FCC CERTIFICATION TEST REPORT

Applicant:	Sahara Presentation Systems Ltd			
Address:	Europa House, Littlebrook DC1, Shield Road, Dartford, Kent DA1 5UR, United Kingdom			
Manufacturer:	Sahara Presentation Systems Ltd			
Address:	Europa House, Littlebrook DC1, Shield Road, Dartford, Kent DA1 5UR, United Kingdom			
Product Description:	Clevershare Hub, CleverHub			
Brand Name:	CLEVERTOUCH			
Tested Model:	CleverHub			
FCC ID:	2APKO-WB05			
Report No.:	JCF230411201-005			
Received Date:	Apr. 11, 2023			
Tested Date:	Apr. 11, 2023 ~ Sep. 11, 2023			
Issued Date:	Sep. 11, 2023			
Test Standards:	FCC Rules and Regulations Part 15 Subpart C,			
Test Procedure:	ANSI C63.10:2013			
Test Result:	Pass			
Prepared By:				
Kennys Zhan	Ĵ			
Kennys Zhang/Enginee	r Date: Sep. 11,20,3			
Reviewed By: Reger Li	JCOA DEPOSIT			
Roger Li/Engineer	Date Sep.*11.2523			

Approved By:

Talent shing

Talent Zhang/Engineer

Date: Sep. 11, 2023

Note: The test results in this report apply exclusively to the tested model / sample. Without written approval of Guangzhou Jingce Testing Technology Co., Ltd. the test report shall not be reproduced except in full.

Report Revise Record

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0	/	Sep. 11, 2023	Original Report	/

Table of Contents

1. Test Report Declare	5
2. Summary of Test Results	
3. Test Laboratory	6
4. Equipment Under Test	7
4.1. Description of EUT	7
4.2. Channel List	
4.3. Test Channel Configuration	7
4.4. Test environment conditions	8
4.5. Description of Available Antennas	8
4.6. Description of Available Antennas	
5. Description of Test Setup	
5.1. Accessory	9
5.2. Support Equipment	9
5.3. Test Setup	10
5.4. Setup Diagram for Tests	
6. Measurement Uncertainty	
7. Measuring Instrument and Software Used	
8. On Time and Duty Cycle	
8.1. Block diagram of test setup	
8.2. Limits	12
8.3. Procedure	12
8.4. Results	12
9. 6 dB DTS Bandwidth and 99 % Occupied Bandwidth	
9.1. Block diagram of test setup	
9.2. Limits	13
9.3. Test Procedure	13
9.4. Results	
10. Conducted Output Power	14
10.1. Block diagram of test setup	14
10.2. Limits	14
10.3. Test Procedure	
10.4. Results	14
11. Power Spectral Density	
11.1. Block diagram of test setup	15
11.2. Limits	15
11.3. Test Procedure	15
11.4. Results	15
12. Conducted Band edge and Spurious Emissions	16
12.1. Block diagram of test setup	16
12.2. Limits	16
12.3. Test Procedure	16
12.4. Test result	16
13. Radiated Emission	
13.1. Block diagram of test setup	
13.2. Limit	18
13.3. Test Procedure	20
13.4. Results	
14. AC Power Line Conducted Emissions	23
14.1. Block diagram of test setup	23
14.2. Limits	
14.3. Test procedure	23
14.4. Test result	24

15. Antenna Requirements	25
15.1. Applicable Requirements	25
15.2. Result	

Applicant:	Sahara Presentation Systems Ltd
Address:	Europa House, Littlebrook DC1, Shield Road, Dartford, Kent DA1 5UR, United Kingdom
Manufacturer:	Sahara Presentation Systems Ltd
Address:	Europa House, Littlebrook DC1, Shield Road, Dartford, Kent DA1 5UR, United Kingdom
Product Name:	Clevershare Hub, CleverHub
Brand Name:	CLEVERTOUCH
Model Name:	Clevershare Hub, CleverHub
Difference Description:	The products with all the models covered in this report are the same as each other, except for different model name.

1. Test Report Declare

We Declare:

The equipment described above is tested by Guangzhou Jingce Testing Technology Co., Ltd. and in the configuration tested the equipment complied with the standards specified above. The test results are contained in this test report and Guangzhou Jingce Testing Technology Co., Ltd. is assumed of full responsibility for the accuracy and completeness of these tests.

Summary of Test Results				
Clause	Test Items	FCC/ISED Rules	Test Results	
1	6dB Bandwidth and 99 % Occupied Bandwidth	FCC Part 15.247 (a) (2)	Pass	
2	Peak Conducted Output Power	FCC Part 15.247 (b) (3)	Pass	
3	Power Spectral Density	FCC Part 15.247 (e)	Pass	
4	Conducted Bandedge and Spurious Emission	FCC Part 15.247 (d)	Pass	
5	Radiated Bandedge and Spurious Emission	FCC Part 15.247 (d) FCC Part 15.209 FCC Part 15.205	Pass	
6	Conducted Emission Test For AC Power Port	FCC Part 15.207	Pass	
7	Antenna Requirement	FCC Part 15.203	Pass	

2. Summary of Test Results

Note: This report only changes the antenna and the antenna type is the same on the basis of report DDT-R22112825-1E05 Because the antenna gain is smaller, it has no effect on the test results.So all above test data reference DDT-R22112825-1E05

3. Test Laboratory

Guangzhou Jingce Testing Technology Co., Ltd.

Add.: No.192, Kezhu Road, Huangpu District, Guangzhou, Guangdong, China

Association for Laboratory Accreditation(A2LA). Certificate Number: 6594.01

FCC Designation Number: CN1331. Test Firm Registration Number: 360543

IC Test Firm Registration Number: 28796

Conformity Assessment Body identifier: CN0138

4. Equipment Under Test

4.1. Description of EUT

EUT Name:	Clevershare Hub, CleverHub		
Model Number:	CleverHub		
EUT Function Description:	Please refer the user's manual.		
Power Supply:	Input: 100-240V ~ 50/60Hz 1.0A Max		
Hardware Version:	NA		
Software Version:	NA		
Radio Specification:	IEEE802.11b/g/n		
Operation Frequency:	IEEE 802.11b: 2412MHz—2462MHz IEEE 802.11g: 2412MHz—2462MHz IEEE 802.11n HT20: 2412MHz—2462MHz IEEE 802.11n HT40: 2422MHz—2452MHz		
Modulation:	IEEE 802.11b: DSSS (CCK, DQPSK, DBPSK) IEEE 802.11g: OFDM (64QAM, 16QAM, QPSK, BPSK) IEEE 802.11n (HT20/40): OFDM (64QAM, 16QAM, QPSK, BPSK)		
Data Rate:	IEEE 802.11b: 1, 2, 5.5, 11 Mbps IEEE 802.11g: 6, 9, 12, 18, 24, 36, 48, 54 Mbps IEEE 802.11n HT20: 14.4, 28.9, 43.3, 57.8, 86.7, 115.6, 130.0, 144.4Mbps IEEE 802.11n HT40: 30.0, 60.0, 90.0, 120.0, 180.0, 240.0, 270.0, 300.0 Mbps		
Antenna Type:	FPC Antenna, MAX. Gain: 2.1 dBi		

Note 1: EUT is the ab. of equipment under test.

Note 2: The antenna gain is declared by the customer and the laboratory is not responsible for the accuracy of the antenna gain.

4.2. Channel List

Channel List for 802.11b/g/n (20 MHz)							
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2412	4	2427	7	2442	10	2457
2	2417	5	2432	8	2447	11	2462
3	2422	6	2437	9	2452	/	/

	Channel List for 802.11n (40 MHz)				
Channel	Frequency (MHz)	Channel	Frequency(MHz)	Channel	Frequency (MHz)
3	2422	6	2437	9	2452
4	2427	7	2442	/	/
5	2432	8	2447	/	/

4.3. Test Channel Configuration

Tested mode, channel and rand data rate information				
Mode	Mode Data rate (Mbps) (see Note)		Frequency (MHz)	
802.11b	1MHz	Low: CH1	2412	

	1MHz	Middle: CH6	2437
	1MHz	High: CH11	2462
	6 MHz	Low: CH1	2412
802.11g	6 MHz	Middle: CH6	2437
	6 MHz	High: CH11	2462
802.11n HT20	MCS0	Low: CH1	2412
	MCS0	Middle: CH6	2437
	MCS0	High: CH11	2462
	MCS0	Low: CH3	2422
802.11n HT40	MCS0	Middle: CH6	2437
	MCS0	High: CH9	2452
Note: According exploratory tes	t FUT will have maximum	n output power in those d	ata rate so those

Note: According exploratory test, EUT will have maximum output power in those data rate, so those data rate were used for all test.

4.4. Test environment conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature range:	21-25 ℃
Humidity range:	40-75%
Pressure range:	86-106 kPa

4.5. Description of Available Antennas

The Worse Case Power Setting Parameter under 2400 ~ 2483.5MHz Band					
Test Software		Engineer Mode			
Madulation Made	Transmit Antenna		Test Softwa	re Setting Value	
Modulation Mode	Number	ANT1	ANT2	Channel	
		/	1	CH1	
802.11b	1	/	1	CH6	
		/	1	CH11	
	1	/	1	CH1	
802.11g		/	1	CH6	
		/	1	CH11	
		/	1	CH1	
802.11HT20	1	/	1	CH6	
		/	1	CH11	
		1	1	CH3	
802.11n HT40	1	1	1	CH6	
		/	/	CH9	

4.6. Description of Available Antennas

Test Mode	Transmit and Receive Mode	Description	
802.11b	🛛 2TX, 2RX	ANT 1 and ANT2 can be used as transmitting/receiving antenna.	
802.11g	🛛 2TX, 2RX	ANT 1 and ANT2 can be used as transmitting/receiving antenna.	

802.11n HT20	🖂 2TX, 2RX	ANT 1 and ANT2 can be used as transmitting/receiving antenna.
802.11n HT40	🖾 2TX, 2RX	ANT 1 and ANT2 can be used as transmitting/receiving antenna.
Note:	•	

Note:

1. Only 802.11n HT20/HT40 support MIMO mode

2. WLAN 2.4 GHz & WLAN 5G can't transmit simultaneously. (declared by client)

5. Description of Test Setup

5.1. Accessory

Description of Accessories	Manufacturer	Model Number	Description	Remark
Switching adapter	GangQi	GQ36-120300-Ax	Input: 100-240V 50/60Hz 1.0A Max Output: DC 12V3A 36.0W	/

5.2. Support Equipment

Equipment	Brand Name	Model Name	P/N
PC	Lenovo	T480	/

5.3. Test Setup

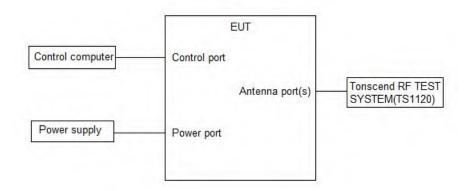
The EUT can work in Fixed Frequency mode.

5.4. Setup Diagram for Tests

6. Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Item	Uncertainty		
AC Power Conduction emission	1.37 dB		
All Radiated emissions	5.4dB		
Conducted emissions	3.09 dB		
Occupied Channel Bandwidth	1.1%		
Conducted Output power	0.82dB		
Power Spectral Density 0.82dB			
Note: This uncertainty represents an expanded uncertainty expressed at approximately the			


95 % confidence level using a coverage factor of k = 2.

7. Measuring Instrument and Software Used

	TS Test System					
Used	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due. Date
V	Spectrum Analyzer	Keysight	N9030B	MY563205 12	Jul. 10, 2023	Jul. 09, 2024
Ø	Vector Signal Generator	Keysight	N5182B	MY573003 34	Nov. 24, 2022	Nov. 23, 2023
	Signal Generator	Keysight	N5171B	MY572806 39	Nov. 24, 2022	Nov. 23, 2023
Ø	DC POWER	Keysight	E342A	MY590203 56	Jul. 14, 2023	Jul. 13, 2024
Ø	Incubator thermometer	GWS	EL-02JA	21107288	Nov. 03, 2022	Nov. 02, 2023
Ø	Control unit(Power sensor)	Tonscend	JS0806-2	1	Jul. 10, 2023	Jul. 09, 2024
Ø	Wideband radio communication tester	R&S	CMW500	163478	Jul. 11, 2023	Jul. 10, 2024
Ø	Spectrum Analyzer	Keysight	N9020B	MY601122 06	Nov. 24, 2022	Nov. 23, 2023
Ø	Control unit(Power sensor)	Tonscend	JS0806-2	21H806046 5	Nov. 25, 2022	Nov. 24, 2023
	Software					
Used	Description	Manufacturer	cturer Name Version			sion
V	☑ Test software TS+ JS1120-3 V3.3.10					3.10
	RSE Test System					

Used	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due. Date
Ø	EMI Receiver	R&S	ESW	101685	Jul. 12, 2023	Jul. 11, 2024
V	Bilog Antenna	Schwarzbeck	VULB 9163	01416	Mar. 21, 2023	Mar. 20, 2024
V	Horn Antenna 1	Schwarzbeck	BBHA 9120 D	01673	Nov. 23, 2022	Nov. 22, 2023
Ø	Horn Antenna 2	ETS	3116C	00217677	Sep. 19, 2022	Sep. 18, 2023
Ø	Signal Pre- Amplifier	Tonscend	TAP01018050	AP21C806 122	Jul. 10, 2023	Jul. 09, 2024
Ø	Signal Pre- Amplifier	Tonscend	TAP9K3G32	AP20K806 104	Jul. 10, 2023	Jul. 09, 2024
Ø	Signal Pre- Amplifier	ETS	3116C-PA	00217677	Aug. 21, 2023	Aug. 20, 2023
Ø	3m Fully- anechoic Chamber	ETS	RFD-100	1	Apr. 24, 2021	Apr. 23, 2024
			Software		_	
Used	Description	Manufacturer	icturer Name Version			sion
Ø	Test software	TS+	TS+	F	V3.0.0.4	
		Conducted Em	nission Test For	AC Power F	Port	
Used	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due. Date
Ø	LISN	R&S	ENV216	102154	Jul. 10, 2023	Jul. 09, 2024
Ø	EMI Receiver	R&S	ESR3	102509	Jul. 12, 2023	Jul. 11, 2024
			Software			
Used	Description	Manufacturer	Name Version			sion
V	Test software	EZ	EZ-EMC EMEC-3A1		C-3A1	
			Other Instrumer	nt		
Used	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due. Date
V	Temperature & Humidity	Temperature	HTC-1	/	Nov. 25, 2022	Nov. 24, 2023

8. On Time and Duty Cycle 8.1. Block diagram of test setup

8.2. Limits

None; for reporting purposes only

8.3. Procedure

KDB 558074 Zero-Span Spectrum Analyzer Method

8.4. Results

9. 6 dB DTS Bandwidth and 99 % Occupied Bandwidth

9.1. Block diagram of test setup

Same as section 8.1

9.2. Limits

CFR 47 FCC Part15 (15.247) Subpart C					
Section	Test Item	Limit	Frequency Range (MHz)		
CFR 47 FCC 15.247(a)(2)	6 dB Bandwidth	≥ 500 kHz	2400-2483.5		

9.3. Test Procedure

Connect the UUT to the spectrum analyzer and use the following settings:

Center Frequency	The center frequency of the channel under test
Detector	Peak
RBW	For 6 dB Bandwidth :100 kHz
RDV	For 99 % Occupied Bandwidth :1 % to 5 % of the occupied bandwidth
VBW	For 6 dB Bandwidth: ≥ 3 × RBW
V ВW	For 99 % Occupied Bandwidth : ≥ 3×RBW
Trace	Max hold
Sweep	Auto couple

Allow the trace to stabilize and measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB and 99 % relative to the maximum level measured in the fundamental emission.

9.4. Results

10. Conducted Output Power

10.1. Block diagram of test setup

Same as section 8.1

10.2. Limits

CFR 47 FCC Part15 (15.247) Subpart C					
Section Test Item Limit Frequency Range (MHz)					
CFR 47 FCC 15.247(b)(3) Peak Output Power 1 watt or 30 dBm 2400-2483.5					

10.3. Test Procedure

Place the EUT on the table and set it in the transmitting mode.

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the Power sensor.

Measure peak power each channel.

Peak Detector use for Peak result.

AVG Detector use for AVG result.

10.4. Results

11. Power Spectral Density

11.1. Block diagram of test setup

Same as section 8.1

11.2. Limits

CFR 47 FCC Part15 (15.247) Subpart C					
Section Test Item Limit Frequency Range (MHz)					
CFR 47 FCC §15.247 (e) Power Spectral Density 8 dBm/3 kHz 2400-2483.5					

11.3. Test Procedure

Connect the UUT to the spectrum analyzer and use the following settings:

Center Frequency	The centre frequency of the channel under test
Detector	Peak
RBW	3 kHz ≤ RBW ≤100 kHz
VBW	≥3 × RBW
Span	1.5 x DTS bandwidth
Trace	Max hold
Sweep time	Auto couple.

Allow trace to fully stabilize and use the peak marker function to determine the maximum amplitude level within the RBW.

If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

11.4. Results

12. Conducted Band edge and Spurious Emissions

12.1. Block diagram of test setup

Same as section 8.1

12.2. Limits

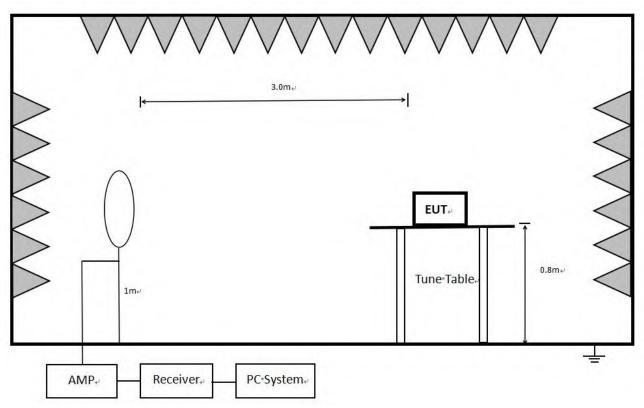
CFR 47 FCC Part15 (15.247) Subpart C			
Section Test Item		Limit	
CFR 47 FCC §15.247 (d)	Conducted Bandedge and Spurious Emissions	at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power	

12.3. Test Procedure

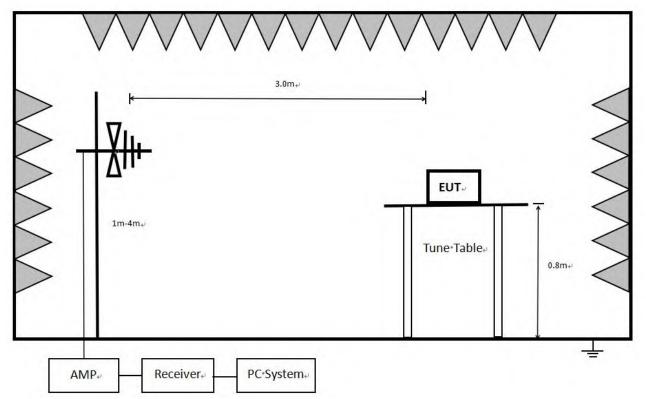
Center Frequency	The centre frequency of the channel under test
Detector	Peak
RBW	100 kHz
VBW	≥3 × RBW
Span	1.5 x DTS bandwidth
Trace	Max hold
Sweep time	Auto couple.

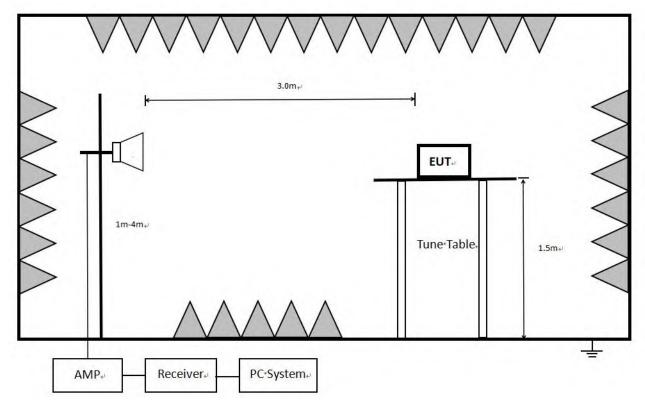
Connect the UUT to the spectrum analyzer and use the following settings: Use the peak marker function to determine the maximum PSD level.

Span	Set the center frequency and span to encompass frequency range to be measured
Detector	Peak
RBW	100 kHz
VBW	≥ 3 × RBW
measurement points	≥ span/RBW
Trace	Max hold
Sweep time	Auto couple.


Use the peak marker function to determine the maximum amplitude level.

12.4. Test result


13. Radiated Emission


13.1. Block diagram of test setup

In 3 m Anechoic Chamber, test setup diagram for 9 kHz - 30 MHz:

In 3 m Anechoic Chamber, test setup diagram for 30 MHz - 1 GHz:

In 3 m Anechoic Chamber, test setup diagram for frequency above 1 GHz:

Note: For harmonic emissions test an appropriate high pass filter was inserted in the input port of AMP.

13.2. Limit

	(1)) FCC	15.205	Restricted	frequency	/ band
--	-----	-------	--------	------------	-----------	--------

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.1772&4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.2072&4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(2)
13.36-13.41			

 1 Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. $^2\text{Above 38.6}$

Frequency	Distance	ance Field Strengths Limit	
MHz	Meters	μV/m	dB(μV)/m
0.009 ~ 0.490	300	2400/F(kHz)	67.6-20log(F)
0.490 ~ 1.705	30	24000/F(kHz)	87.6-20log(F)
1.705 ~ 30.0	30	30	29.54
30 ~ 88	3	100	40.0
88 ~ 216	3	150	43.5
216~960	3	200	46.0
960~1000	3	500	54.0
Above 1000	3	74.0 dB(μV)/m (Peak) 54.0 dB(μV)/m (Average)	

(2) FCC 15.209 Limit.

Note: (1) At frequencies at or above 30 MHz, measurements may be performed at a distance other than what is specified provided: measurements are not made in the near field except where it can be shown that near field measurements are appropriate due to the characteristics of the device; and it can be demonstrated that the signal levels needed to be measured at the distance employed can be detected by the measurement equipment. Measurements shall not be performed at a distance greater than 30 meters unless it can be further demonstrated that measurements at a distance of 30 meters or less are impractical. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse linear-distance for field strength measurements; inverse-linear-distance-squared for power density measurements).

(2) At frequencies below 30 MHz, measurements may be performed at a distance closer than that specified in the regulations; however, an attempt should be made to avoid making measurements in the near field. Pending the development of an appropriate measurement procedure for measurements performed below 30 MHz, when performing measurements at a closer distance than specified, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade). This paragraph (f) shall not apply to Access BPL devices operating below 30 MHz.

About Restricted bands of operation please refer to FCC § 15.205(a).

13.3. Test Procedure

Below 30 MHz:

The setting of the spectrum Analyzer

v	, ,
RBW	300 Hz (From 9 kHz to 0.15 MHz)/ 10 kHz (From 0.15 MHz to 30 MHz)
VBW	1 kHz (From 9 kHz to 0.15 MHz)/ 30 kHz (From 0.15 MHz to 30 MHz)
Sweep	Auto
Trace	Max hold

1. The testing follows the guidelines in ANSI C63.10-2013

2. The EUT was arranged to its worst case and then turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both Horizontal, Face-on and Face-off polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 80 cm meter above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of 1 meter height antenna tower.

5. The radiated emission limits are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.

6. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

7. Although these tests were performed other than open field site, adequate comparison measurements were confirmed against 30m open field site. Therefore, sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field site based on KDB 414788.

Below 1 GHz and above 30 MHz:

The setting of the spectrum Analyzer	r
--------------------------------------	---

RBW	100 kHz
VBW	300 kHz
Sweep	Auto
Trace	Max hold

1. The testing follows the guidelines in ANSI C63.10-2013.

2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 80 cm above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

5. For measurement below 1GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

Above 1 GHz:

7100101121	
RBW	1 MHz
VBW	PEAK: 3 MHz
	AVG: see note 6
Sweep	Auto
Detector	Peak
Trace	Max hold

1. The testing follows the guidelines in ANSI C63.10-2013.

2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

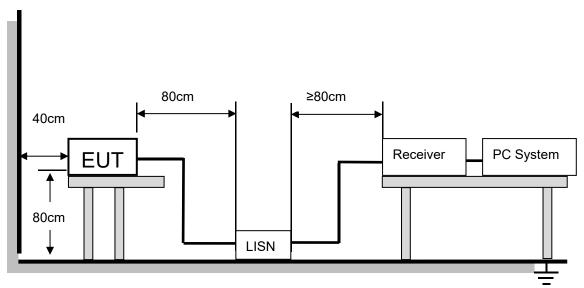
3. The EUT was placed on a turntable with 1.5m above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

5. For measurement above 1GHz, the emission measurement will be measured by the peak detector. This peak level, once corrected, must comply with the limit specified in Section 15.209.

6. For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for AVG measurements. For the Duty Cycle please refer to clause 8.1.ON TIME AND DUTY CYCLE.

7. Restriction band: Investigated frequency range from 2310 MHz to 2430 MHz and 2445 MHz to 2500 MHz, 2310 MHz to 2450 MHz and 2425 MHz to 2500MHz.


All restriction band should comply with 15.209, other emission should be at least 20 dB below the fundamental.

Note 1: For all radiated test, EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

Note 2: The EUT does not support simultaneous transmission.

Note 3: The EUT was fully exercised with external accessories during the test. In the case of multiple accessory external ports, an external accessory shall be connected to one of each type of port.

13.4. Results

14. AC Power Line Conducted Emissions

14.1. Block diagram of test setup

The EUT is put on a table of non-conducting material that is 80 cm high. The vertical conducting wall of shielding is located 40 cm to the rear of the EUT. The power line of the EUT is connected to the AC mains through an Artificial Mains Network (A.M.N.). A EMI Measurement Receiver (R&S Test Receiver ESR3) is used to test the emissions from both sides of AC line. According to the requirements in Section 6.2 of ANSI C63.10-2013.Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode. The bandwidth of EMI test receiver is set at 9 kHz.

The arrangement of the equipment is installed to meet the standards and operating in a manner, which tends to maximize its emission characteristics in a normal application.

14.2. Limits

Please refer to CFR 47 FCC § 15.207 (a).

Frequency (MHz)	Quasi-peak	Average
0.15 -0.5	66 - 56 *	56 - 46 *
0.50 -5.0	56.00	46.00
5.0 -30.0	60.00	50.00

Note 1: * Decreasing linearly with logarithm of frequency.

Note 2: The lower limit shall apply at the transition frequencies.

14.3. Test procedure

The EUT and Support equipment, if needed, were put placed on a non-metallic table, 80cm above the ground plane.

Configuration EUT to simulate typical usage as described in clause 2.4 and test equipment as described in clause 10.2 of this report.

All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.

All support equipment power received from a second LISN.

Emissions were measured on each current carrying line of the EUT using an EMI Test Receiver connected to the LISN powering the EUT.

The Receiver scanned from 150 kHz to 30 MHz for emissions in each of the test modes.

During the above scans, the emissions were maximized by cable manipulation.

The test mode(s) described in clause 2.4 were scanned during the preliminary test.

After the preliminary scan, we found the test mode producing the highest emission level.

The EUT configuration and worse cable configuration of the above highest emission levels were recorded for reference of the final test.

EUT and support equipment were set up on the test bench as per the configuration with highest emission level in the preliminary test.

A scan was taken on both power lines, Neutral and Line, recording at least the six highest emissions.

Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit.

The test data of the worst-case condition(s) was recorded.

The bandwidth of test receiver is set at 9 kHz.

14.4. Test result

15. Antenna Requirements

15.1. Applicable Requirements

Please refer to FCC §15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Please refer to FCC §15.247(b)(4)

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

15.2. Result

The antenna used for this product is FPC antenna and that no antenna other than that furnished by the responsible party shall be used with the device, the maximum peak gain of the transmit antenna is 2.1 dBi

END OF REPORT