Vertical
4804.00	28.72	31.78	8.60	32.09	37.01	54.00	-16.99	Horizontal
7206.00	21.60	36.15	11.65	32.00	37.40	54.00	-16.60	Horizontal
9608.00	18.31	37.95	14.14	31.62	38.78	54.00	-15.22	Horizontal
12010.00	*					54.00		Horizontal
14412.00	*					54.00		Horizontal

Test channel	:			Midd	e channel			
Peak value:				·				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4882.00	35.68	31.85	8.67	32.12	44.08	74.00	-29.92	Vertical
7323.00	30.75	36.37	11.72	31.89	46.95	74.00	-27.05	Vertical
9764.00	30.51	38.35	14.25	31.62	51.49	74.00	-22.51	Vertical
12205.00	*					74.00		Vertical
14646.00	*					74.00		Vertical
4882.00	39.63	31.85	8.67	32.12	48.03	74.00	-25.97	Horizontal
7323.00	32.36	36.37	11.72	31.89	48.56	74.00	-25.44	Horizontal
9764.00	29.78	38.35	14.25	31.62	50.76	74.00	-23.24	Horizontal
12205.00	*					74.00		Horizontal
14646.00	*					74.00		Horizontal
Average val	ue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4882.00	24.80	31.85	8.67	32.12	33.20	54.00	-20.80	Vertical
7323.00	19.62	36.37	11.72	31.89	35.82	54.00	-18.18	Vertical
9764.00	18.80	38.35	14.25	31.62	39.78	54.00	-14.22	Vertical
12205.00	*					54.00		Vertical
14646.00	*					54.00		Vertical
4882.00	28.85	31.85	8.67	32.12	37.25	54.00	-16.75	Horizontal
7323.00	21.69	36.37	11.72	31.89	37.89	54.00	-16.11	Horizontal
9764.00	18.40	38.35	14.25	31.62	39.38	54.00	-14.62	Horizontal
12205.00	*					54.00		Horizontal
14646.00	*					54.00		Horizontal

Test channel	:			Highe	est channel			
Peak value:				·				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4960.00	35.38	31.93	8.73	32.16	43.88	74.00	-30.12	Vertical
7440.00	30.55	36.59	11.79	31.78	47.15	74.00	-26.85	Vertical
9920.00	30.33	38.81	14.38	31.88	51.64	74.00	-22.36	Vertical
12400.00	*					74.00		Vertical
14880.00	*					74.00		Vertical
4960.00	39.27	31.93	8.73	32.16	47.77	74.00	-26.23	Horizontal
7440.00	32.14	36.59	11.79	31.78	48.74	74.00	-25.26	Horizontal
9920.00	29.57	38.81	14.38	31.88	50.88	74.00	-23.12	Horizontal
12400.00	*					74.00		Horizontal
14880.00	*					74.00		Horizontal
Average val	ue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4960.00	24.58	31.93	8.73	32.16	33.08	54.00	-20.92	Vertical
7440.00	19.47	36.59	11.79	31.78	36.07	54.00	-17.93	Vertical
9920.00	18.67	38.81	14.38	31.88	39.98	54.00	-14.02	Vertical
12400.00	*					54.00		Vertical
14880.00	*					54.00		Vertical
4960.00	28.60	31.93	8.73	32.16	37.10	54.00	-16.90	Horizontal
7440.00	21.52	36.59	11.79	31.78	38.12	54.00	-15.88	Horizontal
9920.00	18.24	38.81	14.38	31.88	39.55	54.00	-14.45	Horizontal
12400.00	*					54.00		Horizontal
14880.00	*					54.00		Horizontal

Remarks:

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

2. "*", means this data is the too weak instrument of signal is unable to test.

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. The test data shows only the worst case GFSK mode

7.11 Frequency Stability

Test Requirement:	RSS-Gen Section 6.11& Section 8.	RSS-Gen Section 6.11& Section 8.11							
Test Method:	ANSI C63.10: 2013 & RSS-Gen	ANSI C63.10: 2013 & RSS-Gen							
Limit:	such that an emission is maintained	Manufactures of devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified							
Test Procedure:		The EUT was setup to ANSI C63.10, 2013; tested to 2.1055 for compliance to RSS-Gen requirements.							
Test setup:	Spectrum analyzer Image: Constraint of the stress of th	Temperature Chamber EUT U Variable Power Supply							
Test Instruments:	Refer to section 6.0 for details	Refer to section 6.0 for details							
Test mode:	Refer to section 5.2 for details								
Test results:	Pass								

Remark: Set the EUT transmits at un-modulation mode to test frequency stability.

Measurement data:

			y stability vers			
	1		ver Supply: DC		1	
_	Operating	0 minute	2 minute	5 minute	10 minute	_
Temp.	Frequency	Measured	Measured	Measured	Measured	Pass
(°C)	(MHz)	Frequency	Frequency	Frequency	Frequency	/Fail
	, , ,	(MHz)	(MHz)	(MHz)	(MHz)	
	2402	2402.0083	2402.0089	2402.0082	2402.0059	Pass
-30	2441	2441.0085	2441.0085	2441.0083	2441.0065	Pass
	2480	2480.0083	2480.0083	2480.0076	2480.0064	Pass
	2402	2402.0080	2402.0054	2402.0057	2402.0058	Pass
-20	2441	2441.0081	2441.0089	2441.0081	2441.0065	Pass
	2480	2480.0079	2480.0083	2480.0071	2480.0074	Pass
	2402	2402.0066	2402.0068	2402.0061	2402.0057	Pass
-10	2441	2441.0061	2441.0063	2441.0068	2441.0060	Pass
	2480	2480.0065	2480.0067	2480.0067	2480.0062	Pass
	2402	2402.0058	2402.0060	2402.0057	2402.0066	Pass
0	2441	2441.0059	2441.0061	2441.0051	2441.0063	Pass
	2480	2480.0072	2480.0076	2480.0080	2480.0071	Pass
	2402	2402.0062	2402.0065	2402.0066	2402.0064	Pass
10	2441	2441.0054	2441.0056	2441.0055	2441.0058	Pass
	2480	2480.0054	2480.0058	2480.0058	2480.0060	Pass
20	2402	2402.0065	2402.0069	2402.0062	2402.0065	Pass
	2441	2441.0061	2441.0063	2441.0065	2441.0067	Pass
	2480	2480.0068	2480.0070	2480.0062	2480.0062	Pass
	2402	2402.0068	2402.0070	2402.0065	2402.0063	Pass
30	2441	2441.0057	2441.0062	2441.0056	2441.0069	Pass
	2480	2480.0084	2480.0086	2480.0081	2480.0081	Pass
	2402	2402.0064	2402.0066	2402.0061	2402.0065	Pass
40	2441	2441.0051	2441.0053	2441.0058	2441.0057	Pass
	2480	2480.0078	2480.0081	2480.0071	2480.0064	Pass
	2402	2402.0082	2402.0084	2402.0081	2402.0060	Pass
50	2441	2441.0059	2441.0063	2441.0051	2441.0068	Pass
	2480	2480.0063	2480.0063	2480.0067	2480.0067	Pass
			y stability verse		ц — т	
			emperature: 25			
Davia	Onenation	0 minute	2 minute	5 minute	10 minute	
Power	Operating	Measured	Measured	Measured	Measured	Pass
Supply	Frequency	Frequency	Frequency	Frequency	Frequency	/Fail
(VAC)	(MHz)	(MHz)	(MHz)	(MHz)	(MHz)	
	2402	2402.0063	2402.0063	2402.0063	2402.0064	Pass
100	2441	2441.0061	2441.0065	2441.0068	2441.0061	Pass
	2480	2480.0059	2480.0068	2480.0067	2480.0072	Pass
	2402	2402.0061	2402.0057	2402.0067	2402.0085	Pass
120	2441	2441.0067	2441.0059	2441.0061	2441.0057	Pass
-	2480	2480.0061	2480.0062	2480.0067	2480.0073	Pass
	2402	2402.0061	2402.0065	2402.0059	2402.0058	Pass
132	2441	2441.0066	2441.0059	2441.0063	2441.0081	Pass
·	2480	2480.0069	2480.0062	2480.0067	2480.0067	Pass

8 Test Setup Photo

Reference to the **appendix I** for details.

9 EUT Constructional Details

Reference to the **appendix II** for details.

-----End-----