

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR240500187801

1 of 52 Page:

SAR TEST REPORT

Application No.: SZCR2405001878AT

Applicant: MeiG Smart Technology Co., Ltd Manufacturer: MeiG Smart Technology Co., Ltd **Product Name:** Multi-mode 5G/LTE Smart Module

Model No.(EUT): **SRM955**

FCC ID: 2APJ4-SRM955

Standards: FCC 47CFR §2.1093

Date of Receipt: 2024/05/23

Date of Test: 2024/05/25-2024/06/01

Date of Issue: 2024/06/03 Test conclusion: PASS *

Authorized Signature:

Keny Xu Laboratory Manager

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company, Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CN_Doccheck@gs_com

No.1 Workshop, M-10, Middle Section, Science & Technology Park, Nanshan District, Shenzhen, Guangdong, China 518057 中国・广东・深圳市南山区科技园中区M-10栋1号厂房 邮编: 518057 t (86-755) 26012053

^{*} In the configuration tested, the EUT detailed in this report complied with the standards specified above.

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR240500187801

2 of 52 Page:

REVISION HISTORY

Report Number	Revision	Description	Issue Date
SZCR240500187801	01	Original	2024/06/03

Prepared By	Vito Wang
Checked By	Roman Pan
onsolica by	Roman Pan

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company, Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CN.Doccheck@sgs.com"

No.1 Workshop, M-10, Middle Section, Science & Technology Park, Nanshan District, Shenzhen, Guangdong, China 518057 t (86-755) 26012053

邮编: 518057

中国・广东・深圳市南山区科技园中区M-10栋1号厂房

t (86-755) 26012053

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR240500187801

3 of 52 Page:

TEST SUMMARY

Fraguency Pand	Max Reported SAR1g(W/kg)			Max Reported SAR10g(W/kg)
Frequency Band	Head	Body worn	Hotspot	Product specific 10gSAR
WI-FI (6GHz)	0.16	0.17	0.33	0.38
SAR Limited(W/kg)	1.60		4.00	

Frequency Band	Max Reported PD 4m ² (W/m ²)
WI-FI (6GHz)	5.79
PD Limited (W/m²)	10.0

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company, Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CN.Doccheck@sgs.com"

No.1 Workshop, M-10, Middle Section, Science & Technology Park, Nanshan District, Shenzhen, Guangdong, China 518057 t (86-755) 26012053 www.sgsgroup.com.cn 中国・广东・深圳市南山区科技园中区M-10栋1号厂房 邮编: 518057 t (86-755) 26012053 sgs.china@sgs.com

SZSAR-TRF-01 Rev. A/0 May15,2023

CENEDAL INFORMATION

Report No.: SZCR240500187801

4 of 52 Page:

CONTENTS

•	OLI	LIAL IN ONMATION	•••••••••••••••••••••••••••••••••••••••
	1.1	DETAILS OF CLIENT	
	1.2	TEST LOCATION	
	1.3	TEST FACILITY	
	1.4	GENERAL DESCRIPTION OF EUT	8
	1.5	TEST SPECIFICATION	9
	1.6	RF EXPOSURE LIMITS	10
2	MEA	SUREMENTS SYSTEM CONFIGURATION	1
	2.1	POWER DENSITY MEASUREMENT SYSTEM	1
	2.2	THE SAR MEASUREMENT SYSTEM	12
	2.3	ISOTROPIC EUMMWVX PROBE	14
	2.4	ISOTROPIC E-FIELD PROBE EX3DV4	15
	2.5	DATA ACQUISITION ELECTRONICS (DAE)	16
	2.6	SAM Twin Phantom	
	2.7	DEVICE HOLDER FOR TRANSMITTERS	1
	2.8	MEASUREMENT PROCEDURE	18
	2.8.1		
		Data Storage	
	2.8.3	Data Evaluation by SEMCAD	19
3	DES	CRIPTION OF TEST POSITION	2
	3.1	THE HEAD TEST POSITION	2
	3.1.1	SAM Phantom Shape	2
	3.1.2	EUT constructions	22
	3.1.3	B Definition of the "cheek" position	22
		Pefinition of the "tilted" position	
	3.2	THE BODY TEST POSITION	
	3.2.1		
	3.2.2		25
	3.3	THE EXTREMITY TEST POSITION	25
4	SYS	TEM VERIFICATION PROCEDURE	20
	4.1	TISSUE SIMULATE LIQUID	26
	4.1.1	Recipes for Tissue Simulate Liquid	20
	4.1.2	Measurement for Tissue Simulate Liquid	
	4.2	SAR SYSTEM CHECK	
	4.2.1		
	4.2.2		
	4.2.3	Detailed System Check Results	
	4.3	PD TEST SYSTEM VERIFICATION	
	4.3.1	PD System Verification Results	32

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company, Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CN_Doccheck@sgs.com

No.1 Workshop, M-10, Middle Section, Science & Technology Park, Nanshan District, Shenzhen, Guangdong, China 518057 中国・广东・深圳市南山区科技园中区M-10栋1号厂房

邮编: 518057 t (86-755) 26012053

t (86-755) 26012053

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR240500187801

5 of 52 Page:

	4.3.2 Detailed System Check Results	32
5	TEST CONFIGURATION	33
	5.1 WIFI TEST CONFIGURATION	33
6	TEST RESULTS AND MEASUREMENT DATA	35
(6.1 MEASUREMENT OF RF CONDUCTED POWER	35
	6.1.1 Conducted Power of WiFi	
(6.2 MEASUREMENT OF SAR DATA	
	6.2.1 SAR Result of WiFi 6E	
(6.3 MEASUREMENT OF PD DATA	
7	EQUIPMENT LIST	48
8	MEASUREMENT UNCERTAINTY	
9	CALIBRATION CERTIFICATE	51
10	PHOTOGRAPHS	51
ΑP	PPENDIX A: DETAILED SYSTEM CHECK RESULTS	52
ΑP	PPENDIX B: DETAILED TEST RESULTS	52
	PPENDIX C: CALIBRATION CERTIFICATE	
		52

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company, Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CN.Doccheck@sgs.com"

No.1 Workshop, M-10, Middle Section, Science & Technology Park, Nanshan District, Shenzhen, Guangdong, China 518057 中国・广东・深圳市南山区科技园中区M-10栋1号厂房

邮编: 518057

t (86-755) 26012053 www.sgsgroup.com.cn t (86-755) 26012053 sgs.china@sgs.com

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR240500187801

6 of 52 Page:

1 **General Information**

1.1 Details of Client

Applicant:	MeiG Smart Technology Co., Ltd		
Address:	Floor 5, Building G, Weijing Center, No. 2337 Guodai Road, Minhang District, Shanghai, China		
Manufacturer:	MeiG Smart Technology Co., Ltd		
Address:	Floor 5, Building G, Weijing Center, No. 2337 Guodai Road, Minhang District, Shanghai, China		

1.2 Test Location

Company:	SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch			
Address:	No. 1 Workshop, M-10, Middle section, Science & Technology Park, Nanshan District, Shenzhen, Guangdong, China			
Post code:	518057			
Test Engineer:	Charley Yi, Durant Lin			

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company, Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CN_Doccheck@sgs.com

邮编: 518057

No.1 Workshop, M-10, Middle Section, Science & Technology Park, Nanshan District, Shenzhen, Guangdong, China 518057 中国・广东・深圳市南山区科技园中区M-10栋1号厂房

t (86-755) 26012053 t (86-755) 26012053

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR240500187801

7 of 52 Page:

1.3 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• A2LA (Certificate No. 3816.01)

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 3816.01.

• Innovation, Science and Economic Development Canada

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch has been recognized by ISED as an accredited testing laboratory.

CAB identifier: CN0006.

IC#: 4620C.

• FCC -Designation Number: CN1336

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch has been recognized as an accredited testing laboratory.

Designation Number: CN1336. Test Firm Registration Number: 787754.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction form exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CN.Doccheck-Rogs.com

中国・广东・深圳市南山区科技园中区M-10栋1号厂房

No. 1 Workshop, M-10, Middle Section, Science & Technology Park, Nanshan District, Shenzhen, Guangdong, China 518057

t (86-755) 26012053 t (86-755) 26012053 邮编: 518057

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR240500187801

8 of 52 Page:

1.4 General Description of FUT

Product Name:	Multi-mode 5G/LTE Smart M	odule			
Model No. (EUT):	SRM955				
Product Phase:	production unit				
Device Type:	Portable device				
Exposure Category:	uncontrolled environment / g	eneral population			
Hardware Version:	1.02				
Software Version:	MT918_EQ000_2774.3A847	45.A0F816C.84C1BFC_231	106_100_V01_T01		
Antenna Type:	LDS Antenna				
Device Operating Config	Device Operating Configurations:				
Modulation Mode:	WIFI: OFDM, OFDMA				
Fraguency Banday	Band	Tx (MHz)	Rx (MHz)		
Frequency Bands:	WIFI 6E	5925-7125	5925-7125		
RF Cable:	□ Provided by the applicant	☐ Provided by the laborate	ory		
	Model:	U-Link			
Dattary Informations	Normal Voltage:	DC 3.87V			
Battery Information:	Rated capacity:	4900mAh			
	Manufacturer:	ZHONGSHAN TIANMAO BA	ATTERY CO., LTD.		
Note: *Since the above data and/or information is provided by the client relevant results or conclusions of this report are only made for these data and/or information, SGS is not responsible for the authenticity,					

integrity and results of the data and information and/or the validity of the conclusion. Remark:

As above information is provided and confirmed by the applicant. SGS is not liable to the accuracy, suitability, reliability or/and integrity of the information.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company, Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CN_Doccheck@sgs.com

邮编: 518057

中国・广东・深圳市南山区科技园中区M-10栋1号厂房

No. 1 Workshop, M-10, Middle Section, Science & Technology Park, Nanshan District, Shenzhen, Guangdong, China 518057

t (86-755) 26012053 t (86-755) 26012053

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR240500187801

9 of 52 Page:

1.5 Test Specification

Identity	Document Title
FCC 47CFR §2.1093	Radiofrequency Radiation Exposure Evaluation: Portable Devices
ANSI/IEEE C95.1-1992	IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz – 300 GHz.
IEEE 1528-2013	Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques
IEC/IEEE 63195-1:2022	Assessment of power density of human exposure to radio frequency fields from wireless devices in close proximity to the head and body (frequency range of 6 GHz to 300 GHz) – Part 1: Measurement procedure
KDB 941225 D06	Hotspot Mode SAR v02r01
KDB 248227 D01	SAR Guidance for IEEE 802 11 Wi-Fi SAR v02r02
KDB 447498 D04	Interim General RF Exposure Guidance v01
KDB 690783 D01	SAR Listings on Grants v01r03

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company, Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CN_Doccheck@sgs.com

邮编: 518057

No.1 Workshop, M-10, Middle Section, Science & Technology Park, Nanshan District, Shenzhen, Guangdong, China 518057 中国・广东・深圳市南山区科技园中区M-10栋1号厂房

t (86-755) 26012053 t (86-755) 26012053

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR240500187801

Page: 10 of 52

1.6 RF exposure limits

Human Exposure	Uncontrolled Environment General Population	Controlled Environment Occupational
Spatial Peak SAR* (Brain*Trunk)	1.60 mW/g	8.00 mW/g
Spatial Average SAR** (Whole Body)	0.08 mW/g	0.40 mW/g
Spatial Peak SAR*** (Hands/Feet/Ankle/Wrist)	4.00 mW/g	20.00 mW/g

Notes:

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation.)

According to ANSI/IEEE C95.1-1992, the criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio frequency (RF) radiation as specified in §1.1310.

Peak Spatially Averaged Power Density was evaluated over a circular area of 4cm2 per interim FCC Guidance for near-field power density evaluations per October 2018 TCB Workshop notes

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm ²)	Averaging time (minutes)
500 EX	(A) Limits for O	ccupational/Controlled Expos	sures	W: 1111 1122
0.3-3.0	614	1.63	*(100)	6
3.0-30	1842/	f 4.89/1	*(900/f2)	6
30-300	61.4	0.163	1.0	6
300-1500			f/300	6
1500-100,000			5	6
	(B) Limits for Gene	ral Population/Uncontrolled I	Exposure	
0.3-1.34	614	1.63	*(100)	30
1.34-30	824/	f 2.19/1	*(180/f2)	30
30-300	27.5	0.073	0.2	30
300-1500			f/1500	30
1500-100,000	1		1.0	30

Note: $1.0 \text{ mW/}cm^2 \text{ is } 10 \text{ W/}m^2$

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CN.Doccheck@gs.com

Attention: 10 check the authenticity of testing /inspection report & certificate, please contact us at telephone: (66-755) 830/1443 or email: CN_Doccheck@sgs.com

I No.1 Workshoo. M-10. Middle Section, Science & Technology Park, Nanshan District, Shenzhen, Guangdong, China 518057 t (86-755) 26012053 www.sgsgroup.com.cc

中国・广东・深圳市南山区科技园中区M-10栋1号厂房

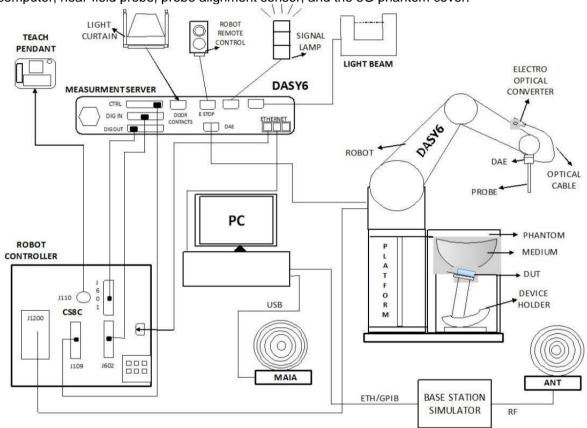
邮编: 518057 t (86-755) 26012053

^{*} The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time

^{**} The Spatial Average value of the SAR averaged over the whole body.

^{***} The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

SZSAR-TRF-01 Rev. A/0 May15,2023


Report No.: SZCR240500187801

11 of 52 Page:

Measurements System Configuration 2

2.1 Power density measurement system

Power density measurements for mmWave frequencies were performed using SPEAG DASY6 with cDASY6 5G module. The DASY6 included a high precision robotics system (Staubli), robot controller, desktop computer, near-field probe, probe alignment sensor, and the 5G phantom cover.

EUmmWVx probe:

The EUmmWVx probe is based on the pseudo-vector probe design, which not only measures the field magnitude but also derives its polarization ellipse. The design entails two small 0.8mm dipole sensors mechanically protected by high-density foam, printed on both sides of a 0.9mm wide and 0.12mm thick glass substrate. The body of the probe is specifically constructed to minimize distortion by the scattered fields. The probe consists of two sensors with different angles (1 and 2) arranged in the same plane in the probe axis. Three or more measurements of the two sensors are taken for different probe rotational angles to derive the amplitude and polarization information. The probe design allows measurements at distances as small as 2mm from the sensors to the surface of the device under test (DUT). The typical sensor to probe tip distance is 1.5 mm. The exact distance is calibrated.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sqs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or faisification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only

sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443

邮编: 518057

No.1 Workshop, M-10, Middle Section, Science & Technology Park, Nanshan District, Shenzhen, Guangdong, China 518057 中国・广东・深圳市南山区科技园中区M-10栋1号厂房

t (86-755) 26012053 t (86-755) 26012053

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR240500187801

Page: 12 of 52

2.2 The SAR Measurement System

This SAR Measurement System uses a computer-controlled 3-D stepper motor system (SPEAG DASY8 professional system). A E-field probe is used to determine the internal electric fields. The SAR can be obtained from the equation SAR= σ (|Ei|2)/ ρ where σ and ρ are the conductivity and mass density of the tissue-Simulate.

The DASY8 system for performing compliance tests consists of the following items:

A standard high precision 6-axis robot (Stabile RX family) with controller, teach pendant and software. An arm extension for accommodation the data acquisition electronics (DAE).

A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.

A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, ADconversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.

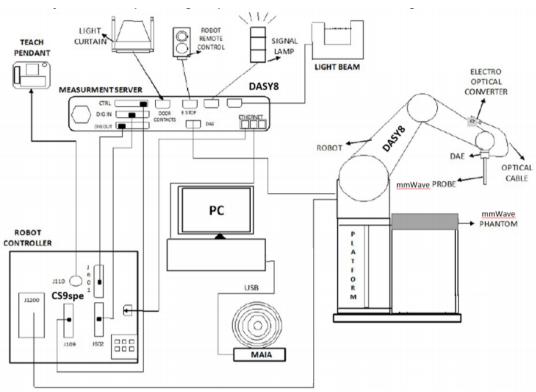
The Electro-optical converter (EOC) performs the conversion between optical and electrical of the signals for the digital communication to DAE and for the analog signal from the optical surface detection. The EOC is connected to the measurement server.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CN.Doccheck@gs.com

No.1 Workshop, M-10, Middle Section, Science & Technology Park, Nanshan District, Shenzhen, Guangdong, China 518057 中国・广东・深圳市南山区科技园中区M-10栋1号厂房

邮编: 518057 t (86-755) 26012053


t (86-755) 26012053

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR240500187801

13 of 52 Page:

F-1. SAR Measurement System Configuration

- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- A computer operating Windows system.
- DASY software.
- Remote control with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- The SAM twin phantom enabling testing left-hand, right-hand and Body Worn usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- Validation dipole kits allowing to validate the proper functioning of the system.

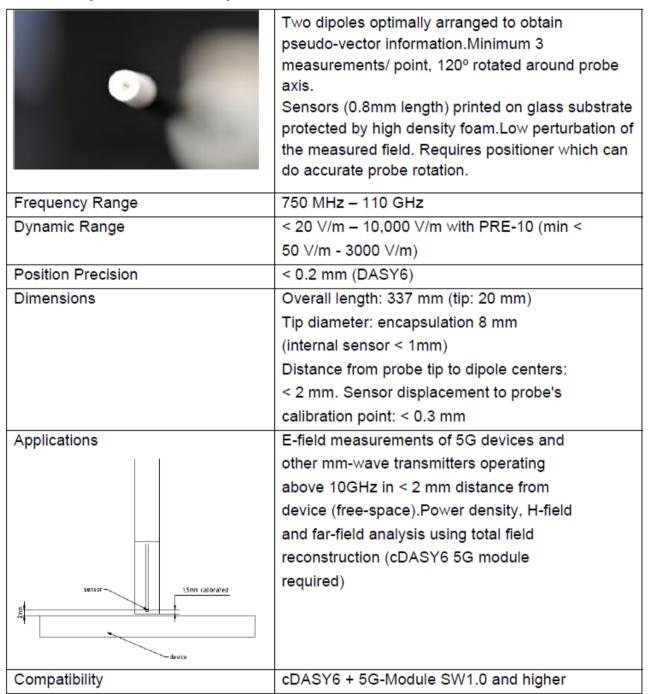
Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction form exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CN.Doccheck-Rogs.com

t (86-755) 26012053

No. 1 Workshop, M-10, Middle Section, Science & Technology Park, Nanshan District, Shenzhen, Guangdong, China 518057 中国・广东・深圳市南山区科技园中区M-10栋1号厂房

t (86-755) 26012053 邮编: 518057



SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR240500187801

14 of 52 Page:

2.3 Isotropic EUmmWVx probe

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company, Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CN_Doccheck@sgs.com

No. 1 Workshop, M-10, Middle Section, Science & Technology Park, Nanshan District, Shenzhen, Guangdong, China 518057 t (86-755) 26012053

中国・广东・深圳市南山区科技园中区M-10栋1号厂房

t (86-755) 26012053 邮编: 518057

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR240500187801

15 of 52 Page:

2.4 Isotropic E-field Probe EX3DV4

	Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)
Calibration	ISO/IEC 17025 <u>calibration service</u> available.
Frequency	10 MHz to > 7.2 GHz Linearity: ± 0.2 dB (30 MHz to 7.2 GHz)
Directivity	± 0.3 dB in TSL (rotation around probe axis) ± 0.5 dB in TSL (rotation normal to probe axis)
Dynamic Range	10 μW/g to > 100 mW/g Linearity: ± 0.2 dB (noise: typically < 1 μW/g)
Dimensions	Overall length: 337 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm
Application	High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields); the only probe that enables compliance testing for frequencies up to 6 GHz with precision of better 30%.
Compatibility	DASY52 SAR and higher, EASY4/MRI

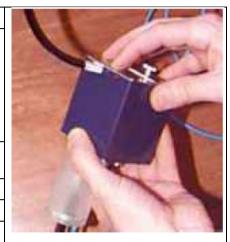
Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company, Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CN_Doccheck@sgs.com

邮编: 518057

No.1 Workshop, M-10, Middle Section, Science & Technology Park, Nanshan District, Shenzhen, Guangdong, China 518057 中国・广东・深圳市南山区科技园中区M-10栋1号厂房

t (86-755) 26012053 t (86-755) 26012053


SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR240500187801

16 of 52 Page:

2.5 Data Acquisition Electronics (DAE)

Model	DAE
Construction	Signal amplifier, multiplexer, A/D converter and control logic. Serial optical link for communication with DASY embedded system (fully remote controlled). Two step probe touch detectors for mechanical surface detection and emergency robot stop.
Measurement Range	-100 to +300 mV (16-bit resolution and two range settings: 4mV,400mV)
Input Offset Voltage	< 5μV (with auto zero)
Input Bias Current	< 50 f A
Dimensions	60 x 60 x 68 mm

2.6 SAM Twin Phantom

Material	Vinylester, glass fiber reinforced (VE-GF)			
Liquid Compatibility	Compatible with all SPEAG tissue simulating liquids (incl. DGBE type)			
Shell Thickness	2 ± 0.2 mm (6 ± 0.2 mm at ear point)			
Dimensions (incl. Wooden Support)	Length: 1000 mm Width: 500 mm Height: adjustable feet			
Filling Volume	16pprox 25 liters			
Wooden Support	SPEAG standard phantom table			

The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528 and IEC 62209-1. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by teaching three points with the robot.

Twin SAM V8.0 has the same shell geometry and is manufactured from the same material as Twin SAM V4.0 but has reinforced top structure.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction form exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CN.Doccheck-Rogs.com

邮编: 518057

中国・广东・深圳市南山区科技园中区M-10栋1号厂房

No. 1 Workshop, M-10, Middle Section, Science & Technology Park, Nanshan District, Shenzhen, Guangdong, China 518057

t (86-755) 26012053 t (86-755) 26012053

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR240500187801

Page: 17 of 52

2.7 Device Holder for Transmitters

F-2. Device Holder for Transmitters

- The DASY device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation centres for both scales are the ear reference point (ERP). Thus, the device needs no repositioning when changing the angles.
- The DASY device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity ε =3 and loss tangent δ =0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction form exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CN.Doccheck-Rogs.com

No.1 Workshop, M-10, Middle Section, Science & Technology Park, Nanshan District, Shenzhen, Guangdong, China 518057 中国・广东・深圳市南山区科技园中区M-10栋1号厂房

邮编: 518057 t (86-755) 26012053

t (86-755) 26012053

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR240500187801

Page: 18 of 52

2.8 Measurement procedure

2.8.1 Scanning procedure

Step 1: Power reference measurement

The "reference" and "drift" measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure.

Step 2: Area scan

The SAR distribution at the exposed side of the head was measured at a distance of 4mm from the inner surface of the shell. The area covered the entire dimension of the head and the horizontal grid spacing was 15mm*15mm.Based on the area scan data, the area of the maximum absorption was determined by spline interpolation.

Step 3: Zoom scan

Around this point, a volume of 30mm*30mm*30mm (fine resolution volume scan, zoom scan) was assessed by measuring 5x5x7 points. On this basis of this data set, the spatial peak SAR value was evaluated with the following procedure:

The data at the surface was extrapolated, since the centre of the dipoles is 2.0mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.2mm. (This can be variable. Refer to the probe specification). The extrapolation was based on a least square algorithm. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip. The maximum interpolated value was searched with a straightforward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1g or 10g) were computed using the 3D-Spline interpolation algorithm. The volume was integrated with the trapezoidal algorithm. One thousand points were interpolated to calculate the average. All neighbouring volumes were evaluated until no neighboring volume with a higher average value was found.

The area and zoom scan resolutions specified in the table below must be applied to the SAR measurements Probe boundary effect error compensation is required for measurements with the probe tip closer than half a probe tip diameter to the phantom surface. Both the probe tip diameter and sensor offset distance must satisfy measurement protocols; to ensure probe boundary effect errors are minimized and the higher fields closest to the phantom surface can be correctly measured and extrapolated to the phantom surface for computing 10-g SAR. Tolerances of the post-processing algorithms must be verified by the test laboratory for the scan resolutions used in the SAR measurements, according to the reference distribution functions specified in EN 62209-1/2.

Step 4: Power reference measurement (drift)

The Power Drift Measurement job measures the field at the same location as the most recent power reference measurement job within the same procedure, and with the same settings. The indicated drift is mainly the variation of the DUT's output power and should vary max. ± 5 %

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction form exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CN.Doccheck-Rogs.com

No.1 Workshop, M-10, Middle Section, Science & Technology Park, Nanshan District, Shenzhen, Guangdong, China 518057 t (86-755) 26012053

中国・广东・深圳市南山区科技园中区M-10栋1号厂房

邮编: 518057 t (86-755) 26012053

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR240500187801

Page: 19 of 52

2.8.2 Data Storage

The DASY software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension "DAE". The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards, and the data can be re-evaluated. The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [m W/g], [m W/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

2.8.3 Data Evaluation by SEMCAD

The SEMCAD software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters: - Sensitivity Normi, ai0, ai1, ai2

- Conversion factor ConvFi - Diode compression point Dcpi

f Device parameters: - Frequency

- Crest factor

Media parameters: - Conductivity

- Density

These parameters must be set correctly in the software. They can be found in the component documents, or they can be imported into the software from the configuration files issued for the DASY components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

3

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics.

If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot c f / d c p_i$$

Vi = compensated signal of channel I (I = x, y, z)

Ui = input signal of channel I (I = x, y, z)

cf = crest factor of exciting field (DASY parameter)

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sqs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client is instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CN.Doccheck@gs.com

No. 1 Workshop, M-10, Middle Section, Science & Technology Park, Nanshan District, Shenzhen, Guangdong, China 518057 t (86-755) 26012053 www.sgsgroup.com.cn sgs.china@sgs.com 中国・广东・深圳市南山区科技园中区M-10栋1号厂房 邮编: 518057 t (86-755) 26012053

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR240500187801

Page: 20 of 52

dcp I = diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E-field probes:

$$E_i = (V_i / Norm_i \cdot ConvF)^{1/2}$$

H-field probes:

H-field probes:
$$H_i = (V_i)^{1/2} \cdot (a_{i0} + a_{i1}f + a_{i2}f^2) / f$$
 With Vi = compensated signal of channel I (I = x, y, z) Normi = sensor sensitivity of channel I (I = x, y, z)
$$[mV/(V/m)^2] for E-field Probes$$

[mV/(V/m)2] for E-field Probes

ConvF = sensitivity enhancement in solution

aij = sensor sensitivity factors for H-field probes

f = carrier frequency [GHz]

Ei = electric field strength of channel I in V/m

Hi = magnetic field strength of channel I in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = (E_x^2 + E_y^2 + E_z^2)^{1/2}$$

The primary field data are used to calculate the derived field units.

$$SAR = (Etot^2 \cdot \sigma) / (\varepsilon \cdot 1000)$$

with SAR = local specific absorption rate in mW/g

Etot = total field strength in V/m

σ= conductivity in [mho/m] or [Siemens/m]

ε= equivalent tissue density in g/cm3

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid. The power flow density is calculated assuming the excitation field to be a free space field.

$$P_{pwe} = E_{tot}^2 2 / 3770_{or} P_{pwe} = H_{tot}^2 \cdot 37.7$$

Ppwe = equivalent power density of a plane wave in mW/cm2

Etot = total electric field strength in V/m

Htot = total magnetic field strength in A/m

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or faisification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only

No.1 Workshop, M-10, Middle Section, Science & Technology Park, Nanshan District, Shenzhen, Guangdong, China 518057 中国・广东・深圳市南山区科技园中区M-10栋1号厂房

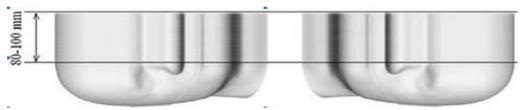
t (86-755) 26012053 t (86-755) 26012053 sgs.china@sgs.com

SZSAR-TRF-01 Rev. A/0 May15,2023

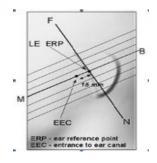

Report No.: SZCR240500187801

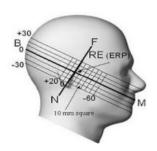
Page: 21 of 52

3 Description of Test Position


3.1 The Head Test Position

3.1.1 SAM Phantom Shape




F-3. Front, back, and side views of SAM (model for the phantom shell). Full-head model is for illustration purposes only-procedures in this recommended practice are intended primarily for the phantom setup.

Note: The centre strip including the nose region has a different thickness tolerance.

F-4. Sagittally bisected phantom with extended perimeter (shown placed on its side as used for SAR measurements)

F-5. Close-up side view of phantom, showing the ear region, N-F and B-M lines, and seven cross-sectional plane locations

F-6. Side view of the phantom showing relevant markings and seven cross-sectional plane locations

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

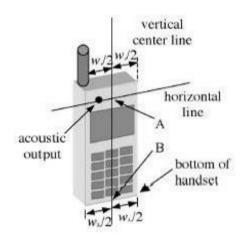
Attention: 10 check the authenticity of testing /inspection report & certificate, please contact us at telephone: (66-755) 830/1443 or email: CN_Doccheck@sgs.com

I No.1 Workshoo. M-10. Middle Section, Science & Technology Park, Nanshan District, Shenzhen, Guangdong, China 518057 t (86-755) 26012053 www.sgsgroup.com.cc

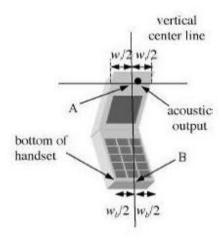
中国·广东·深圳市南山区科技园中区M-10栋1号厂房

邮编: 518057

t (86–755) 26012053 www.sgsgroup.com.cn t (86–755) 26012053 sgs.china@sgs.com



SZSAR-TRF-01 Rev. A/0 May15,2023


Report No.: SZCR240500187801

22 of 52 Page:

3.1.2 **EUT constructions**

F-7. Handset vertical and horizontal reference lines-"fixed case"

F-8. Handset vertical and horizontal reference lines-"clam-shell case"

3.1.3 Definition of the "cheek" position

- a) Position the device with the vertical centre line of the body of the device and the horizontal line crossing the centre of the ear piece in a plane parallel to the sagittal plane of the phantom ("initial position"). While maintaining the device in this plane, align the vertical centre line with the reference plane containing the three ear and mouth reference points (M, RE and LE) and align the centre of the ear piece with the line RE-LE.
- b) Translate the mobile phone box towards the phantom with the ear piece aligned with the line LE-RE until telephone touches the ear. While maintaining the device in the reference plane and maintaining the phone contact with the ear, move the bottom of the box until any point on the front side is in contact with the cheek of the phantom or until contact with the ear is lost.

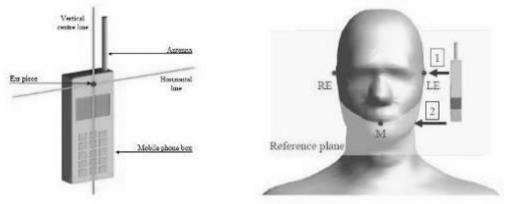
Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CN.Doccheck@gs.com

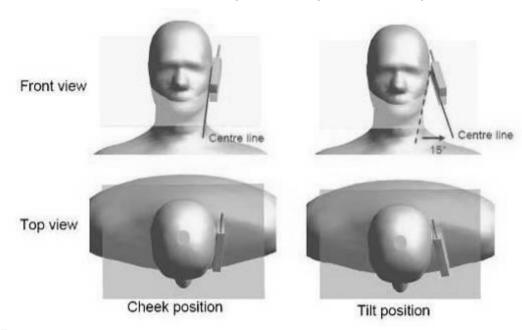
邮编: 518057

No.1 Workshop, M-10, Middle Section, Science & Technology Park, Nanshan District, Shenzhen, Guangdong, China 518057 中国・广东・深圳市南山区科技园中区M-10栋1号厂房

t (86-755) 26012053 t (86-755) 26012053


SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR240500187801


Page: 23 of 52

3.1.4 Definition of the "tilted" position

- a) Position the device in the "cheek" position described above.
- b) While maintaining the device in the reference plane described above and pivoting against the ear, move it outward away from the mouth by an angle of 15 degrees or until contact with the ear is lost.

Definition of the reference lines and points, on the phone and on the phantom and initial position

F-10. "Cheek" and "tilt" positions of the mobile phone on the left side

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction form exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CN.Doccheck-Rogs.com

No.1 Workshop, M-10, Middle Section, Science & Technology Park, Nanshan District, Shenzhen, Guangdong, China 518057 t (86-755) 26012053

中国・广东・深圳市南山区科技园中区M-10栋1号厂房

邮编: 518057 t (86-755) 26012053

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR240500187801

24 of 52 Page:

3.2 The Body Test Position

3.2.1 **Body-worn accessory exposure conditions**

Body-worn operating configurations should be tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in normal use configurations.

Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration. The body-worn accessory procedures in FCC KDB Publication 447498 D04 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-worn accessory test separation distance is greater than or equal to that required for hotspot mode, when applicable. When the reported SAR for a body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a headset attached to the handset.

Accessories for Body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are tested with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-clip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

Body-worn accessories may not always be supplied or available as options for some devices intended to be authorized for body-worn use. In this case, a test configuration with a separation distance between the back of the device and the flat phantom is used. Test position spacing was documented. Transmitters that are designed to operate in front of a person's face, as in push-to-talk configurations, are tested for SAR compliance with the front of the device positioned to face the flat phantom in head fluid. For devices that are carried next to the body such as a shoulder, waist or chest-worn transmitters, SAR compliance is tested with the accessories, including headsets and microphones, attached to the device and positioned against a flat phantom in a normal use configuration.

F-11. Test positions for body-worn devices

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sqs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client is instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CN.Doccheck@gs.com

No.1 Workshop, M-10, Middle Section, Science & Technology Park, Nanshan District, Shenzhen, Guangdong, China 518057

中国・广东・深圳市南山区科技园中区M-10栋1号厂房

邮编: 518057

t (86-755) 26012053 www.sgsgroup.com.cn t (86-755) 26012053 sgs.china@sgs.com

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR240500187801

25 of 52 Page:

3.2.2 Wireless Router exposure conditions

Some battery-operated handsets have the capability to transmit and receive user data through simultaneous transmission of WIFI simultaneously with a separate licensed transmitter. The FCC has provided guidance in FCC KDB Publication 941225 D06 where SAR test considerations for handsets (L x W ≥ 9 cm x 5 cm) are based on a composite test separation distance of 10 mm from the front, back and edges of the device containing transmitting antennas within 2.5 cm of their edges, determined from general mixed-use conditions for this type of devices. For devices with form factors smaller than 9 cm x 5 cm, a test separation distance of 5 mm is required.

3.3 The Extremity Test Position

Due to the lack of a dedicated limb SAR testing model, we use an equivalent plat phantom for limb SAR testing, with a testing distance of 0mm.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction form exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CN.Doccheck-Rogs.com

No. 1 Workshop, M-10, Middle Section, Science & Technology Park, Nanshan District, Shenzhen, Guangdong, China 518057 中国・广东・深圳市南山区科技园中区M-10栋1号厂房

t (86-755) 26012053 t (86-755) 26012053 邮编: 518057

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR240500187801

26 of 52 Page:

System Verification Procedure 4

4.1 **Tissue Simulate Liquid**

4.1.1 Recipes for Tissue Simulate Liquid

The bellowing tables give the recipes for tissue simulating liquids to be used in different frequency bands:

	<u> </u>								
Ingredients	Frequency (MHz)								
(% by weight)	450	700-1000	1700-2000	2300-2500	2500-2700				
Water	38.56	40.30	55.24	55.00	54.92				
Salt (NaCl)	3.95	1.38	0.31	0.2	0.23				
Sucrose	56.32	57.90	0	0	0				
HEC	0.98	0.24	0	0	0				
Bactericide	0.19	0.18	0	0	0				
Tween	0	0	44.45	44.80	44.85				

Salt: 99+% Pure Sodium Chloride Sucrose: 98+% Pure Sucrose Water: De-ionized, 16 MΩ⁺ resistivity HEC: Hydroxyethyl Cellulose

Tween: Polyoxyethylene (20) sorbitan monolaurate

HSL5GHz is composed of the following ingredients: (Manufactured by SPEAG)

Water: 50-65% Mineral oil: 10-30% Emulsifiers: 8-25% Sodium salt: 0-1.5%

Table 1: Recipe of Tissue Simulate Liquid

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction form exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CN.Doccheck-Rogs.com

邮编: 518057

中国・广东・深圳市南山区科技园中区M-10栋1号厂房

No. 1 Workshop, M-10, Middle Section, Science & Technology Park, Nanshan District, Shenzhen, Guangdong, China 518057

t (86-755) 26012053 t (86-755) 26012053

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR240500187801

Page: 27 of 52

4.1.2 Measurement for Tissue Simulate Liquid

The Conductivity (σ) and Permittivity (ϵ_r) are listed in Table 2. For the SAR measurement given in this report. The temperature variation of the Tissue Simulate Liquids was 22±2°C.

Tissue	Measured Frequency		d Tissue	Target Tis	ssue (±5%)	Devia (Withir		Liquid Temp.	Test Date
Туре	(MHz)	εr	σ(S/m)	ε _r	σ(S/m)	٤r	σ(S/m)	(℃)	
6500 Head	6500	33.500	6.010	34.50	6.07	-2.90%	-0.99%	22.1	2024/5/28
6500 Head	6500	34.000	6.080	34.50	6.07	-1.45%	0.16%	22.2	2024/5/29

Table 2: Measurement result of Tissue electric parameters

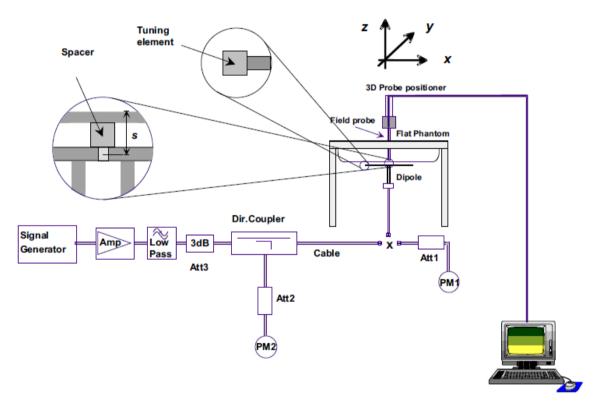
Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company, Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CN_Doccheck@sgs.com

邮编: 518057

No. 1 Workshop, M-10, Middle Section, Science & Technology Park, Nanshan District, Shenzhen, Guangdong, China 518057 中国・广东・深圳市南山区科技园中区M-10栋1号厂房

t (86-755) 26012053 t (86-755) 26012053


SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR240500187801

Page: 28 of 52

4.2 SAR System Check

The microwave circuit arrangement for system Check is sketched as below. The daily system accuracy verification occurs within the flat section of the SAM phantom. A SAR measurement was performed to see if the measured SAR was within +/- 10% from the target SAR values. The tests were conducted on the same days as the measurement of the EUT. The obtained results from the system accuracy verification are displayed in the following table (A power level of 250mW (below 3GHz) or 100mW (3-6GHz) was input to the dipole antenna). During the tests, the ambient temperature of the laboratory was in the range 22±2°C, the relative humidity was in the range 60% and the liquid depth above the ear reference points was above 15±0.5 cm in all the cases. It is seen that the system is operating within its specification, as the results are within acceptable tolerance of the reference values.

F-12. The microwave circuit arrangement used for SAR system Check

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approved of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

**Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, **Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

Attention: 10 check the authenticity of testing /inspection report & certificate, please contact us at telephone: (66-755) 830/1443 or email: CN_Doccheck@sgs.com

I No.1 Workshoo. M-10. Middle Section, Science & Technology Park, Nanshan District, Shenzhen, Guangdong, China 518057 t (86-755) 26012053 www.sgsgroup.com.cc

中国·广东·深圳市南山区科技园中区M-10栋1号厂房

邮编: 518057 t (86-755) 26012053

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR240500187801

29 of 52 Page:

4.2.1 **Justification for Extended SAR Dipole Calibrations**

- Instead of the typical annual calibration recommended by measurement standards, longer calibration intervals of up to three years may be considered when it is demonstrated that the SAR target, impedance and return loss of a dipole have remain stable according to the following requirements. Each measured dipole is expected to evaluate with the following criteria at least on annual interval in Appendix C.
 - There is no physical damage on the dipole.
 - System check with specific dipole is within 10% of calibrated value.
 - Return-loss is within 20% of calibrated measurement. c)
 - Impedance is within 5Ω from the previous measurement.
- Network analyzer probe calibration against air, distilled water and a shorting block performed before measuring liquid parameters.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction form exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CN.Doccheck-Rogs.com

No.1 Workshop, M-10, Middle Section, Science & Technology Park, Nanshan District, Shenzhen, Guangdong, China 518057 中国・广东・深圳市南山区科技园中区M-10栋1号厂房

邮编: 518057 t (86-755) 26012053

t (86-755) 26012053

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR240500187801

Page: 30 of 52

4.2.2 Summary System Check Result(s)

Valid	dation Kit	Measured SAR 100mW	SAR	SAR	SAR	Target SAR (normalized to 1W)	,	Devi	ation ±10%)		Test Date
		1g (W/kg)	10g (W/kg)	1g (W/kg)	10g (W/kg)	1-g(W/kg)	10-g(W/kg)	1- g(W/kg)	10- g(W/kg)	(°C)	
D6500V2	Head(6.5GHz)	28.70	5.28	287.00	52.80	291.00			-2.04%		2024/5/28
D6500V2	Head(6.5GHz)	30.10	5.64	301.00	56.40	291.00	53.90	3.44%	4.64%	22.2	2024/5/29

Table 3: SAR System Check Result

4.2.3 Detailed System Check Results

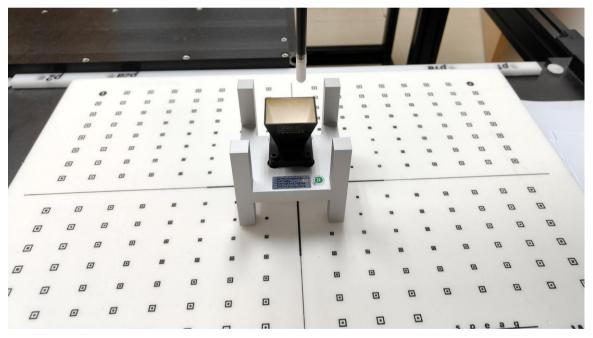
Please see the Appendix A

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company, Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CN_Doccheck@sgs.com

No. 1 Workshop, M-10, Middle Section, Science & Technology Park, Nanshan District, Shenzhen, Guangdong, China 518057 t (86-755) 26012053 www.sgsgroup.com.cn 中国・广东・深圳市南山区科技园中区M-10栋1号厂房 邮编: 518057 t (86-755) 26012053 sgs.china@sgs.com

SZSAR-TRF-01 Rev. A/0 May15,2023


Report No.: SZCR240500187801

Page: 31 of 52

4.3 PD Test System Verification

The system was verified to be within ±0.66 dB of the power density targets on the calibration certificate according to the test system specification in the user's manual and calibration facility recommendation. The 0.66 dB deviation threshold represents the expanded uncertainty for system performance checks using SPEAG's mmWave verification sources. The same spatial resolution and measurement region used in the source calibration was applied during the system check.

The measured power density distribution of verification source was also confirmed through visual inspection to have no noticeable differences, both spatially (shape) and numerically (level) from the distribution provided by the manufacturer, per November 2017 TCBC Workshop Notes.

System Verification Setup Photo

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approved of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

**Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, **Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR240500187801

32 of 52 Page:

4.3.1 PD System Verification Results

F	requency (GHz)	PD Verification Source	Distance (mm)	Prad (mW)	Measured 4cm^2 (W/m^2)	Target 4cm^2 (W/m^2)	Deviation (dB)	Measured Date
	10G	10G	10	124.5	191	174	0.40	2024/6/1

4.3.2 Detailed System Check Results

Please see the Appendix A

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company, Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CN_Doccheck@sgs.com

邮编: 518057

中国・广东・深圳市南山区科技园中区M-10栋1号厂房

No. 1 Workshop, M-10, Middle Section, Science & Technology Park, Nanshan District, Shenzhen, Guangdong, China 518057

t (86-755) 26012053 t (86-755) 26012053

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR240500187801

33 of 52 Page:

Test Configuration 5

WiFi Test Configuration 5.1

According to TCB Workshop requirements, at least 5 channels need to be selected in WIFI 6E to cover four bands for PD and SAR testing.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company, Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CN_Doccheck@sgs.com

No. 1 Workshop, M-10, Middle Section, Science & Technology Park, Nanshan District, Shenzhen, Guangdong, China 518057 t (86-755) 26012053 www.sgsgroup.com.cn 中国・广东・深圳市南山区科技园中区M-10栋1号厂房 邮编: 518057 t (86-755) 26012053 sgs.china@sgs.com

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR240500187801

34 of 52 Page:

5.1.1 DUT Antenna Locations

Please see the Appendix D

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company, Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CN_Doccheck@sgs.com

No.1 Workshop, M-10, Middle Section, Science & Technology Park, Nanshan District, Shenzhen, Guangdong, China 518057 t (86-755) 26012053 www.sgsgroup.com.cn 中国・广东・深圳市南山区科技园中区M-10栋1号厂房 邮编: 518057 t (86-755) 26012053 sgs.china@sgs.com

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR240500187801

35 of 52 Page:

6 Test results and Measurement Data

6.1 Measurement of RF Conducted Power

6.1.1 Conducted Power of WiFi

WIFI 6E Ant6									
Band	Mode	Channel	Frequency (MHz)	Data Rate	Average Power (dBm)	Tune up			
		1	5955		9.80	11			
	802.11ax HE20	45	6175	MCS0	9.78	11			
	11220	93	6415		9.88	11			
		3	5985		12.57	14.5			
	802.11ax HE40	43	6165	MCS0	12.52	14.5			
U-NII-5	11240	91	7 5985 13.13 39 6145 MCS0 13.53 87 6385 13.81 15 6025 13.35 47 6185 MCS0 13.74	12.72	14.5				
6.2GHz		7		13.13	14.5				
	802.11ax HE80	39	6145	MCS0	13.53	14.5			
	TILOU	87	6385]	13.81	14.5			
	802.11ax HE160	15	6025		13.35	14.5			
		47	6185	MCS0	13.74	14.5			
		79	6345	1	13.99	14.5			
	802.11ax HE20	97	6435	MCS0	9.72	11			
		105	6475		9.59	11			
		113	6515		9.49	11			
	802.11ax	99	6445	MCS0	12.62	14.5			
U-NII-6 6.5GHz	HE40	107	6485		12.55	14.5			
	802.11ax	103	6465	MCS0	13.60	14.5			
	HE80	119	6545	MCSU	13.28	14.5			
	802.11ax HE160	111	6505	MCS0	13.58	14.5			
		117	6535		10.18	11.2			
	802.11ax HE20	149	6695	MCS0	9.75	11.2			
	TILZO	181	6855]	9.81	11.2			
		115	6525		12.02	13			
U-NII-7	802.11ax HE40	147	6685	MCS0	12.91	13			
6.7GHz	TILTO	179	6845	1	12.67	13			
		135	6625		12.87	13			
	802.11ax HE80	151	6705	MCS0	14.28	15.5			
	TILOU	167	6785	1	15.52	16			
<u> </u>		143	6665	MCS0	13.30	14.5			

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company, Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CN_Doccheck@sgs.com

No.1 Workshop, M-10, Middle Section, Science & Technology Park, Nanshan District, Shenzhen, Guangdong, China 518057 t (86-755) 26012053

邮编: 518057

中国・广东・深圳市南山区科技园中区M-10栋1号厂房

t (86-755) 26012053

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR240500187801

36 of 52 Page:

	802.11ax HE160	175	6825		15.65	16
		185	6875		9.10	10.5
	802.11ax HE20	209	6995	MCS0	9.11	10.5
	11220	233	7115		-1.15	-1
	802.11ax	187	6885	MCS0	11.66	12
U-NII-8	HE40	227	7085		11.65	12
7.0GHz		183	6865		14.41	15.5
	802.11ax HE80	199	6945	MCS0	14.31	15.5
	00	215	7025		12.51	13
	802.11ax HE160	207	6985	MCS0	13.81	15.5

	WIFI 6E Ant7									
Band	Mode	Channel	Frequency (MHz)	Data Rate	Average Power (dBm)	Tune up				
		1	5955		9.63	11				
	802.11ax HE20	45	6175	MCS0	9.50	11				
	11220	93	6415		9.83	11				
		3	5985		11.46	12				
	802.11ax HE40	43	6165	MCS0	9.92	11				
U-NII-5	TILTO	91	6405]	9.79	11				
6.2GHz		7	5985		11.40	12				
	802.11ax HE80	39	6145	MCS0	10.32	11				
		87	6385		10.04	11				
	802.11ax HE160	15	6025	MCS0	11.43	12				
		47	6185		10.39	11				
		79	6345		10.28	11				
		97	6435		9.84	11				
	802.11ax HE20	105	6475	MCS0	9.71	11				
	11220	113	6515]	9.66	11				
	802.11ax	99	6445	11000	9.77	11				
U-NII-6 6.5GHz	HE40	107	6485	MCS0	9.78	11				
0.00112	802.11ax	103	6465	11000	9.63	11				
	HE80	119	6545	MCS0	9.40	11				
	802.11ax HE160	111	6505	MCS0	9.67	11				
U-NII-7	802.11ax	117	6535	MCCO	10.17	11.2				
6.7GHz	HE20	149	6695	MCS0	10.01	11.2				

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company, Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CN.Doccheck@sgs.com"

No.1 Workshop, M-10, Middle Section, Science & Technology Park, Nanshan District, Shenzhen, Guangdong, China 518057 t (86-755) 26012053

邮编: 518057

中国・广东・深圳市南山区科技园中区M-10栋1号厂房

t (86-755) 26012053

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR240500187801

37 of 52 Page:

		181	6855		10.01	11.2
		115	6525		12.96	13
	802.11ax HE40	147	6685	MCS0	12.94	13
	TIE-TO	179	6845]	12.74	13
		135	6625		13.52	15.5
	802.11ax HE80	151	6705	MCS0	13.71	15.5
	11200	167	6785		14.43	15.5
	802.11ax	143	6665	MCS0	13.63	15.5
	HE160	175	6825	WCSU	14.97	15.5
		185	6875		8.99	10.5
	802.11ax HE20	209	6995	MCS0	8.78	10.5
		233	7115		-2.10	-2
	802.11ax	187	6885	MCS0	11.91	12
U-NII-8	HE40	227	7085	WCSU	11.80	12
7.0GHz		183	6865		14.69	15.5
	802.11ax HE80	199	6945	MCS0	14.72	15.5
	200	215	7025		14.85	15.5
	802.11ax HE160	207	6985	MCS0	14.97	15.5

		V	VIFI 6E MIMO			
Band	Mode	Channel	Frequency (MHz)	Data Rate	Average Power (dBm)	Tune up
		1	5955		8.94	10
	802.11ax HE20	45	6175	MCS0	9.07	11
	11220	93	6415		9.16	11
		3	5985		12.23	13
	802.11ax HE40	43	6165	MCS0	11.51	12
U-NII-5	11210	91	6405		10.80	12
6.2GHz		7	5985		12.71	14.5
	802.11ax HE80	39	6145	MCS0	12.45	14
	11200	87	6385		12.41	14
		15	6025		12.77	14.5
	802.11ax HE160	47	6185	MCS0	12.65	14.5
	112100	79	6345		12.74	14.5
		97	6435		9.70	11
U-NII-6	802.11ax HE20	105	6475	MCS0	9.60	11
6.5GHz	11220	113	6515		9.60	11

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company, Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CN.Doccheck@sgs.com"

No.1 Workshop, M-10, Middle Section, Science & Technology Park, Nanshan District, Shenzhen, Guangdong, China 518057 t (86-755) 26012053

邮编: 518057

中国・广东・深圳市南山区科技园中区M-10栋1号厂房

t (86-755) 26012053

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR240500187801

Page: 38 of 52

	802.11ax	99	6445	MCS0	11.30	12
	HE40	107	6485	IVICSU	11.27	12
	802.11ax	103	6465	MCS0	12.25	13
	HE80	119	6545	MCSU	12.01	13
	802.11ax HE160	111	6505	MCS0	12.28	13
		117	6535		9.64	11.2
	802.11ax HE20	149	6695	MCS0	9.81	11.2
	1120	181	6855		9.45	11.2
		115	6525		12.46	13
	802.11ax HE40	147	6685	MCS0	12.60	13
U-NII-7 6.7GHz	112 10	179	6845		12.43	13
6.7GHZ		135	6625		13.04	14
	802.11ax HE80	151	6705	MCS0	13.87	15.5
	11200	167	6785		14.91	15.5
	802.11ax	143	6665	MCCO	13.37	14
	HE160	175	6825	MCS0	15.18	15.5
		185	6875		8.74	10.5
	802.11ax HE20	209	6995	MCS0	8.65	10.5
		233	7115		-0.08	0
	802.11ax	187	6885	MCS0	11.53	12
U-NII-8	HE40	227	7085	IVICSU	11.26	12
7.0GHz		183	6865		14.48	15.5
	802.11ax HE80	199	6945	MCS0	13.85	15.5
		215	7025		12.94	13
	802.11ax HE160	207	6985	MCS0	13.67	14

Note: For each frequency band, testing at higher data rates is not required when the maximum average output power for each of these configurations is less than 0.25dB higher than those measured at the lowest data rate.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company, Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CN_Doccheck@sgs.com"

No. 1 Workshop, M-10, Middle Section, Science & Technology Park, Nanshan District, Shenzhen, Guangdong, China 518057

邮编: 518057

中国・广东・深圳市南山区科技园中区M-10栋1号厂房

t (86-755) 26012053 t (86-755) 26012053

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR240500187801

Page: 39 of 52

6.2 Measurement of SAR Data

Note:

1) The maximum reported SAR value is marked in **bold.** Graph results refer to Appendix B

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company, Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CN_Doccheck@sgs.com"

邮编: 518057

No. 1 Workshop, M-10, Middle Section, Science & Technology Park, Nanshan District, Shenzhen, Guangdong, China 518057 中国・广东・深圳市南山区科技园中区M-10栋1号厂房

t (86-755) 26012053 t (86-755) 26012053

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR240500187801

40 of 52 Page:

6.2.1 SAR Result of WiFi 6E

				V	Vi-Fi 6E S	AR Test F	Record					
						Head						
					Ant6 T	est Reco	rd					
Test position	Test mode	Test ch./Freq.	Duty Cycle	Duty Cycle Scaled factor	1-g	SAR (W/kg) 10-g	(aB)	Conducted Power(dBm)	Tune up Limit(dBm)	Scaled factor	Scaled SAR 1-g (W/kg)	Liquid Temp.(℃)
					Head Test	Data of L	I-NII-5					
Left cheek	802.11ax 160M	79/6345	99.58%	1.004	0.035	0.010	0.03	13.99	14.50	1.125	0.040	22.1
Left tilted	802.11ax 160M			1.004	0.018	0.007	0.02	13.99	14.50	1.125	0.020	22.1
	802.11ax 160M			1.004	0.025	0.008	0.03	13.99	14.50	1.125	0.028	22.1
Right tilted	802.11ax 160M	79/6345	99.58%	1.004	0.016	0.006	-0.05	13.99	14.50	1.125	0.018	22.1
	haa		<i></i>		Head Test							
	802.11ax 160M			1.004	0.035	0.011	-0.06	13.58	14.50	1.236	0.043	22.1
Left tilted	802.11ax 160M			1.004	0.005	0.001	0.02	13.58	14.50	1.236	0.006	22.1
	802.11ax 160M			1.004	0.028	0.009	0.15	13.58	14.50	1.236	0.035	22.1
Right tilted	802.11ax 160M	Ji 1 1/6505	99.58%		0.018 Head Test	0.006	0.16	13.58	14.50	1.236	0.022	22.1
Left chock	802.11ax 160M	175/6925	00 500/	1.004	0.033	0.080	0.05	15.65	16.00	1.084	0.036	21.9
Left tilted	802.11ax 160M			1.004	0.033	0.080	0.05	15.65	16.00	1.084	0.036	21.9
	802.11ax 160M			1.004	0.021	0.007	0.04	15.65	16.00	1.084	0.023	21.9
	802.11ax 160M			1.004	0.027	0.006	0.03	15.65	16.00	1.084	0.029	21.9
	802.11ax 160M				0.016	0.006	0.02	13.30	14.50	1.318	0.017	21.9
Left Crieek	puz. I Tax Tuulvi	143/0003	99.00/0		Head Test			13.30	14.50	1.310	0.033	21.9
Left cheek	802.11ax 160M	207/6985	99 58%	1.004	0.073	0.025	0.05	13.81	15.50	1.476	0.108	22.2
Left tilted	802.11ax 160M			1.004	0.109	0.023	0.04	13.81	15.50	1.476	0.162	22.2
	802.11ax 160M				0.022	0.007	0.04	13.81	15.50	1.476	0.033	22.2
	802.11ax 160M				0.020	0.004	0.06	13.81	15.50	1.476	0.030	22.2
ragni unou	poz. i rax room	20170000	00.0070	1.001		est Reco		10.01	10.00	1.170	0.000	
				Duty		1						
Test	Took woods	Test	Duty	Cycle	SAR	SAR	Power	Conducted	Tune up	Scaled	Scaled	Liquid
position	Test mode	ch./Freq.	Cycle	Scaled	(W/kg) 1-g	(W/kg) 10-q	drift (dB)	Power(dBm)	Limit(dBm)	factor	(W/kg)	Liquia Temp.(°C)
				factor	_		` '				(W/Kg)	
		1	1		Head Test			, ,		1	1	
	802.11ax 160M		99.58%	1.004	0.006	0.001	0.08	11.43	12.00	1.140	0.007	22.3
Left tilted	802.11ax 160M			1.004	0.013	0.004	-0.09	11.43	12.00	1.140	0.015	22.3
	802.11ax 160M			1.004	0.018	0.005	0.09	11.43	12.00	1.140	0.021	22.3
Right tilted	802.11ax 160M	79/6345	99.58%	1.004	0.009	0.002	0.04	11.43	12.00	1.140	0.010	22.3
1 6	000 44 4055	444/2=2=	00.500		Head Test			1 00-	44.55	1.6=5	0.000	00.0
	802.11ax 160M			1.004	0.019	0.005	0.06	9.67	11.00	1.358	0.026	22.3
Left tilted	802.11ax 160M			1.004	0.011	0.003	-0.02	9.67	11.00	1.358	0.015	22.3
	802.11ax 160M			1.004	0.009	0.002	0.08	9.67	11.00	1.358	0.012	22.3
Right tilted	802.11ax 160M	µ11/6505	99.58%	1.004	0.013	0.003	0.13	9.67	11.00	1.358	0.018	22.3
Loft sheet	000 116:: 1008	47E/0005	00.500/		Head Test			1407	45.50	1 100	0.040	22.2
	802.11ax 160M				0.014	0.005	0.02	14.97	15.50	1.130	0.016	22.3
	802.11ax 160M 802.11ax 160M				0.020 0.025	0.005	0.08	14.97	15.50 15.50	1.130		22.3
	802.11ax 160M				0.025	0.007	0.06	14.97 14.97	15.50	1.130	0.028	22.3 22.3
Aight tilted	PUZ. I TAX TOUR	175/0025	33.30%		Head Test			14.87	10.00	1.130	0.020	22.3
Left check	802.11ax 160M	207/6025	99 58%		0.008	0.002	0.01	14.97	15.50	1.130	0.009	22.6
	802.11ax 160M				0.008	0.002	0.07	14.97	15.50	1.130	0.009	22.6
	802.11ax 160M				0.016	0.003	0.07	14.97	15.50	1.130	0.007	22.6
	802.11ax 160M				0.004	0.000	-0.07	14.97	15.50	1.130	0.007	22.6
ragni intou	DOZ.110X 100W	_01/0000	100.0070	1.004		Test Reco		14.07	10.00	1.100	0.000	22.0
						. 30. 11000						

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company, Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CN.Doccheck@sgs.com"

No.1 Workshop, M-10, Middle Section, Science & Technology Park, Nanshan District, Shenzhen, Guangdong, China 518057

邮编: 518057

中国・广东・深圳市南山区科技园中区M-10栋1号厂房

t (86-755) 26012053

t (86-755) 26012053 www.sgsgroup.com.cn sgs.china@sgs.com

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR240500187801

41 of 52 Page:

Test position	Test mode	Test ch./Freq.	Duty Cycle	Duty Cycle Scaled factor	SAR (W/kg) 1-g	SAR (W/kg) 10-g	(ab)	Conducted Power(dBm)	Tune up Limit(dBm)	Scaled factor	Scaled SAR 1-g (W/kg)	Liquid Temp.(℃)
	1	1	1		Head Test			, ,			1	
	802.11ax 160M			1.004	0.014	0.002	0.06	12.77	14.50	1.489	0.021	22.1
	802.11ax 160M		99.58%	1.004	0.005	0.001	0.03	12.77	14.50	1.489	0.007	22.1
	802.11ax 160M		99.58%	1.004	0.022	0.060	0.03	12.77	14.50	1.489	0.033	22.1
Right tilted	802.11ax 160M	15/6025	99.58%	1.004	0.007	0.001	0.01	12.77	14.50	1.489	0.010	22.1
	1		1		Head Test			1			1	
	802.11ax 160M			1.004	0.018	0.003	0.05	12.28	13.00	1.180	0.021	22.1
	802.11ax 160M			1.004	0.015	0.002	0.06	12.28	13.00	1.180	0.018	22.1
	802.11ax 160M			1.004	0.023	0.005	0.03	12.28	13.00	1.180	0.027	22.1
Right tilted	802.11ax 160M	111/6505	99.58%	1.004	0.016	0.004	0.01	12.28	13.00	1.180	0.019	22.1
1 6 1 1	haa 44 400M	475/0005	00.500/		Head Test			15.40	15.50	1.070	0.000	04.0
	802.11ax 160M			1.004	0.028	0.004	0.03	15.18	15.50	1.076	0.030	21.9
	802.11ax 160M			1.004	0.039	0.004	0.03	15.18	15.50	1.076	0.042	21.9
	802.11ax 160M			1.004	0.014	0.002	0.05	15.18	15.50	1.076	0.015	21.9
Right tilted	802.11ax 160M	175/6825	99.58%	1.004	0.011	0.002	0.06	15.18	15.50	1.076	0.012	21.9
l oft about	000 44 0014	400/0005	00 5001		Head Test			14440	45.50	4 005	0.007	24.0
Left cheek	802.11ax 80M			1.004	0.021	0.005	0.12	14.48	15.50	1.265	0.027	21.9
Left tilted	802.11ax 80M			1.004	0.012	0.001	0.05	14.48	15.50	1.265	0.015	21.9
	802.11ax 80M			1.004	0.011	0.001	0.05	14.48	15.50	1.265	0.014	21.9
Right tilted	802.11ax 80M	183/6865	99.58%	1.004	0.012	0.003	-0.06	14.48	15.50	1.265	0.015	21.9
						otspot est Reco	rd					
				Duty		est Reco	lu					
Test position	Test mode	Test ch./Freq.	Duty Cycle	Cycle Scaled	SAR (W/kg) 1-g	SAR (W/kg) 10-g	Power drift (dB)	Conducted Power(dBm)	Tune up Limit(dBm)		Scaled SAR 1-g (W/kg)	Liquid Temp.(℃)
				factor			, ,				(TT/Ng)	
En et elle	boo 44 400M	70/0045		otspot Te	est data of	U-NII-5 (S	Separate		44.50	1 405	` ,	00.4
	802.11ax 160M		99.58%	otspot Te 1.004	est data of 0.026	U-NII-5 (\$	Separate 0.03	13.99	14.50	1.125	0.029	22.1
Back side	802.11ax 160M	79/6345	99.58% 99.58%	1.004 1.004	est data of 0.026 0.031	U-NII-5 (\$ 0.011 0.011	Separate 0.03 -0.05	13.99 13.99	14.50	1.125	0.029	22.1
Back side Left side	802.11ax 160M 802.11ax 160M	79/6345 79/6345	99.58% 99.58% 99.58%	1.004 1.004 1.004	est data of 0.026 0.031 0.024	U-NII-5 (\$ 0.011 0.011 0.008	0.03 -0.05 -0.06	13.99 13.99 13.99	14.50 14.50	1.125 1.125	0.029 0.035 0.027	22.1 22.1
Back side Left side Right side	802.11ax 160M 802.11ax 160M 802.11ax 160M	79/6345 79/6345 79/6345	99.58% 99.58% 99.58% 99.58%	1.004 1.004 1.004 1.004	est data of 0.026 0.031 0.024 0.030	U-NII-5 (\$ 0.011 0.011 0.008 0.012	0.03 -0.05 -0.06 0.05	13.99 13.99 13.99 13.99	14.50 14.50 14.50	1.125 1.125 1.125	0.029 0.035 0.027 0.034	22.1 22.1 22.1
Back side Left side Right side Top side	802.11ax 160M 802.11ax 160M 802.11ax 160M 802.11ax 160M	79/6345 79/6345 79/6345 79/6345	99.58% 99.58% 99.58% 99.58%	1.004 1.004 1.004 1.004 1.004	est data of 0.026 0.031 0.024 0.030 0.021	U-NII-5 (\$ 0.011 0.011 0.008 0.012 0.008	0.03 -0.05 -0.06 0.05 0.01	13.99 13.99 13.99 13.99 13.99	14.50 14.50 14.50 14.50	1.125 1.125 1.125 1.125	0.029 0.035 0.027 0.034 0.024	22.1 22.1 22.1 22.1
Back side Left side Right side Top side	802.11ax 160M 802.11ax 160M 802.11ax 160M	79/6345 79/6345 79/6345 79/6345	99.58% 99.58% 99.58% 99.58% 99.58%	1.004 1.004 1.004 1.004 1.004 1.004	est data of 0.026 0.031 0.024 0.030 0.021 0.042	U-NII-5 (\$ 0.011 0.011 0.008 0.012 0.008 0.011	0.03 -0.05 -0.06 0.05 0.01 0.05	13.99 13.99 13.99 13.99 13.99 13.99	14.50 14.50 14.50	1.125 1.125 1.125	0.029 0.035 0.027 0.034	22.1 22.1 22.1
Back side Left side Right side Top side Bottom side	802.11ax 160M 802.11ax 160M 802.11ax 160M 802.11ax 160M 802.11ax 160M	79/6345 79/6345 79/6345 79/6345 79/6345	99.58% 99.58% 99.58% 99.58% 99.58% Ho	1.004 1.004 1.004 1.004 1.004 1.004 1.004 0tspot Te	est data of 0.026 0.031 0.024 0.030 0.021 0.042 est data of	U-NII-5 (\$\) 0.011 0.011 0.008 0.012 0.008 0.011 U-NII-6 (\$\)	Separate 0.03 -0.05 -0.06 0.05 0.01 0.05 Separate	13.99 13.99 13.99 13.99 13.99 13.99 10mm)	14.50 14.50 14.50 14.50 14.50	1.125 1.125 1.125 1.125 1.125	0.029 0.035 0.027 0.034 0.024 0.047	22.1 22.1 22.1 22.1 22.1
Back side Left side Right side Top side Bottom side Front side	802.11ax 160M 802.11ax 160M 802.11ax 160M 802.11ax 160M 802.11ax 160M 802.11ax 160M	79/6345 79/6345 79/6345 79/6345 79/6345 111/6505	99.58% 99.58% 99.58% 99.58% 99.58% Hd 99.58%	1.004 1.004 1.004 1.004 1.004 1.004 1.004 0tspot Te	est data of 0.026 0.031 0.024 0.030 0.021 0.042 est data of 0.028	U-NII-5 (\$ 0.011 0.011 0.008 0.012 0.008 0.011 U-NII-6 (\$ 0.011	Separate 0.03 -0.05 -0.06 0.05 0.01 0.05 Separate 0.15	13.99 13.99 13.99 13.99 13.99 13.99 10mm)	14.50 14.50 14.50 14.50 14.50	1.125 1.125 1.125 1.125 1.125 1.125	0.029 0.035 0.027 0.034 0.024 0.047	22.1 22.1 22.1 22.1 22.1 22.1
Back side Left side Right side Top side Bottom side Front side Back side	802.11ax 160M 802.11ax 160M 802.11ax 160M 802.11ax 160M 802.11ax 160M 802.11ax 160M 802.11ax 160M	79/6345 79/6345 79/6345 79/6345 79/6345 111/6505 111/6505	99.58% 99.58% 99.58% 99.58% 99.58% 99.58% H0 99.58% 99.58%	1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004	est data of 0.026 0.031 0.024 0.030 0.021 0.042 est data of 0.028 0.031	U-NII-5 (\$ 0.011 0.011 0.008 0.012 0.008 0.011 U-NII-6 (\$ 0.011 0.012	Separate 0.03 -0.05 -0.06 0.05 0.01 0.05 Separate 0.15 -0.05	13.99 13.99 13.99 13.99 13.99 13.99 10mm) 13.58	14.50 14.50 14.50 14.50 14.50 14.50	1.125 1.125 1.125 1.125 1.125 1.125 1.236 1.236	0.029 0.035 0.027 0.034 0.024 0.047 0.035 0.038	22.1 22.1 22.1 22.1 22.1 22.1 22.1
Back side Left side Right side Top side Bottom side Front side Back side Left side	802.11ax 160M 802.11ax 160M 802.11ax 160M 802.11ax 160M 802.11ax 160M 802.11ax 160M 802.11ax 160M 802.11ax 160M	79/6345 79/6345 79/6345 79/6345 79/6345 111/6505 111/6505 111/6505	99.58% 99.58% 99.58% 99.58% 99.58% Ht 99.58% 99.58% 99.58%	1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004	est data of 0.026 0.031 0.024 0.030 0.021 0.042 est data of 0.028 0.031 0.016	U-NII-5 (\$ 0.011 0.001 0.008 0.012 0.008 0.011 U-NII-6 (\$ 0.011 0.012 0.007	0.03 -0.05 -0.06 0.05 0.01 0.05 Separate 0.15 -0.05 -0.19	13.99 13.99 13.99 13.99 13.99 13.99 10mm) 13.58 13.58	14.50 14.50 14.50 14.50 14.50 14.50 14.50 14.50	1.125 1.125 1.125 1.125 1.125 1.236 1.236 1.236	0.029 0.035 0.027 0.034 0.024 0.047 0.035 0.038 0.020	22.1 22.1 22.1 22.1 22.1 22.1 22.1 22.1
Back side Left side Right side Top side Bottom side Front side Back side Left side Right side	802.11ax 160M 802.11ax 160M 802.11ax 160M 802.11ax 160M 802.11ax 160M 802.11ax 160M 802.11ax 160M 802.11ax 160M 802.11ax 160M	79/6345 79/6345 79/6345 79/6345 79/6345 111/6505 111/6505 111/6505	99.58% 99.58% 99.58% 99.58% 99.58% Ho 99.58% 99.58% 99.58% 99.58%	1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004	est data of 0.026 0.031 0.024 0.030 0.021 0.042 est data of 0.028 0.031 0.016 0.023	U-NII-5 (\$ 0.011 0.001 0.008 0.012 0.008 0.011 U-NII-6 (\$ 0.011 0.012 0.007 0.017	0.03 -0.05 -0.06 0.05 0.01 0.05 Separate 0.15 -0.05 -0.19	13.99 13.99 13.99 13.99 13.99 13.99 10mm) 13.58 13.58 13.58	14.50 14.50 14.50 14.50 14.50 14.50 14.50 14.50 14.50	1.125 1.125 1.125 1.125 1.125 1.236 1.236 1.236 1.236	0.029 0.035 0.027 0.034 0.024 0.047 0.035 0.038 0.020 0.029	22.1 22.1 22.1 22.1 22.1 22.1 22.1 22.1
Back side Left side Right side Top side Bottom side Front side Back side Left side Right side Top side	802.11ax 160M 802.11ax 160M	79/6345 79/6345 79/6345 79/6345 79/6345 111/6505 111/6505 111/6505 111/6505	99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58%	1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004	est data of 0.026 0.031 0.024 0.030 0.021 0.042 est data of 0.028 0.031 0.016 0.023 0.021	U-NII-5 (\$ 0.011 0.011 0.008 0.012 0.008 0.011 U-NII-6 (\$ 0.011 0.012 0.007 0.017	Separate 0.03 -0.05 -0.06 0.05 0.01 0.05 Separate 0.15 -0.05 -0.19 -0.03	13.99 13.99 13.99 13.99 13.99 13.99 10mm) 13.58 13.58 13.58	14.50 14.50 14.50 14.50 14.50 14.50 14.50 14.50 14.50 14.50	1.125 1.125 1.125 1.125 1.125 1.236 1.236 1.236 1.236 1.236	0.029 0.035 0.027 0.034 0.024 0.047 0.035 0.038 0.020 0.029	22.1 22.1 22.1 22.1 22.1 22.1 22.1 22.1
Back side Left side Right side Top side Bottom side Front side Back side Left side Right side Top side	802.11ax 160M 802.11ax 160M 802.11ax 160M 802.11ax 160M 802.11ax 160M 802.11ax 160M 802.11ax 160M 802.11ax 160M 802.11ax 160M	79/6345 79/6345 79/6345 79/6345 79/6345 111/6505 111/6505 111/6505 111/6505	99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58%	1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004	est data of 0.026 0.031 0.024 0.030 0.021 0.042 est data of 0.028 0.031 0.016 0.023 0.021 0.021	U-NII-5 (\$ 0.011 0.001 0.008 0.012 0.008 0.011 U-NII-6 (\$ 0.011 0.012 0.007 0.017 0.009 0.007	Separate 0.03 -0.05 -0.06 0.05 0.01 0.05 Separate 0.15 -0.05 -0.19 -0.03 -0.05	13.99 13.99 13.99 13.99 13.99 13.99 10mm) 13.58 13.58 13.58 13.58	14.50 14.50 14.50 14.50 14.50 14.50 14.50 14.50 14.50	1.125 1.125 1.125 1.125 1.125 1.236 1.236 1.236 1.236	0.029 0.035 0.027 0.034 0.024 0.047 0.035 0.038 0.020 0.029	22.1 22.1 22.1 22.1 22.1 22.1 22.1 22.1
Back side Left side Right side Top side Bottom side Front side Back side Left side Right side Top side Bottom side	802.11ax 160M 802.11ax 160M	79/6345 79/6345 79/6345 79/6345 79/6345 111/6505 111/6505 111/6505 111/6505	99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58%	1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004	est data of 0.026 0.031 0.024 0.030 0.021 0.042 est data of 0.028 0.031 0.016 0.023 0.021 0.021 est data of	U-NII-5 (\$ 0.011 0.008 0.012 0.008 0.011 U-NII-6 (\$ 0.011 0.012 0.007 0.017 0.009 0.007 U-NII-7 (\$	Separate 0.03 -0.05 -0.06 0.05 0.01 0.05 Separate 0.15 -0.05 -0.19 -0.03 -0.05 Separate	13.99 13.99 13.99 13.99 13.99 13.58 13.58 13.58 13.58 13.58 13.58 13.58	14.50 14.50 14.50 14.50 14.50 14.50 14.50 14.50 14.50 14.50	1.125 1.125 1.125 1.125 1.125 1.236 1.236 1.236 1.236 1.236 1.236	0.029 0.035 0.027 0.034 0.024 0.047 0.035 0.038 0.020 0.029 0.026	22.1 22.1 22.1 22.1 22.1 22.1 22.1 22.1
Back side Left side Right side Top side Bottom side Front side Back side Left side Right side Top side Bottom side	802.11ax 160M 802.11ax 160M	79/6345 79/6345 79/6345 79/6345 79/6345 111/6505 111/6505 111/6505 111/6505 111/6505 117/66825	99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58%	1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004	est data of 0.026 0.031 0.024 0.030 0.021 0.042 est data of 0.028 0.031 0.016 0.023 0.021 0.021 est data of	U-NII-5 (\$ 0.011 0.008 0.012 0.008 0.011 U-NII-6 (\$ 0.011 0.012 0.007 0.017 0.009 0.007 U-NII-7 (\$ 0.017	Separate 0.03 -0.05 -0.06 0.05 0.01 0.05 Separate 0.15 -0.05 -0.19 -0.03 -0.05 Separate -0.08	13.99 13.99 13.99 13.99 13.99 13.58 13.58 13.58 13.58 13.58 13.58 13.58	14.50 14.50 14.50 14.50 14.50 14.50 14.50 14.50 14.50 14.50 14.50	1.125 1.125 1.125 1.125 1.125 1.236 1.236 1.236 1.236 1.236 1.236 1.236	0.029 0.035 0.027 0.034 0.024 0.047 0.035 0.038 0.020 0.029 0.026 0.026	22.1 22.1 22.1 22.1 22.1 22.1 22.1 22.1
Back side Left side Right side Top side Bottom side Front side Back side Left side Right side Top side Bottom side Bath side Top side Bottom side Back side	802.11ax 160M 802.11ax 160M	79/6345 79/6345 79/6345 79/6345 79/6345 111/6505 111/6505 111/6505 111/6505 111/6505 117/6825 175/6825	99.58% 99.58% 99.58% 99.58% 99.58% Ho 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58%	1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004	est data of 0.026 0.031 0.024 0.030 0.021 0.042 est data of 0.028 0.031 0.016 0.023 0.021 0.021 est data of	U-NII-5 (\$ 0.011 0.008 0.012 0.008 0.011 U-NII-6 (\$ 0.011 0.012 0.007 0.017 0.009 0.007 U-NII-7 (\$ 0.017 0.014	Separate 0.03 -0.05 -0.06 0.05 0.01 0.05 Separate 0.15 -0.05 -0.19 -0.03 -0.05 Separate -0.08 -0.19	13.99 13.99 13.99 13.99 13.99 13.99 10mm) 13.58 13.58 13.58 13.58 13.58 13.58 13.58	14.50 14.50 14.50 14.50 14.50 14.50 14.50 14.50 14.50 14.50 14.50 16.00	1.125 1.125 1.125 1.125 1.125 1.236 1.236 1.236 1.236 1.236 1.236 1.236 1.236 1.236	0.029 0.035 0.027 0.034 0.024 0.047 0.035 0.038 0.020 0.029 0.026 0.026	22.1 22.1 22.1 22.1 22.1 22.1 22.1 22.1
Back side Left side Right side Top side Bottom side Front side Back side Left side Right side Top side Bottom side Front side Left side Left side Left side Left side	802.11ax 160M 802.11ax 160M	79/6345 79/6345 79/6345 79/6345 79/6345 111/6505 111/6505 111/6505 111/6505 111/6505 117/6805 175/6825 175/6825	99.58% 99.58% 99.58% 99.58% 99.58% H0 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58%	1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004	est data of 0.026 0.031 0.024 0.030 0.021 0.042 est data of 0.028 0.031 0.016 0.023 0.021 0.021 est data of 0.023 0.021 0.021	U-NII-5 (\$ 0.011 0.008 0.012 0.008 0.011 U-NII-6 (\$ 0.011 0.012 0.007 0.017 0.009 0.007 U-NII-7 (\$ 0.017 0.014 0.040	Separate 0.03 -0.05 -0.06 0.05 0.01 0.05 Separate 0.15 -0.05 -0.19 -0.03 -0.05 Separate -0.08 -0.19 0.02	13.99 13.99 13.99 13.99 13.99 13.99 10mm) 13.58 13.58 13.58 13.58 13.58 13.58 13.58	14.50 14.50 14.50 14.50 14.50 14.50 14.50 14.50 14.50 14.50 14.50 16.00 16.00	1.125 1.125 1.125 1.125 1.125 1.125 1.236 1.236 1.236 1.236 1.236 1.236 1.236 1.236 1.236	0.029 0.035 0.027 0.034 0.024 0.047 0.035 0.038 0.020 0.029 0.026 0.026	22.1 22.1 22.1 22.1 22.1 22.1 22.1 22.1
Back side Left side Right side Top side Bottom side Front side Back side Left side Right side Top side Bottom side Front side Bottom side Left side Left side Right side Right side Back side Left side Right side	802.11ax 160M 802.11ax 160M	79/6345 79/6345 79/6345 79/6345 79/6345 111/6505 111/6505 111/6505 111/6505 111/6505 115/6825 175/6825 175/6825	99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58%	1.004 1.004	est data of 0.026 0.031 0.024 0.030 0.021 0.042 est data of 0.028 0.031 0.016 0.023 0.021 0.021 est data of 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021	U-NII-5 (\$ 0.011 0.001 0.008 0.012 0.008 0.011 U-NII-6 (\$ 0.011 0.012 0.007 0.017 0.009 0.007 U-NII-7 (\$ 0.017 0.014 0.040 0.005	Separate 0.03 -0.05 -0.06 0.05 0.01 0.05 Separate 0.15 -0.05 -0.19 -0.03 -0.05 Separate -0.08 -0.19 0.02	13.99 13.99 13.99 13.99 13.99 13.99 13.58 13.58 13.58 13.58 13.58 13.58 13.58 13.58 13.58 13.58 13.58 13.58	14.50 14.50 14.50 14.50 14.50 14.50 14.50 14.50 14.50 14.50 14.50 16.00 16.00 16.00	1.125 1.125 1.125 1.125 1.125 1.236 1.236 1.236 1.236 1.236 1.236 1.236 1.236 1.236 1.236	0.029 0.035 0.027 0.034 0.024 0.047 0.035 0.038 0.020 0.029 0.026 0.046 0.040 0.047	22.1 22.1 22.1 22.1 22.1 22.1 22.1 22.1
Back side Left side Right side Top side Bottom side Front side Back side Left side Right side Top side Bottom side Front side Bottom side Front side Bottom side Front side Right side Left side Right side Right side	802.11ax 160M 802.11ax 160M	79/6345 79/6345 79/6345 79/6345 79/6345 111/6505 111/6505 111/6505 111/6505 111/6505 115/6825 175/6825 175/6825 175/6825	99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58%	1.004 1.004	est data of 0.026 0.031 0.024 0.030 0.021 0.042 est data of 0.028 0.031 0.016 0.023 0.021 0.021 est data of 0.028 0.031 0.016 0.023 0.021 0.021 est data of 0.042 0.037 0.016 0.024	U-NII-5 (\$ 0.011 0.008 0.012 0.008 0.011 U-NII-6 (\$ 0.011 0.012 0.007 0.017 0.009 0.007 U-NII-7 (\$ 0.017 0.014 0.040 0.005 0.009	Separate 0.03 -0.05 -0.06 0.05 0.01 0.05 Separate -0.05 -0.19 -0.03 -0.05 Separate -0.08 -0.19 0.02 0.02	13.99 13.99 13.99 13.99 13.99 13.99 13.58 13.58 13.58 13.58 13.58 13.58 13.58 13.58 13.58 13.58 13.58 13.58 13.58 13.58	14.50 14.50 14.50 14.50 14.50 14.50 14.50 14.50 14.50 14.50 14.50 14.50 16.00 16.00 16.00 16.00	1.125 1.125 1.125 1.125 1.125 1.236 1.236 1.236 1.236 1.236 1.236 1.236 1.236 1.236 1.236 1.236	0.029 0.035 0.027 0.034 0.024 0.047 0.035 0.038 0.020 0.029 0.026 0.026	22.1 22.1 22.1 22.1 22.1 22.1 22.1 22.1
Back side Left side Right side Top side Bottom side Front side Back side Left side Right side Top side Bottom side Front side Bottom side Front side Bottom side Front side Back side Left side Right side Top side Bottom side	802.11ax 160M 802.11ax 160M	79/6345 79/6345 79/6345 79/6345 79/6345 111/6505 111/6505 111/6505 111/6505 111/6505 1175/6825 175/6825 175/6825 175/6825 175/6825	99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58%	1.004 1.004	est data of 0.026 0.031 0.024 0.030 0.021 0.042 est data of 0.028 0.031 0.016 0.023 0.021 0.021 est data of 0.042 0.037 0.016 0.024 0.024 0.026	U-NII-5 (\$ 0.011 0.008 0.012 0.008 0.011 U-NII-6 (\$ 0.011 0.012 0.007 0.017 0.009 0.007 U-NII-7 (\$ 0.017 0.014 0.040 0.005 0.009 0.010	Separate 0.03 -0.05 -0.06 0.05 0.01 0.05 Separate -0.05 -0.19 -0.03 -0.05 Separate -0.08 -0.19 0.02 0.02 0.08 0.05	13.99 13.99 13.99 13.99 13.99 13.99 13.58	14.50 14.50 14.50 14.50 14.50 14.50 14.50 14.50 14.50 14.50 14.50 16.00 16.00 16.00 16.00 16.00	1.125 1.125 1.125 1.125 1.125 1.236 1.236 1.236 1.236 1.236 1.236 1.236 1.236 1.236 1.236 1.236	0.029 0.035 0.027 0.034 0.024 0.047 0.035 0.038 0.020 0.029 0.026 0.026 0.046 0.040 0.017 0.026 0.026	22.1 22.1 22.1 22.1 22.1 22.1 22.1 22.1
Back side Left side Right side Top side Bottom side Front side Back side Left side Right side Top side Bottom side Front side Bottom side Front side Bottom side Front side Back side Left side Right side Top side Bottom side	802.11ax 160M 802.11ax 160M	79/6345 79/6345 79/6345 79/6345 79/6345 111/6505 111/6505 111/6505 111/6505 111/6505 1175/6825 175/6825 175/6825 175/6825 175/6825	99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58%	1.004 1.004	est data of 0.026 0.031 0.024 0.030 0.021 0.042 est data of 0.028 0.031 0.016 0.023 0.021 0.021 est data of 0.028 0.031 0.016 0.023 0.021 0.021 est data of 0.042 0.037 0.016 0.024	U-NII-5 (\$ 0.011 0.008 0.012 0.008 0.011 U-NII-6 (\$ 0.011 0.012 0.007 0.017 0.009 0.007 U-NII-7 (\$ 0.017 0.014 0.040 0.005 0.009 0.010 0.006	Separate 0.03 -0.05 -0.06 0.05 0.01 0.05 Separate 0.15 -0.05 -0.09 -0.09 0.005 Separate 0.005 0.005 Separate 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005	13.99 13.99 13.99 13.99 13.99 13.99 13.58	14.50 14.50 14.50 14.50 14.50 14.50 14.50 14.50 14.50 14.50 14.50 14.50 16.00 16.00 16.00 16.00	1.125 1.125 1.125 1.125 1.125 1.236 1.236 1.236 1.236 1.236 1.236 1.236 1.236 1.236 1.236 1.236	0.029 0.035 0.027 0.034 0.024 0.047 0.035 0.038 0.020 0.029 0.026 0.026	22.1 22.1 22.1 22.1 22.1 22.1 22.1 22.1
Back side Left side Right side Top side Bottom side Front side Back side Left side Right side Top side Bottom side Front side Bottom side Front side Back side Left side Right side Top side Back side Left side Front side Right side Top side Front side	802.11ax 160M 802.11ax 160M	79/6345 79/6345 79/6345 79/6345 79/6345 111/6505 111/6505 111/6505 111/6505 111/6505 117/6825 175/6825 175/6825 175/6825 175/6825 175/6825 175/6825	99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58%	1.004 1.004	est data of 0.026 0.031 0.024 0.030 0.021 0.042 est data of 0.028 0.031 0.016 0.023 0.021 0.021 est data of 0.023 0.021 0.021 0.021 0.021 0.042 0.037 0.016 0.024 0.024 0.024 0.026 0.016	U-NII-5 (\$ 0.011 0.008 0.012 0.008 0.011 U-NII-6 (\$ 0.011 0.012 0.007 0.017 0.009 0.007 U-NII-7 (\$ 0.017 0.014 0.040 0.005 0.009 0.010 0.006	Separate 0.03 -0.05 -0.06 0.05 0.01 0.05 Separate 0.15 -0.05 -0.09 -0.09 0.005 Separate 0.005 0.005 Separate 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005	13.99 13.99 13.99 13.99 13.99 13.99 13.58	14.50 14.50 14.50 14.50 14.50 14.50 14.50 14.50 14.50 14.50 14.50 16.00 16.00 16.00 16.00 16.00	1.125 1.125 1.125 1.125 1.125 1.236 1.236 1.236 1.236 1.236 1.236 1.236 1.236 1.236 1.236 1.236	0.029 0.035 0.027 0.034 0.024 0.047 0.035 0.038 0.020 0.029 0.026 0.026 0.046 0.040 0.017 0.026 0.026	22.1 22.1 22.1 22.1 22.1 22.1 22.1 22.1
Back side Left side Right side Top side Bottom side Front side Back side Left side Right side Top side Bottom side Front side Bottom side Front side Back side Left side Right side Top side Back side Left side Front side Front side Front side Front side	802.11ax 160M 802.11ax 160M	79/6345 79/6345 79/6345 79/6345 79/6345 111/6505 111/6505 111/6505 111/6505 111/6505 117/6825 175/6825 175/6825 175/6825 175/6825 175/6825 175/6825 175/6825 207/6985	99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58%	1.004 1.004	est data of 0.026 0.031 0.024 0.028 0.031 0.016 0.023 0.021 0.042 0.037 0.016 0.024 0.026 0.016 0.024 0.024 0.026 0.016 est data of	U-NII-5 (\$ 0.011 0.008 0.012 0.008 0.011 U-NII-6 (\$ 0.011 0.012 0.007 0.017 0.009 0.007 U-NII-7 (\$ 0.017 0.014 0.040 0.005 0.009 0.010 0.006 U-NII-8 (\$	Separate 0.03 -0.05 -0.06 0.05 0.01 0.05 Separate 0.15 -0.05 -0.19 -0.05 Separate 0.05 0.05 0.05 -0.09 0.05 0.005 Separate 0.005 Separate 0.005 Separate 0.005 Separate 0.005 Separate 0.005 Separate 0.005 0.01 Separate	13.99 13.99 13.99 13.99 13.99 13.99 13.58	14.50 14.50 14.50 14.50 14.50 14.50 14.50 14.50 14.50 14.50 14.50 16.00 16.00 16.00 16.00 16.00 16.00	1.125 1.125 1.125 1.125 1.125 1.236 1.236 1.236 1.236 1.236 1.236 1.236 1.236 1.236 1.236 1.236 1.236	0.029 0.035 0.027 0.034 0.024 0.047 0.035 0.038 0.020 0.029 0.026 0.046 0.040 0.017 0.026 0.026 0.028 0.021	22.1 22.1 22.1 22.1 22.1 22.1 22.1 22.1
Back side Left side Right side Top side Bottom side Front side Back side Left side Right side Top side Bottom side Front side Bottom side Front side Back side Left side Right side Top side Bottom side Front side Front side Bottom side Front side Bottom side	802.11ax 160M 802.11ax 160M	79/6345 79/6345 79/6345 79/6345 79/6345 111/6505 111/6505 111/6505 111/6505 111/6505 111/6505 175/6825 175/6825 175/6825 175/6825 175/6825 175/6825 207/6985	99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58%	1.004 1.004	est data of 0.026 0.031 0.024 0.030 0.021 0.042 est data of 0.028 0.031 0.016 0.023 0.021 0.021 est data of 0.042 0.037 0.016 0.024 0.024 0.024 0.024 0.026 0.016 est data of 0.038	U-NII-5 (\$ 0.011 0.008 0.012 0.008 0.011 U-NII-6 (\$ 0.011 0.012 0.007 0.017 0.009 0.007 U-NII-7 (\$ 0.017 0.014 0.040 0.005 0.009 0.010 0.006 U-NII-8 (\$ 0.016	Separate 0.03 -0.05 0.01 0.05 Separate 0.15 -0.05 -0.09 -0.05 Separate 0.005 0.01 0.05 Separate 0.05 0.05 0.05 Separate 0.05 0.05 Separate 0.08 -0.09 0.002 0.08 0.05 0.01 Separate 0.02	13.99 13.99 13.99 13.99 13.99 13.99 13.58 13.65 15.65 15.65 15.65 15.65 13.30 10mm)	14.50 14.50 14.50 14.50 14.50 14.50 14.50 14.50 14.50 14.50 16.00 16.00 16.00 16.00 16.00 16.00 15.50	1.125 1.125 1.125 1.125 1.125 1.236 1.236 1.236 1.236 1.236 1.236 1.236 1.236 1.236 1.236 1.236 1.236 1.236	0.029 0.035 0.027 0.034 0.024 0.047 0.035 0.038 0.020 0.029 0.026 0.026 0.046 0.040 0.017 0.026 0.026 0.028 0.021	22.1 22.1 22.1 22.1 22.1 22.1 22.1 22.1

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company, Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CN.Doccheck@sgs.com"

t (86-755) 26012053

邮编: 518057

No.1 Workshop, M-10, Middle Section, Science & Technology Park, Nanshan District, Shenzhen, Guangdong, China 518057 中国・广东・深圳市南山区科技园中区M-10栋1号厂房

t (86-755) 26012053

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR240500187801

Page: 42 of 52

Top side	802.11ax 160M	207/6985	99.58%	1.004	0.016	0.006	0.05	13.81	15.50	1.476	0.024	21.9
	802.11ax 160M			1.004	0.029	0.010	0.01	13.81	15.50	1.476	0.043	21.9
					Ant7 T	est Reco	rd					
Test position	Test mode	Test ch./Freq.	Duty Cycle	Duty Cycle Scaled factor	SAR (W/kg) 1-g	SAR (W/kg) 10-g	Power drift (dB)	Conducted Power(dBm)		Scaled factor	Scaled SAR 1-g (W/kg)	Liquid Temp.(℃)
	1		H		est data of	LI-NII-5 (9	Senarate	10mm)		<u> </u>		
Front side	802.11ax 160M	79/6345	99.58%	1.004	0.005	0.001	-0.09	11.43	12.00	1.140	0.006	22.6
Back side	802.11ax 160M		99.58%	1.004	0.115	0.039	0.01	11.43	12.00	1.140	0.132	22.6
Left side	802.11ax 160M		99.58%	1.004	0.078	0.028	-0.07	11.43	12.00	1.140	0.089	22.6
	802.11ax 160M		99.58%	1.004	0.002	0.001	-0.02	11.43	12.00	1.140	0.002	22.6
Top side	802.11ax 160M	79/6345	99.58%	1.004	0.007	0.003	-0.05	11.43	12.00	1.140	0.008	22.6
Bottom side	802.11ax 160M	79/6345	99.58%	1.004	0.002	0.000	-0.07	11.43	12.00	1.140	0.002	22.6
			H	otspot Te	est data of	U-NII-6 (S	Separate	10mm)				
Front side	802.11ax 160M	111/6505	99.58%	1.004	0.005	0.001	0.09	9.67	11.00	1.358	0.007	22.6
Back side	802.11ax 160M			1.004	0.057	0.018	0.06	9.67	11.00	1.358	0.078	22.6
Left side	802.11ax 160M	111/6505	99.58%	1.004	0.049	0.018	0.09	9.67	11.00	1.358	0.067	22.3
Right side	802.11ax 160M			1.004	0.009	0.003	-0.03	9.67	11.00	1.358	0.012	22.3
Top side	802.11ax 160M			1.004	0.010	0.004	0.01	9.67	11.00	1.358	0.014	22.6
Bottom side	802.11ax 160M	111/6505		1.004	0.006	0.003	-0.05	9.67	11.00	1.358	0.008	22.3
					est data of	,			•	1		
Front side	802.11ax 160M				0.008	0.002	0.00	14.97	15.50	1.130	0.009	22.3
Back side	802.11ax 160M			1.004	0.204	0.069	0.00	14.97	15.50	1.130	0.231	22.3
Left side	802.11ax 160M			1.004	0.189	0.065	0.04	14.97	15.50	1.130	0.214	22.3
Right side	802.11ax 160M			1.004	0.007	0.003	-0.01	14.97	15.50	1.130	0.008	22.3
Top side	802.11ax 160M			1.004	0.027	0.012	0.01	14.97	15.50	1.130	0.031	22.3
Bottom side	802.11ax 160M	175/6825		1.004	0.002	0.000	0.00	14.97	15.50	1.130	0.002	22.3
Crost side	000 11ev 100M	207/6005			est data of	,			15.50	4 420	0.005	22.2
Front side Back side	802.11ax 160M 802.11ax 160M			1.004	0.004	0.000	0.09 -0.08	14.97 14.97	15.50 15.50	1.130	0.005 0.078	22.3
Left side	802.11ax 160M			1.004	0.069	0.023	0.02	14.97	15.50	1.130	0.078	22.3
	802.11ax 160M			1.004	0.003	0.000	0.02	14.97	15.50	1.130	0.001	22.3
Top side	802.11ax 160M			1.004	0.006	0.000	-0.09	14.97	15.50	1.130	0.007	22.3
	802.11ax 160M			1.004	0.001	0.000	-0.01	14.97	15.50	1.130	0.001	22.3
Bottom oldo	poz.i rax room	20170000	00.0070	1.001		Test Reco		1 1.07	10.00	11.100	0.001	LL.U
Test position	Test mode	Test ch./Freq.	Duty Cycle	Duty Cycle Scaled factor	SAR (W/kg) 1-g	SAR (W/kg) 10-g	Power	Conducted Power(dBm)		Scaled factor	Scaled SAR 1-g (W/kg)	Liquid Temp.(℃)
					est data of	U-NII-5 (S	Separate	10mm)				
	802.11ax 160M				0.014	0.006	0.08	12.77	14.50	1.489	0.021	22.1
Back side	802.11ax 160M		99.58%	1.004	0.181	0.064	0.14	12.77	14.50	1.489	0.271	22.1
Left side	802.11ax 160M		99.58%	1.004	0.119	0.043	-0.04	12.77	14.50	1.489	0.178	22.1
Right side	802.11ax 160M		99.58%	1.004	0.045	0.011	0.05	12.77	14.50	1.489	0.067	22.1
Top side	802.11ax 160M		99.58%	1.004	0.027	0.011	0.03	12.77	14.50	1.489	0.040	22.1
Bottom side	802.11ax 160M	15/6025				0.003	0.02	12.77	14.50	1.489	0.045	22.1
	boo 44 - 10	444/5=5=			est data of				40.00		0.001	00.
	802.11ax 160M				0.029	0.011	0.05	12.28	13.00	1.180	0.034	22.1
	802.11ax 160M				0.203	0.067	-0.05	12.28	13.00	1.180	0.241	22.1
Left side	802.11ax 160M				0.158	0.062	0.03	12.28	13.00	1.180	0.187	22.1
	802.11ax 160M				0.018	0.006	0.08	12.28	13.00	1.180	0.021	22.1
Top side	802.11ax 160M				0.042	0.018	0.05	12.28	13.00	1.180	0.050	22.1
pottom side	802.11ax 160M	µ11/6505			0.013	0.005	0.02	12.28	13.00	1.180	0.015	22.1
			H	uspot 16	est data of	U-INII-7 (S	separate	: (UIIIII)				
Eront olda	202 11ov 160M	175/6005		1 004	0.000	0.011	0.01	15 10	15.50	1 076	0.000	22.4
	802.11ax 160M 802.11ax 160M		99.58%		0.028 0.302	0.011 0.105	0.01	15.18 15.18	15.50 15.50	1.076 1.076	0.030 0.326	22.1 22.1

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company, Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CN.Doccheck@sgs.com"

No.1 Workshop, M-10, Middle Section, Science & Technology Park, Nanshan District, Shenzhen, Guangdong, China 518057 t (86-755) 26012053

中国・广东・深圳市南山区科技园中区M-10栋1号厂房

邮编: 518057 t (86-755) 26012053

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR240500187801

43 of 52 Page:

	•					•					•	
	802.11ax 160M			1.004	0.200	0.071	0.12	15.18	15.50	1.076	0.216	22.1
<u> </u>	802.11ax 160M			1.004	0.019	0.004	0.02	15.18	15.50	1.076	0.021	22.1
Top side	802.11ax 160M				0.019	0.007	0.05	15.18	15.50	1.076	0.021	22.1
Bottom side	802.11ax 160M	175/6825	99.58%	1.004	0.012	0.002	0.03	15.18	15.50	1.076	0.013	22.1
			H	otspot T	est data of	U-NII-8 (S	Separate	10mm)				
Front side	802.11ax 80M			1.004	0.017	0.005	0.09	14.48	15.50	1.265	0.022	22.1
Back side	802.11ax 80M	183/6865	99.58%	1.004	0.148	0.049	-0.08	14.48	15.50	1.265	0.188	22.1
Left side	802.11ax 80M			1.004	0.097	0.032	0.06	14.48	15.50	1.265	0.123	22.1
Right side	802.11ax 80M			1.004	0.008	0.000	0.02	14.48	15.50	1.265	0.010	22.1
Top side	802.11ax 80M	183/6865	99.58%	1.004	0.000	0.000	0.00	14.48	15.50	1.265	0.000	22.1
Bottom side	802.11ax 80M	183/6865	99.58%	1.004	0.000	0.000	0.00	14.48	15.50	1.265	0.000	22.1
						dy worn						
					Ant6 T	est Reco	rd					
				Duty	SAR	SAR	Power				Scaled	
Test	Test mode	Test	Duty	Cycle	(W/ka)	(W/kg)	drift	Conducted		Scaled	SAR 1-a	Liquid
position		ch./Freq.	Cycle	Scaled	1-g	10-g	(dB)	Power(dBm)	Limit(dBm)	factor	(W/kg)	Liquid Temp.(℃)
				factor			` '	15			() 3/	
Fueret etale	000 44 400M	70/0045			Test data o		<u> </u>		44.50	4 405	0.000	00.4
Front side	802.11ax 160M		99.58%		0.025	0.011	0.03	13.99	14.50	1.125	0.028	22.1
Back side	802.11ax 160M	79/6345			0.030	0.013	0.01	13.99	14.50	1.125	0.034	22.1
Frant side	802.11ax 160M	144/0505		1.004	Test data o	0.008			14.50	1 226	0.006	22.4
Front side Back side	802.11ax 160M			1.004	0.021 0.028	0.008	-0.09 -0.03	13.58 13.58	14.50 14.50	1.236	0.026	22.1 22.1
Dack Side	002.11ax 100lvi	II I 1/0505			Test data d				14.50	1.230	0.035	22.1
Front side	802.11ax 160M	175/6925		1.004	0.033	0.014	-0.05	15.65	16.00	1.084	0.036	22.1
Back side	802.11ax 160M			1.004	0.033	0.014	0.05	15.65	16.00	1.084	0.036	22.1
Front side	802.11ax 160M			1.004	0.033	0.009	0.03	13.30	14.50	1.318	0.030	21.9
1 TOTAL SIGE	DUZ.TTAX TUUN	1143/0003			Test data o				14.50	1.510	0.030	21.3
Front side	802.11ax 160M	207/6085			0.030	0.012	0.07	13.81	15.50	1.476	0.044	21.9
	802.11ax 160M				0.030	0.012	-0.06	13.81	15.50	1.476	0.044	21.9
Back side	DOZ.114X 100W	20170000	00.0070	1.004		est Reco		10.01	10.00	1.470	0.011	21.0
				Duty								
Test	Toot made	Test	Duty	Cycle	SAR	SAR	Power	Conducted	Tune up	Scaled	Scaled	Liquid
position	Test mode	ch./Freq.	Cycle	Scaled	(W/kg) 1-g	(W/kg) 10-g	drift (dB)	Power(dBm)	Limit(dBm)	factor	(W/kg)	Liquid Temp.(℃)
				factor	1-y	10-g	(ub)				(VV/Kg)	
					Test data o	of U-NII-5	(Separat					
Front side	802.11ax 160M				0.002	0.001	-0.08	11.43	12.00	1.140	0.002	22.6
Back side	802.11ax 160M	79/6345	99.58%		0.060	0.021	0.07	11.43	12.00	1.140	0.069	22.6
					Test data o		~		1	1		ı
Front side	802.11ax 160M			1.004	0.005	0.002	0.09	9.67	11.00	1.358	0.007	22.6
Back side	802.11ax 160M	111/6505			0.034	0.010	0.01	9.67	11.00	1.358	0.046	22.6
	00044 1055	475/225			Test data o				15.50	1 100	0.000	00.0
	802.11ax 160M			1.004	0.007	0.002	0.03	14.97	15.50	1.130	0.008	22.3
Back side	802.11ax 160M	175/6825		1.004	0.148	0.054	0.07	14.97	15.50	1.130	0.168	22.3
					Test data o				45.50	4 400	0.000	00.0
English to the State	000 44 40014	007/0005		1 1 1 1 1 1 1 1	0.002	0.000	-0.09	14.97	15.50	1.130		22.3
	802.11ax 160M						0.00	4407	45.50	4 400		20.2
	802.11ax 160M 802.11ax 160M				0.055	0.020	0.06	14.97	15.50	1.130	0.062	22.3
				1.004	0.055 MIMO	0.020 Test Reco		14.97	15.50	1.130		22.3
Back side		207/6985	99.58%	1.004 Duty	0.055 MIMO	0.020	Power				Scaled	
Back side Test		207/6985 Test	99.58% Duty	Duty Cycle	0.055 MIMO	0.020 Test Reco	Power	Conducted	Tune up	Scaled	Scaled SAR 1-g	
Back side	802.11ax 160M	207/6985	99.58% Duty	Duty Cycle Scaled	0.055 MIMO	0.020 Test Reco	Power		Tune up	Scaled	Scaled	
Back side Test	802.11ax 160M	207/6985 Test	99.58% Duty Cycle	Duty Cycle Scaled factor	0.055 MIMO SAR (W/kg) 1-g	0.020 Test Reco SAR (W/kg) 10-g	Power drift (dB)	Conducted Power(dBm)	Tune up	Scaled	Scaled SAR 1-g	
Test position	802.11ax 160M Test mode	Test ch./Freq.	Duty Cycle	Duty Cycle Scaled factor	0.055 MIMO SAR (W/kg) 1-g Test data of	0.020 Test Reco SAR (W/kg) 10-g	Power drift (dB)	Conducted Power(dBm)	Tune up Limit(dBm)	Scaled factor	Scaled SAR 1-g (W/kg)	Liquid Temp.(℃)
Test position Front side	Test mode 802.11ax 160M	Test ch./Freq.	Duty Cycle Box 99.58%	Duty Cycle Scaled factor dy worn 1.004	0.055 MIMO SAR (W/kg) 1-g Test data (0.027	0.020 Test Recc SAR (W/kg) 10-g of U-NII-5 0.010	Power drift (dB) (Separation 0.05	Conducted Power(dBm) te 15mm)	Tune up Limit(dBm)	Scaled factor	Scaled SAR 1-g (W/kg)	Liquid Temp.(℃)
Test position Front side	802.11ax 160M Test mode	Test ch./Freq.	Duty Cycle Box 99.58% 99.58%	Duty Cycle Scaled factor dy worn 1.004 1.004	0.055 MIMO SAR (W/kg) 1-g Test data 0 0.027 0.084	0.020 Fest Reco SAR (W/kg) 10-g of U-NII-5 0.010 0.031	Power drift (dB) (Separation 0.05) 0.05	Conducted Power(dBm) te 15mm) 12.77 12.77	Tune up Limit(dBm)	Scaled factor	Scaled SAR 1-g (W/kg)	Liquid Temp.(℃)
Test position Front side Back side	Test mode 802.11ax 160M	Test ch./Freq.	99.58% Duty Cycle Boo 99.58% 99.58% Boo Boo	Duty Cycle Scaled factor dy worn 1.004 1.004 dy worn	0.055 MIMO SAR (W/kg) 1-g Test data (0.027	0.020 Fest Reco SAR (W/kg) 10-g of U-NII-5 0.010 0.031	Power drift (dB) (Separation 0.05) 0.05	Conducted Power(dBm) te 15mm) 12.77 12.77	Tune up Limit(dBm)	Scaled factor	Scaled SAR 1-g (W/kg)	Liquid Temp.(℃)

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company, Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CN.Doccheck@sgs.com"

No.1 Workshop, M-10, Middle Section, Science & Technology Park, Nanshan District, Shenzhen, Guangdong, China 518057 t (86-755) 26012053

邮编: 518057

中国・广东・深圳市南山区科技园中区M-10栋1号厂房

t (86-755) 26012053

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR240500187801

44 of 52 Page:

Back side	802.11ax 160M	111/6505	99.58%	1.004	0.118	0.044	0.02	12.28	13.00	1.180	0.140	22.1
			Boo	y worn	Test data o	of U-NII-7	(Separa	te 15mm)				
	802.11ax 160M			1.004	0.084	0.027	0.06	15.18	15.50	1.076	0.091	22.1
Back side	802.11ax 160M	175/6825	99.58%	1.004	0.161	0.057	0.01	15.18	15.50	1.076	0.174	22.1
			Boo	dy worn ⁻	Test data d	of U-NII-8	(Separat	te 15mm)				
Front side	802.11ax 80M	183/6865	99.58%	1.004	0.015	0.005	0.06	14.48	15.50	1.265	0.019	22.1
Back side	802.11ax 80M	183/6865	99.58%	1.004	0.105	0.034	-0.01	14.48	15.50	1.265	0.133	22.1
					Product s							
	1	1	l		Ant6 T	est Reco	rd	1				
Tool		T4	Dutu	Duty	SAR	SAR	Power	C = 1 - 1 - 1 - 1	T	Caalad	Scaled	Liquid
Test position	Test mode	Test ch./Freg.	Duty Cycle	Cycle Scaled	(W/kg)	(W/kg)	drift	Conducted Power(dBm)	Tune up			Liquid Temp.(℃)
position		cii./Fieq.	Cycle	factor	1-g	10-g	(dB)	rower (ubili)	Lillint(GBIII)	iacioi	g (W/kg)	remp.(C)
		F	Product s		OaSAR Te	st data of	U-NII-5(Separate 0mn	n)		(VV/Kg)	
Front side	802.11ax 160M			1.004	0.047	0.018	0.07	13.99	14.50	1.125	0.020	22.1
	802.11ax 160M			1.004	0.038	0.010	-0.05	13.99	14.50	1.125	0.011	22.1
Left side	802.11ax 160M			1.004	0.036	0.014	0.02	13.99	14.50	1.125	0.016	22.1
	802.11ax 160M			1.004	0.042	0.012	-0.07	13.99	14.50	1.125	0.014	22.1
	802.11ax 160M			1.004	0.022	0.008	-0.06	13.99	14.50	1.125	0.009	22.1
	802.11ax 160M			1.004	0.017	0.005	0.02	13.99	14.50	1.125	0.006	22.1
		P	roduct sp	pecific 10	OgSAR Te	st data of	U-NII-6 (Separate 0mr	n)			
	802.11ax 160M			1.004	0.045	0.016	0.02	13.58	14.50	1.236	0.020	22.1
	802.11ax 160M	111/6505	99.58%	1.004	0.059	0.021	0.06	13.58	14.50	1.236	0.026	22.1
	802.11ax 160M			1.004	0.053	0.019	-0.08	13.58	14.50	1.236	0.024	22.1
	802.11ax 160M			1.004	0.047	0.014	-0.07	13.58	14.50	1.236	0.017	22.1
	802.11ax 160M			1.004	0.051	0.017	-0.04	13.58	14.50	1.236	0.021	22.1
Bottom side	802.11ax 160M				0.057	0.020	0.19	13.58	14.50	1.236	0.025	22.1
	1							Separate 0mr		1	1	
	802.11ax 160M			1.004	0.069	0.025	0.09	15.65	16.00	1.084	0.027	22.1
	802.11ax 160M			1.004	0.063	0.025	0.05	15.65	16.00	1.084	0.027	22.1
	802.11ax 160M			1.004	0.044	0.017	-0.05	15.65	16.00	1.084	0.019	22.1
	802.11ax 160M			1.004	0.040	0.020	0.06	15.65	16.00	1.084	0.022	22.1
	802.11ax 160M			1.004	0.025	0.009	0.05	15.65	16.00	1.084	0.010	22.1
	802.11ax 160M			1.004	0.035 0.056	0.013	-0.06 0.05	15.65 13.30	16.00	1.084	0.014	22.1
Front side	802.11ax 160M					0.020		Separate 0mr	14.50	1.316	0.026	21.9
Front side	802.11ax 160M			1.004	0.074	0.028	-0.06	13.81	15.50	1.476	0.041	22.2
	802.11ax 160M			1.004	0.062	0.028	-0.00	13.81	15.50	1.476	0.041	21.9
	802.11ax 160M			1.004	0.052	0.017	0.08	13.81	15.50	1.476	0.027	22.2
	802.11ax 160M			1.004	0.054	0.017	0.06	13.81	15.50	1.476	0.023	22.2
	802.11ax 160M			1.004	0.035	0.012	0.01	13.81	15.50	1.476	0.018	22.2
	802.11ax 160M			1.004	0.042	0.014	0.01	13.81	15.50	1.476	0.021	22.2
						est Reco						
				Duty	SAR	SAR	Dawar				Scaled	
Test	Test mode	Test	Duty	Cycle			Power	Conducted	Tune up			Liquid
position	rest mode	ch./Freq.	Cycle	Scaled	(W/kg) 1-g	(W/kg) 10-g	drift (dB)	Power(dBm)	Limit(dBm)	factor	g	Temp.(℃)
				factor							(W/kg)	
	laaa							Separate 0mn	,	T		
	802.11ax 160M				0.018	0.006	0.04	11.43	12.00	1.140	0.007	22.6
	802.11ax 160M				0.648	0.150	0.02	11.43	12.00	1.140	0.172	22.6
	802.11ax 160M				0.465	0.122	0.09	11.43	12.00	1.140	0.140	22.6
	802.11ax 160M				0.008	0.002	-0.03	11.43	12.00	1.140	0.002	22.6
	802.11ax 160M				0.028	0.010	0.01	11.43	12.00	1.140	0.011	22.6
Bottom side	802.11ax 160M				0.005	0.001	-0.07	11.43	12.00	1.140	0.001	22.6
Front side	000 1100 1001							Separate 0mr		1 250	0.002	22.6
	802.11ax 160M 802.11ax 160M				0.008 0.518	0.002 0.105	-0.05 0.05	9.67 9.67	11.00 11.00	1.358 1.358	0.003	22.6 22.6
Dack Side	DOZ. I I dx TOUIVI	Ji i i/0505	JJ.JU/0	1.004	0.010	0.100	0.00	3.01	11.00	1.000	0.143	۷۵.۵

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company, Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CN.Doccheck@sgs.com"

t (86-755) 26012053

邮编: 518057

No.1 Workshop, M-10, Middle Section, Science & Technology Park, Nanshan District, Shenzhen, Guangdong, China 518057 中国・广东・深圳市南山区科技园中区M-10栋1号厂房

t (86-755) 26012053

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR240500187801

45 of 52 Page:

	1							1			i i	i i
	802.11ax 160M				0.297	0.073	-0.05	9.67	11.00	1.358	0.100	22.3
	802.11ax 160M				0.004	0.002	0.02	9.67	11.00	1.358	0.002	22.3
	802.11ax 160M				0.024	0.008	0.03	9.67	11.00	1.358	0.011	22.3
Bottom side	802.11ax 160M				0.003	0.001	-0.02	9.67	11.00	1.358	0.001	22.3
	T				_			Separate 0mr			1	
	802.11ax 160M				0.035	0.011	0.00	14.97	15.50	1.130	0.012	22.3
	802.11ax 160M				1.500	0.336	0.00	14.97	15.50	1.130	0.381	22.3
	802.11ax 160M				0.867	0.204	0.01	14.97	15.50	1.130	0.231	22.3
	802.11ax 160M				0.002	0.001	-0.06	14.97	15.50	1.130	0.001	22.3
	802.11ax 160M				0.062	0.026	0.04	14.97	15.50	1.130	0.029	22.3
	802.11ax 160M				0.001	0.001	0.09	14.97	15.50	1.130	0.001	22.3
Back side	802.11ax 160M				0.991	0.243	0.03	13.63	15.50	1.538	0.375	22.3
	T							Separate 0mr			1	
	802.11ax 160M				0.039	0.010	0.01	14.97	15.50	1.130	0.011	22.3
	802.11ax 160M			1.004	0.419	0.099	0.04	14.97	15.50	1.130	0.112	22.3
	802.11ax 160M				0.183	0.039	0.04	14.97	15.50	1.130	0.044	22.3
	802.11ax 160M			1.004	0.002	0.001	0.00	14.97	15.50	1.130	0.001	22.3
	802.11ax 160M				0.016	0.007	-0.02	14.97	15.50	1.130	0.008	22.3
Bottom side	802.11ax 160M	207/6985	99.58%	1.004	0.004	0.001	-0.03	14.97	15.50	1.130	0.001	22.3
				D. 1	MIMO	Test Reco	ord				0	
Tool		T4	D	Duty	SAR	SAR	Power	C	T	Caalaal	Scaled	امادادا
Test	Test mode	Test	Duty	Cycle	(W/kg)	(W/kg)	drift	Conducted				Liquid
position		ch./Freq.	Cycle	Scaled factor	1-g	10-g	(dB)	Power(dBm)	Limit(aBm)	ractor		Temp.(℃)
			Product s		OgSAR Te	et data of	 	Separate 0mn	n)		(W/kg)	
Front side	802.11ax 160M		99.58%		0.035	0.011	0.05	12.77	14.50	1.489	0.016	22.1
	802.11ax 160M											
Daok Slac					1 ()1()	11735	-() ()1	12 77	14 50	1 1 489	0.351	22.1
Left side					1.010 0.726	0.235	-0.01 0.06	12.77 12.77	14.50 14.50	1.489	0.351	22.1 22.1
	802.11ax 160M	15/6025	99.58%	1.004	0.726	0.173	0.06	12.77	14.50	1.489	0.259	22.1
Right side	802.11ax 160M 802.11ax 160M	15/6025 15/6025	99.58% 99.58%	1.004 1.004	0.726 0.046	0.173 0.015	0.06 0.02	12.77 12.77	14.50 14.50	1.489 1.489	0.259 0.022	22.1 22.1
Right side Top side	802.11ax 160M 802.11ax 160M 802.11ax 160M	15/6025 15/6025 15/6025	99.58% 99.58% 99.58%	1.004 1.004 1.004	0.726 0.046 0.040	0.173 0.015 0.015	0.06 0.02 -0.09	12.77 12.77 12.77	14.50 14.50 14.50	1.489 1.489 1.489	0.259 0.022 0.022	22.1 22.1 22.1
Right side Top side Bottom side	802.11ax 160M 802.11ax 160M 802.11ax 160M 802.11ax 160M	15/6025 15/6025 15/6025 15/6025	99.58% 99.58% 99.58% 99.58%	1.004 1.004 1.004 1.004	0.726 0.046 0.040 0.010	0.173 0.015 0.015 0.003	0.06 0.02 -0.09 0.02	12.77 12.77 12.77 12.77	14.50 14.50 14.50 14.50	1.489 1.489 1.489 1.489	0.259 0.022 0.022 0.004	22.1 22.1 22.1 22.1
Right side Top side Bottom side	802.11ax 160M 802.11ax 160M 802.11ax 160M	15/6025 15/6025 15/6025 15/6025 79/6345	99.58% 99.58% 99.58% 99.58%	1.004 1.004 1.004 1.004 1.004	0.726 0.046 0.040 0.010 0.950	0.173 0.015 0.015 0.003 0.208	0.06 0.02 -0.09 0.02 0.04	12.77 12.77 12.77 12.77 12.77	14.50 14.50 14.50 14.50 14.50	1.489 1.489 1.489	0.259 0.022 0.022	22.1 22.1 22.1
Right side Top side Bottom side Back side	802.11ax 160M 802.11ax 160M 802.11ax 160M 802.11ax 160M 802.11ax 160M	15/6025 15/6025 15/6025 15/6025 79/6345	99.58% 99.58% 99.58% 99.58% 99.58% Product sp	1.004 1.004 1.004 1.004 1.004 Decific 10	0.726 0.046 0.040 0.010 0.950 0gSAR Te	0.173 0.015 0.015 0.003 0.208 st data of	0.06 0.02 -0.09 0.02 0.04 U-NII-6 (12.77 12.77 12.77 12.77 12.74 Separate 0mr	14.50 14.50 14.50 14.50 14.50 n)	1.489 1.489 1.489 1.500	0.259 0.022 0.022 0.004 0.313	22.1 22.1 22.1 22.1 22.1
Right side Top side Bottom side Back side Front side	802.11ax 160M 802.11ax 160M 802.11ax 160M 802.11ax 160M 802.11ax 160M 802.11ax 160M	15/6025 15/6025 15/6025 15/6025 79/6345 F 111/6505	99.58% 99.58% 99.58% 99.58% 99.58% Product sp	1.004 1.004 1.004 1.004 1.004 Decific 10	0.726 0.046 0.040 0.010 0.950 0gSAR Te 0.030	0.173 0.015 0.015 0.003 0.208 st data of 0.018	0.06 0.02 -0.09 0.02 0.04 U-NII-6 (0.02	12.77 12.77 12.77 12.77 12.74 Separate 0mr 12.28	14.50 14.50 14.50 14.50 14.50 n)	1.489 1.489 1.489 1.489 1.500	0.259 0.022 0.022 0.004 0.313	22.1 22.1 22.1 22.1 22.1 22.1
Right side Top side Bottom side Back side Front side Back side	802.11ax 160M 802.11ax 160M 802.11ax 160M 802.11ax 160M 802.11ax 160M 802.11ax 160M 802.11ax 160M	15/6025 15/6025 15/6025 15/6025 79/6345 F 111/6505 111/6505	99.58% 99.58% 99.58% 99.58% 99.58% Product sp 99.58% 99.58%	1.004 1.004 1.004 1.004 1.004 2.004 1.004 1.004	0.726 0.046 0.040 0.010 0.950 0gSAR Te 0.030 1.030	0.173 0.015 0.015 0.003 0.208 st data of 0.018 0.243	0.06 0.02 -0.09 0.02 0.04 U-NII-6 (0.02 0.02	12.77 12.77 12.77 12.77 12.77 12.74 Separate Omr 12.28 12.28	14.50 14.50 14.50 14.50 14.50 n) 13.00 13.00	1.489 1.489 1.489 1.500 1.180	0.259 0.022 0.022 0.004 0.313 0.021 0.288	22.1 22.1 22.1 22.1 22.1 22.1 22.1 22.1
Right side Top side Bottom side Back side Front side Back side Left side	802.11ax 160M 802.11ax 160M 802.11ax 160M 802.11ax 160M 802.11ax 160M 802.11ax 160M 802.11ax 160M 802.11ax 160M	15/6025 15/6025 15/6025 15/6025 79/6345 F 111/6505 111/6505	99.58% 99.58% 99.58% 99.58% 99.58% roduct sp 99.58% 99.58%	1.004 1.004 1.004 1.004 1.004 0ecific 10 1.004 1.004 1.004	0.726 0.046 0.040 0.010 0.950 0gSAR Te 0.030 1.030 0.677	0.173 0.015 0.015 0.003 0.208 st data of 0.018 0.243 0.185	0.06 0.02 -0.09 0.02 0.04 U-NII-6 (0.02 0.02 0.05	12.77 12.77 12.77 12.77 12.74 Separate Omr 12.28 12.28	14.50 14.50 14.50 14.50 14.50 14.50 n) 13.00 13.00 13.00	1.489 1.489 1.489 1.500 1.180 1.180	0.259 0.022 0.022 0.004 0.313 0.021 0.288 0.219	22.1 22.1 22.1 22.1 22.1 22.1 22.1 22.1
Right side Top side Bottom side Back side Front side Back side Left side Right side	802.11ax 160M 802.11ax 160M 802.11ax 160M 802.11ax 160M 802.11ax 160M 802.11ax 160M 802.11ax 160M 802.11ax 160M 802.11ax 160M	15/6025 15/6025 15/6025 15/6025 79/6345 F 111/6505 111/6505 111/6505	99.58% 99.58% 99.58% 99.58% 99.58% roduct sp 99.58% 99.58% 99.58%	1.004 1.004 1.004 1.004 1.004 0ecific 1 1.004 1.004 1.004 1.004	0.726 0.046 0.040 0.010 0.950 0gSAR Te 0.030 1.030 0.677 0.044	0.173 0.015 0.015 0.003 0.208 st data of 0.018 0.243 0.185 0.010	0.06 0.02 -0.09 0.02 0.04 U-NII-6 (0.02 0.02 0.05 0.01	12.77 12.77 12.77 12.77 12.74 Separate Omr 12.28 12.28 12.28	14.50 14.50 14.50 14.50 14.50 13.00 13.00 13.00 13.00	1.489 1.489 1.489 1.500 1.180 1.180 1.180 1.180	0.259 0.022 0.022 0.004 0.313 0.021 0.288 0.219 0.012	22.1 22.1 22.1 22.1 22.1 22.1 22.1 22.1
Right side Top side Bottom side Back side Front side Back side Left side Right side Top side	802.11ax 160M 802.11ax 160M 802.11ax 160M 802.11ax 160M 802.11ax 160M 802.11ax 160M 802.11ax 160M 802.11ax 160M 802.11ax 160M 802.11ax 160M	15/6025 15/6025 15/6025 15/6025 79/6345 F 111/6505 111/6505 111/6505 111/6505	99.58% 99.58% 99.58% 99.58% 99.58% roduct sp 99.58% 99.58% 99.58% 99.58%	1.004 1.004 1.004 1.004 1.004 0ecific 10 1.004 1.004 1.004 1.004 1.004	0.726 0.046 0.040 0.010 0.950 0gSAR Te 0.030 1.030 0.677 0.044 0.068	0.173 0.015 0.015 0.003 0.208 st data of 0.018 0.243 0.185 0.010 0.027	0.06 0.02 -0.09 0.02 0.04 U-NII-6 (0.02 0.02 0.05 0.01 0.05	12.77 12.77 12.77 12.77 12.74 Separate Omr 12.28 12.28 12.28 12.28	14.50 14.50 14.50 14.50 14.50 n) 13.00 13.00 13.00 13.00 13.00	1.489 1.489 1.489 1.500 1.180 1.180 1.180 1.180	0.259 0.022 0.004 0.313 0.021 0.288 0.219 0.012 0.032	22.1 22.1 22.1 22.1 22.1 22.1 22.1 22.1
Right side Top side Bottom side Back side Front side Back side Left side Right side Top side	802.11ax 160M 802.11ax 160M 802.11ax 160M 802.11ax 160M 802.11ax 160M 802.11ax 160M 802.11ax 160M 802.11ax 160M 802.11ax 160M	15/6025 15/6025 15/6025 15/6025 79/6345 F 111/6505 111/6505 111/6505 111/6505 111/6505	99.58% 99.58% 99.58% 99.58% 99.58% Product s 99.58% 99.58% 99.58% 99.58% 99.58%	1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004	0.726 0.046 0.040 0.010 0.950 0gSAR Te 0.030 1.030 0.677 0.044 0.068 0.037	0.173 0.015 0.015 0.003 0.208 st data of 0.018 0.243 0.185 0.010 0.027 0.012	0.06 0.02 -0.09 0.02 0.04 U-NII-6 (0.02 0.02 0.05 0.01 0.05 -0.08	12.77 12.77 12.77 12.77 12.74 Separate Omr 12.28 12.28 12.28 12.28 12.28	14.50 14.50 14.50 14.50 14.50 13.00 13.00 13.00 13.00 13.00 13.00	1.489 1.489 1.489 1.500 1.180 1.180 1.180 1.180	0.259 0.022 0.022 0.004 0.313 0.021 0.288 0.219 0.012	22.1 22.1 22.1 22.1 22.1 22.1 22.1 22.1
Right side Top side Bottom side Back side Front side Back side Left side Right side Top side Bottom side	802.11ax 160M 802.11ax 160M 802.11ax 160M 802.11ax 160M 802.11ax 160M 802.11ax 160M 802.11ax 160M 802.11ax 160M 802.11ax 160M 802.11ax 160M	15/6025 15/6025 15/6025 15/6025 79/6345 F 111/6505 111/6505 111/6505 111/6505 F	99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58%	1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004	0.726 0.046 0.040 0.010 0.950 0gSAR Te 0.030 1.030 0.677 0.044 0.068 0.037	0.173 0.015 0.015 0.003 0.208 st data of 0.018 0.243 0.185 0.010 0.027 0.012	0.06 0.02 -0.09 0.02 0.04 U-NII-6 (0.02 0.02 0.05 0.01 0.05 -0.08	12.77 12.77 12.77 12.77 12.74 Separate Omr 12.28 12.28 12.28 12.28	14.50 14.50 14.50 14.50 14.50 13.00 13.00 13.00 13.00 13.00 13.00	1.489 1.489 1.489 1.500 1.180 1.180 1.180 1.180	0.259 0.022 0.004 0.313 0.021 0.288 0.219 0.012 0.032	22.1 22.1 22.1 22.1 22.1 22.1 22.1 22.1
Right side Top side Bottom side Back side Front side Back side Left side Right side Top side Bottom side	802.11ax 160M 802.11ax 160M	15/6025 15/6025 15/6025 15/6025 79/6345 F 111/6505 111/6505 111/6505 111/6505 F 175/6825	99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58%	1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004	0.726 0.046 0.040 0.010 0.950 0gSAR Te 0.030 1.030 0.677 0.044 0.068 0.037 0gSAR Te	0.173 0.015 0.015 0.003 0.208 st data of 0.018 0.243 0.185 0.010 0.027 0.012 st data of	0.06 0.02 -0.09 0.02 0.04 U-NII-6 (0.02 0.05 0.01 0.05 -0.08 U-NII-7 (12.77 12.77 12.77 12.77 12.74 Separate Omr 12.28 12.28 12.28 12.28 12.28 12.28 12.28	14.50 14.50 14.50 14.50 14.50 13.00 13.00 13.00 13.00 13.00 13.00 13.00	1.489 1.489 1.489 1.500 1.180 1.180 1.180 1.180 1.180	0.259 0.022 0.004 0.313 0.021 0.288 0.219 0.012 0.032 0.014	22.1 22.1 22.1 22.1 22.1 22.1 22.1 22.1
Right side Top side Bottom side Back side Front side Back side Left side Right side Top side Bottom side Front side	802.11ax 160M 802.11ax 160M	15/6025 15/6025 15/6025 15/6025 79/6345 F 111/6505 111/6505 111/6505 111/6505 F 175/6825 175/6825	99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58%	1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004	0.726 0.046 0.040 0.010 0.950 0gSAR Te 0.030 1.030 0.677 0.044 0.068 0.037 0gSAR Te	0.173 0.015 0.003 0.208 st data of 0.018 0.243 0.185 0.010 0.027 0.012 st data of	0.06 0.02 -0.09 0.02 0.04 U-NII-6 (0.02 0.05 0.01 0.05 -0.08 U-NII-7 (0.06	12.77 12.77 12.77 12.77 12.74 Separate Omr 12.28 12.28 12.28 12.28 12.28 12.28 12.28 12.28	14.50 14.50 14.50 14.50 14.50 13.00 13.00 13.00 13.00 13.00 13.00 13.00 13.00 13.00	1.489 1.489 1.489 1.500 1.180 1.180 1.180 1.180 1.180 1.180 1.170 1.180	0.259 0.022 0.004 0.313 0.021 0.288 0.219 0.012 0.032 0.014	22.1 22.1 22.1 22.1 22.1 22.1 22.1 22.1
Right side Top side Bottom side Back side Front side Back side Left side Right side Top side Bottom side Bottom side Front side Left side Left side	802.11ax 160M 802.11ax 160M	15/6025 15/6025 15/6025 15/6025 79/6345 F 111/6505 111/6505 111/6505 111/6505 111/6505 111/6505 117/6805 175/6825 175/6825	99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58%	1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004	0.726 0.046 0.040 0.010 0.950 0gSAR Te 0.030 1.030 0.677 0.044 0.068 0.037 0gSAR Te 0.084 1.160	0.173 0.015 0.015 0.003 0.208 st data of 0.018 0.243 0.185 0.010 0.027 0.012 st data of	0.06 0.02 -0.09 0.02 0.04 U-NII-6 (0.02 0.05 0.01 0.05 -0.08 U-NII-7 (0.06 0.10	12.77 12.77 12.77 12.77 12.74 Separate Omr 12.28 12.28 12.28 12.28 12.28 12.28 12.28 12.28 12.28	14.50 14.50 14.50 14.50 14.50 13.00 13.00 13.00 13.00 13.00 13.00 13.00 13.00 13.00 13.00 13.00	1.489 1.489 1.489 1.500 1.180 1.180 1.180 1.180 1.180 1.180 1.176 1.076	0.259 0.022 0.004 0.313 0.021 0.288 0.219 0.012 0.032 0.014 0.029 0.286	22.1 22.1 22.1 22.1 22.1 22.1 22.1 22.1
Right side Top side Bottom side Back side Front side Back side Left side Top side Bottom side Front side Left side Left side Top side Bottom side Front side Back side Left side Right side	802.11ax 160M 802.11ax 160M	15/6025 15/6025 15/6025 15/6025 79/6345 F 111/6505 111/6505 111/6505 111/6505 111/6505 111/6505 117/6825 175/6825 175/6825	99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58%	1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004	0.726 0.046 0.040 0.010 0.950 0gSAR Te 0.030 1.030 0.677 0.044 0.068 0.037 0gSAR Te 0.084 1.160 0.675	0.173 0.015 0.015 0.003 0.208 st data of 0.018 0.243 0.185 0.010 0.027 0.012 st data of 0.027 0.012	0.06 0.02 -0.09 0.02 0.04 U-NII-6 (0.02 0.05 0.01 0.05 -0.08 U-NII-7 (0.06 0.10 -0.05	12.77 12.77 12.77 12.77 12.74 Separate Omr 12.28 12.28 12.28 12.28 12.28 12.28 12.28 12.18 12.28 12.28 12.28	14.50 14.50 14.50 14.50 14.50 13.00 13.00 13.00 13.00 13.00 13.00 13.00 13.00 13.00 13.00 13.00 13.00	1.489 1.489 1.489 1.500 1.180 1.180 1.180 1.180 1.180 1.180 1.176 1.076 1.076	0.259 0.022 0.004 0.313 0.021 0.288 0.219 0.012 0.032 0.014 0.029 0.286 0.212	22.1 22.1 22.1 22.1 22.1 22.1 22.1 22.1
Right side Top side Bottom side Back side Front side Back side Left side Right side Top side Bottom side Front side Bottom side Front side Right side Top side Back side Left side Right side Top side	802.11ax 160M 802.11ax 160M	15/6025 15/6025 15/6025 15/6025 79/6345 F 111/6505 111/6505 111/6505 111/6505 111/6505 175/6825 175/6825 175/6825	99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58%	1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004	0.726 0.046 0.040 0.010 0.950 0gSAR Te 0.030 1.030 0.677 0.044 0.068 0.037 0gSAR Te 0.084 1.160 0.675 0.050 0.072	0.173 0.015 0.015 0.003 0.208 st data of 0.018 0.243 0.185 0.010 0.027 0.012 st data of 0.027 0.012 o.027 0.265 0.196 0.007	0.06 0.02 -0.09 0.02 0.04 U-NII-6 (0.02 0.05 0.01 0.05 -0.08 U-NII-7 (0.10 0.10 -0.05 0.05 -0.05	12.77 12.77 12.77 12.77 12.74 Separate Omr 12.28 12.28 12.28 12.28 12.28 12.28 15.18 15.18 15.18 15.18	14.50 14.50 14.50 14.50 14.50 13.00 13.00 13.00 13.00 13.00 13.00 15.50 15.50 15.50 15.50	1.489 1.489 1.489 1.500 1.180 1.180 1.180 1.180 1.180 1.180 1.076 1.076 1.076 1.076	0.259 0.022 0.004 0.313 0.021 0.288 0.219 0.012 0.032 0.014 0.029 0.286 0.212 0.008 0.028	22.1 22.1 22.1 22.1 22.1 22.1 22.1 22.1
Right side Top side Bottom side Back side Front side Back side Left side Right side Top side Bottom side Front side Bottom side Front side Right side Front side Back side Left side Right side Top side	802.11ax 160M 802.11ax 160M	15/6025 15/6025 15/6025 15/6025 79/6345 F 111/6505 111/6505 111/6505 111/6505 111/6505 175/6825 175/6825 175/6825 175/6825	99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58%	1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004	0.726 0.046 0.040 0.010 0.950 0gSAR Te 0.030 1.030 0.677 0.044 0.068 0.037 0gSAR Te 0.084 1.160 0.675 0.050 0.072	0.173 0.015 0.015 0.003 0.208 st data of 0.018 0.243 0.185 0.010 0.027 0.012 st data of 0.027 0.027 0.196 0.007 0.026 0.005	0.06 0.02 -0.09 0.02 0.04 U-NII-6 (0.02 0.05 0.01 0.05 -0.08 U-NII-7 (0.05 -0.08 0.10 -0.05 0.05 0.01	12.77 12.77 12.77 12.77 12.74 Separate Omr 12.28 12.28 12.28 12.28 12.28 12.28 15.18 15.18 15.18 15.18	14.50 14.50 14.50 14.50 14.50 13.00 13.00 13.00 13.00 13.00 13.00 15.50 15.50 15.50 15.50 15.50	1.489 1.489 1.489 1.500 1.180 1.180 1.180 1.180 1.180 1.180 1.076 1.076 1.076 1.076	0.259 0.022 0.004 0.313 0.021 0.288 0.219 0.012 0.032 0.014 0.029 0.286 0.212 0.008	22.1 22.1 22.1 22.1 22.1 22.1 22.1 22.1
Right side Top side Bottom side Back side Front side Back side Left side Right side Top side Bottom side Front side Bottom side Front side Bottom side Front side Back side Left side Back side Left side Right side Top side Bottom side	802.11ax 160M 802.11ax 160M	15/6025 15/6025 15/6025 15/6025 79/6345 F 111/6505 111/6505 111/6505 111/6505 111/6505 175/6825 175/6825 175/6825 175/6825	99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58%	1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004	0.726 0.046 0.040 0.010 0.950 0gSAR Te 0.030 1.030 0.677 0.044 0.068 0.037 0gSAR Te 0.084 1.160 0.675 0.050 0.072 0.024 0gSAR Te	0.173 0.015 0.015 0.003 0.208 st data of 0.018 0.243 0.185 0.010 0.027 0.012 st data of 0.027 0.027 0.196 0.007 0.026 0.005	0.06 0.02 -0.09 0.02 0.04 U-NII-6 (0.02 0.05 0.01 0.05 -0.08 U-NII-7 (0.05 -0.08 0.10 -0.05 0.05 0.01	12.77 12.77 12.77 12.77 12.74 Separate Omr 12.28 12.28 12.28 12.28 12.28 12.28 15.18 15.18 15.18 15.18 15.18	14.50 14.50 14.50 14.50 14.50 13.00 13.00 13.00 13.00 13.00 13.00 15.50 15.50 15.50 15.50 15.50	1.489 1.489 1.489 1.500 1.180 1.180 1.180 1.180 1.180 1.180 1.076 1.076 1.076 1.076	0.259 0.022 0.004 0.313 0.021 0.288 0.219 0.012 0.032 0.014 0.029 0.286 0.212 0.008 0.028 0.005	22.1 22.1 22.1 22.1 22.1 22.1 22.1 22.1
Right side Top side Bottom side Back side Front side Back side Left side Right side Top side Bottom side Back side Left side Right side Front side Back side Left side Front side Back side Left side Front side Front side	802.11ax 160M 802.11ax 160M	15/6025 15/6025 15/6025 15/6025 79/6345 F 111/6505 111/6505 111/6505 111/6505 111/6505 111/6505 175/6825 175/6825 175/6825 175/6825 175/6825 175/6825	99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58%	1.004 1.004	0.726 0.046 0.040 0.010 0.950 0gSAR Te 0.030 1.030 0.677 0.044 0.068 0.037 0gSAR Te 0.084 1.160 0.675 0.050 0.072 0.024 0gSAR Te	0.173 0.015 0.015 0.003 0.208 st data of 0.018 0.243 0.185 0.010 0.027 0.012 st data of 0.027 0.026 0.007 0.026 0.005 st data of	0.06 0.02 -0.09 0.02 0.04 U-NII-6 (0.02 0.05 0.01 0.05 -0.08 U-NII-7 (0.10 -0.05 0.05 -0.09 0.01 U-NII-8 (12.77 12.77 12.77 12.77 12.74 Separate Omr 12.28 12.28 12.28 12.28 12.28 12.28 15.18 15.18 15.18 15.18 15.18 15.18 Separate Omr	14.50 14.50 14.50 14.50 14.50 13.00 13.00 13.00 13.00 13.00 13.00 15.50 15.50 15.50 15.50 15.50 15.50	1.489 1.489 1.489 1.500 1.180 1.180 1.180 1.180 1.180 1.180 1.176 1.076 1.076 1.076 1.076	0.259 0.022 0.004 0.313 0.021 0.288 0.219 0.012 0.032 0.014 0.029 0.286 0.212 0.008 0.028 0.005	22.1 22.1 22.1 22.1 22.1 22.1 22.1 22.1
Right side Top side Bottom side Back side Front side Back side Left side Right side Top side Bottom side Front side Bottom side Front side Back side Left side Front side Back side Left side Right side Top side Bottom side	802.11ax 160M 802.11ax 160M	15/6025 15/6025 15/6025 15/6025 79/6345 F 111/6505 111/6505 111/6505 111/6505 111/6505 111/6505 175/6825 175/6825 175/6825 175/6825 175/6825 175/6825 175/6825	99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58%	1.004 1.004	0.726 0.046 0.040 0.010 0.950 0gSAR Te 0.030 1.030 0.677 0.044 0.068 0.037 0gSAR Te 0.084 1.160 0.675 0.050 0.072 0.024 0gSAR Te	0.173 0.015 0.015 0.003 0.208 st data of 0.018 0.243 0.185 0.010 0.027 0.012 st data of 0.027 0.026 0.196 0.007 0.026 0.005 st data of	0.06 0.02 -0.09 0.02 0.04 U-NII-6 (0.02 0.05 0.01 0.05 -0.08 U-NII-7 (0.05 0.10 -0.05 0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05	12.77 12.77 12.77 12.77 12.74 Separate Omr 12.28 12.28 12.28 12.28 12.28 12.28 15.18 15.18 15.18 15.18 15.18 15.18 15.18 Separate Omr 14.48	14.50 14.50 14.50 14.50 14.50 13.00 13.00 13.00 13.00 13.00 13.00 15.50 15.50 15.50 15.50 15.50 15.50	1.489 1.489 1.489 1.500 1.180 1.180 1.180 1.180 1.180 1.180 1.176 1.076 1.076 1.076 1.076	0.259 0.022 0.004 0.313 0.021 0.288 0.219 0.012 0.032 0.014 0.029 0.286 0.212 0.008 0.028 0.005	22.1 22.1 22.1 22.1 22.1 22.1 22.1 22.1
Right side Top side Bottom side Back side Front side Back side Left side Right side Top side Bottom side Back side Left side Front side Back side Left side Front side Back side Left side Top side Bottom side Left side Top side Bottom side	802.11ax 160M 802.11ax 80M 802.11ax 80M 802.11ax 80M 802.11ax 80M	15/6025 15/6025 15/6025 15/6025 79/6345 F 111/6505 111/6505 111/6505 111/6505 111/6505 111/6505 175/6825 175/6825 175/6825 175/6825 175/6825 175/6825 175/6825 183/6865	99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58%	1.004 1.004	0.726 0.046 0.040 0.010 0.950 0gSAR Te 0.030 1.030 0.677 0.044 0.068 0.037 0gSAR Te 0.084 1.160 0.675 0.050 0.072 0.024 0gSAR Te	0.173 0.015 0.015 0.003 0.208 st data of 0.018 0.243 0.185 0.010 0.027 0.012 st data of 0.027 0.265 0.196 0.007 0.026 0.005 st data of	0.06 0.02 -0.09 0.02 0.04 U-NII-6 (0.02 0.05 0.01 0.05 -0.08 U-NII-7 (0.06 0.10 -0.05 0.05 -0.09 0.01 U-NII-8 (0.14 0.06	12.77 12.77 12.77 12.77 12.74 Separate Omr 12.28 12.28 12.28 12.28 12.28 12.28 15.18 15.18 15.18 15.18 15.18 15.18 15.18 15.18 15.18 15.18 15.18 15.18	14.50 14.50 14.50 14.50 14.50 14.50 14.50 13.00 13.00 13.00 13.00 13.00 15.50 15.50 15.50 15.50 15.50 15.50 15.50 15.50	1.489 1.489 1.489 1.500 1.180 1.180 1.180 1.180 1.180 1.180 1.076 1.076 1.076 1.076 1.076 1.076	0.259 0.022 0.004 0.313 0.021 0.288 0.219 0.012 0.032 0.014 0.029 0.286 0.212 0.008 0.028 0.005	22.1 22.1 22.1 22.1 22.1 22.1 22.1 22.1
Right side Top side Bottom side Back side Front side Back side Left side Right side Top side Bottom side Back side Left side Front side Back side Left side Front side Back side Left side Right side Top side Bottom side Bottom side	802.11ax 160M 802.11ax 80M 802.11ax 80M 802.11ax 80M 802.11ax 80M 802.11ax 80M 802.11ax 80M	15/6025 15/6025 15/6025 15/6025 79/6345 F 111/6505 111/6505 111/6505 111/6505 111/6505 175/6825 175/6825 175/6825 175/6825 175/6825 175/6825 183/6865 183/6865	99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58%	1.004 1.004	0.726 0.046 0.040 0.010 0.950 0gSAR Te 0.030 1.030 0.677 0.044 0.068 0.037 0gSAR Te 0.084 1.160 0.675 0.050 0.072 0.024 0gSAR Te 0.062 0.062 0.624 0.352	0.173 0.015 0.003 0.208 st data of 0.018 0.243 0.185 0.010 0.027 0.012 st data of 0.027 0.0265 0.196 0.007 0.026 0.005 st data of 0.021 0.157 0.078	0.06 0.02 -0.09 0.02 0.04 U-NII-6 (0.02 0.05 0.01 0.05 -0.08 U-NII-7 (0.06 0.01 0.05 -0.05	12.77 12.77 12.77 12.77 12.74 Separate Omr 12.28 12.28 12.28 12.28 12.28 12.28 15.18 15.18 15.18 15.18 15.18 15.18 15.18 15.18 15.18 15.18 15.18 15.18	14.50 14.50 14.50 14.50 14.50 14.50 14.50 n) 13.00 13.00 13.00 13.00 13.00 15.50 15.50 15.50 15.50 15.50 15.50 15.50 15.50 15.50 15.50 15.50	1.489 1.489 1.489 1.500 1.180 1.180 1.180 1.180 1.180 1.180 1.076 1.076 1.076 1.076 1.076 1.076 1.076	0.259 0.022 0.004 0.313 0.021 0.288 0.219 0.012 0.032 0.014 0.029 0.286 0.212 0.008 0.005 0.027 0.199 0.099 0.000	22.1 22.1 22.1 22.1 22.1 22.1 22.1 22.1
Right side Top side Bottom side Back side Front side Back side Left side Right side Top side Bottom side Bottom side Front side Bottom side Front side Back side Left side Right side Top side Bottom side Left side Right side Top side Bottom side Front side Bottom side	802.11ax 160M 802.11ax 80M 802.11ax 80M 802.11ax 80M 802.11ax 80M	15/6025 15/6025 15/6025 15/6025 79/6345 F 111/6505 111/6505 111/6505 111/6505 111/6505 175/6825 175/6825 175/6825 175/6825 175/6825 175/6825 175/6825 183/6865 183/6865	99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58%	1.004 1.004	0.726 0.046 0.040 0.010 0.950 0gSAR Te 0.030 1.030 0.677 0.044 0.068 0.037 0gSAR Te 0.084 1.160 0.675 0.050 0.072 0.024 0gSAR Te 0.062 0.062 0.624 0.352 0.002	0.173 0.015 0.003 0.208 st data of 0.018 0.243 0.185 0.010 0.027 0.012 st data of 0.027 0.0265 0.196 0.007 0.026 0.005 st data of 0.021 0.157 0.078 0.000	0.06 0.02 -0.09 0.02 0.04 U-NII-6 (0.02 0.05 0.01 0.05 -0.08 U-NII-7 (0.06 0.10 U-NII-8 (0.01 0.06 0.01 0.06	12.77 12.77 12.77 12.77 12.74 Separate Omr 12.28 12.28 12.28 12.28 12.28 12.28 15.18 15.18 15.18 15.18 15.18 15.18 15.18 15.18 15.18 15.18 15.18 15.18 15.18	14.50 14.50 14.50 14.50 14.50 14.50 14.50 11.50 13.00 13.00 13.00 13.00 13.00 15.50 15.50 15.50 15.50 15.50 15.50 15.50 15.50 15.50 15.50 15.50 15.50	1.489 1.489 1.489 1.500 1.180 1.180 1.180 1.180 1.180 1.180 1.076 1.076 1.076 1.076 1.076 1.076 1.076 1.265 1.265	0.259 0.022 0.004 0.313 0.021 0.288 0.219 0.012 0.032 0.014 0.029 0.286 0.212 0.008 0.005 0.027 0.199 0.099 0.000	22.1 22.1 22.1 22.1 22.1 22.1 22.1 22.1

Table 4: SAR of WiFi 6E for Head, Body, Limbs.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company, Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CN.Doccheck@sgs.com"

邮编: 518057

No.1 Workshop, M-10, Middle Section, Science & Technology Park, Nanshan District, Shenzhen, Guangdong, China 518057 中国・广东・深圳市南山区科技园中区M-10栋1号厂房

t (86-755) 26012053 t (86-755) 26012053

www.sgsgroup.com.cn sgs.china@sgs.com

Member of the SGS Group (SGS SA)

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR240500187801

46 of 52 Page:

6.3 Measurement of PD Data

						Α	NT6 (chain2)						
_					Grid	_	Duty	Measured	Measured	Power		_		Scaled
Test position	Test mode	Test ch	Freq.	Distance	Step		Cycle Scaled	רם	PD 4cm^2	drift	Conducted Power(dBm)		Scaled	
position		CII		(mm)	(λ)	Cycle	factor	(W/m^2)	(W/m^2)	(dB)	Power (ubili)	Lillill(ubill)		(W/kg)
						Powe	r Densi	ty Test DA	TA					. 0/
side	802.11ax 160M	79	6345	2.0	0.0625	99.58%	1.004	1.00	0.78	0.08	13.99	14.50	1.125	0.875
Back side	802.11ax 160M	111	6505	2.0	0.0625	99.58%	1.004	0.45	0.35	0.07	13.58	14.50	1.236	0.434
side	802.11ax 160M	175	6825	2.0	0.0625	99.58%	1.004	1.14	0.95	0.07	15.65	16.00	1.084	1.034
Back side	802.11ax 160M	207	6985	2.0	0.0625	99.58%	1.004	0.59	0.46	0.03	13.81	15.50	1.476	0.685
Back side	802.11ax 160M	143	6665	2.0	0.0625	99.58%	1.004	0.33	0.26	0.01	13.30	14.50	1.318	0.344
Front side	802.11ax 160M	175	6825	2.0	0.0625	99.58%	1.004	0.40	0.26	0.03	15.65	16.00	1.084	0.287
	802.11ax 160M	175	6825	2.0	0.0625	99.58%	1.004	0.12	0.07	0.01	15.65	16.00	1.084	0.076
side	802.11ax 160M		6825	2.0		99.58%		0.25	0.13	0.04	15.65	16.00	1.084	0.141
	802.11ax 160M	175	6825	2.0	0.0625	99.58%	1.004	0.29	0.14	0.01	15.65	16.00	1.084	0.152
Bottom side	802.11ax 160M	175	6825	2.0	0.0625	99.58%		0.04	0.01	0.09	15.65	16.00	1.084	0.011
	1					A		chain1)						0 11
Test	_	Test		Distance	Grid	Duty	Duty Cycle	weasured PD	Measured PD		Conducted	Tune up	Scaled	Scaled PD
position	Test mode	ch	Freq.	(mm)	Step (λ)		Scaled		4cm^2	drift (dB)	Power(dBm)		factor	4cm^2
					(N)	Dowe	factor	(W/m^2)	(W/m^2)	(ub)				(W/kg)
Back		l			L			ty Test DA						
side	802.11ax 160M		6825	2.0	0.0625	99.58%	1.004	6.68	5.10	0.02	14.97	15.50	1.130	5.785
side				2.0	0.000									
Doole	802.11ax 160M	79	6345	2.0	0.0625	99.58%	1.004	4.63	3.13	-0.06	11.43	12.00	1.140	3.583
Back side	802.11ax 160M 802.11ax 160M		6345 6505			99.58% 99.58%		4.63 3.68	3.13 2.52	-0.06 -0.03	11.43 9.67	12.00 11.00	1.140 1.358	3.583 3.437
side Back side		111		2.0	0.0625		1.004							
side Back side Back side	802.11ax 160M	111 207	6505	2.0	0.0625 0.0625	99.58%	1.004	3.68	2.52	-0.03	9.67	11.00	1.358	3.437
side Back side Back side Front side	802.11ax 160M 802.11ax 160M 802.11ax 160M 802.11ax 160M	111 207 143 175	6505 6985 6665 6825	2.0 2.0 2.0 2.0	0.0625 0.0625 0.0625 0.0625	99.58% 99.58% 99.58% 99.58%	1.004 1.004 1.004 1.004	3.68 6.15 4.15 1.79	2.52 4.42 3.18 1.19	-0.03 0.08 0.02 0.05	9.67 14.97 13.63 14.97	11.00 15.50 15.50 15.50	1.358 1.130 1.538 1.130	3.437 5.014 4.911 1.348
side Back side Back side Front side Left side	802.11ax 160M 802.11ax 160M 802.11ax 160M	111 207 143 175	6505 6985 6665	2.0 2.0 2.0	0.0625 0.0625 0.0625 0.0625	99.58% 99.58% 99.58%	1.004 1.004 1.004 1.004	3.68 6.15 4.15	2.52 4.42 3.18	-0.03 0.08 0.02	9.67 14.97 13.63	11.00 15.50 15.50 15.50	1.358 1.130 1.538	3.437 5.014 4.911
side Back side Back side Front side Left side Right side	802.11ax 160M 802.11ax 160M 802.11ax 160M 802.11ax 160M 802.11ax 160M 802.11ax 160M	111 207 143 175 175 175	6505 6985 6665 6825 6825	2.0 2.0 2.0 2.0 2.0 2.0	0.0625 0.0625 0.0625 0.0625 0.0625	99.58% 99.58% 99.58% 99.58% 99.58%	1.004 1.004 1.004 1.004 1.004	3.68 6.15 4.15 1.79 0.56 1.17	2.52 4.42 3.18 1.19 0.32 0.59	-0.03 0.08 0.02 0.05 0.02 0.17	9.67 14.97 13.63 14.97 14.97	11.00 15.50 15.50 15.50 15.50 15.50	1.358 1.130 1.538 1.130 1.130	3.437 5.014 4.911 1.348 0.357 0.669
side Back side Back side Front side Left side Right side Top side	802.11ax 160M 802.11ax 160M 802.11ax 160M 802.11ax 160M 802.11ax 160M 802.11ax 160M 802.11ax 160M	111 207 143 175 175 175	6505 6985 6665 6825 6825 6825	2.0 2.0 2.0 2.0 2.0 2.0 2.0	0.0625 0.0625 0.0625 0.0625 0.0625 0.0625	99.58% 99.58% 99.58% 99.58% 99.58% 99.58%	1.004 1.004 1.004 1.004 1.004 1.004	3.68 6.15 4.15 1.79 0.56 1.17 1.33	2.52 4.42 3.18 1.19 0.32 0.59 0.63	-0.03 0.08 0.02 0.05 0.02 0.17 0.11	9.67 14.97 13.63 14.97 14.97 14.97	11.00 15.50 15.50 15.50 15.50 15.50	1.358 1.130 1.538 1.130 1.130 1.130	3.437 5.014 4.911 1.348 0.357 0.669 0.715
side Back side Back side Front side Left side Right side Top side	802.11ax 160M 802.11ax 160M 802.11ax 160M 802.11ax 160M 802.11ax 160M 802.11ax 160M	111 207 143 175 175 175	6505 6985 6665 6825 6825 6825	2.0 2.0 2.0 2.0 2.0 2.0 2.0	0.0625 0.0625 0.0625 0.0625 0.0625 0.0625	99.58% 99.58% 99.58% 99.58% 99.58%	1.004 1.004 1.004 1.004 1.004 1.004	3.68 6.15 4.15 1.79 0.56 1.17	2.52 4.42 3.18 1.19 0.32 0.59	-0.03 0.08 0.02 0.05 0.02 0.17	9.67 14.97 13.63 14.97 14.97	11.00 15.50 15.50 15.50 15.50 15.50	1.358 1.130 1.538 1.130 1.130	3.437 5.014 4.911 1.348 0.357 0.669 0.715
side Back side Back side Front side Left side Right side Top side	802.11ax 160M 802.11ax 160M 802.11ax 160M 802.11ax 160M 802.11ax 160M 802.11ax 160M 802.11ax 160M	111 207 143 175 175 175	6505 6985 6665 6825 6825 6825	2.0 2.0 2.0 2.0 2.0 2.0 2.0	0.0625 0.0625 0.0625 0.0625 0.0625 0.0625	99.58% 99.58% 99.58% 99.58% 99.58% 99.58%	1.004 1.004 1.004 1.004 1.004 1.004 1.004	3.68 6.15 4.15 1.79 0.56 1.17 1.33 0.15	2.52 4.42 3.18 1.19 0.32 0.59 0.63 0.06	-0.03 0.08 0.02 0.05 0.02 0.17 0.11 -0.14	9.67 14.97 13.63 14.97 14.97 14.97 14.97	11.00 15.50 15.50 15.50 15.50 15.50	1.358 1.130 1.538 1.130 1.130 1.130 1.130	3.437 5.014 4.911 1.348 0.357 0.669 0.715 0.068
side Back side Back side Front side Left side Right side Top side Bottom side	802.11ax 160M 802.11ax 160M 802.11ax 160M 802.11ax 160M 802.11ax 160M 802.11ax 160M 802.11ax 160M	111 207 143 175 175 175 175	6505 6985 6665 6825 6825 6825 6825	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625	99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58%	1.004 1.004 1.004 1.004 1.004 1.004 1.004 Mil Duty	3.68 6.15 4.15 1.79 0.56 1.17 1.33 0.15 MO Measured	2.52 4.42 3.18 1.19 0.32 0.59 0.63 0.06	-0.03 0.08 0.02 0.05 0.02 0.17 0.11 -0.14	9.67 14.97 13.63 14.97 14.97 14.97 14.97	11.00 15.50 15.50 15.50 15.50 15.50 15.50	1.358 1.130 1.538 1.130 1.130 1.130 1.130	3.437 5.014 4.911 1.348 0.357 0.669 0.715 0.068
side Back side Back side Front side Left side Right side Top side	802.11ax 160M 802.11ax 160M 802.11ax 160M 802.11ax 160M 802.11ax 160M 802.11ax 160M 802.11ax 160M 802.11ax 160M	111 207 143 175 175 175 175	6505 6985 6665 6825 6825 6825 6825	2.0 2.0 2.0 2.0 2.0 2.0 2.0	0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625	99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58%	1.004 1.004 1.004 1.004 1.004 1.004 1.004 Mil Duty Cycle	3.68 6.15 4.15 1.79 0.56 1.17 1.33 0.15 MO Measured PD	2.52 4.42 3.18 1.19 0.32 0.59 0.63 0.06	-0.03 0.08 0.02 0.05 0.02 0.17 0.11 -0.14 Power drift	9.67 14.97 13.63 14.97 14.97 14.97 14.97 14.97	11.00 15.50 15.50 15.50 15.50 15.50 15.50	1.358 1.130 1.538 1.130 1.130 1.130 1.130 Scaled	3.437 5.014 4.911 1.348 0.357 0.669 0.715 0.068
side Back side Back side Front side Left side Right side Top side Bottom side	802.11ax 160M 802.11ax 160M 802.11ax 160M 802.11ax 160M 802.11ax 160M 802.11ax 160M 802.11ax 160M 802.11ax 160M	111 207 143 175 175 175 175 175	6505 6985 6665 6825 6825 6825 6825	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625	99.58% 99.58% 99.58% 99.58% 99.58% 99.58% 99.58% Duty Cycle	1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 Utyles Scaled factor	3.68 6.15 4.15 1.79 0.56 1.17 1.33 0.15 MO Measured	2.52 4.42 3.18 1.19 0.32 0.59 0.63 0.06 Measured PD 4cm^2 (W/m^2)	-0.03 0.08 0.02 0.05 0.02 0.17 0.11 -0.14	9.67 14.97 13.63 14.97 14.97 14.97 14.97	11.00 15.50 15.50 15.50 15.50 15.50 15.50	1.358 1.130 1.538 1.130 1.130 1.130 1.130 Scaled factor	3.437 5.014 4.911 1.348 0.357 0.669 0.715 0.068

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company, Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CN.Doccheck@sgs.com"

No.1 Workshop, M-10, Middle Section, Science & Technology Park, Nanshan District, Shenzhen, Guangdong, China 518057 t (86-755) 26012053

邮编: 518057

中国・广东・深圳市南山区科技园中区M-10栋1号厂房

t (86-755) 26012053

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR240500187801

47 of 52 Page:

Back side	802.11ax 160M	15	6025	2.0	0.0625	99.58%	1.004	5.29	3.12	-0.01	12.77	14.50	1.489	4.665
Back side	802.11ax 160M	111	6505	2.0	0.0625	99.58%	1.004	4.28	2.79	0.06	12.28	13.00	1.180	3.306
Back side	802.11ax 160M	175	6825	2.0	0.0625	99.58%	1.004	6.78	4.71	0.02	15.18	15.50	1.076	5.090
Back side	802.11ax 160M	183	6865	2.0	0.0625	99.58%	1.004	3.92	3.04	-0.09	14.48	15.50	1.265	3.860
Back side	802.11ax 160M	79	6345	2.0	0.0625	99.58%	1.004	3.48	2.59	-0.08	12.74	14.50	1.500	3.900
Front side	802.11ax 160M	175	6825	2.0	0.0625	99.58%	1.004	1.65	1.08	0.02	15.18	15.50	1.076	1.167
Left side	802.11ax 160M	175	6825	2.0	0.0625	99.58%	1.004	0.48	0.30	0.08	15.18	15.50	1.076	0.324
Right side	802.11ax 160M	175	6825	2.0	0.0625	99.58%	1.004	1.05	0.52	0.03	15.18	15.50	1.076	0.562
Top side	802.11ax 160M	175	6825	2.0	0.0625	99.58%	1.004	1.28	0.57	-0.14	15.18	15.50	1.076	0.616
Bottom side	802.11ax 160M	175	6825	2.0	0.0625	99.58%	1.004	0.11	0.04	0.09	15.18	15.50	1.076	0.043

Table 5: PD of WiFi 6E.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company, Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CN.Doccheck@sgs.com"

No.1 Workshop, M-10, Middle Section, Science & Technology Park, Nanshan District, Shenzhen, Guangdong, China 518057 中国・广东・深圳市南山区科技园中区M-10栋1号厂房

邮编: 518057 t (86-755) 26012053

t (86-755) 26012053

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR240500187801

Page: 48 of 52

7 Equipment list

	.quipinent ii					
	Test Platform	SPEAG DASY				
	Description			ange 300MHz-6GHz)		
So	ftware Reference	DASY52 52.10		SAD X 14.6.14(7483)		
			Hardware Re	eference		
	Equipment	Manufacturer	Model	Inventory No.	Calibration Date	Due date of calibration
\boxtimes	DAE	SPEAG	DAE4ip	SZ-WSR-M-078	2023/9/12	2024/9/11
\boxtimes	DAE	SPEAG	DAE4	SZ-WSR-M-031	2024/03/18	2025/03/17
\boxtimes	E-Field Probe	SPEAG	EX3DV4	SZ-WSR-M-075	2023/7/17	2024/7/16
\boxtimes	E-Field Probe	SPEAG	EX3DV4	SZ-WSR-M-079	2023/09/11	2024/09/10
\boxtimes	EUmmWV Probe	SPEAG	EUmmWV4	SZ-WSR-M-048	2023/8/18	2024/8/17
\boxtimes	Validation Kits	SPEAG	D6.5GHZV2	SZ-WSR-M-080	2023/9/11	2026/9/10
\boxtimes	5G Verification Source	SPEAG	10GHz	SZ-WSR-M-049	2023/8/21	2024/8/20
\boxtimes	Dielectric parameter probes	SPEAG	DAKS-3.5	SZ-WSR-M-053	2023/06/15	2024/06/14
\boxtimes	Vector Network Analyzer and Vector Reflectometer	SPEAG	DAKS_VNA R140	SZ-WSR-M-054	2023/06/07	2024/06/06
\boxtimes	RF Bi-Directional Coupler	Agilent	86205- 60001	SZ-WSR-A-004	NCR	NCR
\boxtimes	Signal Generator	Agilent	N5171B	SZ-WSR-M-006	2024/01/30	2025/01/29
\boxtimes	Preamplifier	Mini-Circuits	ZHL-42W	SZ-WSR-A-001	NCR	NCR
\boxtimes	Preamplifier	Shanghai Qiji Automation Instrument Co., Ltd	YX28982108	SZ-WSR-A-003	NCR	NCR
\boxtimes	Power Meter	Agilent	E4416A	SZ-WSR-M-007	2024/01/30	2025/01/29
\boxtimes	Power Sensor	Agilent	8481H	SZ-WSR-M-008	2024/01/30	2025/01/29
\boxtimes	Power Sensor	R&S	NRP-Z92	SZ-WSR-M-009	2024/01/30	2025/01/29
\boxtimes	Attenuator	SHX	TS2-3dB	SZ-WSR-A-012	NCR	NCR
\boxtimes	Humidity and Temperature Indicator	MingGao	TH101B	SZ-WSR-M-001	2024/1/31	2025/1/30
	Humidity and Temperature Indicator	AS ONE	THA-02L	SZ-WSR-M-003	2024/1/31	2025/1/30

¹⁾ All the equipments are within the valid period when the tests are performed.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company, Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CN_Doccheck@sgs.com"

No. 1 Workshop, M-10, Middle Section, Science & Technology Park, Nanshan District, Shenzhen, Guangdong, China 518057 t (86-755) 26012053

邮编: 518057

中国・广东・深圳市南山区科技园中区M-10栋1号厂房

t (86-755) 26012053

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR240500187801

49 of 52 Page:

Measurement Uncertainty 8

Measurements and results are all in compliance with the standards listed. All measurements and results are recorded and maintained at the laboratory performing the tests and measurement uncertainties are taken into account when comparing measurements to pass/ fail criteria. The expanded uncertainty (95% CONFIDENCE

INTER\/AL) is 21 77%

INTERVAL) is 21.77% .							
А	b1	С	d	e = f(d,k)	g	i = C*g/e	k
Uncertainty Component	Section in P1528	Tol (%)	Prob . Dist.	Div.	Ci (1g)	1g ui (%)	Vi (Veff)
Probe calibration	E.2.1	6.65	N	1	1	6.65	∞
Axial isotropy	E.2.2	0.5	R	$\sqrt{3}$	$(1 - Cp)^{1/2}$	0.20	∞
hemispherical isotropy	E.2.2	2.6	R	$\sqrt{3}$	\sqrt{Cp}	1.06	∞
Boundary effect	E.2.3	1.0	R	$\sqrt{3}$	1	0.58	∞
Linearity	E.2.4	0.6	R	$\sqrt{3}$	1	0.35	∞
System detection limit	E.2.5	0.25	R	$\sqrt{3}$	1	0.14	∞
Readout electronics	E.2.6	0.3	N	1	1	0.30	∞
Response time	E.2.7	0	R	$\sqrt{3}$	1	0.00	∞
Integration time	E.2.8	2.6	R	$\sqrt{3}$	1	1.50	∞
RF ambient Condition – Noise	E.6.1	3	R	$\sqrt{3}$	1	1.73	∞
RF ambient Condition - reflections	E.6.1	3	R	$\sqrt{3}$	1	1.73	∞
Probe positioning- mechanical tolerance	E.6.2	1.5	R	$\sqrt{3}$	1	0.87	∞
Probe positioning- with respect to phantom	E.6.3	2.9	R	$\sqrt{3}$	1	1.67	∞
Max. SAR evaluation	E.5.2	1	R	$\sqrt{3}$	1	0.58	∞
Test sample positioning	E.4.2	3.7	N	1	1	3.70	9
Device holder uncertainty	E.4.1	3.6	N	1	1	3.60	∞

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company, Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CN_Doccheck@sgs.com"

邮编: 518057

No. 1 Workshop, M-10, Middle Section, Science & Technology Park, Nanshan District, Shenzhen, Guangdong, China 518057 中国・广东・深圳市南山区科技园中区M-10栋1号厂房

t (86-755) 26012053 t (86-755) 26012053

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR240500187801

50 of 52 Page:

Output power variation –SAR drift measurement	6.6.2	5	R	$\sqrt{3}$	1	2.89	∞
Phantom uncertainty (shape and thickness tolerances)	E.3.1	4	R	$\sqrt{3}$	1	2.31	8
Liquid conductivity - deviation from target values	E.3.2	5	R	$\sqrt{3}$	0.64	1.85	80
Liquid conductivity - measurement uncertainty	E.3.2	5.78	N	1	0.64	3.68	5
Liquid permittivity - deviation from target values	E.3.3	5	R	$\sqrt{3}$	0.6	1.73	∞
Liquid permittivity - measurement uncertainty	E.3.3	0.62	N	1	0.6	0.372	5
Combined standard uncertainty				RSS		10.89	430
Expanded uncertainty (95% CONFIDENCE INTERVAL)				K=2		21.77	

Table 6: Measurement Uncertainty

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company, Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CN.Doccheck@sgs.com"

No.1 Workshop, M-10, Middle Section, Science & Technology Park, Nanshan District, Shenzhen, Guangdong, China 518057 中国・广东・深圳市南山区科技园中区M-10栋1号厂房

邮编: 518057

t (86-755) 26012053 www.sgsgroup.com.cn t (86-755) 26012053 sgs.china@sgs.com

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR240500187801

51 of 52 Page:

9 Calibration certificate

Please see the Appendix C

10 **Photographs**

Please see the Appendix D

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company, Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CN_Doccheck@sgs.com"

No.1 Workshop, M-10, Middle Section, Science & Technology Park, Nanshan District, Shenzhen, Guangdong, China 518057 中国・广东・深圳市南山区科技园中区M-10栋1号厂房

邮编: 518057 t (86-755) 26012053

t (86-755) 26012053

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR240500187801

52 of 52 Page:

Appendix A: Detailed System Check Results

Appendix B: Detailed Test Results

Appendix C: Calibration certificate

Appendix D: Photographs

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company, Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CN_Doccheck@sgs.com"

No. 1 Workshop, M-10, Middle Section, Science & Technology Park, Nanshan District, Shenzhen, Guangdong, China 518057 中国・广东・深圳市南山区科技园中区M-10栋1号厂房

邮编: 518057 t (86-755) 26012053

t (86-755) 26012053