

Engineering Test Report No. 2104523-04 Rev. A				
Report Date	June 13, 2022			
Manufacturer Name	Fastenal			
Manufacturer Address	2001 Theurer Blvd Winona, MN 55987			
Test Item Name Model No.	RFID Reader, Model No. 922194627			
Date Received	February 23, 2022			
Test Dates	February 24, 2022 through May 19, 202	22; September 28, 2022; October 4, 2022		
Specifications	FCC "Code of Federal Regulations" Title 47 Part 15, Subpart C, Section 15.247 Innovation, Science, and Economic Development Canada, RSS-GEN Innovation, Science, and Economic Development Canada, RSS-247			
Test Facility	Elite Electronic Engineering, Inc. 1516 Centre Circle, Downers Grove, IL 60515 FCC Reg. Number: 269750 IC Reg. Number: 2987A CAB Identifier: US0107			
Signature	MARK E. LONGINOTT	· (
Tested by	Mark E. Longinotti			
Signature	Kaymond J Klouda,			
Approved by	Raymond J. Klouda, Registered Professional Engineer of Illii	nois – 44894		
PO Number	01N9964-011822-0743 and 01N9964-0	40622-0736		

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents.

This report shall not be reproduced, except in full, without the written approval of Elite Electronic Engineering Inc.

Elite Electronic Engineering Incorporated certifies that the information contained in this report was obtained under conditions which meet or exceed those specified in the FCC "Code of Federal Regulations" Title 47 Part 15, Subpart C, Section 15.247 and Innovation, Science, and Economic Development Canada, RSS-247 test specifications. The data presented in this test report pertains to the EUT on the test dates specified. Any electrical or mechanical modifications made to the EUT subsequent to the specified test date will serve to invalidate the data and void this certification. This report must not be used to claim product certification, approval, or endorsement by A2LA, NIST, or any agency of the Federal Government.

Table of Contents

1.	Report Revision History	
2.	Introduction	4
2.1.	Scope of Tests	4
2.2.	Purpose	4
2.3.	Identification of the EUT	4
3.	Power Input	4
4.	Grounding	
5.	Support Equipment	4
6.	Interconnect Leads	5
7.	Modifications Made to the EUT	
8.	Modes of Operation	
9.	Test Specifications	5
10.	Test Plan	5
11.	Deviation, Additions to, or Exclusions from Test Specifications	5
12.	Laboratory Conditions	
13.	Summary Summar	6
14.	Sample Ćalculations	6
15.	Statement of Conformity	6
16.	Certification	6
17.	Photographs of EUT	8
18.	Equipment List	9
19.	Block Diagram of Test Setup	10
20.	Transmitter Conducted Emissions (AC Mains)	11
21.	20dB Bandwidth	
22.	Occupied Bandwidth (99%)	23
23.	Carrier Frequency Separation	27
24.	Number of Carrier Channels	29
25.	Average Time of Occupancy	31
26.	Maximum Peak Conducted Output Power	
27.	Effective Isotropic Radiated Power (EIRP)	
28.	Case Spurious Radiated Emissions Case Spurious Radiated Emissions	
29.	Band-Edge Compliance	
30.	Scope of Accreditation	82

This report shall not be reproduced, except in full, without the written approval of Elite Electronic Engineering Inc.

1. Report Revision History

Revision	Date	Description
_	13 JUN 2022	Initial Release of Engineering Test Report No. 2104523-014
Α	19 OCT 2022 By Mark Longinotti	 Changed the Engineering Test Report No. from 2104523-04 to 2104523-04 Rev. A throughout the report. Title page: changed test dates from February 24, 2022 through May 19, 2022 to February 24, 2022 through October 4, 2022 Section 18: Removed the equipment used for EIRP and Case Spurious Radiated Emissions tests in February. Added the equipment used for EIRP and Case Spurious Radiated Emissions tests in September. Section 27: Removed EIRP data taken in February and replaced it with data that was taken in September. The data taken in September represents the final configuration of the transmitter antennas in the EUT. Section 28: Removed case spurious radiated emissions data taken in February and replaced it with data that was taken in October. The data taken in October represents the final configuration of the transmitter antennas in the EUT.

2. Introduction

2.1. Scope of Tests

This document presents the results of a series of RF emissions tests that were performed on the Fastenal RFID Reader (hereinafter referred to as the Equipment Under Test (EUT)). The EUT contained a ST Micro ST25RU3993 RFID module (no FCC ID or IC ID). The EUT was manufactured and submitted for testing by Fastenal located in Winona, MN.

2.2. Purpose

The test series was performed to determine if the EUT meets the RF emission requirements of the FCC "Code of Federal Regulations" Title 47, Part 15, Subpart C, §15.247 for a Frequency Hopping Spread Spectrum intentional radiator operating within the 902 – 928MHz band.

The test series was also performed to determine if the EUT meets the RF emission requirements of the Innovation, Science, and Economic Development Canada Radio Standards Specification RSS-Gen and Innovation, Science, and Economic Development Canada Radio Standards Specification RSS-247 for a Frequency Hopping Spread Spectrum intentional radiator operating within the 902 – 928MHz band.

Testing was performed in accordance with ANSI C63.10-2013.

2.3. Identification of the EUT

The EUT was identified as follows:

EUT Identification				
Product Description	RFID Reader			
Model/Part No.	922194627			
Size of EUT	48" x 24" x 18"			
Software/Firmware Version	"AS3993.X.production .unified.test.v0_09a.hex"			
Device Type	Frequency Hopping Transmission Device			
Band of Operation	902 – 928MHz			
Antenna Type	PCB			
Antenna Gain (dBi) ¹	5			
Conducted Output Power	15.88dBm			
Rated Output Power	14dBm			
20dB Bandwidth	101.9kHz			
Occupied Bandwidth (99% CBW)	376kHz			

Note 1 – Antenna gain is supplied by the manufacturer and Elite is not responsible for the accuracy of the antenna gain.

The EUT listed above was used throughout the test series.

3. Power Input

The EUT obtained 5VDC power through a 2 wire, 1.6-meter power cable from the output of a CUI, Inc. power supply, Model No. SDI18-5-UD. The power supply was powered with 115V, 60Hz power via a 2 wire, 2.9-meter power cable.

4. Grounding

The EUT was not connected to ground.

5. Support Equipment

No support equipment was used during the tests.

6. Interconnect Leads

No interconnect leads were used during the tests.

7. Modifications Made to the EUT

No modifications were made to the EUT during the testing.

8. Modes of Operation

The EUT and all peripheral equipment were energized. The unit was programmed to transmit in one of the following modes:

- Transmit at 902.75MHz, power setting = 14dBm
- Transmit at 914.25MHz, power setting = 14dBm
- Transmit at 927.25MHz, power setting = 14dBm
- Hopping, power setting = 14dBm

9. Test Specifications

The tests were performed to selected portions of, and in accordance with, the test specifications.

- Federal Communications Commission "Code of Federal Regulations", Title 47, Chapter I, Subchapter A, Part 15, Subpart C
- ANSI C63.10-2013, "American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices"
- Federal Communications Commission Office of Engineering and Technology Laboratory Division, Guidance For Compliance Measurements On Digital Transmission Systems, Frequency Hopping Spread Spectrum System, and Hybrid System Devices Operating Under Section 15.247 April 2, 2019 KDB 558074 D01v05r02
- RSS-Gen Issue 5, February 2020, Amendment 2, Innovation, Science, and Economic Development Canada, "General Requirements for Compliance of Radio Apparatus"
- RSS-247 Issue 2, February 2017, "Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and License-Exempt Local Area Network (LE-LAN) Devices"

10. Test Plan

No test plan was provided. Instructions were provided by personnel from Fastenal and used in conjunction with the FCC "Code of Federal Regulations" Title 47 Part 15, Subpart C, Section 15.247, Innovation, Science, and Economic Development Canada, RSS-247, and ANSI C63.10-2013 specifications.

11. Deviation, Additions to, or Exclusions from Test Specifications

There were no deviations, additions to, or exclusions from the test specifications during this test series.

12. Laboratory Conditions

The ambient parameters of the laboratory during testing were as follows:

Ambient Parameters	Value	
Temperature	22°C	
Relative Humidity	18%	
Atmospheric Pressure	1014mb	

13. Summary

The following EMC tests were performed, and the results are shown below:

Test Description	Requirements	Test Method	Results
Transmitter Conducted Emissions (AC Mains)	FCC 15.207 ISED RSS-GEN	ANSI C63.10:2013	Conforms
20dB Bandwidth	FCC 15.247 ISED RSS-247	ANSI C63.10:2013	Conforms
Occupied Bandwidth (99%)	FCC 15.247 ISED RSS-247	ANSI C63.10:2013	Conforms
Carrier Frequency Separation	FCC 15.247 ISED RSS-247	ANSI C63.10:2013	Conforms
Number of Carrier Channels	FCC 15.247 ISED RSS-247	ANSI C63.10:2013	Conforms
Average Time of Occupancy	FCC 15.247 ISED RSS-247	ANSI C63.10:2013	Conforms
Maximum Peak Conducted Output Power	FCC 15.247 ISED RSS-247	ANSI C63.10:2013	Conforms
Effective Isotropic Radiated Power (EIRP)	FCC 15.247 ISED RSS-247	ANSI C63.10:2013	Conforms
Case Spurious Radiated Emissions	FCC 15.247 ISED RSS-247	ANSI C63.10:2013	Conforms
Band-Edge Compliance	FCC 15.247 ISED RSS-247	ANSI C63.10:2013	Conforms

14. Sample Calculations

For Powerline Conducted Emissions:

The resultant voltage level (VL) is a summation in decibels (dB) of the receiver meter reading (MTR) and the cable loss factor (CF).

Formula 1: VL (dB μ V) = MTR (dB μ V) + CF (dB).

For Radiated Emissions:

The resultant field strength (FS) is a summation in decibels (dB) of the receiver meter reading (MTR), the antenna correction factor (AF), and the cable loss factor (CF). If an external preamplifier is used, the total is reduced by its gain (-PA). If a distance correction (DC) is required, it is added to the total.

Formula 1: FS $(dB\mu V/m) = MTR (dB\mu V) + AF (dB/m) + CF (dB) + (-PA (dB)) + DC (dB)$

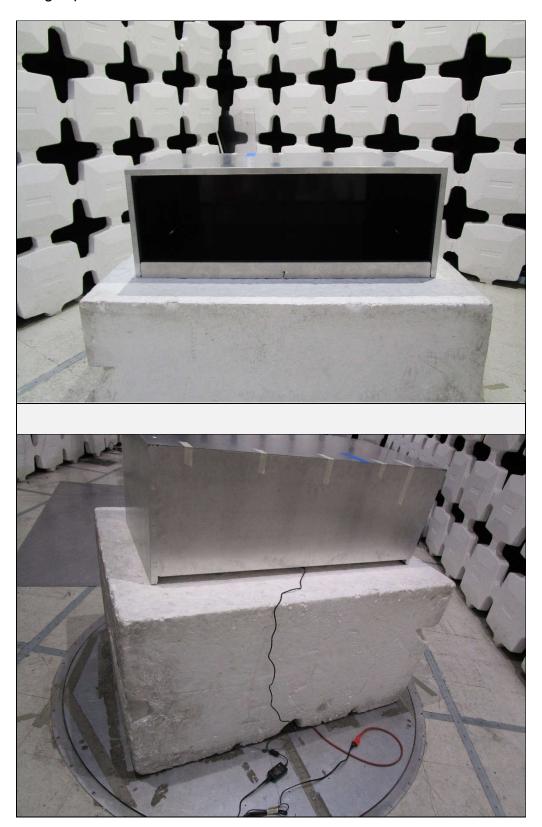
To convert the Field Strength $dB\mu V/m$ term to $\mu V/m$, the $dB\mu V/m$ is first divided by 20. The Base 10 AntiLog is taken of this quotient. The result is the Field Strength value in $\mu V/m$ terms.

Formula 2: FS (μ V/m) = AntiLog [(FS (dB μ V/m))/20]

15. Statement of Conformity

The Fastenal RFID Reader (Model No. 922194627) did fully conform to the selected requirements of FCC "Code of Federal Regulations" Title 47 Part 15, Subpart C, Section 15.247 and Innovation, Science, and Economic Development Canada, RSS-247.

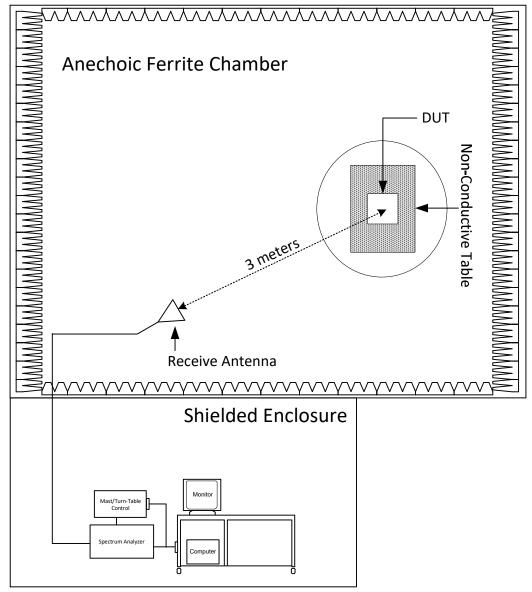
16. Certification


Elite Electronic Engineering Incorporated certifies that the information contained in this report was obtained

under conditions which meet or exceed those specified in the FCC "Code of Federal Regulations" Title 47 Part 15, Subpart C, Section 15.247 and Innovation, Science, and Economic Development Canada, RSS-247 test specifications. The data presented in this test report pertains to the EUT on the test date specified. Any electrical or mechanical modifications made to the EUT subsequent to the specified test date will serve to invalidate the data and void this certification.

17. Photographs of EUT

Equipment List 18.


Eq ID	Equipment Description	Manufacturer	Model No.	Serial No.	Frequency Range	Cal Date	Due Date
APW14	PREAMPLIFIER	PLANAR	PE2-35-120-5R0-10- 12-SFF	PL22671	1-20GHz	9/21/2022	9/21/2023
APW3	PREAMPLIFIER	PLANAR ELECTRONICS	PE2-35-120-5R0-10-12	PL2924	1GHZ-20GHZ	3/9/2022	3/9/2023
CDZ2	LAB WORKSTATION	ELITE	LWS-10		WINDOWS 10	CNR	
CDZ3	LAB WORKSTATION	ELITE	LWS-10		WINDOWS 10	CNR	
CDZ4	LAB WORKSTATION	ELITE	LWS-10		WINDOWS 10	CNR	
GRB0	1MHZ, LISN SIGNAL CHECKER	ELITE	LISNCHKR1M	1	1MHZ	6/17/2021	6/17/2023
GSE0	SIGNAL GENERATOR (40GHZ)	ROHDE & SCHWARZ	SMB100A	175137	100KHZ-40GHZ	9/22/2022	9/22/2023
NDQ0	TUNED DIPOLE ANTENNA	EMCO	3121C-DB4	311	400-1000MHZ	6/7/2022	6/7/2024
NTA4	BILOG ANTENNA	TESEQ	6112D	46660	20-2000GHZ	10/5/2020	11/5/2022
NWQ1	DOUBLE RIDGED WAVEGUIDE ANTENNA	ETS-LINDGREN	3117	66655	1GHZ-18GHZ	5/26/2022	5/26/2024
NWQ2	DOUBLE RIDGED WAVEGUIDE ANTENNA	ETS LINDGREN	3117	66659	1GHZ-18GHZ	4/27/2022	4/27/2024
PLF2	CISPR16 50UH LISN	ELITE	CISPR16/70A	002	.15-30MHz	4/5/2022	4/5/2023
PLF4	CISPR16 50UH LISN	ELITE	CISPR16/70A	003	.15-30MHz	4/5/2022	4/5/2023
RBG0	EMI ANALYZER	ROHDE & SCHWARZ	ESW44	101533	10HZ-44GHZ	11/15/2021	11/15/2022
RBG2	EMI ANALYZER	ROHDE & SCHWARZ	ESW44	101591	2HZ-44GHZ	3/31/2022	3/31/2023
RBG3	EMI ANALYZER	ROHDE & SCHWARZ	ESW44	101592	2HZ-44GHZ	4/7/2022	4/7/2023
SES0	24VDC POWER SUPPLY	P-TRANS	FS-32024-1M	001	18-27VDC	NOTE 1	
T1ED	10DB 25W ATTENUATOR	WEINSCHEL	46-10-34	BN2320	DC-18GHZ	1/6/2022	1/6/2024
T2DC	20DB, 25W ATTENUATOR	WEINSCHEL	46-20-34	BH5448	DC-18GHZ	1/14/2022	1/14/2024
T2S8	20DB 25W ATTENUATOR	WEINSCHEL	46-20-34	BV3541	DC-18GHZ	1/4/2022	1/4/2024
VBR8	CISPR EN FCC CE VOLTAGE.exe					N/A	
WKA1	SOFTWARE, UNIVERSAL RCV EMI	ELITE	UNIV_RCV_EMI	1		I/O	
XPQ7	HIGH PASS FILTER	K&L MICROWAVE	4IH30-1804/T10000-0	5	1.8-10GHZ	2/3/2021	2/3/2023
XPQ8	HIGH PASS FILTER	K&L MICROWAVE	4IH30-1804/T10000-0	6	1.8-10GHZ	2/3/2021	2/3/2023

N/A: Not Applicable I/O: Initial Only CNR: Calibration Not Required

NOTE 1: For the purpose of this test, the equipment was calibrated over the specified frequency range, pulse rate, or modulation prior to the test or monitored by a calibrated instrument.

19. Block Diagram of Test Setup

Radiated Measurements Test Setup

20. Transmitter Conducted Emissions (AC Mains)

Test Information			
Manufacturer	Fastenal		
Product	RFID Reader		
Model No.	922194627		
Mode	Hopping		

Test Setup Details			
Setup Format Tabletop			
Height of Support	N/A		
(For Floor Standing only)			
Type of Test Site	Shielded Enclosure		
Test Site Used	Room #23 side		
Notes			

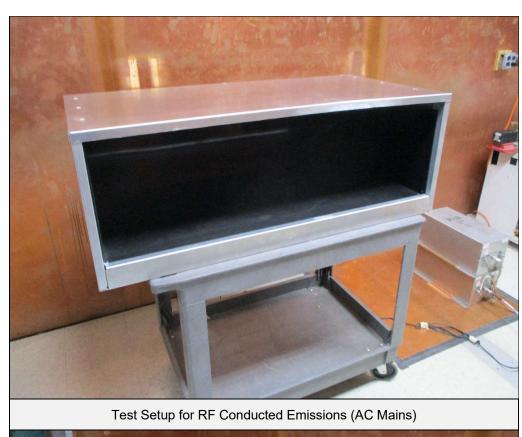
Measurement Uncertainty			
Measurement Type Expanded Measurement Uncertainty			
Conducted disturbance (mains port) (150 kHz – 30 MHz)	2.7		

Requirements

All radio frequency voltages on the power lines for any frequency or frequencies of an intentional radiator shall not exceed the limits in the following table:

Transmitter Conducted Emissions Limits					
Frequency of Emission	Conducted Limits (dBµV)				
(MHz)	Quasi-peak	Average			
0.15 – 0.5	66 to 56*	56-46*			
0.5 – 5	56	46			
5 – 30 60 50					
* The lower limit shall apply at the transition frequencies.					

Procedure


The interference on each power lead of the EUT was measured by connecting the measuring equipment to the appropriate meter terminal of the Line Impedance Stabilization Network (LISN). The meter terminal of the LISN not under test was terminated with 50 ohms.

- 1) The EUT was operated in the Hopping mode.
- 2) Measurements were first made on the 115V, 60Hz high line of the CUI Inc AC Adapter, P/N: SDI18-5-UDC-P254-C1 which was used to provide 5VDC to the EUT.
- 3) The frequency range from 150kHz to 30MHz was broken up into smaller frequency sub-bands.
- 4) Conducted emissions measurements were taken on the first frequency sub-band using a peak detector.
- 5) The data thus obtained was then searched by the computer for the highest levels. Any emissions levels that were within 10dB of the average limit were then measured again using both a quasi-peak detector and an average detector. (If no peak readings were within 10dB of the average limit, quasi-peak and average readings were taken on the highest emissions levels measured during the peak detector scan.)
- 6) Steps (4) and (5) were repeated for the remainder of the frequency sub-bands until the entire frequency range from 150kHz to 30MHz was investigated. The peak trace was automatically plotted. The plot also shows quasi-peak and average readings that were taken on discrete frequencies. A table showing the quasi-peak and average readings was also generated. This tabular data compares the quasi-peak and average conducted emissions to the applicable conducted emissions limits. The resultant voltage level (VL) is a summation in decibels (dB) of the receiver meter reading (MTR) and the cable loss factor (CF).

Formula 1: VL $(dB\mu V) = MTR (dB\mu V) + CF (dB)$

7) Steps (3) through (6) were repeated on the 115V, 60Hz return line of the CUI Inc AC Adapter, P/N: SDI18-5-UDC-P254-C1 which was used to provide 5VDC to the EUT.

Test Setup for RF Conducted Emissions (AC Mains)

FCC Part 15 Subpart C Conducted Emissions Test

Significant Emissions Data

VBR8 05/14/2020

Manufacturer : Fastenal Model : AS3993 DUT Revision : NA Serial Number : NA

DUT Mode : Tx - Hopping

Line Tested : High
Scan Step Time [ms] : 30
Meas. Threshold [dB] : -10
Notes : None
Test Engineer : J. Cardenas

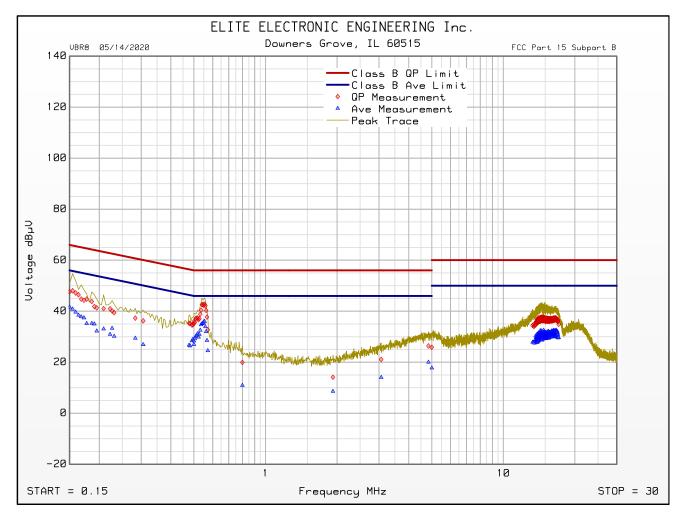
Limit : FCC Part 15 Subpart C Test Date : May 06, 2022 09:06:56 AM

Data Filter : Up to 80 maximum levels detected with 6 dB level excursion threshold over 10 dB

margin below limit

Freq MHz	Quasi-peak Level dBµV	Quasi-peak Limit dBµV	Excessive Quasi-peak Emissions	Average Level dBµV	Average Limit dBµV	Excessive Average Emissions
0.155	48.0	65.8		40.8	55.8	
0.500	35.9	56.0		27.0	46.0	
0.799	19.9	56.0		10.9	46.0	
1.921	14.1	56.0		8.6	46.0	
3.065	21.1	56.0		14.1	46.0	
4.841	26.4	56.0		20.0	46.0	
5.000	25.8	56.0		17.8	46.0	
14.549	37.7	60.0		31.9	50.0	
16.574	37.4	60.0		31.5	50.0	

FCC Part 15 Subpart C Conducted Emissions Test Cumulative Data


VBR8 05/14/2020

Manufacturer : Fastenal Model : AS3993 DUT Revision : NA Serial Number : NA

DUT Mode : Tx - Hopping

Line Tested : High
Scan Step Time [ms] : 30
Meas. Threshold [dB] : -10
Notes : None
Test Engineer : J. Cardenas

Limit : FCC Part 15 Subpart C Test Date : May 06, 2022 09:06:56 AM

Emissions Meet QP Limit Emissions Meet Ave Limit

FCC Part 15 Subpart C Conducted Emissions Test

Significant Emissions Data

VBR8 05/14/2020

Manufacturer : Fastenal Model : AS3993 DUT Revision : NA Serial Number : NA

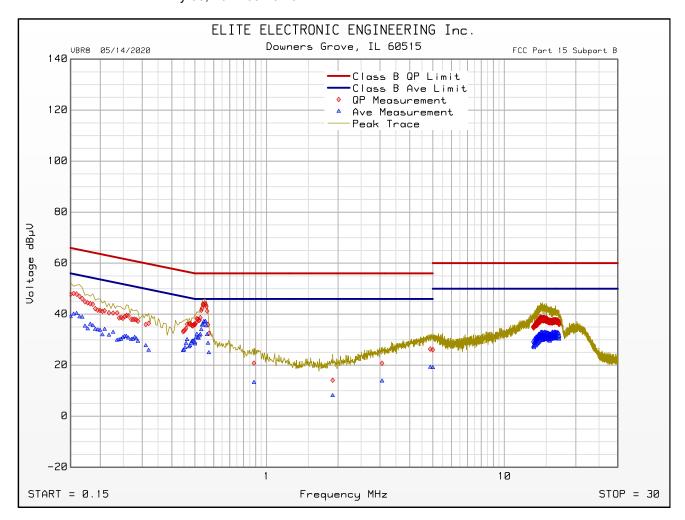
DUT Mode : Tx - Hopping
Line Tested : Neutral
Scan Step Time [ms] : 30
Meas. Threshold [dB] : -10
Notes : None
Test Engineer : J. Cardenas

Limit : FCC Part 15 Subpart C Test Date : May 06, 2022 09:26:10 AM

Data Filter : Up to 80 maximum levels detected with 6 dB level excursion threshold over 10 dB

margin below limit

Freq MHz	Quasi-peak Level dBµV	Quasi-peak Limit dBµV	Excessive Quasi-peak Emissions	Average Level dBµV	Average Limit dBµV	Excessive Average Emissions
0.159	47.9	65.5		40.3	55.5	
0.500	36.1	56.0		29.0	46.0	
0.545	43.7	56.0		37.2	46.0	
0.554	43.8	56.0		37.1	46.0	
0.885	20.8	56.0		13.2	46.0	
1.898	14.1	56.0		8.1	46.0	
3.060	20.7	56.0		13.8	46.0	
4.877	26.3	56.0		19.2	46.0	
5.000	26.1	56.0		19.1	46.0	
14.216	38.9	60.0		31.9	50.0	
16.529	37.7	60.0		30.9	50.0	


FCC Part 15 Subpart C Conducted Emissions Test Cumulative Data

VBR8 05/14/2020

Manufacturer : Fastenal Model : AS3993 DUT Revision : NA Serial Number : NA

DUT Mode : Tx - Hopping
Line Tested : Neutral
Scan Step Time [ms] : 30
Meas. Threshold [dB] : -10
Notes : None
Test Engineer : J. Cardenas

Limit : FCC Part 15 Subpart C
Test Date : May 06, 2022 09:26:10 AM

Emissions Meet QP Limit Emissions Meet Ave Limit

21. 20dB Bandwidth

EUT Information		
Manufacturer	Fastenal	
Product	RFID Reader	
Model No.	922194627	
	Transmit at 902.75MHz	
Mode	Transmit at 914.25MHz	
	Transmit at 927.25MHz	

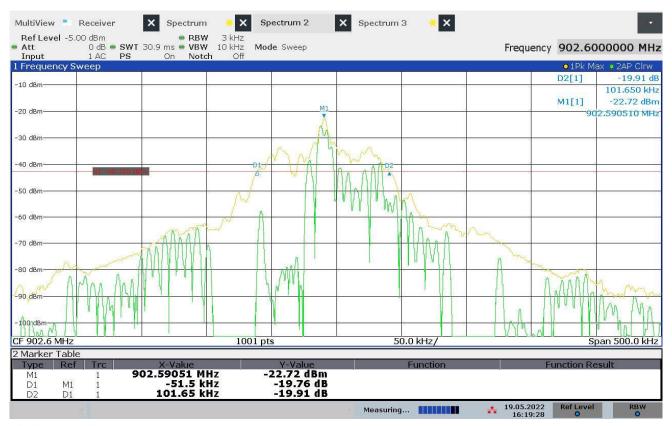
Test Setup Details		
Setup Format	Tabletop	
Height of Support	N/A	
(For Floor Standing only)	I N/A	
Measurement Method	Antenna Conducted	
Type of Test Site	Tabletop	
Test Site Used	N/A	
Notes		

Measurement Uncertainty		
	Expanded	
Measurement Type	Measurement	
	Uncertainty	
Radiated disturbance (electric field strength on an open area test site or alternative test	4.3	
site) (30 MHz – 1000 MHz)	4.3	
Radiated disturbance (electric field strength on an open area test site or alternative test	3.1	
site) (1 GHz – 6 GHz)	3.1	

Requirements

Systems using frequency hopping techniques operating in the 902 - 928 MHz band are allowed a maximum 20 dB bandwidth of 500 kHz.

Procedure


The antenna port of the EUT was connected to the spectrum analyzer through 30dB of attenuation. With the hopping function disabled, the EUT was allowed to transmit continuously.

The frequency hopping channel was set separately to low, middle, and high hopping channels. The resolution bandwidth (RBW) was set to \geq 1% of the 20dB BW. The span was set to approximately 2 to 3 times the 20dB bandwidth.

The 'Max-Hold' function was engaged. The analyzer was allowed to scan until the envelope of the transmitter bandwidth was defined. The analyzer's display was then screenshot and saved.

Test Details		
Manufacturer	Fastenal	
EUT	RFID Reader	
Model No.	922194627	
Mode	Transmit at 902.75MHz	
Date Tested	May 19, 2022	
Result	20dB BW = 101.65kHz	
Notes		

16:19:28 19.05.2022


	Test Details
Manufacturer	Fastenal
EUT	RFID Reader
Model No.	922194627
Mode	Transmit at 914.25MHz
Date Tested	May 19, 2022
Result	20dB BW = 101.9kHz
Notes	

16:04:43 19.05.2022

Test Details		
Manufacturer	Fastenal	
EUT	RFID Reader	
Model No.	922194627	
Mode	Transmit at 927.25MHz	
Date Tested	May 19, 2022	
Result	20dB BW = 101.4kHz	
Notes		

16:14:56 19.05.2022

22. Occupied Bandwidth (99%)

EUT Information		
Manufacturer	Fastenal	
Product	RFID Reader	
Model No.	922194627	
	Transmit at 902.75MHz	
Mode	Transmit at 914.25MHz	
	Transmit at 927.25MHz	

Test Setup Details		
Setup Format	Tabletop	
Height of Support	N/A	
(For Floor Standing only)	IN/A	
Measurement Method	Antenna Conducted	
Type of Test Site	Tabletop	
Test Site Used	N/A	
Notes		

Measurement Uncertainty		
	Expanded	
Measurement Type	Measurement	
	Uncertainty	
Radiated disturbance (electric field strength on an open area test site or alternative test	4.3	
site) (30 MHz – 1000 MHz)	4.3	
Radiated disturbance (electric field strength on an open area test site or alternative test	2.4	
site) (1 GHz – 6 GHz)	3.1	

Procedure

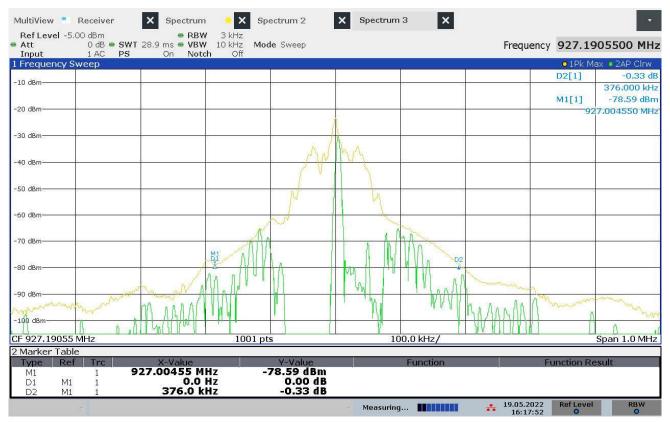
The antenna port of the EUT was connected to the spectrum analyzer through 30dB of attenuation.

The EUT was allowed to transmit continuously. The transmit channel was set separately to low, middle, and high channels. The resolution bandwidth (RBW) was set to 1% to 5% of the actual occupied / x dB bandwidth, the video bandwidth (VBW) was set 3 times greater than the RBW, and the span was set large enough to capture all products of the modulation process, including the emission skirts, around the carrier frequency. The 99% bandwidth function on the spectrum analyzer was utilized.

The 'Max-Hold' function was engaged. The analyzer was allowed to scan until the envelope of the transmitter bandwidth was defined. The analyzer's display was plotted using a 'screen dump' utility.

Test Details		
Manufacturer	Fastenal	
EUT	RFID Reader	
Model No.	922194627	
Mode	Transmit at 902.75MHz	
Date Tested	May 19, 2022	
Result	OBW = 347kHz	
Notes		

16:23:21 19.05.2022


	Test Details
Manufacturer	Fastenal
EUT	RFID Reader
Model No.	922194627
Mode	Transmit at 914.25MHz
Date Tested	May 19, 2022
Result	OBW = 357kHz
Notes	

16:08:59 19.05.2022

Test Details		
Manufacturer	Fastenal	
EUT	RFID Reader	
Model No.	922194627	
Mode	Transmit at 927.25MHz	
Date Tested	May 19, 2022	
Result	OBW = 376kHz	
Notes		

16:17:52 19.05.2022

23. Carrier Frequency Separation

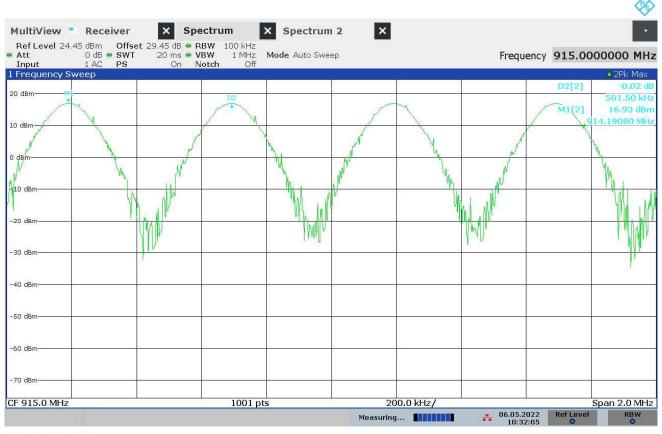
EUT Information		
Manufacturer	Fastenal	
Product	RFID Reader	
Model No.	922194627	
Mode	Hopping	

Test Setup Details		
Setup Format	Tabletop	
Height of Support	N/A	
(For Floor Standing only)	IVA	
Measurement Method	Antenna Conducted	
Type of Test Site	Tabletop	
Test Site Used	N/A	
Notes		

Measurement Uncertainty	
Measurement Type	Expanded Measurement Uncertainty
Radiated disturbance (electric field strength on an open area test site or alternative test site) (30 MHz – 1000 MHz)	4.3
Radiated disturbance (electric field strength on an open area test site or alternative test site) (1 GHz – 6 GHz)	3.1

Requirement

Channel carrier frequencies shall be separated by a minimum of 25kHz or the 20dB bandwidth, whichever is greater.


Procedure

The antenna port of the EUT was connected to the spectrum analyzer through 30dB of attenuation. With the hopping function enabled, the EUT was allowed to transmit continuously.

Span was set wide enough to capture the peaks of two adjacent channels. The resolution bandwidth was set to approximately 30% of the channel spacing. The peak detector and 'Max-Hold' function were engaged. The span was set wide enough to capture the peaks of at least two adjacent channels. When the trace had stabilized after multiple scans, the marker-delta function was used to determine the separation between the peaks of the adjacent channels. The analyzer's display was plotted using a 'screen dump' utility.

Test Details		
Manufacturer	Fastenal	
EUT	RFID Reader	
Model No.	922194627	
Mode	Hopping	
Date Tested	May 6, 2022	
Result	Carrier Frequency Separation = 501.5kHz	
Notes		

10:32:05 06.05.2022

24. Number of Carrier Channels

EUT Information		
Manufacturer	Fastenal	
Product	RFID Reader	
Model No.	922194627	
Mode	Hopping	

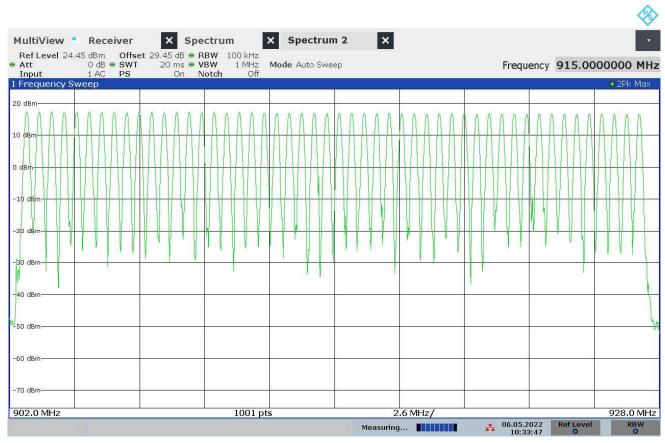
Test Setup Details		
Setup Format	Tabletop	
Height of Support (For Floor Standing only)	N/A	
Measurement Method	Antenna Conducted	
Type of Test Site	Tabletop	
Test Site Used	N/A	
Notes		

Measurement Uncertainty	
Measurement Type	Expanded Measurement Uncertainty
Radiated disturbance (electric field strength on an open area test site or alternative test site) (30 MHz – 1000 MHz)	4.3
Radiated disturbance (electric field strength on an open area test site or alternative test site) (1 GHz – 6 GHz)	3.1

Requirements

For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies

Procedure


The antenna port of the EUT was connected to the spectrum analyzer through 30dB of attenuation. With the hopping function enabled, the EUT was allowed to transmit continuously.

The resolution bandwidth (RBW) was set to less than 30% of the channel spacing or the 20dB bandwidth, whichever is smaller. The peak detector and 'Max-Hold' function were engaged. The span was set wide enough to capture the entire frequency band of operation.

The EUT's signal was allowed to stabilize after multiple scans. The number of hopping frequencies was counted. The analyzer's display was plotted using a 'screen dump' utility.

Test Details		
Manufacturer	Fastenal	
EUT	RFID Reader	
Model No.	922194627	
Mode	Hopping	
Date Tested	May 6, 2022	
Result	Number of Hopping Frequencies = 50	
Notes		

10:33:48 06.05.2022

25. Average Time of Occupancy

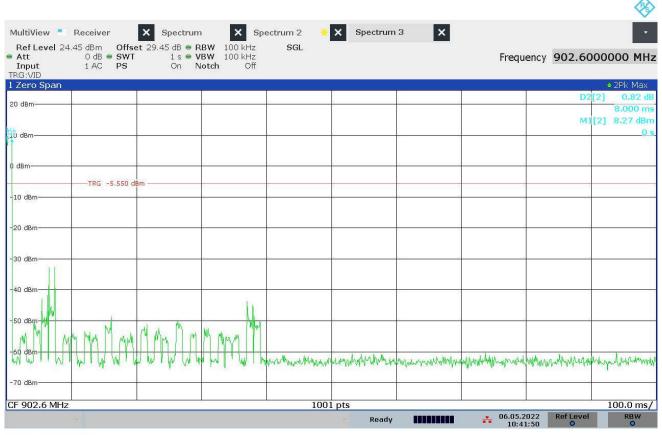
EUT Information		
Manufacturer	Fastenal	
Product	RFID Reader	
Model No.	922194627	
Mode	Hopping	

Test Setup Details		
Setup Format	Tabletop	
Height of Support	N/A	
(For Floor Standing only)	14// \	
Measurement Method	Antenna Conducted	
Type of Test Site	Tabletop	
Test Site Used	N/A	
Notes		

Measurement Uncertainty		
Measurement Type	Expanded Measurement Uncertainty	
Radiated disturbance (electric field strength on an open area test site or alternative test site) (30 MHz – 1000 MHz)	4.3	
Radiated disturbance (electric field strength on an open area test site or alternative test site) (1 GHz – 6 GHz)	3.1	

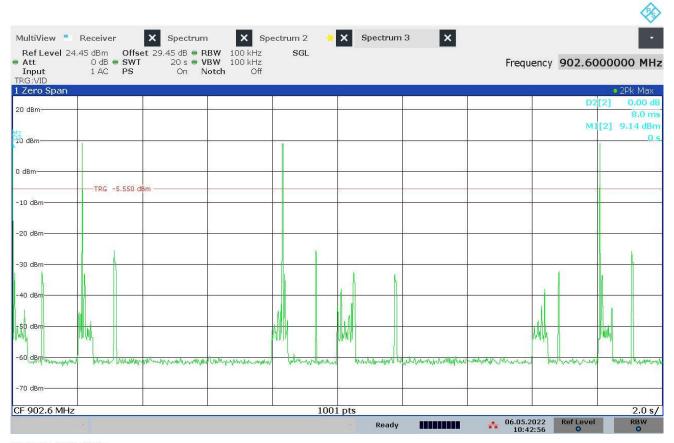
Requirements

For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period.


Procedure

The antenna port of the EUT was connected to the spectrum analyzer through 30dB of attenuation. With the hopping function enabled, the EUT was allowed to transmit continuously.

The spectrum analyzer was set to zero span centered on a hopping channel. The resolution bandwidth (RBW) was set ≥ to the channel spacing. The sweep time was set to 1 sec to capture the duration of each pulse transmission. The analyzer's display was plotted using a 'screen dump' utility. Next the sweep time was increased to 20 sec and the number of times the EUT transmitted on that channel in a 20 second period was counted. The analyzer's display was plotted using a 'screen dump' utility. The average time of occupancy was calculated by multiplying the duration of each pulse by the number of times the EUT transmits on the channel in a 20 second period.


Test Details		
Manufacturer	Fastenal	
EUT	RFID Reader	
Model No.	922194627	
Mode	Hopping	
Date Tested	May 6, 2022	
Result	Pulse width = 8msec	
Notes		

10:41:50 06.05.2022

Test Details		
Manufacturer	Fastenal	
EUT	RFID Reader	
Model No.	922194627	
Mode	Hopping	
Date Tested	May 6, 2022	
Result	Number of times the EUT transmit on channel in a 20 second period = 4	
Notes	Average time of occupancy = (pulse width) x (# times the EUT transmits on channel) Average time of occupancy = 8 msec x 4 = 32msec	

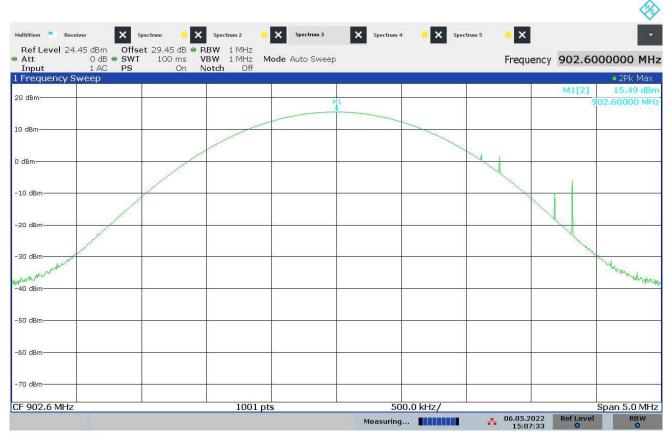
10:42:56 06.05.2022

26. Maximum Peak Conducted Output Power

EUT Information		
Manufacturer	Fastenal	
Product	RFID Reader	
Model No.	922194627	
	Transmit at 902.75MHz	
Mode	Transmit at 914.25MHz	
	Transmit at 927.25MHz	

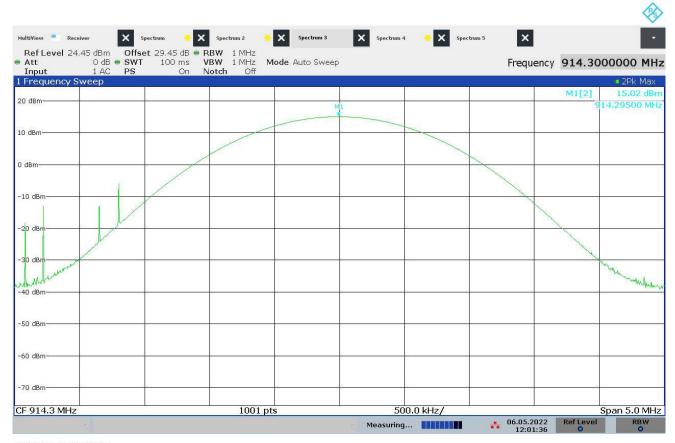
Test Setup Details			
Setup Format	Tabletop		
Height of Support	N/A		
(For Floor Standing only)	IV/A		
Measurement Method	Antenna Conducted		
Type of Test Site	Tabletop		
Test Site Used	N/A		
Notes			

Requirements

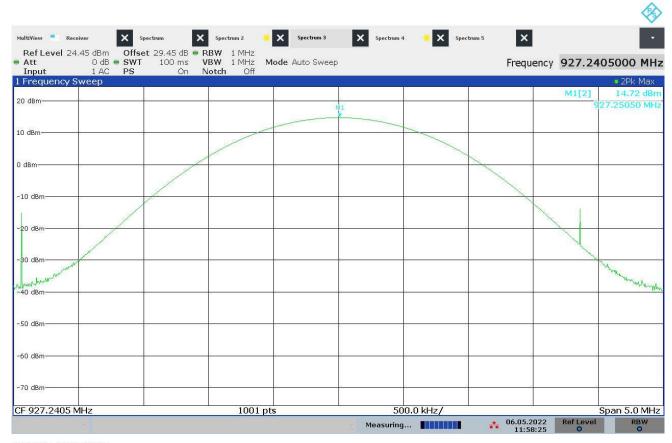

The maximum peak conducted output power for frequency hopping systems operating in the 902-928 MHz band and employing at least 50 hopping channels shall not exceed 1 watt.

Procedure

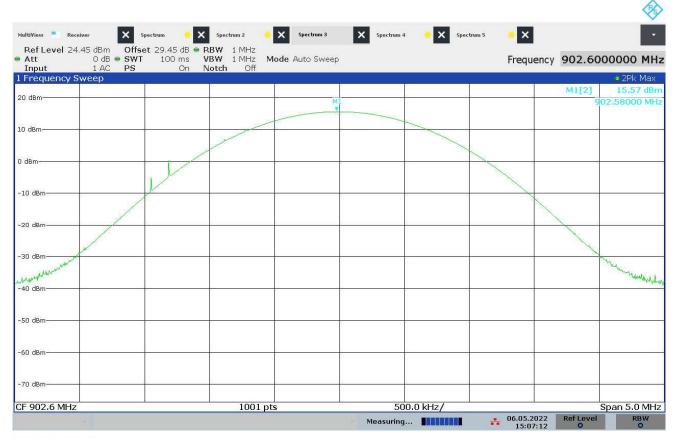
The antenna port of the EUT was connected to the spectrum analyzer through 30dB of attenuation. With the hopping function disabled, the EUT was allowed to transmit continuously. The frequency hopping channel was set separately to low, middle, and high hopping channels. The resolution bandwidth (RBW) was set to greater than the 20dB bandwidth. The span was set to approximately 5 times the 20dB bandwidth. The 'Max-Hold' function was engaged. The maximum meter reading was recorded. The peak power output was calculated for the low, middle, and high hopping frequencies.


Test Details		
Manufacturer	Fastenal	
EUT	RFID Reader	
Model No.	922194627	
Mode	Transmit at 902.75MHz	
Date Tested	May 6, 2022	
Result	Output Power = 0.035W (15.49dBm)	
Notes	Antenna 1	

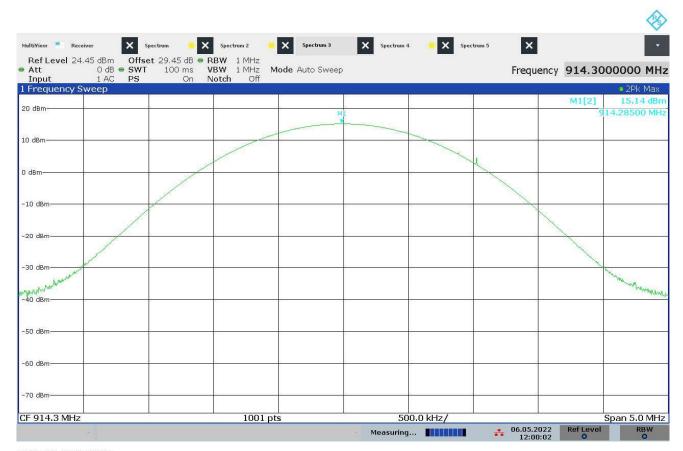
15:07:33 06.05.2022


Test Details	
Manufacturer	Fastenal
EUT	RFID Reader
Model No.	922194627
Mode	Transmit at 914.25MHz
Date Tested	May 6, 2022
Result	Output Power = 0.0318W (15.02dBm)
Notes	Antenna 1

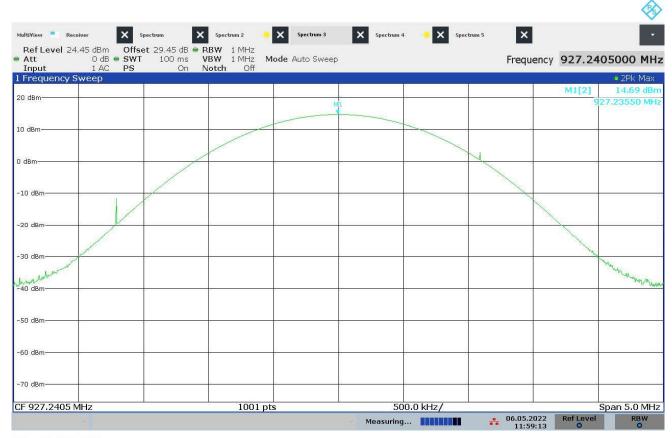
12:01:37 06.05.2022


Test Details	
Manufacturer	Fastenal
EUT	RFID Reader
Model No.	922194627
Mode	Transmit at 927.25MHz
Date Tested	May 6, 2022
Result	Output Power = 0.0296W (14.72dBm)
Notes	Antenna 1

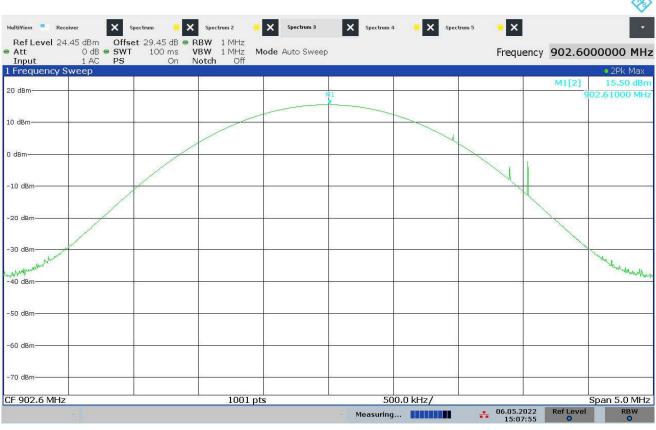
11:58:26 06.05.2022


Test Details	
Manufacturer	Fastenal
EUT	RFID Reader
Model No.	922194627
Mode	Transmit at 902.75MHz
Date Tested	May 6, 2022
Result	Output Power = 0.036W (15.57dBm)
Notes	Antenna 2

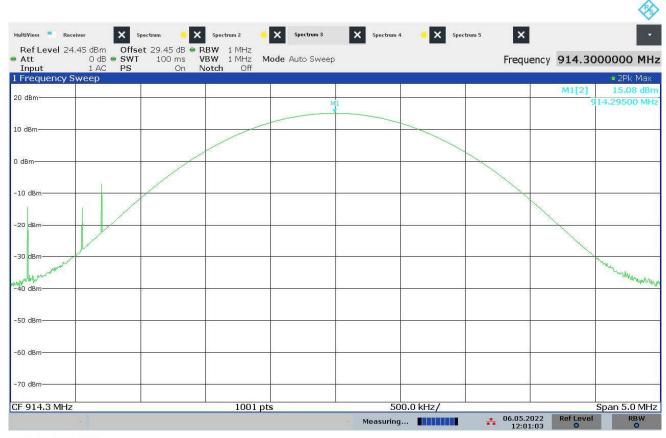
15:07:12 06.05.2022


Test Details	
Manufacturer	Fastenal
EUT	RFID Reader
Model No.	922194627
Mode	Transmit at 914.25MHz
Date Tested	May 6, 2022
Result	Output Power = 0.033W (15.14dBm)
Notes	Antenna 2

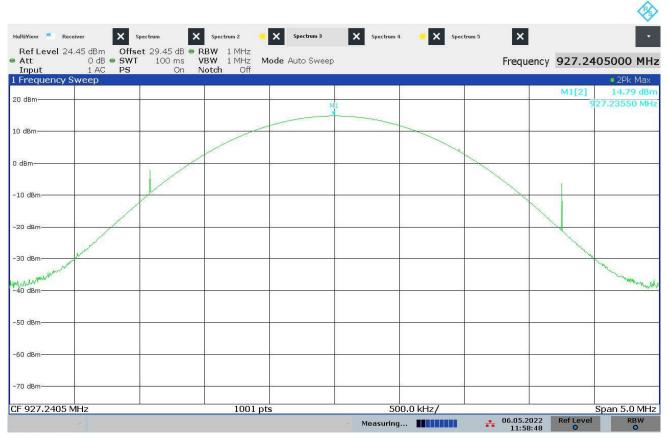
12:00:03 06.05.2022


Test Details	
Manufacturer	Fastenal
EUT	RFID Reader
Model No.	922194627
Mode	Transmit at 927.25MHz
Date Tested	May 6, 2022
Result	Output Power = 0.029W (14.69dBm)
Notes	Antenna 2

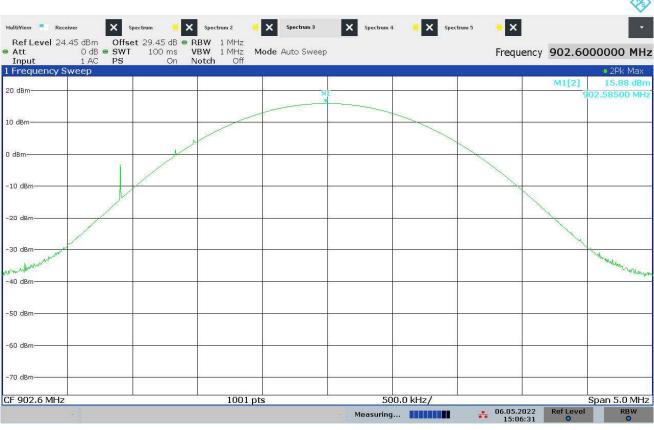
11:59:13 06.05.2022


Test Details	
Manufacturer	Fastenal
EUT	RFID Reader
Model No.	922194627
Mode	Transmit at 902.75MHz
Date Tested	May 6, 2022
Result	Output Power = 0.035W (15.5dBm)
Notes	Antenna 3

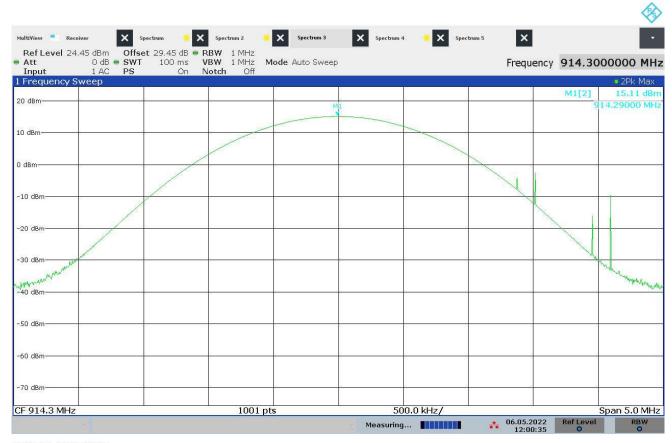
15:07:56 06.05.2022


Test Details	
Manufacturer	Fastenal
EUT	RFID Reader
Model No.	922194627
Mode	Transmit at 914.25MHz
Date Tested	May 6, 2022
Result	Output Power = 0.032W (15.08dBm)
Notes	Antenna 3

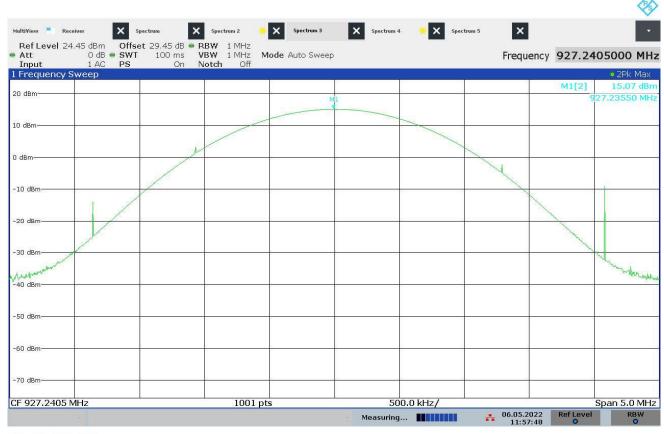
12:01:04 06.05.2022


Test Details	
Manufacturer	Fastenal
EUT	RFID Reader
Model No.	922194627
Mode	Transmit at 927.25MHz
Date Tested	May 6, 2022
Result	Output Power = 0.030W (14.79dBm)
Notes	Antenna 3

11:58:49 06.05.2022


Test Details	
Manufacturer	Fastenal
EUT	RFID Reader
Model No.	922194627
Mode	Transmit at 902.75MHz
Date Tested	May 6, 2022
Result	Output Power = 0.0387W (15.88dBm)
Notes	Antenna 4

15:06:32 06.05.2022


Test Details	
Manufacturer	Fastenal
EUT	RFID Reader
Model No.	922194627
Mode	Transmit at 914.25MHz
Date Tested	May 6, 2022
Result	Output Power = 0.0324W (15.11dBm)
Notes	Antenna 4

12:00:35 06.05.2022

Test Details	
Manufacturer	Fastenal
EUT	RFID Reader
Model No.	922194627
Mode	Transmit at 927.25MHz
Date Tested	May 6, 2022
Result	Output Power = 0.0321W (15.07dBm)
Notes	Antenna 4

11:57:48 06.05.2022

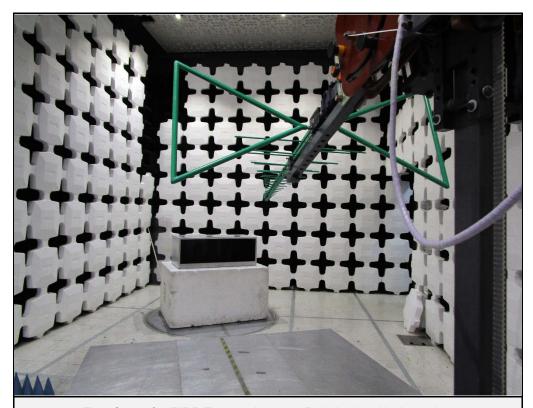
27. Effective Isotropic Radiated Power (EIRP)

EUT Information	
Manufacturer	Fastenal
Product	RFID Reader
Model No.	922194627
	Transmit at 902.75MHz
Mode	Transmit at 914.25MHz
	Transmit at 927.25MHz

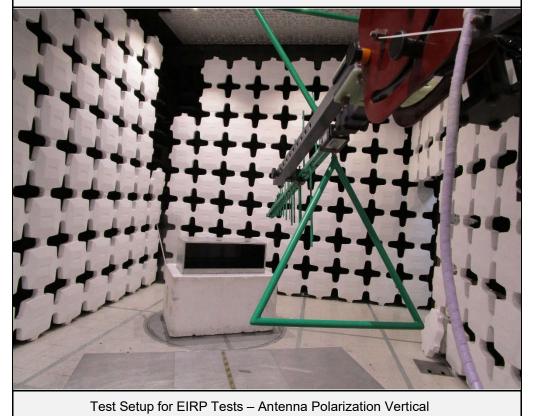
Test Setup Details					
Setup Format	Tabletop				
Height of Support					
(For Floor Standing	N/A				
only)					
Measurement Method	Radiated				
Type of Test Site	Semi-Anechoic Chamber				
Test Site Used	Room 29				
Type of Antonnas Hood	Below 1GHz: Bilog (or equivalent)				
Type of Antennas Used	Above 1GHz: Double-ridged waveguide (or equivalent)				
Notes	new (final) transmit antenna orientation				

Measurement Uncertainty					
Measurement Type	Expanded Measurement Uncertainty				
Radiated disturbance (electric field strength on an open area test site or alternative test site) (30 MHz – 1000 MHz)	4.3				
Radiated disturbance (electric field strength on an open area test site or alternative test site) (1 GHz – 6 GHz)	3.1				

Requirements


The maximum peak conducted output power for frequency hopping systems operating in the 902-928 MHz band and employing at least 50 hopping channels shall not exceed 1 watt. The conducted output power limit is based on the use of antennas with directional gains that do not exceed 6dBi. Therefore, the maximum EIRP shall not exceed 4W (36dBm).

Procedure


The EUT was placed on an 80cm high non-conductive stand and set to transmit with hopping disabled. A bilog antenna was placed at a test distance of 3 meters from the EUT. The resolution bandwidth (RBW) of the spectrum analyzer was set to greater than the 20dB bandwidth. The span was set to approximately 5 times the 20 dB bandwidth. The EUT was maximized for worst case emissions (or maximum output power) at the measuring antenna. The maximum meter reading was recorded. The peak power output was measured for the low, middle, and high hopping frequencies.

The equivalent power was determined from the field intensity levels measured at 3 meters using the substitution method. To determine the emission power, a dipole antenna was then set in place of the EUT and connected to a calibrated signal generator. The output of the signal generator was adjusted to match the received level at the spectrum analyzer. The signal level was recorded. The reading was then corrected to compensate for cable loss, as required. The peak power output was calculated for low, middle, and high hopping frequencies.

Test Setup for EIRP Tests – Antenna Polarization Horizontal

Page 49 of 90

Test Details					
Manufacturer	Fastenal				
EUT	RFID Reader				
Model No.	922194627				
Mode	Transmit at 902.75MHz				
Date Tested	September 28, 2022				
Result	Max EIRP = 0.112W (20.5dBm)				
Notes	EUT was sequentially transmitting on all four antennas during testing				
Notes	Transmit antennas on the EUT were oriented in the final configuration.				

Freq (MHz)	Ant Pol	Wide BW Meter Reading (dBµV)	Matched Sig Gen Reading (dBm)	Equivalent Antenna Gain (dB)	Cable Loss (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)
000.75	Н	89.0	20.0	2.2	1.6	20.5	36.0	-15.5
902.75	V	81.2	14.7	2.2	1.6	15.2	36.0	-20.8

Test Details						
Manufacturer	Fastenal					
EUT	RFID Reader					
Model No.	922194627					
Date Tested	September 28, 2022					
Mode	Transmit at 914.25MHz					
Result	Max EIRP = 0.0977W (19.9dBm)					
Notes	EUT was sequentially transmitting on all four antennas during testing					
Notes	Transmit antennas on the EUT were oriented in the final configuration.					

Freq (MHz)	Ant Pol	Wide BW Meter Reading (dBµV)	Matched Sig Gen Reading (dBm)	Equivalent Antenna Gain (dB)	Cable Loss (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)
044.05	Н	87.7	19.4	2.2	1.6	19.9	36.0	-16.1
914.25	V	78.2	13.1	2.2	1.6	13.6	36.0	-22.4

Test Details					
Manufacturer	Fastenal				
EUT	RFID Reader				
Model No.	922194627				
Date Tested	September 28, 2022				
Mode	Transmit at 927.25MHz				
Result	Max EIRP = 0.0398W (16.0dBm)				
Notes	EUT was sequentially transmitting on all four antennas during testing				
Notes	Transmit antennas on the EUT were oriented in the final configuration.				

Freq (MHz)	Ant Pol	Wide BW Meter Reading (dBµV)	Matched Sig Gen Reading (dBm)	Equivalent Antenna Gain (dB)	Cable Loss (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)
007.05	Н	78.9	11.0	2.2	1.7	11.5	36.0	-24.5
927.25	V	79.9	15.5	2.2	1.7	16.0	36.0	-20.0

28. Case Spurious Radiated Emissions

EUT Information				
Manufacturer	Fastenal			
Product	RFID Reader			
Model No.	922194627			
	Transmit at 902.75MHz			
Mode	Transmit at 914.25MHz			
	Transmit at 927.25MHz			

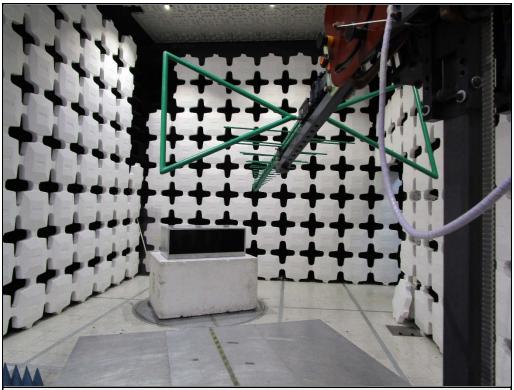
Test Setup Details					
Setup Format	Tabletop				
Height of Support (For Floor Standing only)	N/A				
Type of Test Site	Semi-Anechoic Chamber				
Test Site Used	Room 29				
Type of Antennas Used	Below 1GHz: Bilog (or equivalent) Above 1GHz: Double-Ridged Waveguide				
Notes	new (final) transmit antenna orientation				

Measurement Uncertainty					
Measurement Type	Expanded Measurement Uncertainty				
Radiated disturbance (electric field strength on an open area test site or alternative test site) (30 MHz – 1000 MHz)	4.3				
Radiated disturbance (electric field strength on an open area test site or alternative test site) (1 GHz – 6 GHz)	3.1				
Radiated disturbance (electric field strength on an open area test site or alternative test site) (6 GHz – 18 GHz)	3.2				
Radiated disturbance (electric field strength on an open area test site or alternative test site) (18 GHz – 26.5 GHz)	3.3				
Radiated disturbance (electric field strength on an open area test site or alternative test site) (26.5 GHz – 40 GHz)	3.4				

Procedure

Radiated measurements were performed in a 32ft. x 20ft. x 14ft. high shielded enclosure. The shielded enclosure prevents emissions from other sources, such as radio and TV stations from interfering with the measurements. All powerlines and signal lines entering the enclosure pass through filters on the enclosure wall. The powerline filters prevent extraneous signals from entering the enclosure on these leads.

Preliminary radiated emissions tests were performed to determine the emission characteristics of the EUT. For the preliminary test, a broadband measuring antenna was positioned at a 3-meter distance from the EUT. The entire frequency range from 30MHz to 10.0GHz was investigated using a peak detector function.


The final radiated emission tests were then manually performed over the frequency range of 30MHz to 10.0GHz.

- 1) For all harmonics not in the restricted bands, the following procedure was used:
 - a) The field strength of the fundamental was measured using a bilog antenna. The bilog antenna was positioned at a 3-meter distance from the EUT. The EUT was placed on an 80cm high non-conductive stand. A peak detector with a resolution bandwidth of 100 kHz was used on the spectrum analyzer.
 - b) The field strengths of all of the harmonics not in the restricted band were then measured using a double-ridged waveguide antenna. The waveguide antenna was positioned at a 3-meter distance from the EUT. The EUT was placed on a 1.5-meter-high non-conductive stand. A peak detector with a resolution bandwidth of 100kHz was used on the spectrum analyzer.
 - c) To ensure that maximum or worst-case emission levels at the fundamental and harmonics were measured, the following steps were taken when measuring the fundamental emissions and the spurious emissions:
 - i) The EUT was rotated so that all of its sides were exposed to the receiving antenna.
 - ii) Since the measuring antenna is linearly polarized, both horizontal and vertical field components were measured.
 - iii) The measuring antenna was raised and lowered for each antenna polarization to maximize the readings.
 - d) All harmonics not in the restricted bands must be at least 20dB below levels measured at the fundamental. However, attenuation below the general limits specified in §15.209(a) is not required.
- 2) For all emissions in the restricted bands, the following procedure was used:
 - a) The field strengths of all emissions below 1GHz were measured using a bi-log antenna. The bi-log antenna was positioned at a 3-meter distance from the EUT. The EUT was placed on an 80cm high non-conductive stand. A peak detector with a resolution bandwidth of 100 kHz was used on the spectrum analyzer.
 - b) The field strengths of all emissions above 1GHz were measured using a double-ridged waveguide antenna. The waveguide antenna was positioned at a 3-meter distance from the EUT. The EUT was placed on a 1.5-meter-high non-conductive stand. A peak detector with a resolution bandwidth of 1MHz was used on the spectrum analyzer.
 - c) To ensure that maximum or worst-case emission levels were measured, the following steps were taken when taking all measurements:
 - The EUT was rotated so that all of its sides were exposed to the receiving antenna.
 - ii) Since the measuring antenna is linearly polarized, both horizontal and vertical field components were measured.
 - iii) The measuring antenna was raised and lowered for each antenna polarization to maximize the readings.
 - d) For all radiated emissions measurements below 1GHz, if the peak reading is below the limits listed

- in §15.209(a), no further measurements are required. If, however, the peak readings exceed the limits listed in §15.209(a), then the emissions are remeasured using a quasi-peak detector.
- e) For all radiated emissions measurements above 1GHz, the peak readings must comply with the §15.35(b) limits. §15.35(b) states that when average radiated emissions measurements are specified, there also is a limit on the peak level of the radiated emissions. The limit on the peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. Therefore, all peak readings above 1GHz must be no greater than 20dB above the limits specified in §15.209(a).
- f) Next, for all radiated emissions measurements above 1GHz, the resolution bandwidth was set to 1MHz. The analyzer was set to linear mode with a 10Hz video bandwidth in order to simulate an average detector. An average reading was taken.

Test Setup for Spurious Radiated Emissions, 30MHz – 1GHz – Antenna Polarization Horizontal

Test Setup for Spurious Radiated Emissions, 30MHz – 1GHz – Antenna Polarization Vertical