

Shenzhen Toby Technology Co., Ltd.

Report No.: TB-FCC170422

1 of 40 Page:

FCC Radio Test Report FCC ID: 2APJG-CK01

Original Grant

TB-FCC170422 Report No.

Tronicc Technologies Applicant

Equipment Under Test (EUT)

EUT Name CareKii

Model No. CK01

: N/A Serial Model No.

: CareKii **Brand Name**

Receipt Date : 2019-11-19

Test Date : 2019-11-19 to 2019-12-02

2019-12-04 **Issue Date**

: FCC Part 15: 2019, Subpart C(15.247) **Standards**

Test Method ANSI C63.10: 2013

PASS Conclusions

In the configuration tested, the EUT complied with the standards specified above,

Test/Witness

Galen **Engineer** Garen

WAN SU Lugla. Engineer

Supervisor Ivan Su

Engineer Manager Ray Lai

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1.0

Tel: +86 75526509301

Page:

2 of 40

Contents

TOBY

CON	ITENTS	2
1.	GENERAL INFORMATION ABOUT EUT	5
	1.1 Client Information	5
	1.2 General Description of EUT (Equipment Under Test)	
	1.3 Block Diagram Showing the Configuration of System Tested	6
	1.4 Description of Support Units	7
	1.6 Description of Test Software Setting	8
	1.7 Measurement Uncertainty	8
	1.8 Test Facility	9
2.	TEST SUMMARY	10
TES	T SOFTWARE	10
3.	TEST EQUIPMENT	11
4.	CONDUCTED EMISSION TEST	12
	4.1 Test Standard and Limit	
	4.2 Test Setup	
	4.3 Test Procedure	
	4.4 EUT Operating Mode	13
	4.5 Test Da5ta	13
5.	RADIATED EMISSION TEST	14
	5.1 Test Standard and Limit	14
	5.2 Test Setup	15
	5.3 Test Procedure	16
	5.4 EUT Operating Condition	17
	5.5 Test Data	17
6.	RESTRICTED BANDS REQUIREMENT	18
	6.1 Test Standard and Limit	18
	6.2 Test Setup	18
	6.3 Test Procedure	18
	6.4 EUT Operating Condition	19
	6.5 Test Data	19
7 .	BANDWIDTH TEST	20
	7.1 Test Standard and Limit	20
	7.2 Test Setup	20
	7.3 Test Procedure	20
	7.4 EUT Operating Condition	
	7.5 Test Data	20
8.	PEAK OUTPUT POWER TEST	21
	8.1 Test Standard and Limit	21
	8.2 Test Setup	21

Page: 3 of 40

	8.3 Test Procedure	21
	8.4 EUT Operating Condition	21
	8.5 Test Data	21
9.	POWER SPECTRAL DENSITY TEST	22
	9.1 Test Standard and Limit	
	9.2 Test Setup	
	9.3 Test Procedure	
	9.4 EUT Operating Condition	22
	9.5 Test Data	22
10.	ANTENNA REQUIREMENT	23
	10.1 Standard Requirement	
	10.2 Antenna Connected Construction	23
	10.3 Result	23
ATTA	ACHMENT A RADIATED EMISSION TEST DATA	24
	ACHMENT B RESTRICTED BANDS REQUIREMENT AND BAND-ED	
	ACHMENT C BANDWIDTH TEST DATA	
	ACHMENT D PEAK OUTPUT POWER TEST DATA	
	ACHMENT E POWER SPECTRAL DENSITY TEST DATA	

Page: 4 of 40

Revision History

Report No.	Version	Description	Issued Date
TB-FCC170422	Rev.01	Initial issue of report	2019-12-04
A W			4000
BULL	a W	THE STATE OF THE S	
		The same of the sa	4000
Distance of the second	100		3 5 6
MODE			603
33	MOD.		070
4037			m33
	111111		TO B
	2 60		
	333	Company of the	
	WU 27	TUD'S	A W

Page: 5 of 40

1. General Information about EUT

1.1 Client Information

Applicant : Tronicc Technologies		Tronicc Technologies
Address : 18584 Budge, Pierrefonds, QC, Canada		18584 Budge, Pierrefonds, QC, Canada
Manufacturer : Tronicc Technologies		Tronicc Technologies
Address : 18584 Budge, Pierrefonds, QC, Canada		18584 Budge, Pierrefonds, QC, Canada

1.2 General Description of EUT (Equipment Under Test)

EUT Name	1	CareKii		
Models No.		CK01		
Model Difference		N/A		
		Operation Frequency:	Bluetooth 4.2(BLE): 2402MHz~2480MHz	
		Number of Channel:	Bluetooth 4.2(BLE): 40 channels see note(3)	
Product		RF Output Power:	BLE: -0.162dBm	
Description		Antenna Gain:	0.5dBi PCB Antenna	
		Modulation Type:	GFSK	
		Bit Rate of Transmitter:	1Mbps(GFSK)	
Power Rating	:	DC 3.7V 90mAh by Li-ion battery		
Software Version	:	N/A		
Hardware Version	:	N/A		
Connecting I/O Port(S)	:	Please refer to the User's Manual		
Remark		The antenna gain provided by the applicant, the verified for the RF conduction test provided by TOBY test lab.		

Note:

This Test Report is FCC Part 15.247 for Bluetooth BLE, the test procedure follows the FCC KDB 558074 D01 v05r02.

- (1) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.
- (2) Antenna information provided by the applicant.

Page: 6 of 40

(3) Channel List:

	211211				
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	14	2430	28	2458
01	2404	15	2432	29	2460
02	2406	16	2434	30	2462
03	2408	17	2436	31	2464
04	2410	18	2438	32	2466
05	2412	19	2440	33	2468
06	2414	20	2442	34	2470
07	2416	21	2444	35	2472
08	2418	22	2446	36	2474
09	2420	23	2448	37	2476
10	2422	24	2450	38	2478
11	2424	25	2452	39	2480
12	2426	26	2454		
13	2428	27	2456		

1.3 Block Diagram Showing the Configuration of System Tested

EUT	

Page: 7 of 40

1.4 Description of Support Units

Equipment Information				
Name	Model	FCC ID/VOC	Manufacturer	Used "√"
	77.77	[1] [1]		

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

For Conducted Test		
Final Test Mode Description		
Mode 1	TX Mode (Channel 20)	

For Radiated Test					
Final Test Mode Description					
Mode 1	Normal Working+ TX Mode (Channel 20)				
Mode 2 Normal Working+ TX Mode (Channel 00/20/39					

Note:

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate.

According to ANSI C63.10 standards, the measurements are performed at the highest, middle, lowest available channels, and the worst case data rate as follows:

BLE Mode: GFSK Modulation Transmitting mode.

- (2) During the testing procedure, the continuously transmitting with the maximum power mode was programmed by the customer.
- (3) The EUT is considered a portable unit; in normal use it was positioned on X-plane. The worst case was found positioned on X-plane. Therefore only the test data of this X-plane was used for radiated emission measurement test.

Page: 8 of 40

1.6 Description of Test Software Setting

During testing channel& Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of RF setting.

Test Software Version	CMD.exe		
Frequency	2402 MHz	2442MHz	2480 MHz
BLE GFSK	DEF	DEF	DEF

1.7 Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty (U _{Lab})
Control of the second	Level Accuracy:	A HIVE
Conducted Emission	9kHz~150kHz	±3.42 dB
	150kHz to 30MHz	±3.42 dB
Dadiete d Emission	Level Accuracy:	±4.60 dB
Radiated Emission	9kHz to 30 MHz	±4.00 dB
Radiated Emission	Level Accuracy:	±4.40 dB
Radiated Effilssion	30MHz to 1000 MHz	±4.40 dB
Radiated Emission	Level Accuracy:	±4.20 dB
Naulateu EIIIISSIOII	Above 1000MHz	±4.20 UD

Page: 9 of 40

1.8 Test Facility

The testing was performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at:1A/F., Bldg.6, Yusheng Industrial Zone, The National Road No.107 Xixiang Section 467, Xixiang, Bao'an, Shenzhen, Guangdong, China.

At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01. FCC Accredited Test Site Number: 854351.

IC Registration No.: (11950A-1)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A-1.

Page: 10 of 40

2. Test Summary

FCC Part 15 Subpart C(15.247)/RSS 247 Issue 2					
Standard Section		Toot Itom	ludament	Domork	
FCC	IC	Test Item	Judgment	Remark	
15.203		Antenna Requirement	PASS	N/A	
15.207(a)	RSS-GEN 7.2.4	Conducted Emission	N/A	N/A	
15.205&15.247(d)	RSS-GEN 7.2.2	Band-Edge & Unwanted Emissions into Restricted Frequency	PASS	N/A	
15.247(a)(2)	RSS 247 5.2 (1)	6dB Bandwidth	PASS	N/A	
15.247(b)(3)	RSS 247 5.4 (4)	Conducted Max Output Power	PASS	N/A	
15.247(e)	RSS 247 5.2 (2)	Power Spectral Density	PASS	N/A	
15.205, 15.209&15.247(d)	RSS 247 5.5	Transmitter Radiated Spurious &Unwanted Emissions into Restricted Frequency	PASS	N/A	

Note: (1)"/" for no requirement for this test item.

Test Software

Test Item	Test Software	Manufacturer	Version No.
Conducted Emission	EZ-EMC	EZ	CDI-03A2
Radiation Emission	EZ-EMC	EZ	FA-03A2RE
RF Conducted Measurement	MTS-8310	MWRFtest	V2.0.0.0

⁽²⁾N/A is an abbreviation for Not Applicable.

⁽³⁾All tests were conducted using the adapter and antenna gain provided by the applicant, The laboratory tests only according to the information provided by the applicant.

Page: 11 of 40

3. Test Equipment

Conducted Emission	n Test				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
EMI Test Receiver	Rohde & Schwarz	ESCI	100321	Jul. 13, 2019	Jul. 12, 2020
RF Switching Unit	Compliance Direction Systems Inc	RSU-A4	34403	Jul. 13, 2019	Jul. 12, 2020
AMN	SCHWARZBECK	NNBL 8226-2	8226-2/164	Jul. 13, 2019	Jul. 12, 2020
LISN	Rohde & Schwarz	ENV216	101131	Jul. 13, 2019	Jul. 12, 2020
Radiation Emission	Test		-		
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 13, 2019	Jul. 12, 2020
EMI Test Receiver	Rohde & Schwarz	ESPI	100010/007	Jul. 13, 2019	Jul. 12, 2020
Spectrum Analyzer	Rohde & Schwarz	FSVR	1311.006K40-10094 5-DH	Feb. 10, 2019	Feb. 09, 2020
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Jan. 27, 2019	Jan. 26, 2020
Bilog Antenna	ETS-LINDGREN	3142E	00117542	Jan. 27, 2019	Jan. 26, 2020
Horn Antenna	ETS-LINDGREN	3117	00143207	Mar.03, 2019	Mar. 02, 2020
Horn Antenna	ETS-LINDGREN	3117	00143209	Mar.03, 2019	Mar. 02, 2020
Horn Antenna	ETS-LINDGREN	BBHA 9170	BBHA9170582	Mar.03, 2019	Mar. 02, 2020
_oop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Jul. 13, 2019	Jul. 12, 2020
Pre-amplifier	Sonoma	310N	185903	Mar.04, 2019	Mar. 03, 2020
Pre-amplifier	HP	8449B	3008A00849	Mar.03, 2019	Mar. 02, 2020
Pre-amplifier	EMCI	EMC02325	980217	Mar.03, 2019	Mar. 02, 2020
Cable	HUBER+SUHNER	100	SUCOFLEX	Mar.03, 2019	Mar. 02, 2020
Positioning Controller	ETS-LINDGREN	2090	N/A	N/A	N/A
Antenna Condu	ucted Emission				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 13, 2019	Jul. 12, 2020
Spectrum Analyzer	Rohde & Schwarz	ESCI	100010/007	Jul. 13, 2019	Jul. 12, 2020
MXA Signal Analyzer	Agilent	N9020A	MY49100060	Sep. 16, 2019	Sep. 15, 2020
Vector Signal Generator	Agilent	N5182A	MY50141294	Sep. 16, 2019	Sep. 15, 2020
Analog Signal Generator	Agilent	N5181A	MY50141953	Sep. 16, 2019	Sep. 15, 2020
100	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO26	Sep. 16, 2019	Sep. 15, 2020
CHILL	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO29	Sep. 16, 2019	Sep. 15, 2020
RF Power Sensor	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO31	Sep. 16, 2019	Sep. 15, 2020
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO33	Sep. 16, 2019	Sep. 15, 2020

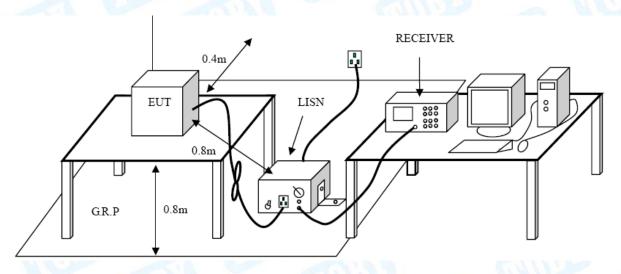
Page: 12 of 40

4. Conducted Emission Test

4.1 Test Standard and Limit

4.1.1Test Standard FCC Part 15.207

4.1.2 Test Limit


Conducted Emission Test Limit

Eraguanay	Maximum RF Line Voltage (dBμV)		
Frequency	Quasi-peak Level	Average Level	
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *	
500kHz~5MHz	56	46	
5MHz~30MHz	60	50	

Notes:

- (1) *Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

4.2 Test Setup

4.3 Test Procedure

The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/50uH of coupling impedance for the measuring instrument.

Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

Page: 13 of 40

I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

LISN at least 80 cm from nearest part of EUT chassis.

The bandwidth of EMI test receiver is set at 9 kHz, and the test frequency band is from 0.15MHz to 30MHz.

4.4 EUT Operating Mode

Please refer to the description of test mode.

4.5 Test Da5ta

Wireless charging only, not applicable.

Page: 14 of 40

5. Radiated Emission Test

5.1 Test Standard and Limit

5.1.1 Test Standard FCC Part 15.247(d)

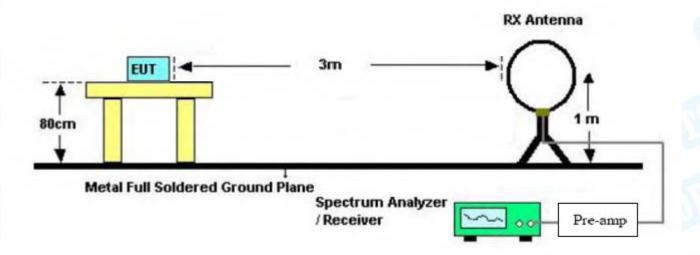
5.1.2 Test Limit

Radiated Emission Limits (9kHz~1000MHz)

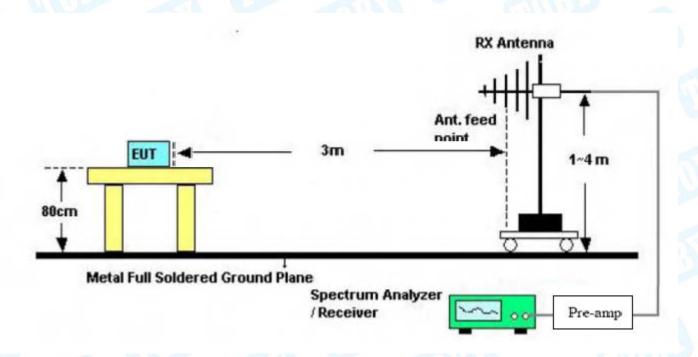
Frequency (MHz	Field Strength (microvolt/meter)	Measurement Distanc (meters)		
0.009~0.490	2400/F(KHz)	300		
0.490~1.705	24000/F(KHz)	30		
1.705~30.0	30	30		
30~88	100	3		
88~216	150	3		
216~960	200	3		
Above 960	500	3		

Radiated Emission Limit (Above 1000MHz)

Frequency	Distance Met	ers(at 3m)
(MHz)	Peak (dBuV/m)	Average (dBuV/m)
Above 1000	74	54

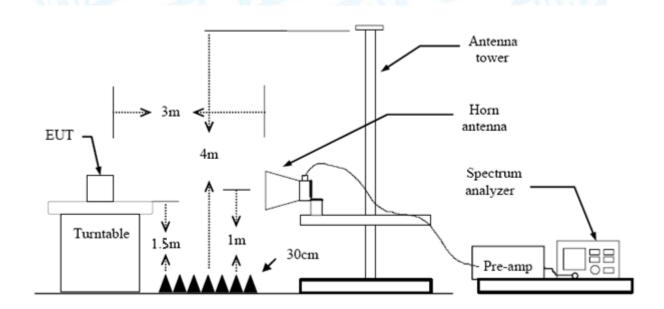

Note:

- (1) The tighter limit applies at the band edges.
- (2) Emission Level (dBuV/m)=20log Emission Level (uV/m)



Page: 15 of 40

5.2 Test Setup


Below 30MHz Test Setup

Below 1000MHz Test Setup

Page: 16 of 40

Above 1GHz Test Setup

5.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

Page: 17 of 40

5.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

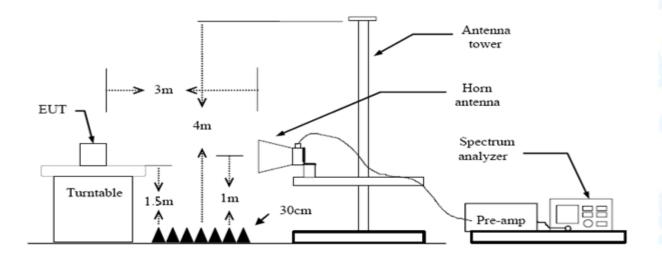
5.5 Test Data

Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.

Please refer to the Attachment A.

Page: 18 of 40

6. Restricted Bands Requirement


6.1 Test Standard and Limit

6.1.1 Test Standard FCC Part 15.247(d) FCC Part 15.205

6.1.2 Test Limit

Restricted Frequency Band (MHz)	Distance Me	eters(at 3m)
	Peak (dBuV/m)	Average (dBuV/m)
2310 ~2390	74	54
2483.5 ~2500	74	54

6.2 Test Setup

6.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector

Page: 19 of 40

mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.

- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

6.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

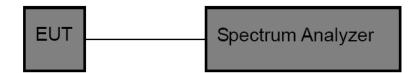
6.5 Test Data

Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.

Please refer to the Attachment B.

Page: 20 of 40

7. Bandwidth Test


7.1 Test Standard and Limit

7.1.1 Test Standard FCC Part 15.247 (a)(2)

7.1.2 Test Limit

FCC Part 15 Subpart C(15.247)/RSS-247						
Test Item	Test Item Limit Frequency Range(MH					
Bandwidth	>=500 KHz (6dB bandwidth)	2400~2483.5				

7.2 Test Setup

7.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) The bandwidth is measured at an amplitude level reduced 6dB from the reference level. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency. Once the reference level is established, the equipment is conditioned with typical modulating signal to produce the worst –case (i.e the widest) bandwidth.
- (3)Measure the channel separation the spectrum analyzer was set to Resolution Bandwidth: 100 kHz, and Video Bandwidth: 300 kHz, Detector: Peak, Sweep Time set auto.

7.4 EUT Operating Condition

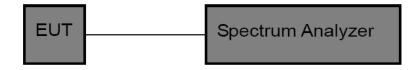
The EUT was set to continuously transmitting in each mode and low, middle and high channel for the test.

7.5 Test Data

Please refer to the Attachment C.

Page: 21 of 40

8. Peak Output Power Test


8.1 Test Standard and Limit

8.1.1 Test Standard FCC Part 15.247 (b)(3)

8.1.2 Test Limit

FCC Part 15 Subpart C(15.247)/RSS-247				
Test Item Limit Frequency Range(MF				
Peak Output Power	1 Watt or 30 dBm	2400~2483.5		

8.2 Test Setup

8.3 Test Procedure

The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement is according to section 9.1.1 of KDB 558074 D01 DTS Meas Guidance v05.

- (1) Set the RBW≥DTS Bandwidth
- (2) Set VBW≥3*RBW
- (3) Set Span≥3*RBW
- (4) Sweep time=auto
- (5) Detector= peak
- (6) Trace mode= maxhold.
- (7) Allow trace to fully stabilize, and then use peak marker function to determine the peak amplitude level.

8.4 EUT Operating Condition

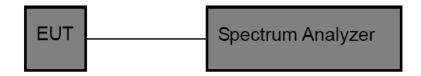
The EUT was set to continuously transmitting in the max power during the test.

8.5 Test Data

Please refer to the Attachment D.

Page: 22 of 40

9. Power Spectral Density Test


9.1 Test Standard and Limit

9.1.1 Test Standard FCC Part 15.247 (e)

9.1.2 Test Limit

FCC Part 15 Subpart C(15.247)			
Test Item Limit Frequency Range(M			
Power Spectral Density	8dBm(in any 3 kHz)	2400~2483.5	

9.2 Test Setup

9.3 Test Procedure

The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement according to section 10.2 of KDB 558074 D01 DTS Meas Guidance v05.

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Set analyser center frequency to DTS channel center frequency.
- (3) Set the span to 1.5 times the DTS bandwidth.
- (4) Set the RBW to: 3 kHz(5) Set the VBW to: 10 kHz
- (6) Detector: peak
- (7) Sweep time: auto
- (8) Allow trace to fully stabilize. Then use the peak marker function to determine the maximum amplitude level.

9.4 EUT Operating Condition

The EUT was set to continuously transmitting in each mode and low, Middle and high channel for the test.

9.5 Test Data

Please refer to the Attachment E.

Page: 23 of 40

10. Antenna Requirement

10.1 Standard Requirement

10.1.1 Standard FCC Part 15.203

10.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

10.2 Antenna Connected Construction

The gains of the antenna used for transmitting is 0.5dBi, and the antenna de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

10.3 Result

The EUT antenna is a PCB Antenna. It complies with the standard requirement.

Antenna Type	
⊠Permanent attached antenna	
Unique connector antenna	1000
Professional installation antenna	

Page: 24 of 40

Attachment A-- Radiated Emission Test Data

9 KHz~30 MHz

From 9 KHz to 30 MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB

Below the permissible value has no need to be reported.

30MHz~1GHz

Temperature:	25℃	Ulan		Relative Humi	idity:	55%	
Test Voltage:	DC 3.7	V	11/1) _	M. F.	111	
Ant. Pol.	Horizon	ntal					
Test Mode:	Mode 1	100		WIND.			777
Remark:	Only wo	orse case is	reported			19.10	
80.0 dBuV/m							
					(RF)FCC 15	C 3M Radiation	
						Margin -6 di	
30						6 X.v.	ww
				4	5 ××	mountain	
1 1 mm		2	3 XX.~~	mount of the same			
· vmm	Mummun	NAME A STANDAR	AwdA				
30.000 40 50	60 70	80	(MHz)	300	400 50	0 600 700	1000.000
		Reading	Correct	Measure-			
No. Mk. F	req.	Level	Factor	ment	Limit	Over	
1	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detecto
1 41.	7129	32.40	-20.03	12.37	40.00	-27.63	QP
2 94.	0979	33.02	-22.06	10.96	43.50	-32.54	QP
3 168	.4138	33.19	-20.55	12.64	43.50	-30.86	QP
		32.75	-15.10	17.65	46.00	-28.35	QP
4 327	.8873	02.70					
	.8873	32.43	-10.97	21.46	46.00	-24.54	QP
5 478			-10.97 -6.49	21.46 27.42	46.00 46.00	-24.54 -18.58	QP QP

Page: 25 of 40

Temperature:	25℃		R	elative Humi	aity:	55%	
Test Voltage:	DC 3.7	V			1100		A
Ant. Pol.	Vertica	TANK DES		al			
Test Mode:	Mode 1	100				MADE:	
Remark:	Only w	orse case is	s reported		2.0	1	65
80.0 dBuV/m							
					(RF)FCC 1	5C 3M Radiation	
						Margin -6	dB
30							
1 X				5	6	moundan	
What was		3	4 ×		M. Marie		
Jane Car	NA	harmon	munnama	, MANUT			
	a water that he a						
	A CONTRACTOR .						
	a manage of						
	50 60 70		(MHz)	300	400 50	00 600 700	1000.000
	50 60 70	Reading					1000.000
	50 60 70 Freq.		(MHz)	300	400 50 Limit	00 600 700 Over	1000.000
30.000 40		Reading	(MHz) Correct	300 Measure-			
30.000 40 No. Mk.	Freq.	Reading Level	(MHz) Correct Factor	Measure- ment	Limit	Over	
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit dBuV/m	Over	Detecto
No. Mk. 1 * 3 2 4	Freq. MHz 1.9546 5.3755	Reading Level dBuV 36.47 36.26	Correct Factor dB/m -14.48 -21.79	Measure- ment dBuV/m 21.99 14.47	Limit dBuV/m 40.00 40.00	Over dB -18.01 -25.53	Detecto QP QP
No. Mk. 1 * 3 2 4 3 8	Freq. MHz 1.9546 5.3755 9.5899	Reading Level dBuV 36.47 36.26 33.14	Correct Factor dB/m -14.48 -21.79 -22.03	300 Measurement dBuV/m 21.99 14.47 11.11	Limit dBuV/m 40.00 40.00 43.50	Over dB -18.01 -25.53 -32.39	Detecto QP QP QP
No. Mk. 1 * 3 2 4 3 8 4 19	Freq. MHz 1.9546 5.3755 9.5899 91.0738	Reading Level dBuV 36.47 36.26 33.14 32.87	Correct Factor dB/m -14.48 -21.79 -22.03 -19.77	300 Measurement dBuV/m 21.99 14.47 11.11 13.10	Limit dBuV/m 40.00 40.00 43.50 43.50	Over dB -18.01 -25.53 -32.39 -30.40	Detector QP QP QP QP
No. Mk. 1 * 3 2 4 3 8 4 19	Freq. MHz 1.9546 5.3755 9.5899	Reading Level dBuV 36.47 36.26 33.14	Correct Factor dB/m -14.48 -21.79 -22.03	300 Measurement dBuV/m 21.99 14.47 11.11	Limit dBuV/m 40.00 40.00 43.50	Over dB -18.01 -25.53 -32.39	Detecto QP QP QP
No. Mk. 1 * 3 2 4 3 8 4 19 5 30	Freq. MHz 1.9546 5.3755 9.5899 91.0738	Reading Level dBuV 36.47 36.26 33.14 32.87	Correct Factor dB/m -14.48 -21.79 -22.03 -19.77	300 Measurement dBuV/m 21.99 14.47 11.11 13.10	Limit dBuV/m 40.00 40.00 43.50 43.50	Over dB -18.01 -25.53 -32.39 -30.40	QP QP QP

Page: 26 of 40

Above 1GHz

Temperature:			25 ℃			Relative Hu	umidity:	55%	
Test Vo	Itage) :	DC 3	.7V	3				
Ant. Po	ol.		Horiz	ontal		2.0			
Test Mode: BLE Mode TX 2402 MHz								M. B. Com	
Remark	(:			eport for the cribed limit.	emission w	hich more th	an 10 dB l	below the	
No.	Mk.	Fre	eq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MH	łz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1 4805.		500	42.09	14.44	56.53	74.00	-17.47	peak	
2 * 4805.		500	29.53	14.44	43.97	54.00	-10.03	AVG	

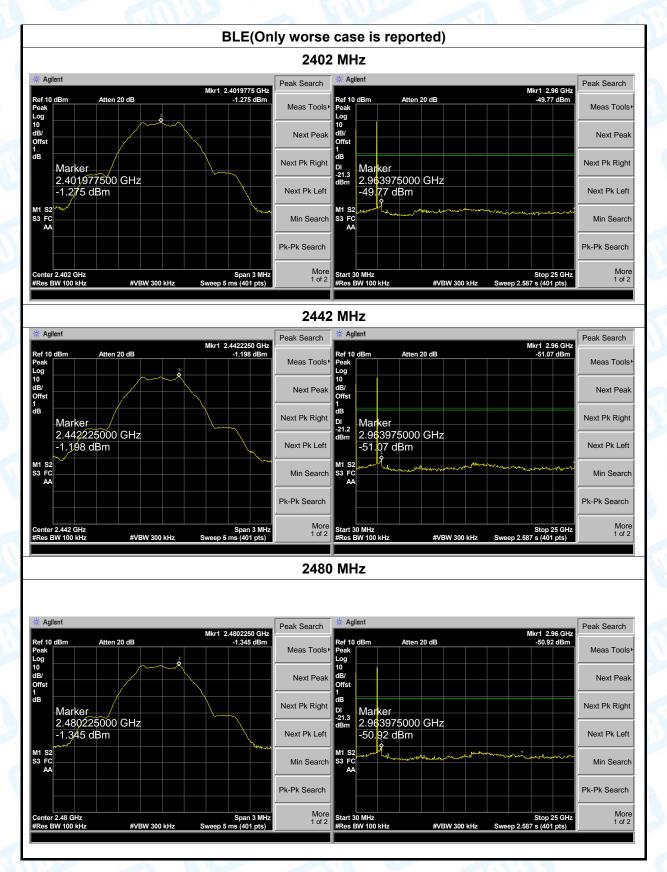
Temperatu	ıre:	25 ℃			Relative Hur	nidity:	55%	
Test Volta	ge:	DC 3	3.7V	671	100		MAN	
Ant. Pol.		Verti	cal	MA		67.7	1	
Test Mode):	BLE	Mode TX 24	02 MHz	1011	137		N M
Remark:			eport for the cribed limit.	emission v	vhich more th	an 10 dB	below the	3
No. Mk	c. Fre	eq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MH	łz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1 *	4802.	500	29.21	14.42	43.63	54.00	-10.37	AVG
2	4803.	046	43.44	14.42	57.86	74.00	-16.14	peak

Page: 27 of 40

Tempe	ratu	re:	25 ℃	No.		Relative Hu	umidity:	55%	M. Bar	
Test Vo	oltag	e:	DC 3	DC 3.7V						
Ant. Pol. Horizontal									9	
Test Mode: BLE Mode TX 2442 MHz								6.0		
Remar	k:			eport for the cribed limit.	emission w	vhich more th	an 10 dB l	below the		
No.	Mk.	Fre	∍q.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MH	łz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	
1 4885.		332	44.22	14.93	59.15	74.00	-14.85	peak		
2 * 4885.		356	30.30	14.93	45.23	54.00	-8.77	AVG		

					- W						
Tempe	Temperature:			25℃ Relative Humidity: 55%							
Test V	oltag	e:	DC 3	DC 3.7V							
Ant. Pol. Vertical								77			
Test N	t Mode: BLE Mode TX 2442 MHz										
Rema	rk:			eport for the cribed limit.	emission w	hich more tha	an 10 dB b	pelow the	J. W		
No.	Mk.	Fre	eq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MH	Ηz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector		
1	*	4883.	.120	30.39	13.91	44.30	54.00	-9.70	AVG		
2		4884.	.106	43.83	13.92	57.75	74.00	-16.25	peak		

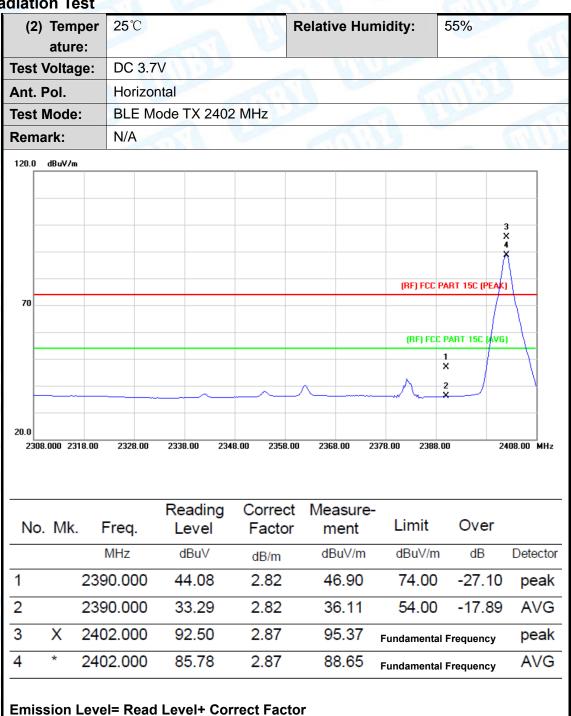
Page: 28 of 40


Temperature:			25℃		2 M.	Relative Hu	ımidity:	55%				
Test Vo	ltag	e:	DC 3	DC 3.7V								
Ant. Po	ıl.		Horiz	zontal	a v		1	1.0				
Test Mode: BLE Mode TX 2480 MHz												
Remark:				eport for the cribed limit.	emission w	hich more th	an 10 dB l	pelow the				
No.	Mk.	Fr	eq.	Reading Level	Correct Factor	Measure- ment	Limit	Over				
		MI	Ηz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector			
1	1 4960.		.150	44.34	15.39	59.73	74.00	-14.27	peak			
2	2 * 4960.		.150	30.25	15.39	45.64	54.00	-8.36	AVG			

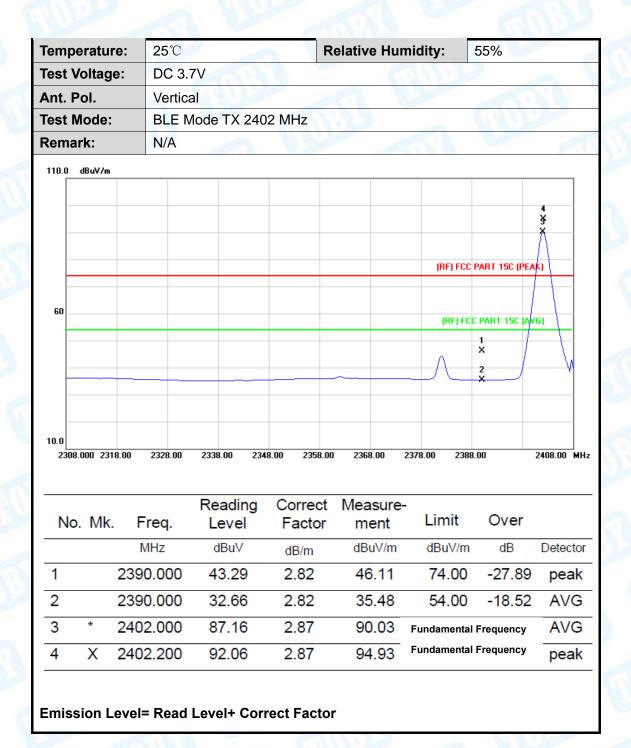
Tempe	ratu	re:	25℃	CALL		Relative Hu	umidity:	55%	
Test V	oltag	e:	DC 3	3.7V				CIL	DE
Ant. Pol. Vertical									
Test Mode: BLE Mode TX 2480 MHz									
Remar	k:		100	cribed limit.		vhich more th	an 10 dB	below the	}
No.	Mk.	Fre	eq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MH	łz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4959.	808	44.21	15.39	59.60	74.00	-14.40	peak
2	*	4960.	474	30.64	15.40	46.04	54.00	-7.96	AVG

Page: 29 of 40

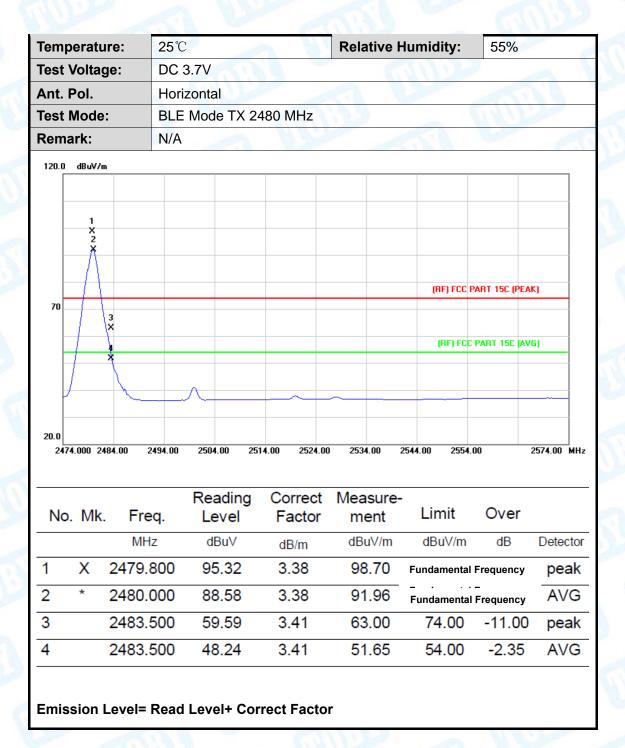
Conducted Emission Test Data



Page: 30 of 40


Attachment B-- Restricted Bands Requirement and Band-edge Test Data

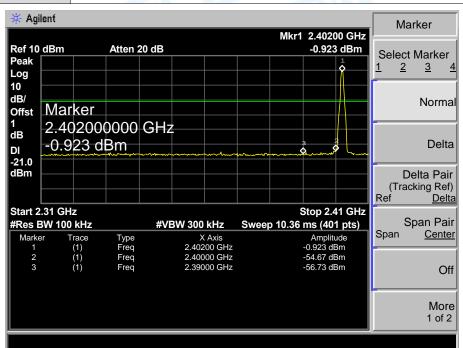
(1) Radiation Test

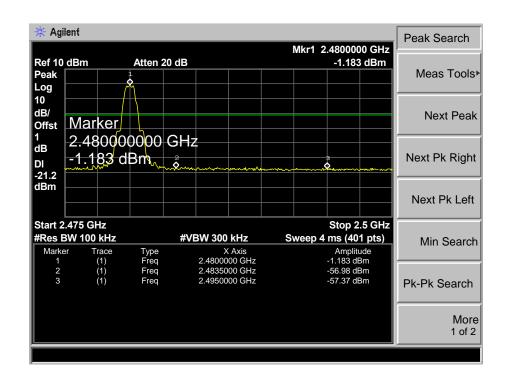


Page: 31 of 40

Page: 32 of 40

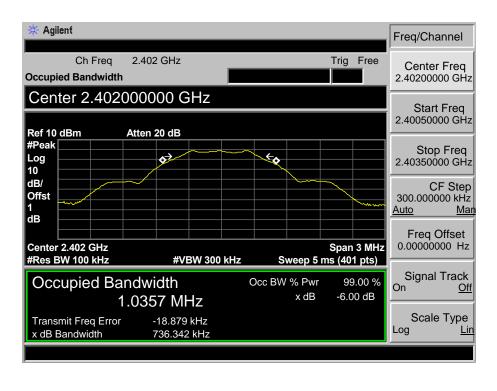
Page: 33 of 40


ıem	peratu	re:	25°	,C		1	Re	elativ	e Hun	nidity:		55%		
Test	Voltag	ge:	DC	3.7V		NA			6	III			A	
۹nt.	Pol.		Vei	rtical	1973			M		A STATE OF THE PARTY OF THE PAR		1	1.4	
Гest	Mode	:	BL	E Mod	e TX 2	2480 MH	Ηz)			The state of	1	
Rem	nark:		N/A	4	1	1 4	13.0					1		
110.0) dBuV/r	n												
60	1 X 2 X	3										PART 15C (PE		
		*						~			-			
10.0 24	174.000 24	184.00	2494	.00 25	604.00	2514.00	2524.00	2534	4.00	2544.00	2554.	00	2574.00) MI
	- 141	F	roa		eadin Level		rrect		sure- ent	Lin	nit	Over		
N	o. Mk		req.			1 0	actor	1111	CIII					
N	O. IVIK		MHz		dBu∀		actor B/m		uV/m	dBu	ıV/m	dB	Dete	ecto
N 1	0. IVIK	ı				dE		dBı				dB		ecto eak
		247	MHz	00 9	dBu∀	dl 3.	B/m	dB:	uV/m	Funda	mental		, pe	
1	X	247 248	инz 9.80	00 8	dBu∨ 93.37	dl 3.	B/m .38	96 90	uV/m 3.75	Funda Funda	mental	Frequency	, pe	ak



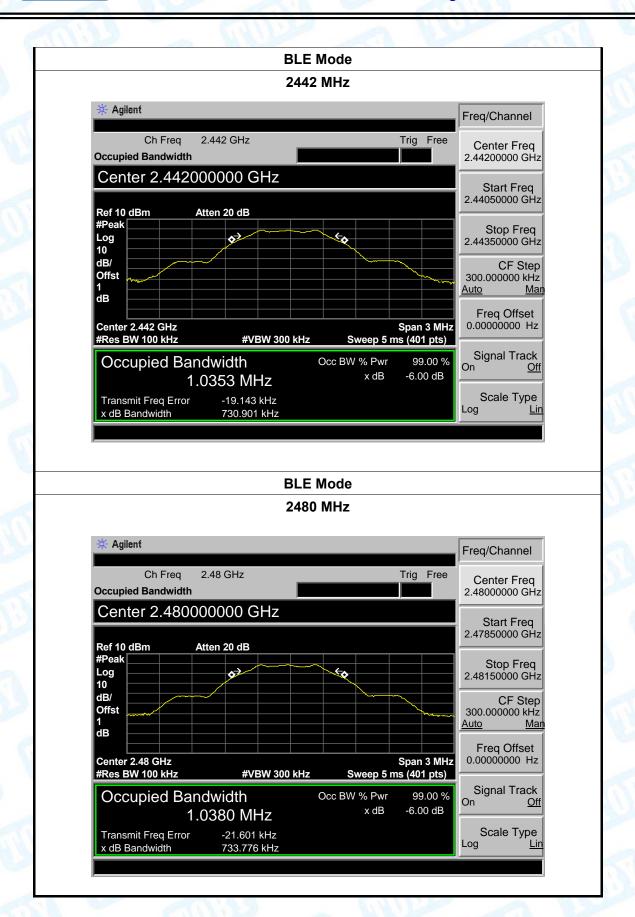
Page: 34 of 40

(3) Conducted Test


Page: 35 of 40

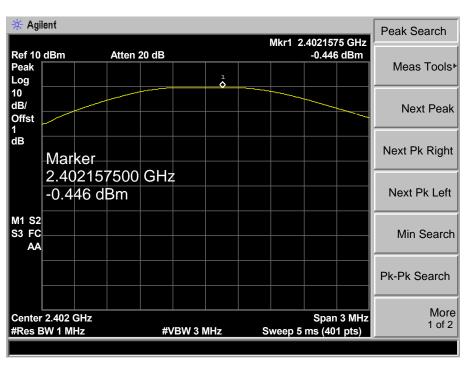
Attachment C-- Bandwidth Test Data

Temperature:	25 ℃		Relative Humidity:	55%
Test Voltage:	DC 3	i.7V		
Test Mode:	BLE	TX Mode	(1)	CHILD ST
Channel freque	ncy	6dB Bandwidth	99% Bandwidth	Limit
(MHz)		(kHz)	(kHz)	(kHz)
2402	736.342		1035.7	
2442		730.901	1035.3	>=500
2480		733.776	1038.0	

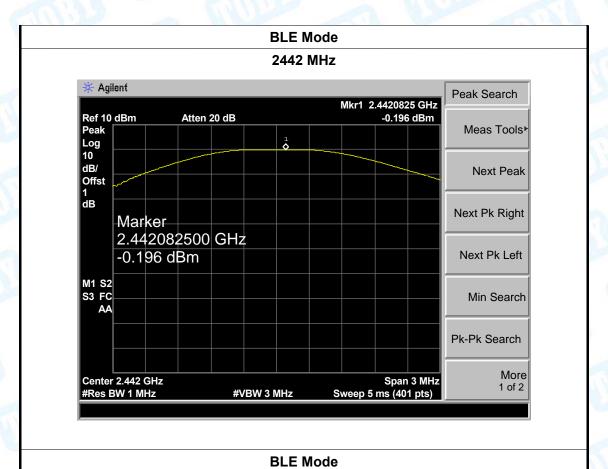

BLE Mode

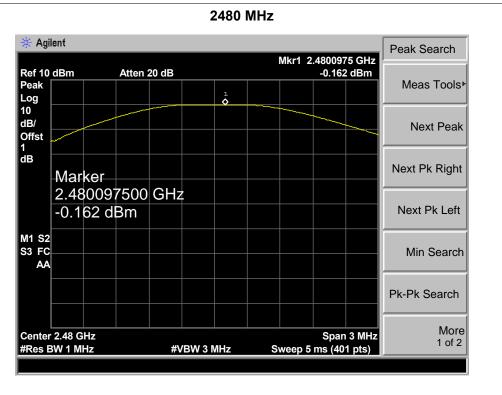
2402 MHz

Page: 36 of 40



Page: 37 of 40


Attachment D-- Peak Output Power Test Data

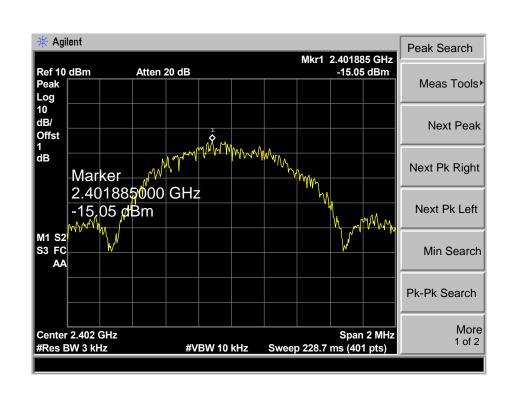

25℃		/ : 55%	
DC 3.7V			
BLE TX M	lode	1:19	CHILL
cy (MHz)	Test Res	ult (dBm)	Limit (dBm)
	-0.446		
	-0.196		30
	-0.162		
	BLE I	Mode	
	2402	MHz	
	DC 3.7V BLE TX M	DC 3.7V BLE TX Mode cy (MHz) Test Residence -0.4 -0.7 BLE I	DC 3.7V BLE TX Mode cy (MHz)

Page: 38 of 40

Temperature: 25°C

Report No.: TB-FCC170422

Page: 39 of 40


Relative Humidity: 55%

Attachment E-- Power Spectral Density Test Data

Test Voltage:	DC 3.7V		N. C.	CZ.V. 1
Test Mode:	BLE TX N	Mode	[H]	100
Channel Frequ	uency	Power Density	Limit	Result
(MHz)		(dBm/3kHz)	(dBm/3kHz)	Result
2402		-15.05		
2442		-14.87	8	PASS
2480		-15.10		
		PLE Modo		•

BLE Mode

2402 MHz

Page: 40 of 40

----END OF REPORT-----