@ 400 089 2118

FCC Test Report

Report No.: AGC01628180503FE03

FCC ID 2AA9B10

APPLICATION PURPOSE Original Equipmen

PRODUCT DESIGNATION BMD-340

BRAND NAME RIGADO

BMD-340 **MODEL NAME**

CLIENT Rigado, Inc.

DATE OF ISSUE May 30, 2018

STANDARD(S) FCC Part 15.247

REPORT VERSION V1.0

Attestation of Global Compliance (Shenzhen) Co., Ltd

AGC and

CAUTION:

This report shall not be reproduced except in full without the written permission of the test laboratory and shall not be quoted out of context

The results spown this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 💢 €, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be

Attestation of Global Compliance

Tel: +86-755 2908 1955 Fax: +86-755 2600 8484 E-mail: agc@agc-cert.com Add: 2/F., Building 2, No.1-4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Baoan District, Shenzhen, Guangdong China

Page 2 of 42

REPORT REVISE RECORD

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0	plience / ® Mile	May 30, 2018	Valid	Initial Release

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by KGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gett.com.

TABLE OF CONTENTS

1. VERIFICATION OF COMPLIANCE	5
2.GENERAL INFORMATION	6
2.1PRODUCT DESCRIPTION	6
2.2. TABLE OF CARRIER FREQUENCYS	6
2.3 RELATED SUBMITTAL(S)/GRANT(S)	7
2.4TEST METHODOLOGY	7
2.5 SPECIAL ACCESSORIES	Clobal Con" Allestano 7
2.6 EQUIPMENT MODIFICATIONS	7
3. MEASUREMENT UNCERTAINTY	
4. DESCRIPTION OF TEST MODES	
5. SYSTEM TEST CONFIGURATION	
5.1 CONFIGURATION OF TESTED SYSTEM	10
5.2 EQUIPMENT USED IN TESTED SYSTEM	10
5.3. SUMMARY OF TEST RESULTS	
6. TEST FACILITY	
7. PEAK OUTPUT POWER	
7.1. MEASUREMENT PROCEDURE	
7.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	12
7.3. LIMITS AND MEASUREMENT RESULT	13
8. 6 DB BANDWIDTH	15
8.1. MEASUREMENT PROCEDURE	15
8.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	15
8.3. LIMITS AND MEASUREMENT RESULTS	
9. CONDUCTED SPURIOUS EMISSION	17
9.1. MEASUREMENT PROCEDURE	17
9.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	17
9.3. MEASUREMENT EQUIPMENT USED	17
9.4. LIMITS AND MEASUREMENT RESULT	17
40 MAYIMIM CONDUCTED OUTDUT DOWED SPECTDAL DENSITY	不懂 神

The results shown in this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Report No.: AGC01628180503FE03 Page 4 of 42

10.1 MEASUREMENT PROCEDURE	22
10.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	22
10.3 MEASUREMENT EQUIPMENT USED	22
10.4 LIMITS AND MEASUREMENT RESULT	22
11. RADIATED EMISSION	25
11.1. MEASUREMENT PROCEDURE	25
11.2. TEST SETUP	26
11.3. LIMITS AND MEASUREMENT RESULT	
11.4. TEST RESULT	27
12. FCC LINE CONDUCTED EMISSION TEST	37
12.1. LIMITS OF LINE CONDUCTED EMISSION TEST	37
12.2. BLOCK DIAGRAM OF LINE CONDUCTED EMISSION TEST	37
12.3. PRELIMINARY PROCEDURE OF LINE CONDUCTED EMISSION TEST	38
12.4. FINAL PROCEDURE OF LINE CONDUCTED EMISSION TEST	38
12.5. TEST RESULT OF LINE CONDUCTED EMISSION TEST	39
APPENDIX A: PHOTOGRAPHS OF TEST SETUP	<u> </u>

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by KGC, this document to confirmed at attp://www.agc.gett.com.

Page 5 of 42

1. VERIFICATION OF COMPLIANCE

Rigado, Inc.			
3950 Fairview Industrial Dr SE, STE 100, Salem, Oregon, USA 97302			
Rigado, Inc.			
3950 Fairview Industrial Dr SE, STE 100, Salem, Oregon, USA 97302			
BMD-340			
RIGADO			
BMD-340			
May 24, 2018~ May 30, 2018			
None of the second seco			
Normal			
Pass			
AGCRT-US-BLE/RF			

We hereby certify that:

The above equipment was tested by Attestation of Global Compliance (Shenzhen) Co., Ltd. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.10 (2013) and the energy emitted by the sample EUT tested as described in this report is in compliance with radiated emission limits of FCC part 15.247.

Tested By	Now Zhang	
malares State of Colon Colon	Max Zhang(Zhang Yi)	May 30, 2018
Reviewed By	Bore xie	
THE TOTAL CONDITION OF THE PARTY OF THE PART	Bart Xie(Xie Xiaobin)	May 30, 2018
Approved By	Foresto ce	
© Francisco Control	Forrest Lei(Lei Yonggang) Authorized Officer	May 30, 2018

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 6 of 42

2.GENERAL INFORMATION

2.1PRODUCT DESCRIPTION

The EUT is designed as a "BMD-340". It is designed by way of utilizing the O-QPSK technology to achieve the system operation.

A major technical description of EUT is described as following

2402~2480MHZ
4.579dBm(Max)
O-QPSK
40 Channel
PCB Antenna
-1dBi
A STATE OF THE STA
V1.0
DC 5V

2.2. TABLE OF CARRIER FREQUENCYS

Frequency Band	Channel Number	Frequency	
(a) The station of clicking (c) and (c) and (c) are the station of contract (c	0	2402MHZ	
	1 1	2404MHZ	
2400~2483.5MHZ	The state of the s	20 1 CO	
(a) Signature of Copyal Co. (b) Signature of State of Copyal Co. (c) Signature of Copyal Co. (c) Signature of Copyal Copy	38	2478 MHZ	
CO CO	39	2480 MHZ	

The results spowford this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 7 of 42

2.3 RELATED SUBMITTAL(S)/GRANT(S)

This submittal(s) (test report) is intended for FCC ID: 2AA9B10 filing to comply with the FCC Part 15.247 requirements.

2.4TEST METHODOLOGY

Both conducted and radiated testing was performed according to the procedures in ANSI C63.10 (2013). Radiated testing was performed at an antenna to EUT distance 3 meters.

2.5 SPECIAL ACCESSORIES

Refer to section 2.2.

2.6 EQUIPMENT MODIFICATIONS

Not available for this EUT intended for grant.

The results spowed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.gott.com.

Page 8 of 42

3. MEASUREMENT UNCERTAINTY

The uncertainty is calculated using the methods suggested in the "Guide to the Expression of Uncertainty in measurement" (GUM) published by CISPR and ANSI.

- Uncertainty of Conducted Emission, Uc = ±3.2 dB
- Uncertainty of Radiated Emission below 1GHz, Uc = ±3.9 dB
- Uncertainty of Radiated Emission above 1GHz, Uc = ±4.8 dB

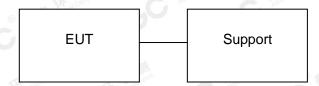
The results spowed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gott.com.

Page 9 of 42

4. DESCRIPTION OF TEST MODES

NO.	TEST MODE DESCRIPTION				
K Mariano 1 TK W	Low channel TX				
© 2	Middle channel TX				
G 3	High channel TX				

Note:


- 1. Only the result of the worst case was recorded in the report, if no other cases.
- 2. For Radiated Emission, 3axis were chosen for testing for each applicable mode.

Page 10 of 42

5. SYSTEM TEST CONFIGURATION

5.1 CONFIGURATION OF TESTED SYSTEM

5.2 EQUIPMENT USED IN TESTED SYSTEM

Item	Equipment	Model	ID	Remark
1	BMD-340	BMD-340	2AA9B10	EUT
2	PC	Mac book Pro	N/A	Support
3	PC adapter	A1278	N/A	Support

5.3. SUMMARY OF TEST RESULTS

FCC RULES	DESCRIPTION OF TEST	RESULT	
15.247	Peak Output Power	Compliant	
15.247	6 dB Bandwidth	Compliant	
15.247	Conducted Spurious Emission and Band Edges	Compliant	
15.247	Maximum Conducted Output Power Density	Compliant	
15.247&15.209	Radiated Emission	Compliant	
15.207	Conducted Emission	Compliant	

The results showing this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Page 11 of 42

6. TEST FACILITY

Test Site	Attestation of Global Compliance (Shenzhen) Co., Ltd		
Location	1-2F., Bldg.2, No.1-4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Bao'an District B112-B113, Bldg.12, Baoan Bldg Materials Center, No.1 of Xixiang Inner Ring Road, Baoan District, Shenzhen 518012		
NVLAP LAB CODE	600153-0		
Designation Number	CN5028		
FCC Test Firm Registration Number	682566		
Description	Attestation of Global Compliance(Shenzhen) Co., Ltd is accredited by National Voluntary Laboratory Accreditation program, NVLAP Code 600153-0		

TEST EQUIPMENT OF CONDUCTED EMISSION TEST

Equipment	Manufacturer	Model	S/N	Cal. Date	Cal. Due
TEST RECEIVER	R&S	ESPI	101206	Jun. 20, 2017	Jun. 19, 2018
LISN	R&S	ESH2-Z5	100086	Aug. 21, 2017	Aug. 20, 2018

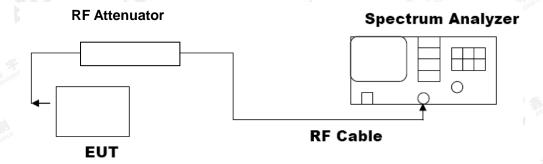
TEST EQUIPMENT OF RADIATED EMISSION TEST

Equipment	Manufacturer	Model	S/N	Cal. Date	Cal. Due
TEST RECEIVER	R&S	ESCI	10096	Jun. 20, 2017	Jun. 19, 2018
EXA Signal Analyzer	Aglient	N9010A	MY53470504	Dec .08, 2017	Dec. 07, 2018
Horn antenna	SCHWARZBECK	BBHA 9170	#768	Sep. 20, 2017	Sep. 19, 2018
preamplifier	ChengYi	EMC184045SE	980508	Sep. 15, 2017	Sep. 14, 2018
Active loop antenna (9K-30MHz)	A.H.	SAS-562B	N/A	Mar. 01, 2018	Feb. 28, 2019
Double-Ridged Waveguide Horn	ETS LINDGREN	3117	00034609	May 18, 2017	May 17, 2019
Broadband Preamplifier	SCHWARZBECK	BBV 9718	9718-205	Jun. 20, 2017	Jun. 19, 2018
ANTENNA	SCHWARZBECK	VULB9168	D69250	Sep. 28, 2017	Sep. 27, 2018

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by KCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Page 12 of 42

7. PEAK OUTPUT POWER


7.1. MEASUREMENT PROCEDURE

For peak power test:

- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2. RBW ≥ DTS bandwidth
- 3. VBW≥3*RBW.
- 4. SPAN≥VBW.
- 5. Sweep: Auto.
- 6. Detector function: Peak.
- 7. Trace: Max hold.

Allow trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. The indicated level is the peak output power, after any corrections for external attenuators and cables.

7.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION) PEAK POWER TEST SETUP

The results spowford this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

Page 13 of 42

7.3. LIMITS AND MEASUREMENT RESULT

PEAK OUTPUT POWER MEASUREMENT RESULT						
Frequency (GHz)	Peak Power (dBm)	Applicable Limits (dBm)	Pass or Fail			
2.402	4.579	30	Pass			
2.440	4.301	30	Pass			
2.480	4.117	30	Pass			

CH₀

The results showing this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc-cert.com. VGC 8

CH19

CH39

The results spoured this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

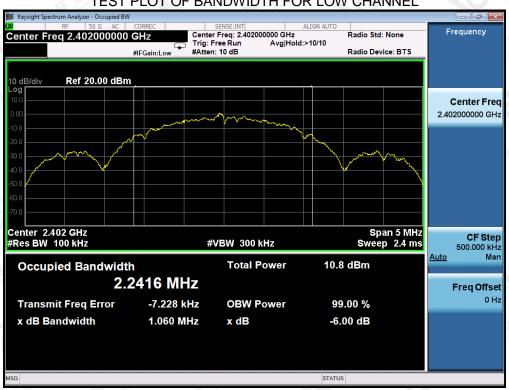
Page 15 of 42

8. 6 DB BANDWIDTH

8.1. MEASUREMENT PROCEDURE

- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2. Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- 3. Set SPA Centre Frequency = Operation Frequency, RBW= 100 KHz, VBW ≥ 3×RBW.
- 4. Set SPA Trace 1 Max hold, then View.

Note: The EUT was tested according to ANSI C63.10 for compliance to FCC PART 15.247 requirements.


8.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

The same as described in section 7.2.

8.3. LIMITS AND MEASUREMENT RESULTS

LIMITS AND MEASUREMENT RESULT						
Applicable Limite	Applicable Limits					
Applicable Limits	Test Data	Criteria				
	Low Channel	1.060	PASS			
>500KHZ	Middle Channel	1.024	PASS			
	High Channel	1.035	PASS			

TEST PLOT OF BANDWIDTH FOR LOW CHANNEL

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Attestation of Global Compliance

GC

TEST PLOT OF BANDWIDTH FOR MIDDLE CHANNEL

TEST PLOT OF BANDWIDTH FOR HIGH CHANNEL

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a true www.ago.gent.com.

Page 17 of 42

9. CONDUCTED SPURIOUS EMISSION

9.1. MEASUREMENT PROCEDURE

- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2, Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- 3. Set SPA Trace 1 Max hold, then View.

Note: The EUT was tested according to ANSI C63.10 for compliance to FCC PART 15.247 requirements.

9.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

The same as described in section 7.2.

9.3. MEASUREMENT EQUIPMENT USED

The same as described in section 6.

9.4. LIMITS AND MEASUREMENT RESULT

LIMITS AND MEASUREMENT RESULT					
A contract to 1 to 25	Measurement Result				
Applicable Limits	Test Data	Criteria			
In any 100 KHz Bandwidth Outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produce by the intentional radiator shall be at least 20 dB below that in 100KHz bandwidth within the band that contains the highest level of the desired power.	At least -20dBc than the reference level	PASS			

The results spowford this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

TEST RESULT FOR ENTIRE FREQUENCY RANGE

LOW CHANNEL

The results showing this jest eport refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 💢 €, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc-cert.com.

The results showing this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by KCE, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-gert.com.


Note: The peak emissions without marker on the above plots are fundamental wave and need not to compare with the limit.

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a true www.ago-gent.com.

TEST RESULT FOR BAND EDGE

LOW CHANNEL

HIGH CHANNEL

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a true www.ago-gent.com.

Page 22 of 42

10. MAXIMUM CONDUCTED OUTPUT POWER SPECTRAL DENSITY

10.1 MEASUREMENT PROCEDURE

- (1). Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- (2). Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- (3). Set SPA Trace 1 Max hold, then View.

Note: The method of PKPSD in the KDB 558074 item 10.2 was used in this testing.

10.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

Refer To Section 7.2.

10.3 MEASUREMENT EQUIPMENT USED

Refer To Section 6.

10.4 LIMITS AND MEASUREMENT RESULT

Channel No.	PSD (dBm/3kHz)	Limit (dBm/3kHz)	Result		
Low Channel	-4.780	8 0	Pass		
Middle Channel	-5.148	8	Pass		
High Channel	-5.327	8	Pass		

The results spowford this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

TEST PLOT OF SPECTRAL DENSITY FOR LOW CHANNEL

TEST PLOT OF SPECTRAL DENSITY FOR MIDDLE CHANNEL

The results specified this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a true; //www.agc.gett.com.

Page 24 of 42

TEST PLOT OF SPECTRAL DENSITY FOR HIGH CHANNEL

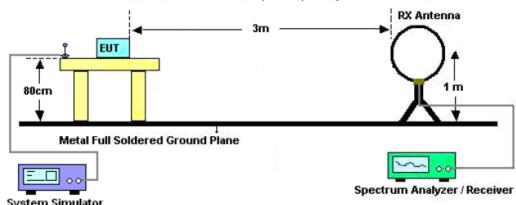
The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

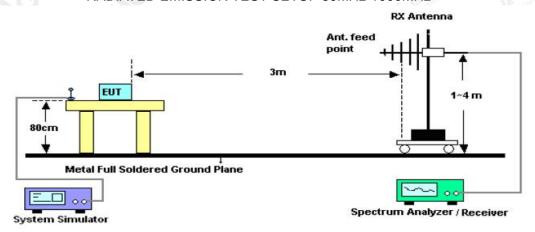
Page 25 of 42

11. RADIATED EMISSION

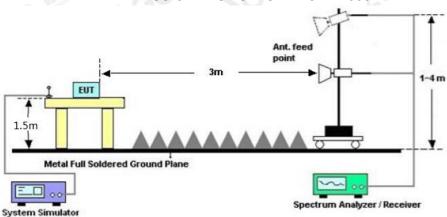
11.1. MEASUREMENT PROCEDURE

- 1. The EUT was placed on the top of the turntable 0.8 or 1.5 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz RBW and 3MHz VBW for peak reading. Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- 7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum values.
- 8.If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 9. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 10. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.


The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by (60, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.



11.2. TEST SETUP


Radiated Emission Test-Setup Frequency Below 30MHz

RADIATED EMISSION TEST SETUP 30MHz-1000MHz

RADIATED EMISSION TEST SETUP ABOVE 1000MHz

The results spoured this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 27 of 42

11.3. LIMITS AND MEASUREMENT RESULT

15.209 Limit in the below table has to be followed

Frequencies (MHz)	Field Strength (micorvolts/meter)	Measurement Distance (meters)		
0.009~0.490	2400/F(KHz)	300		
0.490~1.705	24000/F(KHz)	30		
1.705~30.0	8 30 Francisco	30		
30~88	100	3		
88~216	150	3		
216~960	200	8 Francisco 3 C Marketin		
Above 960	500	3		

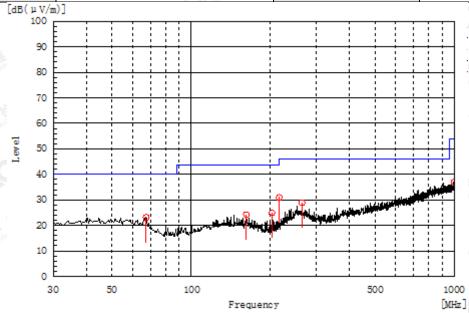
Note: All modes were tested For restricted band radiated emission,

the test records reported below are the worst result compared to other modes.

11.4. TEST RESULT

RADIATED EMISSION BELOW 30MHZ

No emission found between lowest internal used/generated frequencies to 30MHz.

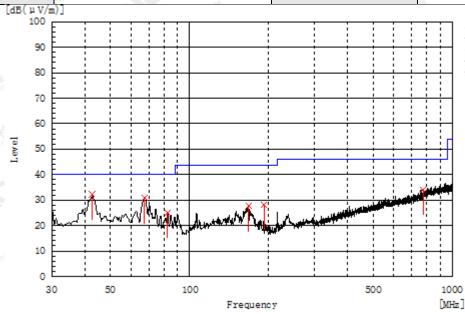

The results spowford this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Page 28 of 42

RADIATED EMISSION BELOW 1GHZ

EUT	BMD-340	Model Name	BMD-340
Temperature	25° C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 1	Antenna	Horizontal

Frequency MHz	Polarization	Reading dB(uV)	Factor dB (1/m)	Level dB(uV/m) PK	Limit dB(uV/m) QP	Margin dB	Pass/Fail	Height cm	Angle deg
67.345	, H	8.1	15.1	23.2	40.0	16.8	Pass	150.0	73.5
161.920	That Conw	7.6	16.6	24.2	43.5	19.3	Pass	150.0	219.8
202.660	н	11.3	13.6	24.9	43.5	18.6	Pass	200.0	90.9
215.755	H	16.6	14.3	30.9	43.5	12.6	Pass	100.0	337.4
263.770	H Wall	12.8	16.1	28.9	46.0	17.1	Pass	100.0	258.9
999.030	H	5.9	31.1	37.0	54.0	17.0	Pass	100.0	337.4


RESULT: PASS

The results showed the sample (s) tested unless otherwise stated and the sample (s) are retained for 30 days only. The document is issued by (SC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago-gent.com.

Page 29 of 42

EUT	BMD-340	Model Name	BMD-340
Temperature	25° C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 1	Antenna	Vertical

Freque MHz		Polarization	Reading dB(uV)	Factor dB (1/m)	Level dB(uV/m) PK	Limit dB(uV/m) QP	Margin dB	Pass/Fail	Height cm	Angle deg
42.61	0	V	14.9	17.4	32.3	40.0	7.7	Pass	100.0	250.6
67.34	5	W. V	15.7	15.1	30.8	40.0	9.2	Pass	200.0	90.1
82.38	80	v.C	12.6	12.3	24.9	40.0	15.1	Pass	200.0	341.8
167.7	40	V	11.5	16.1	27.6	43.5	15.9	Pass	150.0	322.7
191.9	90	V The	14.5	13.7	28.2	43.5	15.3	Pass	150.0	71.4
775.4	45	V	5.9	28.2	34.1	46.0	11.9	Pass	150.0	107.2

RESULT: PASS Note:

1. Factor=Antenna Factor + Cable loss, Margin=Measurement-Limit.

2. All test modes had been tested. The mode 1 is the worst case and recorded in the report.

The results spowford this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Page 30 of 42

RADIATED EMISSION ABOVE 1GHZ

EUT	BMD-340	Model Name	BMD-340
Temperature	25° C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 1	Antenna	Horizontal

ter Reading (dBµV) 46.12 41.54	Factor (dB) 7.12 7.12	Emission Level (dBµV/m) 53.24 48.66	Limits (dBµV/m) 74 54	Margin (dB) -20.76	Value Type
46.12 41.54	7.12	53.24	74	-20.76	peak
41.54			- 77111		P Mag
	7.12	48.66	54	F 24	Fig. 1000
10.00			O-Tollar	-5.34	AVG
42.96	9.84	52.8	74	-21.2	peak
36.03	9.84	45.87	54	-8.13	AVG
Fig. of Globs,	® Attendion of G.				
Allesta				dina	litte and
				KEL Marios	TK TEL plian
	Allese de la Colonia			Factor + Cable Loss - Pre-amplifier	

EUT	BMD-340	Model Name	BMD-340
Temperature	25° C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 1	Antenna	Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin 🌑	Value Type
(MHz)	(dBµV)	(dB) 💿 🗸	(dBµV/m)	(dBµV/m)	(dB)	value Type
4804.018	44.02	7.12	51.14	74	-22.86	peak
4804.018	39.61	7.12	46.73	54	-7.27	AVG
7434.025	43.15	9.84	52.99	74	-21.01	peak
7434.025	38.22	9.84	48.06	54	-5.94	AVG
		程 plance	# 3K	Con"	of Global	Alles
	II al Compile	E Global Co.	(B) Wastation of	Allest		
Remark:	nion of Gill	itestation	20 .			
actor = Ante	enna Factor + C	able Loss –	Pre-amplifier.			litte:
						- 19 17 2

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a true;//www.agc.gett.com.

Page 31 of 42

EUT	BMD-340	Model Name	BMD-340
Temperature	25° C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 2	Antenna	Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Value Type
4880.065	45.93	7.12	53.05	74	-20.95	peak
4880.065	42.18	7.12	49.3	54	-4.7	AVG
7320.115	40.62	9.84	50.46	74	-23.54	peak
7320.115	34.19	9.84	44.03	54	-9.97	AVG
R F Of Globa	Global Co	® A william of C				
Attestation	Attestation	Allest				line
Remark:					Age Sini	The poliance
actor = Ante	enna Factor + Ca	ble Loss – F	Pre-amplifier.	- F	I al Comp.	Global
		-11111			101 6	

EUT	BMD-340	Model Name	BMD-340
Temperature	25° C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 2	Antenna	Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	value Type
4880.052	41.58	7.12	48.7	74	-25.3	peak
4880.052	37.12	7.12	44.24	54	-9.76	AVG
7320.013	42.2	9.84	52.04	74	-21.96	peak
7320.013	36.85	9.84	46.69	54	-7.31	AVG
® # <u>#</u>	S. Common S. Com	tallor of Globa		C Alles		
Remark:	40					-FIII)
actor = Ante	enna Factor + Ca	ble Loss -	Pre-amplifier.	KE Jiance	抓	Compliance ®

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by KGE, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gett.com.

Page 32 of 42

EUT	BMD-340	Model Name	BMD-340
Temperature	25° C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 3	Antenna	Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Value Type
4960.065	46.13	7.12	53.25	74	-20.75	peak
4960.065	41.92	7.12	49.04	54	-4.96	AVG
7440.058	40.66	9.84	50.5	74	-23.5	peak
7440.058	39.14	9.84	48.98	54	-5.02	AVG
of Globa	Global Co	® A ston of G				
Attestallo	Allestation	Allesu				llin
Remark:					75 July	Kingliance
actor = Ante	enna Factor + Ca	ıble Loss – F	Pre-amplifier.	- T	1 al Comp.	Global Co
		-1111	• 417 1		(0) (0)	

EUT	BMD-340	Model Name	BMD-340
Temperature	25° C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 3	Antenna	Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB) @ 4	(dBµV/m)	(dBµV/m)	(dB)	value Type
4960.084	42.89	7.12	50.01	74	-23.99	peak
4960.084	40.12	7.12	47.24	54	-6.76	AVG
7440.065	43.55	9.84	53.39	74	-20.61	peak
7440.065	39.18	9.84	49.02	54	-4.98	AVG
	3h dominos	A Global ampliance	Glob Station of Glob	(S) Altest	on of Glov	,0
Remark:	John of Johnson	estation	20	0		
actor = Ante	enna Factor + C	able Loss -	Pre-amplifier.	-711		11117;

RESULT: PASS

Note:

Other emissions from 1G to 25 GHz are considered as ambient noise. No recording in the test report.

Factor = Antenna Factor + Cable loss - Amplifier gain, Over=Measure-Limit.

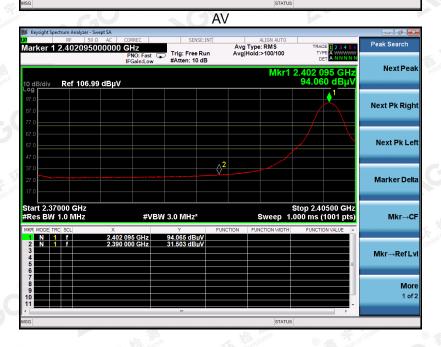
The "Factor" value can be calculated automatically by software of measurement system.

The results spowford this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

Page 33 of 42

TEST RESULT FOR RESTRICTED BANDS REQUIREMENTS

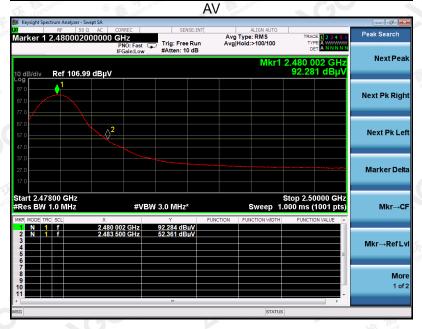
EUT	BMD-340	Model Name	BMD-340
Temperature	25° C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 1	Antenna	Horizontal



The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by ACC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc-cert.com.

EUT	BMD-340	Model Name	BMD-340
Temperature	25° C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 1	Antenna	Vertical

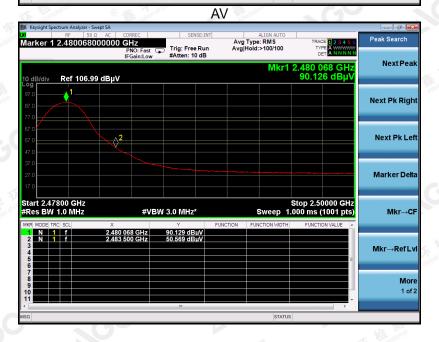

RESULT: PASS


The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Page 35 of 42

EUT	BMD-340	Model Name	BMD-340
Temperature	25° C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 3	Antenna	Horizontal


RESULT: PASS


The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Page 36 of 42

EUT	BMD-340	Model Name	BMD-340
Temperature	25° C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 3	Antenna	Vertical

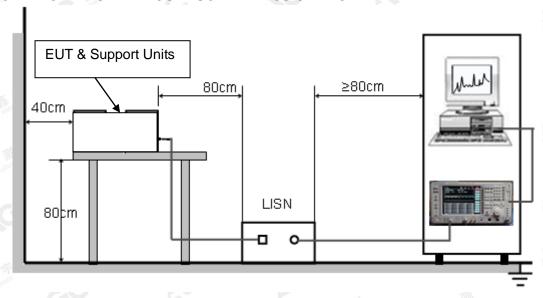
RESULT: PASS

Note: The factor had been edited in the "Input Correction" of the Spectrum Analyzer. So the Amplitude of test plots is equal to Reading level plus the Factor in dB. Use the A dB(μ V) to represent the Amplitude. Use the F dB(μ V/m) to represent the Field Strength. So A=F.

The results spough this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gatt.com.

Page 37 of 42

12. FCC LINE CONDUCTED EMISSION TEST


12.1. LIMITS OF LINE CONDUCTED EMISSION TEST

F	Maximum RF Line Voltage					
Frequency	Q.P.(dBuV)	Average(dBuV)				
150kHz~500kHz	66-56	56-46				
500kHz~5MHz	56	46				
5MHz~30MHz	60 60	50				

Note:

- 1. The lower limit shall apply at the transition frequency.
- 2. The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

12.2. BLOCK DIAGRAM OF LINE CONDUCTED EMISSION TEST

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 38 of 42

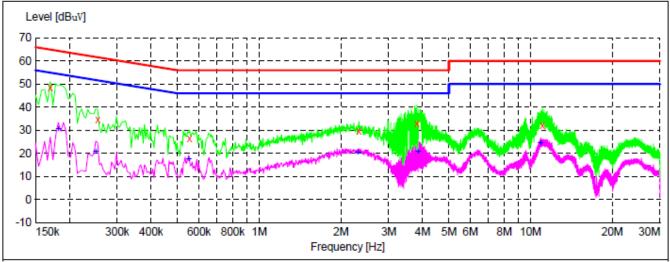
12.3. PRELIMINARY PROCEDURE OF LINE CONDUCTED EMISSION TEST

- 1. The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. When the EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10 (see Test Facility for the dimensions of the ground plane used). When the EUT is a floor-standing equipment, it is placed on the ground plane which has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane.
- 2. Support equipment, if needed, was placed as per ANSI C63.10.
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4. All support equipments received AC9V/1A power from a LISN, if any.
- 5. The EUT received DC charging voltage by PC which received 9V/1Azpower by a LISN..
- 6. The test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 kHz to 30MHz for emissions in each of the test modes.
- 8. During the above scans, the emissions were maximized by cable manipulation.
- 9. The test mode(s) were scanned during the preliminary test.

Then, the EUT configuration and cable configuration of the above highest emission level were recorded for reference of final testing.

12.4. FINAL PROCEDURE OF LINE CONDUCTED EMISSION TEST

- EUT and support equipment was set up on the test bench as per step 2 of the preliminary test.
- 2. A scan was taken on both power lines, Line 1 and Line 2, recording at least the six highest emissions. Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit. If EUT emission level was less –2dB to the A.V. limit in Peak mode, then the emission signal was re-checked using Q.P and Average detector.
- 3. The test data of the worst case condition(s) was reported on the Summary Data page.


The results show this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-gatt.com.

GCS

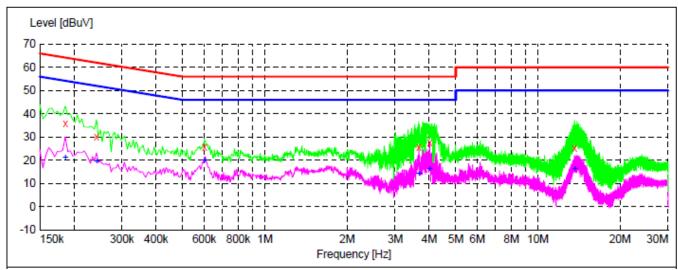
Page 39 of 42

12.5. TEST RESULT OF LINE CONDUCTED EMISSION TEST

Line Conducted Emission Test Line 1-L

MEASUREMENT RESULT:

Frequency MHz	Level dBuV	Transd dB	Limit dBuV	Margin dB	Detector	Line	PE
0.170000	48.30	10.0	65	16.7	QP	L1	FLO
0.254000	34.40	10.1	62	27.2	QP	L1	FLO
0.554000	26.20	10.1	56	29.8	QP	L1	FLO
2.330000	29.60	10.1	56	26.4	QP	L1	FLO
3.814000	33.10	10.1	56	22.9	QP	L1	FLO
11.058000	32.10	9.6	60	27.9	QP	L1	FLO


MEASUREMENT RESULT:

Frequency MHz	Level dBuV		Limit dBuV	Margin dB	Detector	Line	PE
0.182000	30.60	10.0	54	23.8	AV	L1	FLO
0.250000	20.50	10.1	52	31.3	AV	L1	FLO
0.550000	17.30	10.1	46	28.7	AV	L1	FLO
2.310000	20.40	10.1	46	25.6	AV	L1	FLO
3.850000	20.80	10.1	46	25.2	AV	L1	FLO
10.894000	24.50	9.7	50	25.5	ΔV	T-1	FLO

The results spowford this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

Page 40 of 42

Line Conducted Emission Test Line 2-N

MEASUREMENT RESULT:

Frequency MHz	Level dBuV	Transd dB	Limit dBuV	Margin dB	Detector	Line	PE
0.186000	35.70	10.0	64	28.5	QP	N	FLO
0.242000	30.00	10.1	62	32.0	QP	N	FLO
0.602000	25.70	9.9	56	30.3	QP	N	FLO
3.666000	25.70	10.1	56	30.3	QP	N	FLO
4.018000	27.80	10.1	56	28.2	QP	N	FLO
13.618000	25.10	9.7	60	34.9	OP	N	FLO

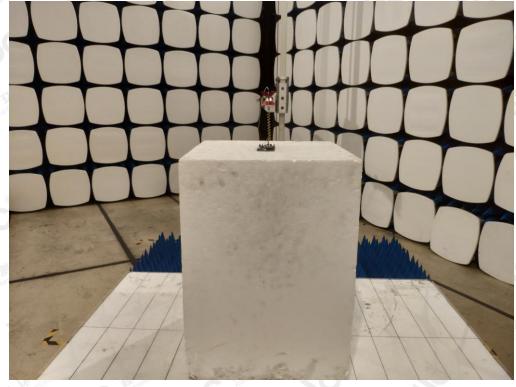
MEASUREMENT RESULT:

Frequency MHz	Level dBuV	Transd dB	Limit dBuV	Margin dB	Detector	Line	PE
0.186000	20.90	10.0	54	33.3	AV	N	FLO
0.242000	19.40	10.1	52	32.6	AV	N	FLO
0.602000	19.90	9.9	46	26.1	AV	N	FLO
3.666000	14.20	10.1	46	31.8	AV	N	FLO
4.018000	16.00	10.1	46	30.0	AV	N	FLO
13.634000	16.20	9.7	50	33.8	AV	N	FLO

RESULT: PASS

Note: All the test modes had been tested, the mode 1 was the worst case. Only the data of the worst case would be record in this test report.

The results spowford this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.


Page 41 of 42

APPENDIX A: PHOTOGRAPHS OF TEST SETUP

RADIATED EMISSION TEST SETUP BELOW 1GHZ

RADIATED EMISSION TEST SETUP ABOVE 1GHZ

The results specified this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by KGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a true; //www.agc-gett.com.

Attestation of Global Compliance

Tel: +86-755 2908 1955 Fax: +86-755 2600 8484 E-mail: agc@agc-cert.com @ 400 089 2118 Add: 2/F., Building 2, No.1-4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Baoan District, Shenzhen, Guangdong China

Page 42 of 42

CONDUCTED EMISSION TEST SETUP

----END OF REPORT----

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by (CE), this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.