

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100205204 Page: 1 of 315

TEST REPORT

Application No.:	KSCR2311002052AT
FCC ID:	2APJ4-SNM500
IC:	23860-SNM500
Applicant:	MeiG Smart Technology Co., Ltd
Address of Applicant:	2nd Floor,Office Building,No.5 Lingxia Road,Fenghuang,Fuyong Street,Bao'an District,Shenzhen City.
Manufacturer:	MeiG Smart Technology Co., Ltd
Address of Manufacturer:	2nd Floor,Office Building,No.5 Lingxia Road,Fenghuang,Fuyong Street,Bao'an District,Shenzhen City.
Equipment Under Test (EUT):	
EUT Name:	Wireless communication module
Model No.:	SNM500
Trade Mark:	MEIGLink
Standard(s) :	47 CFR Part 15, Subpart E 15.407
	RSS-247 Issue 3, August 2023
	RSS-Gen Issue 5 Amendment 2 (February 2021)
Date of Receipt:	2023-11-16
Date of Test:	2024-03-19 to 2024-03-20
Date of Issue:	2024-03-20
Test Result:	Pass*

* In the configuration tested, the EUT complied with the standards specified above.

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100205204 Page: 2 of 315

Revision Record			
Version	Description	Date	Remark
00	Original	2024-03-20	/

Authorized for issue by:		
Tested By	Damon zhou	
	Damon_Zhou/Project Engineer	
Approved By	Verry Hon	
	Terry Hou /Reviewer	

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100205204 Page: 3 of 315

Method

Result

2 Test Summary

Radio Spectrum Technical Requirement Item FCC Requirement IC Requirement 47 CER Part 15 49 and 40 and 40

Antenna Requirement	47 CFR Part 15, Subpart C 15.203	RSS-Gen Clause 6.8	N/A	Pass
Transmission in the Absence of Data	47 CFR Part 15, Subpart C 15.407 (c)	RSS-247 Section 6.4(a)	N/A	Pass

N/A: Not applicable

Radio Spectrum Matter Part				
Item	FCC Requirement	IC Requirement	Method	Result
99% Bandwidth	N/A	RSS-Gen Section 6.7	ANSI C63.10 Section 6.9.3	Pass
26dB Emission bandwidth	47 CFR Part 15, Subpart C 15.407 (a)	RSS-247 Section 6.2.1(1)	KDB 789033 D02 II C 1	Pass
Minimum 6 dB bandwidth (5.725- 5.85 GHz band)	47 CFR Part 15, Subpart C 15.407 (e)	RSS-247 Section 6.2.4	KDB 789033 D02 II C 2	Pass
Maximum Conducted output power	47 CFR Part 15, Subpart C 15.407 (a)	RSS-247 Section 6.2.1&6.2.2&6.2.3&6.2 .4	KDB 789033 D02 II E	Pass
Peak Power spectrum density	47 CFR Part 15, Subpart C 15.407 (a)	RSS-247 Section 6.2.1&6.2.2&6.2.3& 6.2.4	KDB 789033 D02 II F	Pass
Radiated Emissions	47 CFR Part 15, Subpart C 15.209 & 15.407(b)	RSS-247 Section 3.3 & RSS-Gen Section 8.9	KDB 789033 D02 II G	Pass
Radiated Emissions which fall in the restricted bands	47 CFR Part 15, Subpart C 15.209 & 15.407(b)	RSS-247 Section 3.3 & RSS-Gen Section 8.9	KDB 789033 D02 II G	Pass
Frequency Stability	47 CFR Part 15, Subpart C 15.407 (g)	RSS-Gen Section 8.11	ANSI C63.10 (2013) Section 6.8& RSS-Gen Section 6.11	Pass

-CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100205204 Page: 4 of 315

3 Contents

			Page
1	COV	ER PAGE	1
2	Tost	Summary	3
2	1631	Summary	
3	Cont	ents	4
4	Gen	eral Information	5
	4.1	Details of E.U.T.	5
	4.2	Description of Support Units	5
	4.3	Power level setting using in test	6
	4.4	Measurement Uncertainty	
	4.5	Test Location	
	4.6	Test Facility	
	4.7	Deviation from Standards	
	4.8	Abnormalities from Standard Conditions	8
5	Equi	pment List	9
6	Radi	o Spectrum Technical Requirement	10
	6.1	Antenna Requirement	
	6.2	Transmission in the Absence of Data	
7	Radi	o Spectrum Matter Test Results	12
	7.1	Duty Cycle	
	7.2	99% Bandwidth	
	7.3	26dB Emission bandwidth	
	7.4	Minimum 6 dB bandwidth (5.725-5.85 GHz band)	
	7.5	Maximum Conducted output power	
	7.6	Peak Power spectrum density	
	7.7	Radiated Emissions (Above 1GHz)	
	7.8	Radiated Emissions which fall in the restricted bands	
	7.9 7.10	Frequency Stability Non-occupancy period	
	7.10	Channel Move Time	
	7.12	Channel Closing Transmission Time	
	7.12	Radiated Emissions (Below 1GHz).	
8	Test	Setup Photo	
9	EUT	Constructional Details (EUT Photos)	
1(0 App	əndix	173

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100205204 Page: 5 of 315

4 General Information

4.1 Details of E.U.T.

	_	
Power su	ıpply:	DC 3.8V
		U-NII-I: 5180-5240MHz (4 Channels);
Operation	n cy/Number of	U-NII-2A: 5260-5320MHz (4 Channels);
	(20MHz):	U-NII-2C: 5500-5700MHz (11 Channels);
		U-NII-3: 5745-5825MHz (5 Channels)
		U-NII-I: 5190-5230MHz (2 Channels);
Operation		U-NII-2A: 5270-5310MHz (2 Channels);
	cy/Number of /(40MHz):	U-NII-2C: 5510-5670MHz (5 Channels);
	/(:••••••=):	U-NII-3: 5755-5795MHz (2 Channels)
		U-NII-I: 5210MHz (1 Channel);
Operation		U-NII-2A: 5290MHz (1 Channels);
	Frequency/Number of channels (80MHz):	U-NII-2C: 5530-5610MHz (2 Channels);
		U-NII-3: 5775MHz (1 Channel)
		802.11a: OFDM (64QAM, 16QAM, QPSK, BPSK);
Modulatio	on Type:	802.11n: OFDM (BPSK, QPSK, 16QAM, 64QAM);
		802.11ac: OFDM (BPSK, QPSK, 16QAM, 64QAM, 256QAM)
Channel	Spacing:	802.11a/n/ac20: 20MHz; 802.11n/ac40: 40MHz; 802.11ac80: 80MHz
DFS Fun	ction:	Slave without Radar detection
Antenna	Туре:	Dipole Antenna
Antenna	Gain:	1dBi (Provided by the manufacturer)
S/N:		M500Q16CYD071300051
Firmware	e Version:	SLM500Q_EQ000_2774.5CA7F6A.7315A21_231104_100_V01_T13

4.2 Description of Support Units

Description	Manufacturer	Model No.	Serial No.
DC Power Supply	Agilent	E3632A	1
Notebook	Lenovo	/	/

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100205204 Page: 6 of 315

Channel	802.11a	802.11n(HT20)
	Ant 1	Ant 1
36	14.50	14.50
40	14.50	14.50
48	14.50	14.50
52	14.50	14.50
60	14.50	14.50
64	14.50	14.50
100	14.50	14.50
116	14.50	14.50
140	14.50	14.50
149	14.00	14.00
157	14.00	14.00
165	14.00	14.00
	802.11ac(VHT40)	
Channel	Ant 1	
38	14.00	
46	14.00	
54	14.50	
62	14.50	
102	14.50	
110	14.50	
134	14.50	
151	14.00	
159	14.00	
Channel	802.11ac(VHT80)	
	Ant 1	
42	14.00	
58	14.00	
106	14.00	
122	14.00	
155	14.00	

4.3 Power level setting using in test

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100205204 Page: 7 of 315

4.4 Measurement Uncertainty

No.	ltem	Measurement Uncertainty
1	Radio Frequency	8.4 x 10 ⁻⁸
2	Timeout	2s
3	Duty Cycle	0.37%
4	Occupied Bandwidth	3%
5	RF Conducted Power	0.6dB
6	RF Power Density	2.9dB
7	Conducted Spurious Emissions	0.75dB
0	PE Dedicted Dover	5.2dB (Below 1GHz)
8	RF Radiated Power	5.9dB (Above 1GHz)
		4.2dB (Below 30MHz)
9	Padiated Spurious Emission Test	4.5dB (30MHz-1GHz)
9	Radiated Spurious Emission Test	5.1dB (1GHz-18GHz)
		5.4dB (Above 18GHz)
10	Temperature Test	1°C
11	Humidity Test	3%
12	Supply Voltages	1.5%
13	Time	3%
Note: The measurement uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.		

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100205204 Page: 8 of 315

4.5 Test Location

All tests were performed at:

Compliance Certification Services (Kunshan) Inc.

No.10 Weiye Rd, Innovation park, Eco&Tec, Development Zone, Kunshan City, Jiangsu, China.

Tel: +86 512 5735 5888 Fax: +86 512 5737 0818

No tests were sub-contracted.

Note:

1. SGS is not responsible for wrong test results due to incorrect information (e.g., max. internal working frequency, antenna gain, cable loss, etc) is provided by the applicant. (If applicable).

2. SGS is not responsible for the authenticity, integrity and the validity of the conclusion based on results of the data provided by applicant. (If applicable).

3. Sample source: sent by customer.

4.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• A2LA

Compliance Certification Services (Kunshan) Inc. is accredited by the American Association for Laboratory Accreditation (A2LA). Certificate No. 2541.01.

• FCC

Compliance Certification Services (Kunshan) Inc. has been recognized as an accredited testing laboratory. Designation Number: CN1172.

• ISED

Compliance Certification Services (Kunshan) Inc. has been recognized by Innovation, Science and Economic Development Canada (ISED) as an accredited testing laboratory. Company Number: 2324E

• VCCI

The 3m and 10m Semi-anechoic chamber and Shielded Room of Compliance Certification Services (Kunshan) Inc. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-20134, R-11600, C-11707, T-11499, G-10216 respectively.

4.7 Deviation from Standards

None

4.8 Abnormalities from Standard Conditions

None

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100205204 Page: 9 of 315

5 Equipment List

RF Con	ducted Test					
1	Spectrum Analyzer	Keysight	N9020A	KUS1911E004-2	08/24/2023	08/23/2024
2	Spectrum Analyzer	Keysight	N9020A	KUS2001M001-2	08/24/2023	08/23/2024
3	Spectrum Analyzer	Keysight	N9030B	KSEM021-1	01/15/2024	01/14/2025
4	Signal Generator	R&S	SMBV100B	KSEM032	03/19/2024	03/18/2025
5	Signal Generator	R&S	SMW200A	KSEM020-1	08/24/2023	08/23/2024
6	Signal Generator	Agilent	N5182A	KUS2001M001-1	08/24/2023	08/23/2024
7	Radio Communication Test Station	Anritsu	MT8000A	KSEM001-1	08/24/2023	08/23/2024
8	Radio Communication Analyzer	Anritsu	MT8821C	KSEM002-1	03/19/2024	03/18/2025
9	Universal Radio Communication Tester	R&S	CMW500	KUS1911E004-1	08/24/2023	08/23/2024
10	Switcher	TST	FY562	KUS2001M001-4	01/15/2024	01/14/2025
11	AC Power Source	EXTECH	6605	KS301178	N.C.R	N.C.R
12	DC Power Supply	Aglient	E3632A	KS301180	N.C.R	N.C.R
13	Conducted Test Cable	Thermax	RF01-RF04	CZ301111-CZ301120	01/15/2024	01/14/2025
14	Temp. / Humidity Chamber	TERCHY	MHK-120AK	KS301190	08/24/2023	08/23/2024
15	Temperature & Humidity Recorder	Renke Control	RS-WS-N01-6J	KSEM024-5	03/19/2024	03/18/2025
16	Software	BST	TST-PASS	1	N/A	N/A
RF Rad	iated Test					
1	Spectrum Analyzer	R&S	FSV40	KUS1806E003	08/24/2023	08/23/2024
2	Universal Radio Communication Tester	R&S	CMW500	KSEM009-1	03/19/2024	03/18/2025
3	Signal Generator	Agilent	E8257C	KS301066	08/24/2023	08/23/2024
4	Loop Antenna	COM-POWER	AL-130R	KUS1806E001	03/18/2023	03/17/2025
5	Bilog Antenna	TESEQ	CBL 6112D	KUS1806E005	06/29/2023	06/28/2025
6	Bilog Antenna	TESEQ	CBL 6112D	KUS1806E006	03/19/2024	03/18/2025
7	Horn-antenna(1-18GHz)	Schwarzbeck	BBHA9120D	KS301079	08/24/2023	08/23/2024
8	Horn-antenna(1-18GHz)	ETS-LINDGREN	3117	KS301186	04/07/2024	04/06/2025
9	Horn Antenna(18-40GHz)	Schwarzbeck	BBHA9170	CZ301058	01/07/2024	01/06/2026
10	Amplifier(30MHz~18GHz)	PANSHAN TECHNOLOGY	LNA:1~18G	KSEM010-1	01/15/2024	01/14/2025
11	Amplifier(18~40GHz)	PANSHAN TECHNOLOGY	LNA180400G40	KSEM038	08/24/2023	08/23/2024
12	RE Test Cable	REBES MICROWAVE	1	CZ301097	08/24/2023	08/23/2024
13	Temperature & Humidity Recorder	Renke Control	RS-WS-N01-6J	KSEM024-4	03/19/2024	03/18/2025
14	Software	Faratronic	EZ_EMC-v 3A1	1	N/A	N/A
15	Software	ESE	E3_V 6.111221a	1	N/A	N/A

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100205204 Page: 10 of 315

6 Radio Spectrum Technical Requirement

6.1 Antenna Requirement

6.1.1 Test Requirement:

47 CFR Part 15, Subpart C 15.203

6.1.2 Conclusion

Standard Requirement:An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit permanently attached antenna or of an so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. The antenna is dipole antenna and no consideration of replacement. The best case gain of the antenna is 1dBi.Antenna location: Refer to internal photo.

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100205204 Page: 11 of 315

6.2 Transmission in the Absence of Data

6.2.1 Test Requirement:

47 CFR Part 15, Subpart E 15.407 (c)

6.2.2 Conclusion

ConclusionStandard Requirement:The device shall automatically discontinue transmission in case of either absence of information to transmit or operational failure. These provisions are not intended to preclude the transmission of control or signalling information or the use of repetitive codes used by certain digital technologies to complete frame or burst intervals.Applicants shall include in their application for equipment authorization a description of how this requirement is met.EUT Details:WIFI chip support automatically discontinue transmission in case of either absence of information to transmit or operational failure, if the chip detect absence of information to transmit or operational failure, it will be automatically shut off.

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100205204 Page: 12 of 315

7 Radio Spectrum Matter Test Results

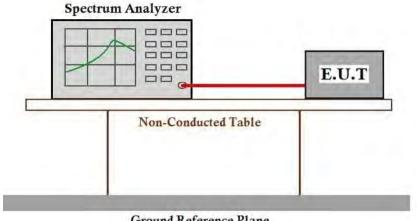
7.1 Duty Cycle

Test Requirement	KDB 789033 D02 II B 1
Test Method:	KDB 789033 II B 1

7.1.1 E.U.T. Operation

Operating Environment:						
Temperature:	23.5 °C	Humidity:	50.3 % RH	Atmospheric Pressure:	1010	mbar

7.1.2 Test Mode Description


Pre-scan / Final test	Mode Code	Description
Final test	04	TX mode (U-NII-1)_Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @ MCS0 is the worst case of IEEE 802.11n/ac20/40/80, Only the data of worst case is recorded in the report.
Final test	05	TX mode (U-NII-2A) _Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @ MCS0 is the worst case of IEEE 802.11n/ac20/40/80, Only the data of worst case is recorded in the report.
Final test	06	TX mode (U-NII-2C) _Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @ MCS0 is the worst case of IEEE 802.11n/ac20/40/80, Only the data of worst case is recorded in the report.
Final test	07	TX mode (U-NII-3) _Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @ MCS0 is the worst case of IEEE 802.11n/ac20/40/80, Only the data of worst case is recorded in the report.

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100205204 Page: 13 of 315

7.1.3 Test Setup Diagram

Ground Reference Plane

7.1.4 Measurement Procedure and Data

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

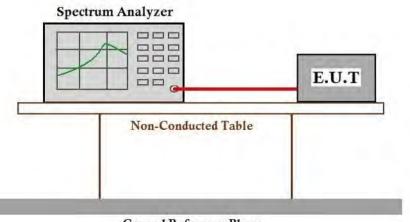
Report No.: KSCR231100205204 Page: 14 of 315

7.2 99% Bandwidth

Test Requirement	N/A
Test Method:	KDB 789033 II D

7.2.1 E.U.T. Operation

Operating Environment: Temperature: 23.5 °C Humic


Humidity: 50.4 % RH

Atmospheric Pressure: 1010 mbar

7.2.2 Test Mode Description

Pre-scan / Final test	Mode Code	Description
Final test	04	TX mode (U-NII-1)_Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @ MCS0 is the worst case of IEEE 802.11n/ac20/40/80, Only the data of worst case is recorded in the report.
Final test	05	TX mode (U-NII-2A) _Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @ MCS0 is the worst case of IEEE 802.11n/ac20/40/80, Only the data of worst case is recorded in the report.
Final test	06	TX mode (U-NII-2C) _Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @ MCS0 is the worst case of IEEE 802.11n/ac20/40/80, Only the data of worst case is recorded in the report.
Final test	07	TX mode (U-NII-3) _Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @ MCS0 is the worst case of IEEE 802.11n/ac20/40/80, Only the data of worst case is recorded in the report.

7.2.3 Test Setup Diagram

Ground Reference Plane

7.2.4 Measurement Procedure and Data

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

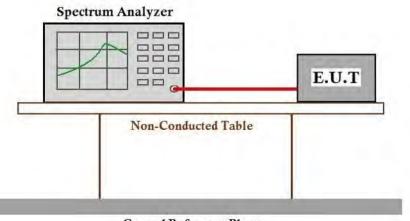
Report No.: KSCR231100205204 Page: 15 of 315

7.3 26dB Emission bandwidth

Test Requirement	47 CFR Part 15, Subpart E 15.407 (a)
Test Method:	KDB 789033 D02 II C 1

7.3.1 E.U.T. Operation

Operating Environment: Temperature: 23.5 °C


Humidity: 50.6 % RH

Atmospheric Pressure: 1010 mbar

7.3.2 Test Mode Description

Pre-scan / Final test	Mode Code	Description
Final test	04	TX mode (U-NII-1)_Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @ MCS0 is the worst case of IEEE 802.11n/ac20/40/80, Only the data of worst case is recorded in the report.
Final test	05	TX mode (U-NII-2A) _Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @ MCS0 is the worst case of IEEE 802.11n/ac20/40/80, Only the data of worst case is recorded in the report.
Final test	06	TX mode (U-NII-2C) _Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @ MCS0 is the worst case of IEEE 802.11n/ac20/40/80, Only the data of worst case is recorded in the report.
Final test	07	TX mode (U-NII-3) _Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @ MCS0 is the worst case of IEEE 802.11n/ac20/40/80, Only the data of worst case is recorded in the report.

7.3.3 Test Setup Diagram

Ground Reference Plane

^{7.3.4} Measurement Procedure and Data

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100205204 Page: 16 of 315

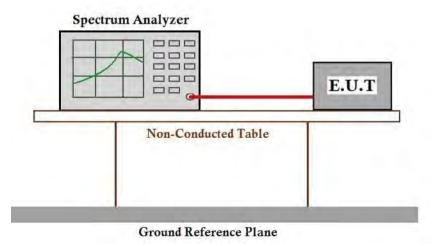
7.4 Minimum 6 dB bandwidth (5.725-5.85 GHz band)

Test Requirement	47 CFR Part 15, Subpart E 15.407 (e)
Test Method:	KDB 789033 D02 II C 2

Limit:

Frequency band(MHz)	Limit
5725-5850	≥500 kHz

7.4.1 E.U.T. Operation


Operating Environment:

Temperature:	23 5 °C	Humidity	50.2 % RH	Atmospheric Pressure:	1010	mhar
remperature.	20.0 0	riumany.	JU.Z /01111	Autospheric i ressure.	1010	mbai

7.4.2 Test Mode Description

Pre-scan / Final test	Mode Code	Description
Final test	07	TX mode (U-NII-3) _Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @ MCS0 is the worst case of IEEE 802.11n/ac20/40/80, Only the data of worst case is recorded in the report.

7.4.3 Test Setup Diagram

7.4.4 Measurement Procedure and Data

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100205204 Page: 17 of 315

7.5 Maximum Conducted output power

Test Requirement	47 CFR Part 15, Subpart E 15.407 (a)
Test Method:	KDB 789033 D02 II E

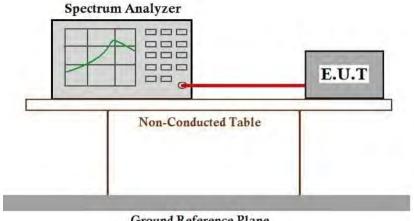
Limit:

Frequen	cy band(MHz)	Limit
5150-5250		≤1W(30dBm) for master device
5150-	-5250	≤250mW(24dBm) for client device
5250-	-5350	≤250mW(24dBm) or 11dBm+10logB*
5470-	5725	≤250mW(24dBm) or 11dBm+10logB*
5725-	-5850	≤1W(30dBm)
Remark:	* Where B is the	e 26dB emission bandwidth in MHz.
	The maximum conducted output power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage.	

7.5.1 E.U.T. Operation

Operating Environment:						
Temperature:	23.5 °C	Humidity:	50.3 % RH	Atmospheric Pressure:	1010	mbar

7.5.2 Test Mode Description


Pre-scan / Final test	Mode Code	Description
Final test	04	TX mode (U-NII-1)_Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @ MCS0 is the worst case of IEEE 802.11n/ac20/40/80, Only the data of worst case is recorded in the report.
Final test	05	TX mode (U-NII-2A) _Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @ MCS0 is the worst case of IEEE 802.11n/ac20/40/80, Only the data of worst case is recorded in the report.
Final test	06	TX mode (U-NII-2C) _Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @ MCS0 is the worst case of IEEE 802.11n/ac20/40/80, Only the data of worst case is recorded in the report.
Final test	07	TX mode (U-NII-3) _Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @ MCS0 is the worst case of IEEE 802.11n/ac20/40/80, Only the data of worst case is recorded in the report.

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100205204 Page: 18 of 315

7.5.3 Test Setup Diagram

Ground Reference Plane

7.5.4 Measurement Procedure and Data

Note: Since the verify power the same operating range bandwidth and smaller power can be covered by the higher power.

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100205204 Page: 19 of 315

7.6 Peak Power spectrum density

Test Requirement	47 CFR Part 15, Subpart E 15.407 (a)
Test Method:	KDB 789033 D02 II F

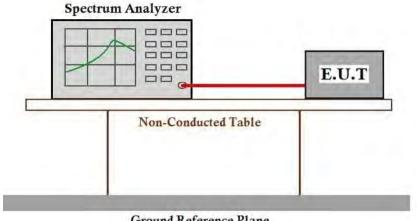
Limit:

Frequency b	and(MHz)	Limit		
5150-5250		≤17dBm in 1MHz for master device		
5150-5	250	≤11dBm in 1MHz for client device		
5250-5	350	≤11dBm in 1MHz for client device		
5470-5725		≤11dBm in 1MHz for client device		
5725-5850		≤30dBm in 500 kHz		
Remark:	The maximum power spectral density is measured as a conducted emission by direct connection of a calibrated test instrument to the equipment under test.			

7.6.1 E.U.T. Operation

Operating Environment: Temperature: 23.5 °C Humidity: 50.4 % RH Atmospheric Pressure: 1010 mbar

7.6.2 Test Mode Description


Pre-scan / Final test	Mode Code	Description
Final test	04	TX mode (U-NII-1)_Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @ MCS0 is the worst case of IEEE 802.11n/ac20/40/80, Only the data of worst case is recorded in the report.
Final test	05	TX mode (U-NII-2A) _Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @ MCS0 is the worst case of IEEE 802.11n/ac20/40/80, Only the data of worst case is recorded in the report.
Final test	06	TX mode (U-NII-2C) _Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @ MCS0 is the worst case of IEEE 802.11n/ac20/40/80, Only the data of worst case is recorded in the report.
Final test	07	TX mode (U-NII-3) _Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @ MCS0 is the worst case of IEEE 802.11n/ac20/40/80, Only the data of worst case is recorded in the report.

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100205204 Page: 20 of 315

7.6.3 Test Setup Diagram

Ground Reference Plane

7.6.4 Measurement Procedure and Data

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100205204 Page: 21 of 315

7.7 Radiated Emissions (Above 1GHz)

Test Requirement	47 CFR Part 15, Subpart C 15.209 & Subpart E 15.407(b)
Test Method:	KDB 789033 D02 II G
Measurement Distance:	3M

Limit:

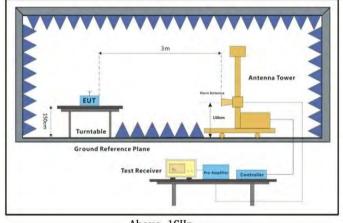
Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)		
Above 1GHz	500	3		
*(1) For transmitters operating in GHz band shall not exceed an e.i.	the 5.15-5.25 GHz band: All emissions o r.p. of −27 dBm/MHz.	outside of the 5.15-5.35		
(2) For transmitters operating in GHz band shall not exceed an e.i.	the 5.25-5.35 GHz band: All emissions c r.p. of –27 dBm/MHz.	outside of the 5.15-5.35		
(3) For transmitters operating in 5.725 GHz band shall not exceed	the 5.47-5.725 GHz band: All emission an e.i.r.p. of −27 dBm/MHz.	ns outside of the 5.47-		
(4) For transmitters operating in t	he 5.725-5.85 GHz band:			
(i) All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.				
Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.				

7.7.1 E.U.T. Operation

Operating Environment:						
Temperature:	23.6 °C	Humidity:	50.7 % RH	Atmospheric Pressure:	1010	mbar

7.7.2	Test	Mode	Description
-------	------	------	-------------

Pre-scan / Final test	Mode Code	Description
Final test	04	TX mode (U-NII-1)_Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @ MCS0 is the worst case of IEEE 802.11n/ac20/40/80, Only the data of worst case is recorded in the report.
Final test	05	TX mode (U-NII-2A) _Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and



CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100205204 Page: 22 of 315

		found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @ MCS0 is the worst case of IEEE 802.11n/ac20/40/80, Only the data of worst case is recorded in the report.
Final test	06	TX mode (U-NII-2C) _Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @ MCS0 is the worst case of IEEE 802.11n/ac20/40/80, Only the data of worst case is recorded in the report.
Final test	07	TX mode (U-NII-3) _Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @ MCS0 is the worst case of IEEE 802.11n/ac20/40/80, Only the data of worst case is recorded in the report.

7.7.3 Test Setup Diagram

Above 1GHz

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100205204 Page: 23 of 315

7.7.4 Measurement Procedure and Data

a. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak or average method as specified and then reported in a data sheet.

g. Test the EUT in the lowest channel, the middle channel, the Highest channel.

h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.

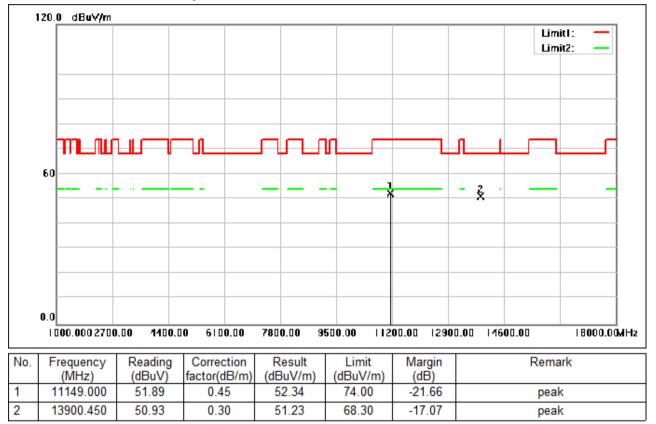
i. Repeat above procedures until all frequencies measured was complete.

Remark:

1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

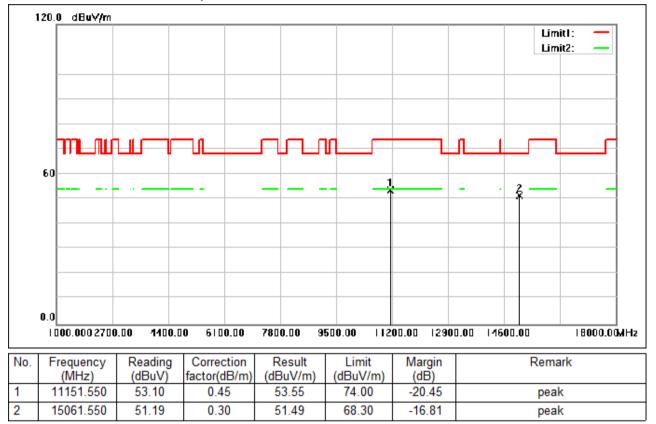
3. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.


4. The disturbance above 18GHz were very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

5. For devices with multiple operating modes, measurements on the middle channel is used to determine the worst-case mode(s). Only the worst case mode with the highest output power and the mode with the highest output power spectral density for each modulation family (e.g., OFDM and direct sequence spread spectrum) is recorded in the test report.

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

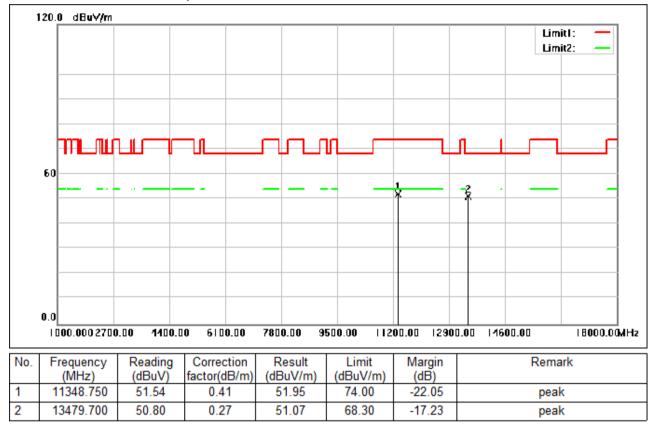
Report No.: KSCR231100205204 Page: 24 of 315



Test Mode: 04; Polarity: Horizontal; Modulation:802.11a; Bandwidth:20MHz; Channel:Low

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

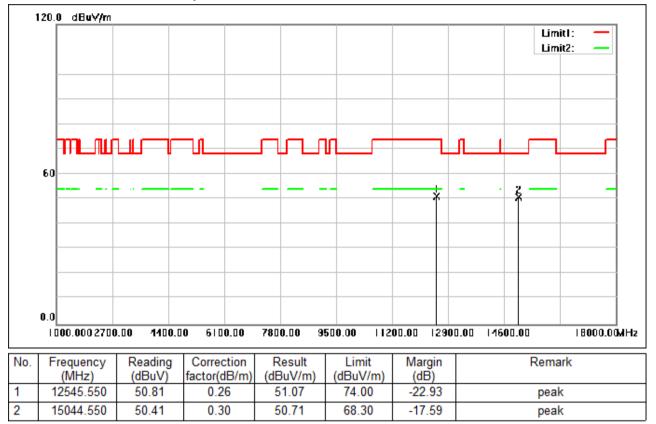
Report No.: KSCR231100205204 Page: 25 of 315



Test Mode: 04; Polarity: Vertical; Modulation:802.11a; Bandwidth:20MHz; Channel:Low

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

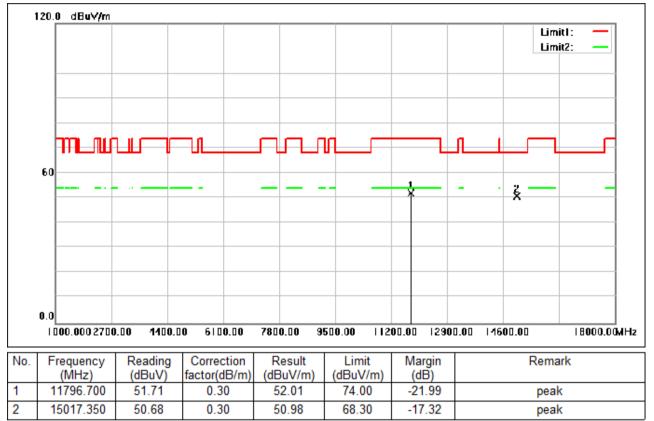
Report No.: KSCR231100205204 Page: 26 of 315



Test Mode: 04; Polarity: Horizontal; Modulation:802.11a; Bandwidth:20MHz; Channel:middle

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

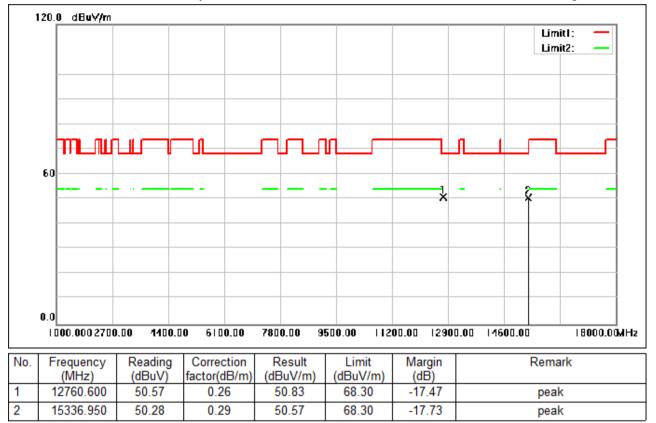
Report No.: KSCR231100205204 Page: 27 of 315



Test Mode: 04; Polarity: Vertical; Modulation:802.11a; Bandwidth:20MHz; Channel:middle

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

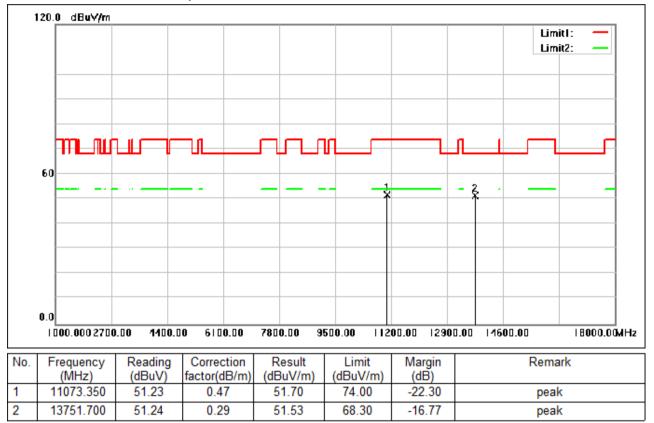
Report No.: KSCR231100205204 Page: 28 of 315



Test Mode: 04; Polarity: Horizontal; Modulation:802.11a; Bandwidth:20MHz; Channel:High

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

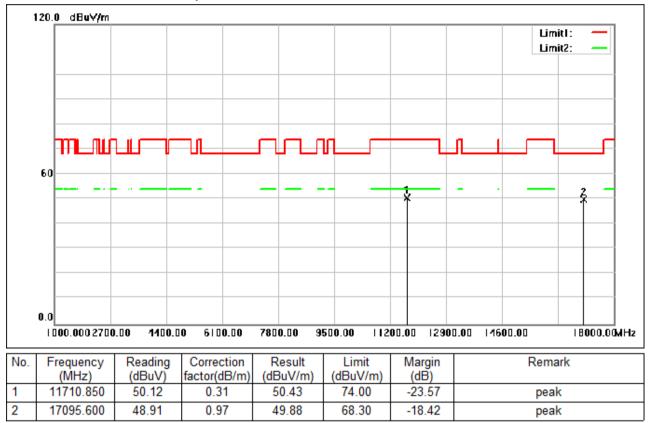
Report No.: KSCR231100205204 Page: 29 of 315



Test Mode: 04; Polarity: Vertical; Modulation:802.11a; Bandwidth:20MHz; Channel:High

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

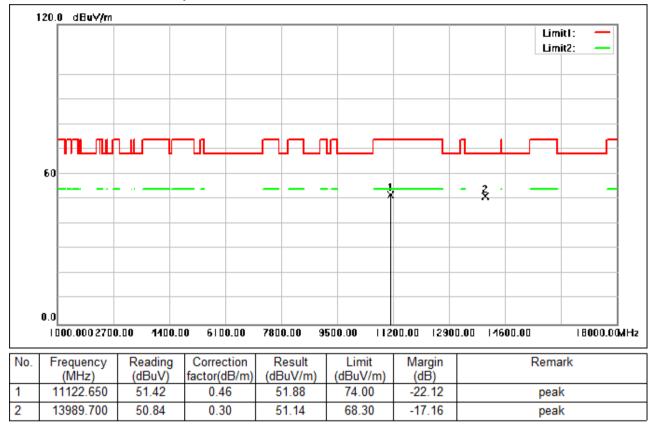
Report No.: KSCR231100205204 Page: 30 of 315



Test Mode: 04; Polarity: Horizontal; Modulation:802.11ac; Bandwidth:20MHz; Channel:Low

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

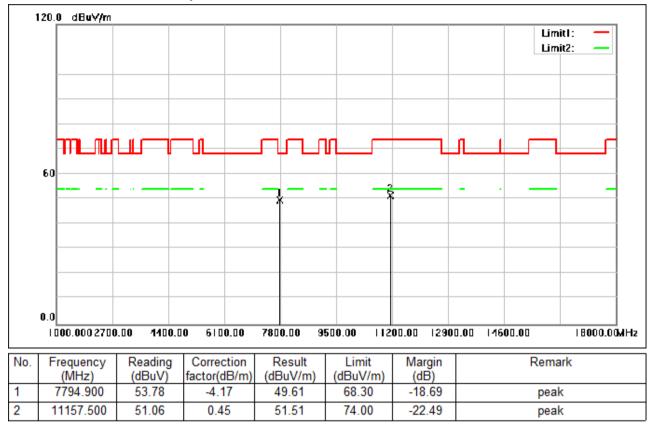
Report No.: KSCR231100205204 Page: 31 of 315



Test Mode: 04; Polarity: Vertical; Modulation:802.11ac; Bandwidth:20MHz; Channel:Low

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

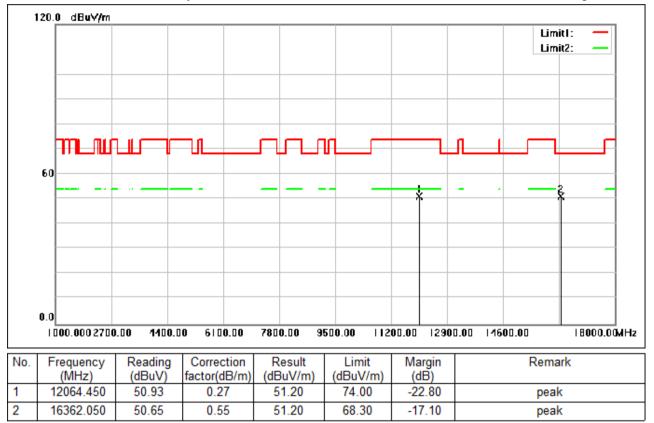
Report No.: KSCR231100205204 Page: 32 of 315



Test Mode: 04; Polarity: Horizontal; Modulation:802.11ac; Bandwidth:20MHz; Channel:middle

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

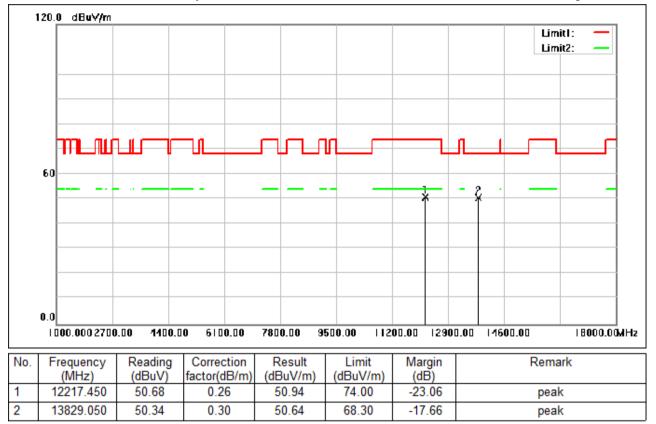
Report No.: KSCR231100205204 Page: 33 of 315



Test Mode: 04; Polarity: Vertical; Modulation:802.11ac; Bandwidth:20MHz; Channel:middle

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

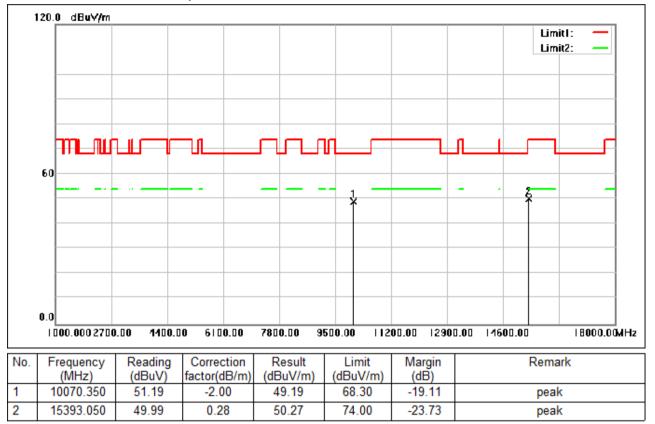
Report No.: KSCR231100205204 Page: 34 of 315



Test Mode: 04; Polarity: Horizontal; Modulation:802.11ac; Bandwidth:20MHz; Channel:High

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

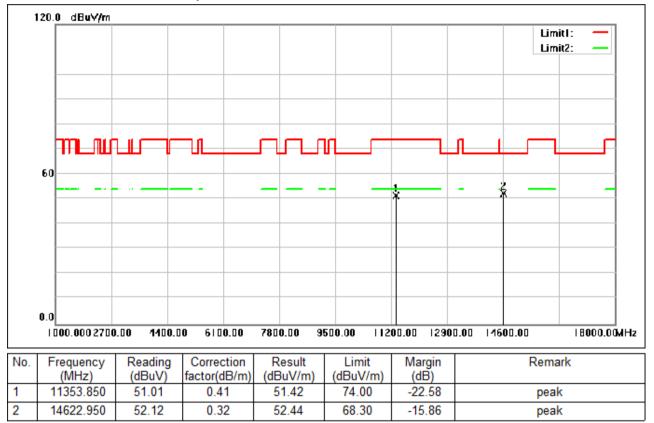
Report No.: KSCR231100205204 Page: 35 of 315



Test Mode: 04; Polarity: Vertical; Modulation:802.11ac; Bandwidth:20MHz; Channel:High

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

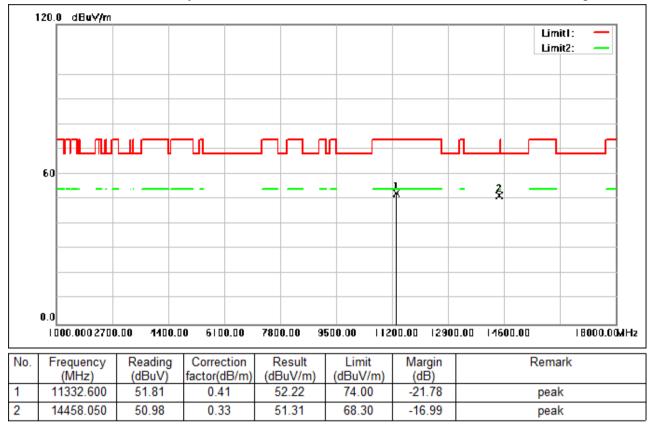
Report No.: KSCR231100205204 Page: 36 of 315



Test Mode: 04; Polarity: Horizontal; Modulation:802.11ac; Bandwidth:40MHz; Channel:Low

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

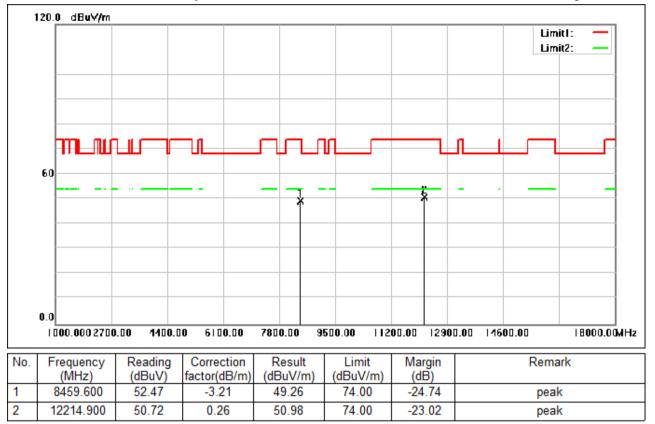
Report No.: KSCR231100205204 Page: 37 of 315



Test Mode: 04; Polarity: Vertical; Modulation:802.11ac; Bandwidth:40MHz; Channel:Low

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

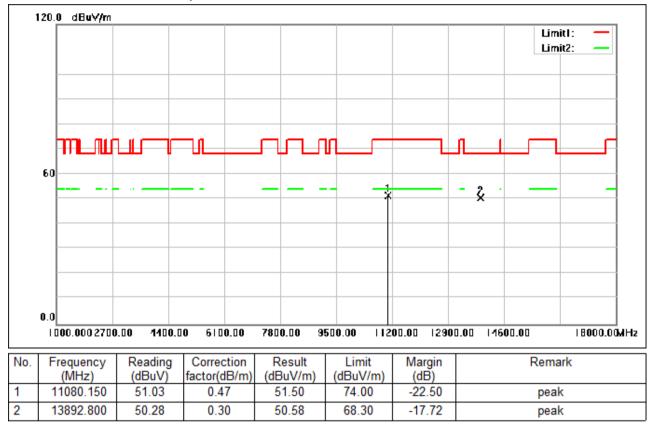
Report No.: KSCR231100205204 Page: 38 of 315



Test Mode: 04; Polarity: Horizontal; Modulation:802.11ac; Bandwidth:40MHz; Channel:High

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

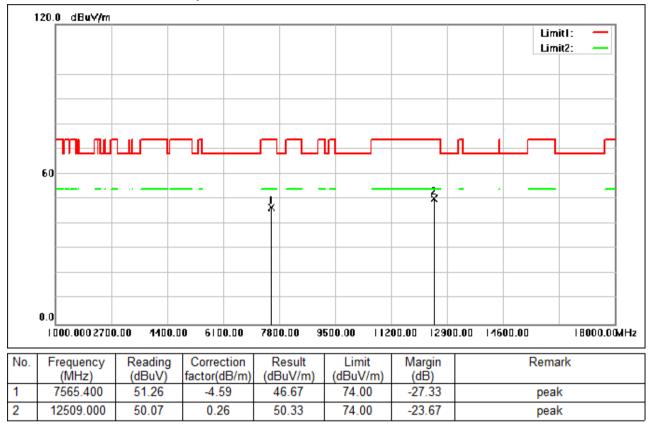
Report No.: KSCR231100205204 Page: 39 of 315



Test Mode: 04; Polarity: Vertical; Modulation:802.11ac; Bandwidth:40MHz; Channel:High

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

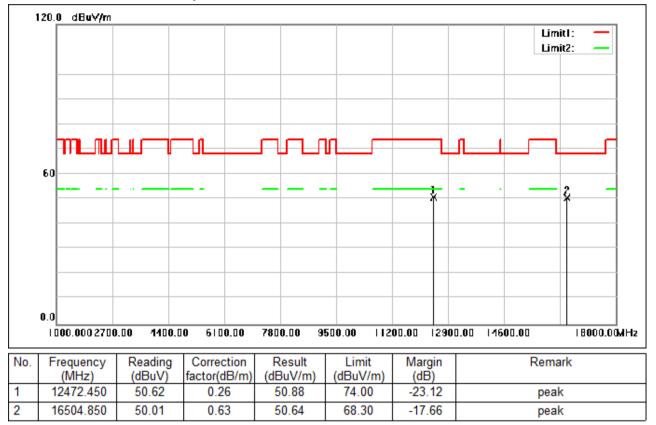
Report No.: KSCR231100205204 Page: 40 of 315



Test Mode: 04; Polarity: Horizontal; Modulation:802.11ac; Bandwidth:80MHz; Channel:Low

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

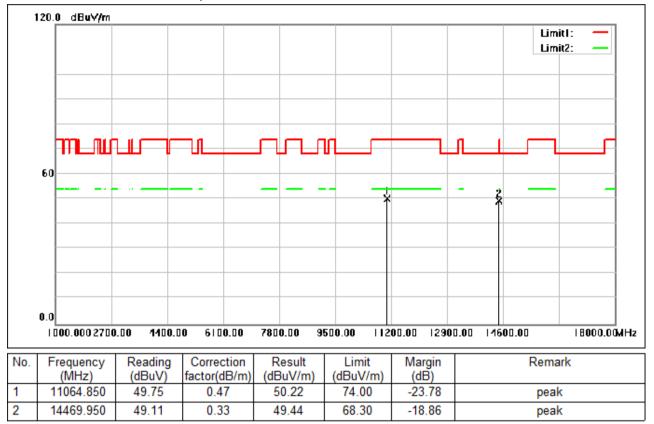
Report No.: KSCR231100205204 Page: 41 of 315



Test Mode: 04; Polarity: Vertical; Modulation:802.11ac; Bandwidth:80MHz; Channel:Low

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

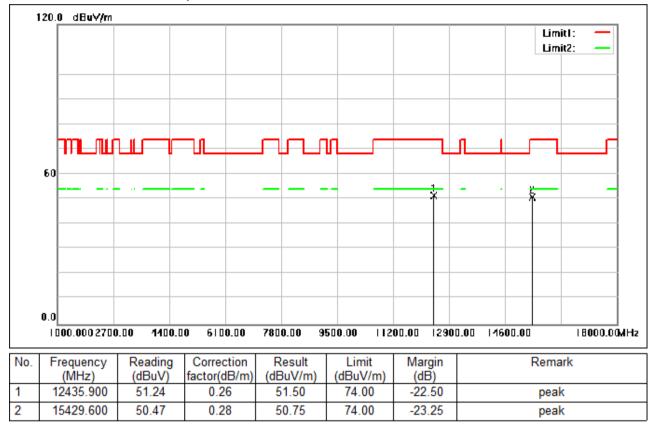
Report No.: KSCR231100205204 Page: 42 of 315



Test Mode: 05; Polarity: Horizontal; Modulation:802.11a; Bandwidth:20MHz; Channel:Low

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

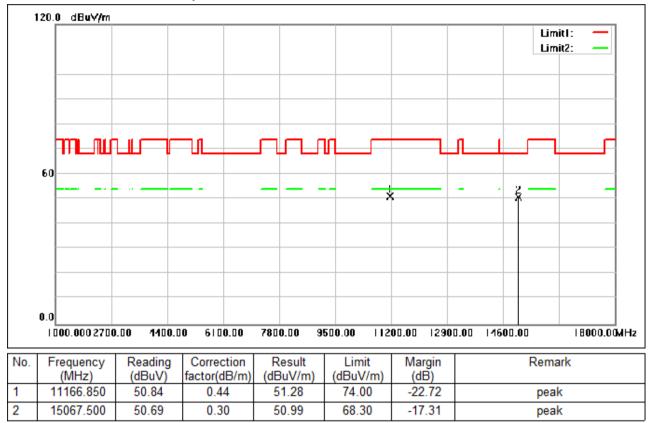
Report No.: KSCR231100205204 Page: 43 of 315



Test Mode: 05; Polarity: Vertical; Modulation:802.11a; Bandwidth:20MHz; Channel:Low

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

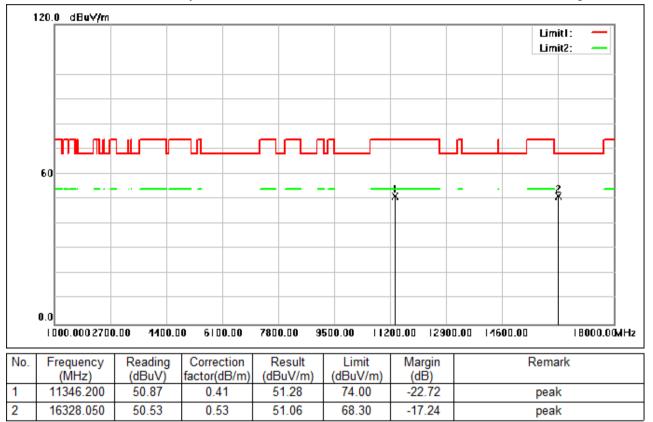
Report No.: KSCR231100205204 Page: 44 of 315



Test Mode: 05; Polarity: Horizontal; Modulation:802.11a; Bandwidth:20MHz; Channel:middle

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

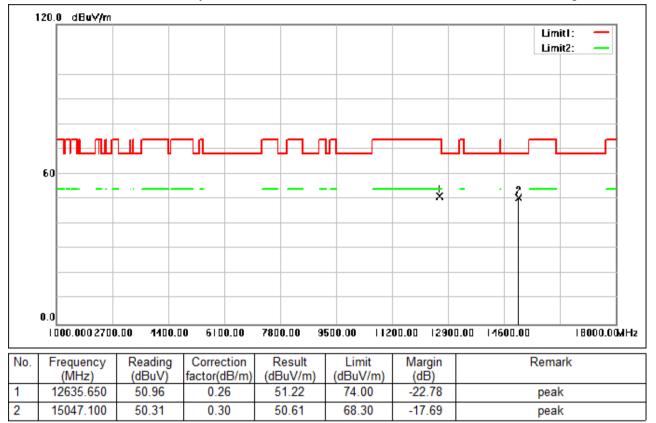
Report No.: KSCR231100205204 Page: 45 of 315



Test Mode: 05; Polarity: Vertical; Modulation:802.11a; Bandwidth:20MHz; Channel:middle

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

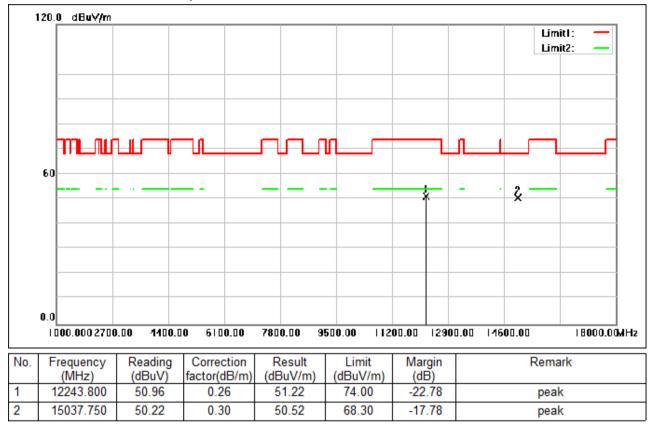
Report No.: KSCR231100205204 Page: 46 of 315



Test Mode: 05; Polarity: Horizontal; Modulation:802.11a; Bandwidth:20MHz; Channel:High

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

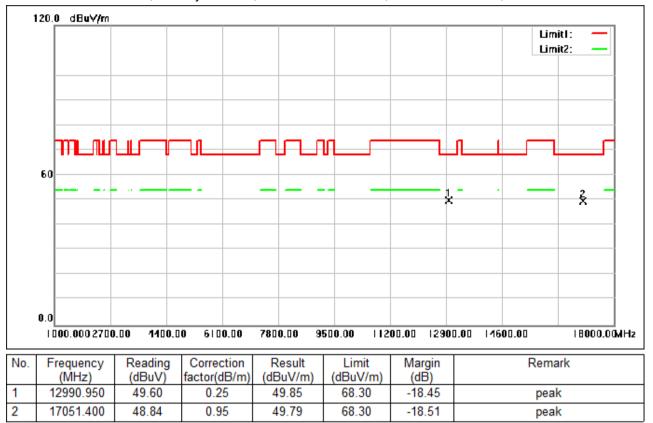
Report No.: KSCR231100205204 Page: 47 of 315



Test Mode: 05; Polarity: Vertical; Modulation:802.11a; Bandwidth:20MHz; Channel:High

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

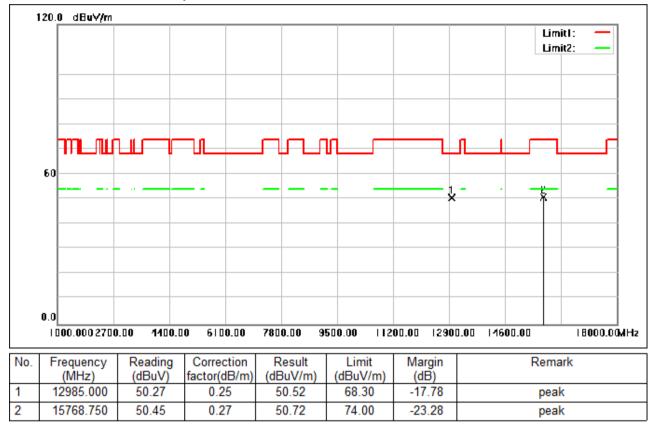
Report No.: KSCR231100205204 Page: 48 of 315



Test Mode: 05; Polarity: Horizontal; Modulation:802.11ac; Bandwidth:20MHz; Channel:Low

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

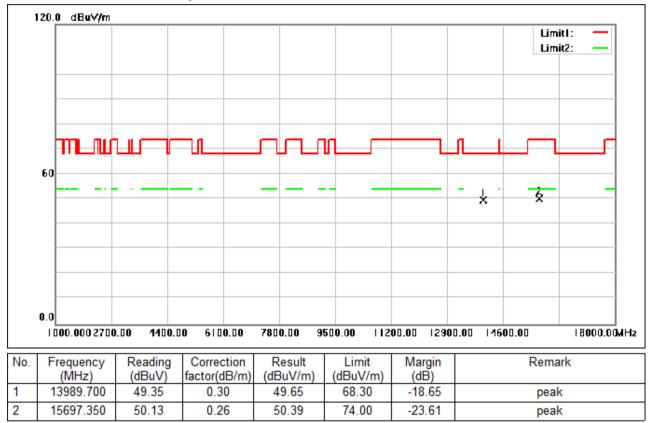
Report No.: KSCR231100205204 Page: 49 of 315



Test Mode: 05; Polarity: Vertical; Modulation:802.11ac; Bandwidth:20MHz; Channel:Low

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

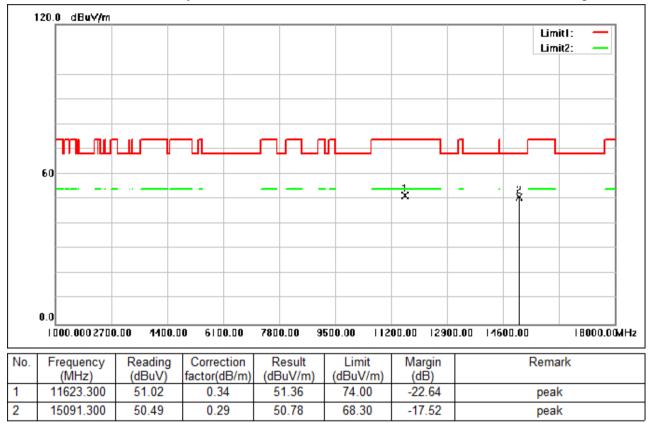
Report No.: KSCR231100205204 Page: 50 of 315



Test Mode: 05; Polarity: Horizontal; Modulation:802.11ac; Bandwidth:20MHz; Channel:middle

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

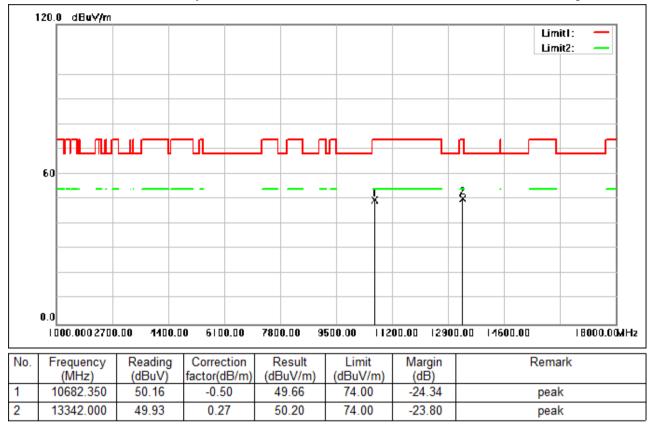
Report No.: KSCR231100205204 Page: 51 of 315



Test Mode: 05; Polarity: Vertical; Modulation:802.11ac; Bandwidth:20MHz; Channel:middle

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

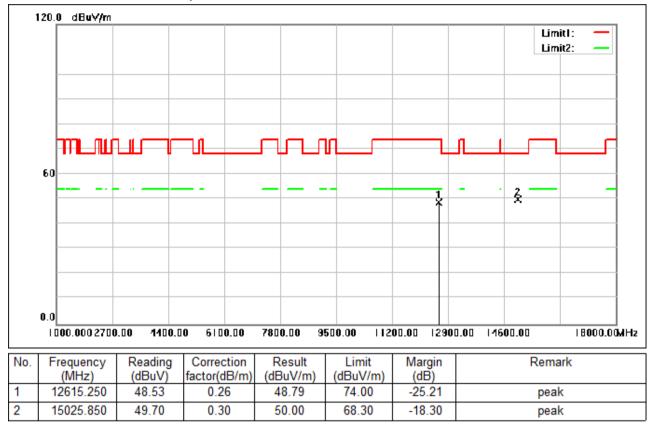
Report No.: KSCR231100205204 Page: 52 of 315



Test Mode: 05; Polarity: Horizontal; Modulation:802.11ac; Bandwidth:20MHz; Channel:High

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

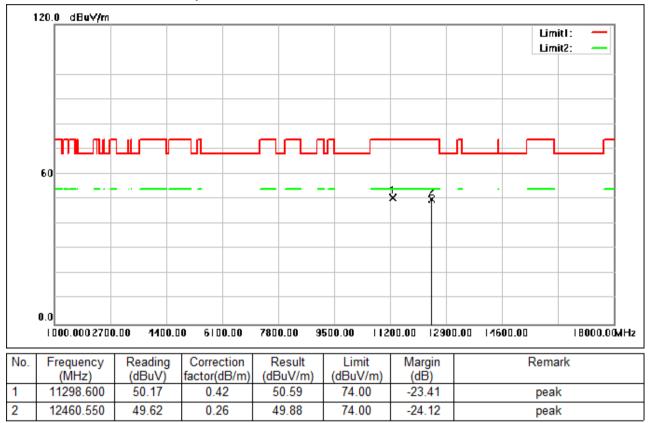
Report No.: KSCR231100205204 Page: 53 of 315



Test Mode: 05; Polarity: Vertical; Modulation:802.11ac; Bandwidth:20MHz; Channel:High

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

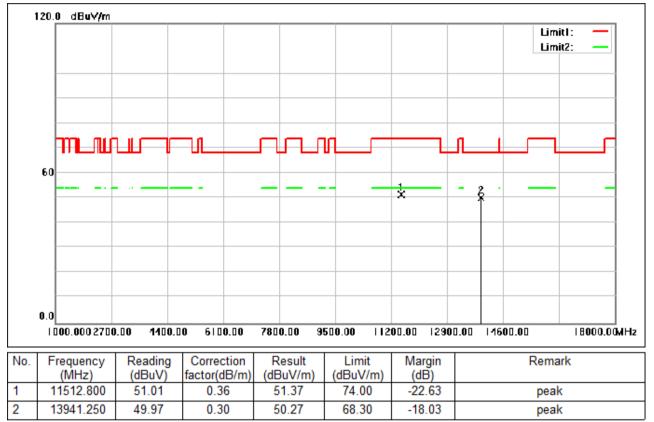
Report No.: KSCR231100205204 Page: 54 of 315



Test Mode: 05; Polarity: Horizontal; Modulation:802.11ac; Bandwidth:40MHz; Channel:Low

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

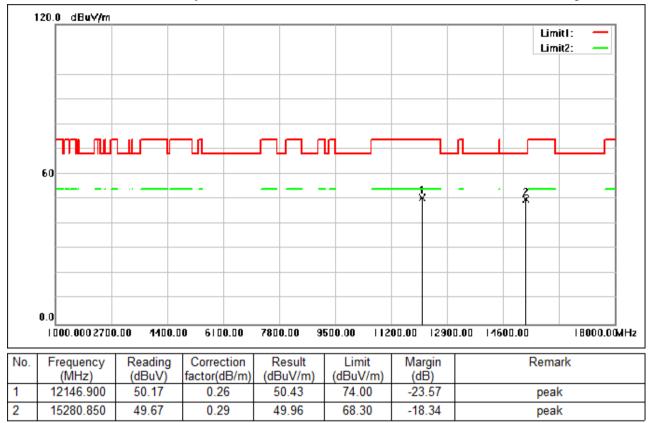
Report No.: KSCR231100205204 Page: 55 of 315



Test Mode: 05; Polarity: Vertical; Modulation:802.11ac; Bandwidth:40MHz; Channel:Low

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

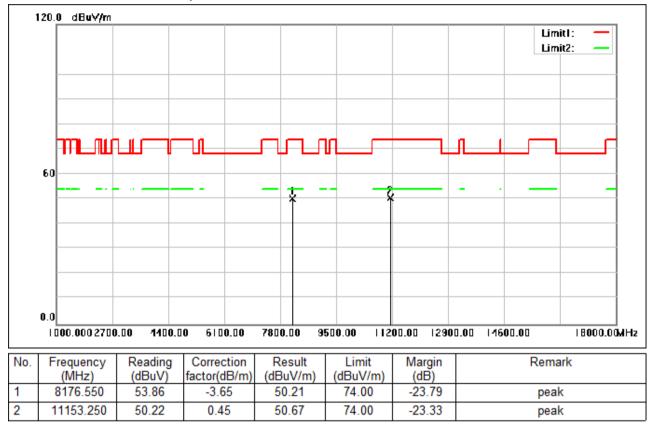
Report No.: KSCR231100205204 Page: 56 of 315



Test Mode: 05; Polarity: Horizontal; Modulation:802.11ac; Bandwidth:40MHz; Channel:High

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

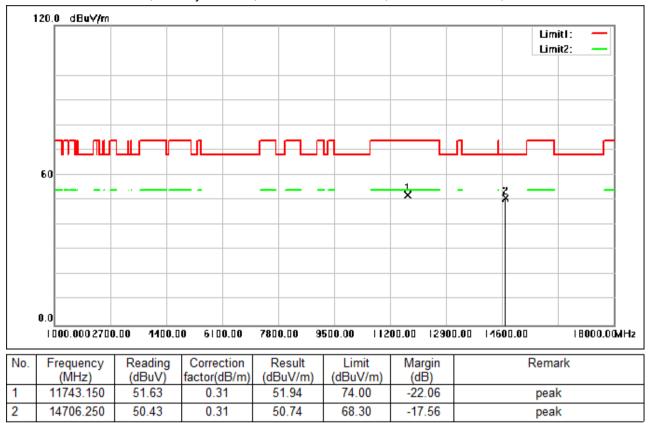
Report No.: KSCR231100205204 Page: 57 of 315



Test Mode: 05; Polarity: Vertical; Modulation:802.11ac; Bandwidth:40MHz; Channel:High

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

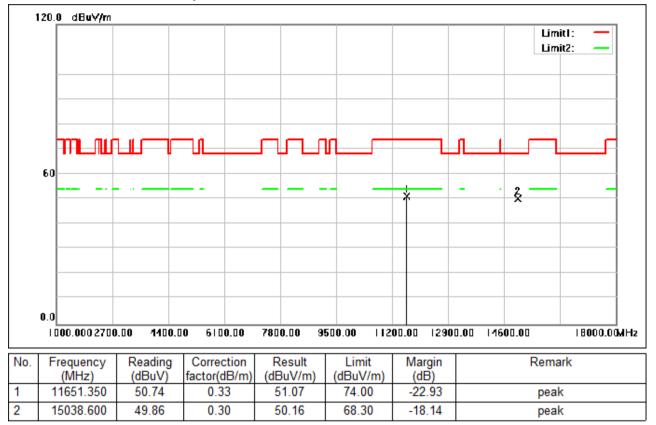
Report No.: KSCR231100205204 Page: 58 of 315



Test Mode: 05; Polarity: Horizontal; Modulation:802.11ac; Bandwidth:80MHz; Channel:Low

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

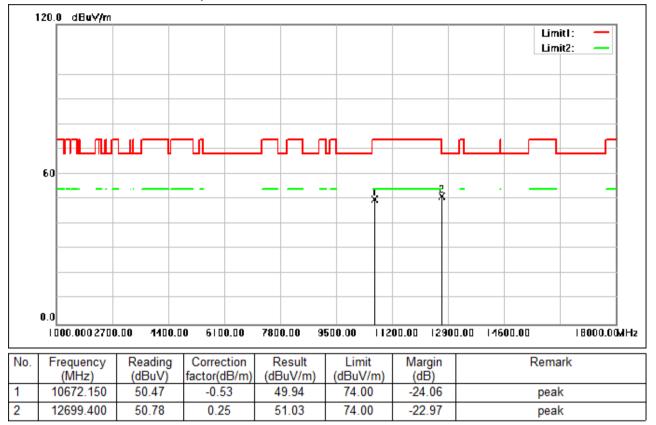
Report No.: KSCR231100205204 Page: 59 of 315



Test Mode: 05; Polarity: Vertical; Modulation:802.11ac; Bandwidth:80MHz; Channel:Low

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

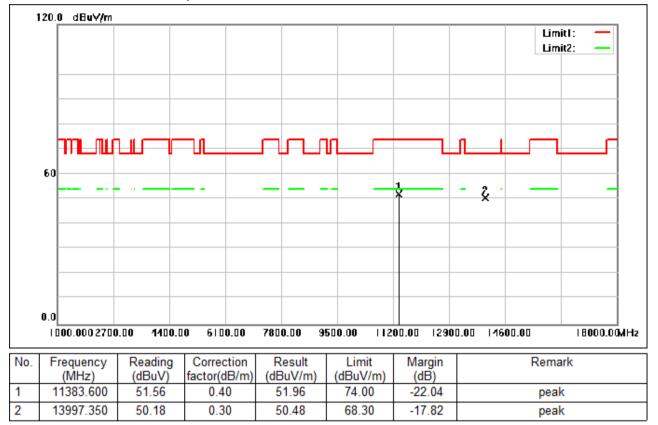
Report No.: KSCR231100205204 Page: 60 of 315



Test Mode: 06; Polarity: Horizontal; Modulation:802.11a; Bandwidth:20MHz; Channel:Low

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

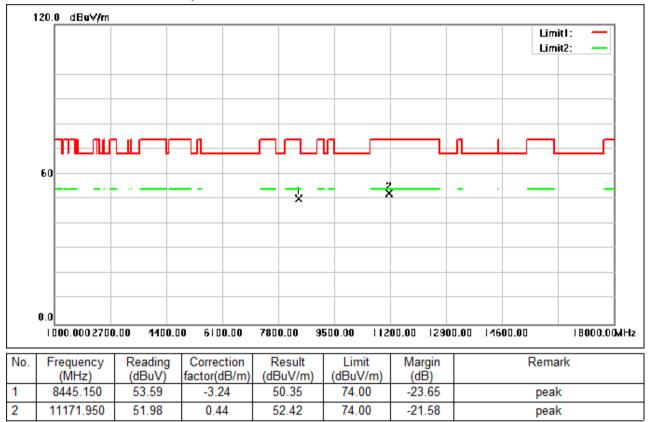
Report No.: KSCR231100205204 Page: 61 of 315



Test Mode: 06; Polarity: Vertical; Modulation:802.11a; Bandwidth:20MHz; Channel:Low

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

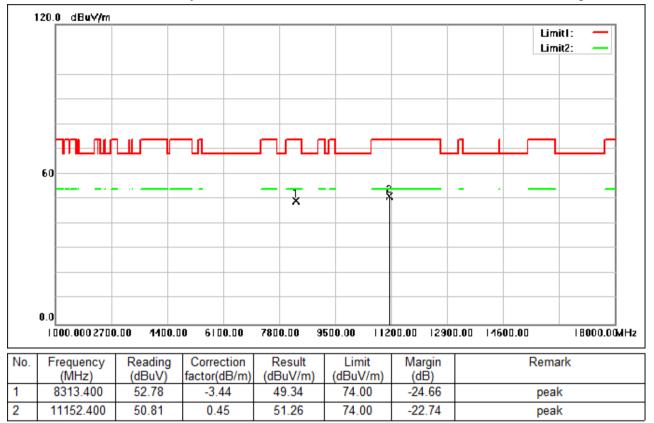
Report No.: KSCR231100205204 Page: 62 of 315



Test Mode: 06; Polarity: Horizontal; Modulation:802.11a; Bandwidth:20MHz; Channel:middle

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100205204 Page: 63 of 315



Test Mode: 06; Polarity: Vertical; Modulation:802.11a; Bandwidth:20MHz; Channel:middle

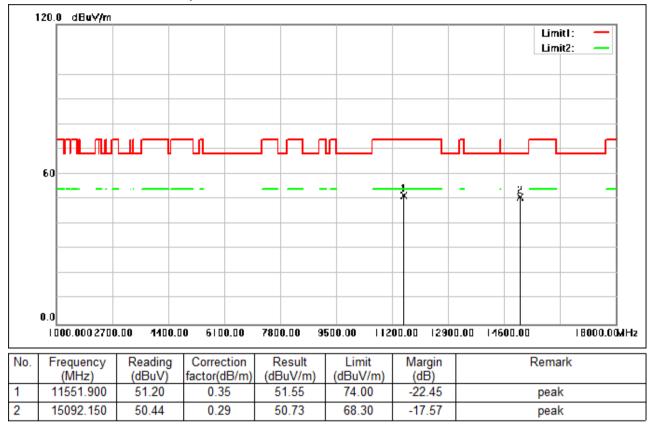
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100205204 Page: 64 of 315

Test Mode: 06; Polarity: Horizontal; Modulation:802.11a; Bandwidth:20MHz; Channel:High

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

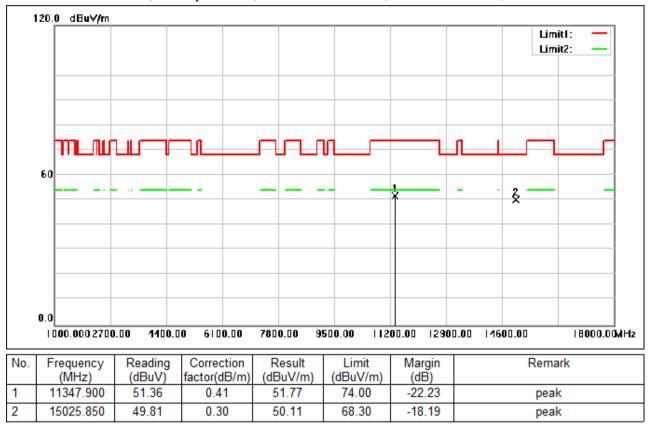
Report No.: KSCR231100205204 Page: 65 of 315



Test Mode: 06; Polarity: Vertical; Modulation:802.11a; Bandwidth:20MHz; Channel:High

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

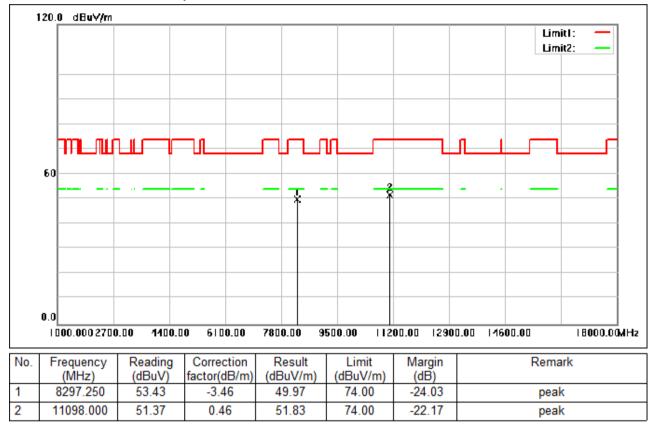
Report No.: KSCR231100205204 Page: 66 of 315



Test Mode: 06; Polarity: Horizontal; Modulation:802.11ac; Bandwidth:20MHz; Channel:Low

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

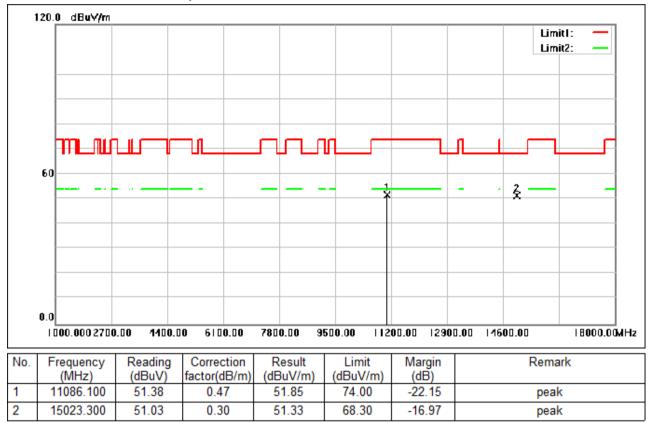
Report No.: KSCR231100205204 Page: 67 of 315



Test Mode: 06; Polarity: Vertical; Modulation:802.11ac; Bandwidth:20MHz; Channel:Low

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

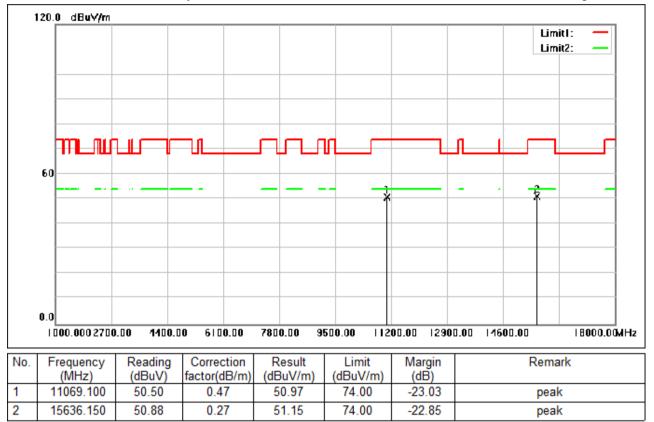
Report No.: KSCR231100205204 Page: 68 of 315



Test Mode: 06; Polarity: Horizontal; Modulation:802.11ac; Bandwidth:20MHz; Channel:middle

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

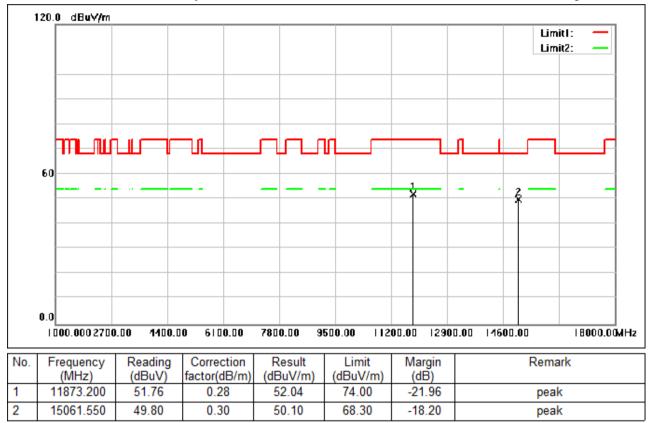
Report No.: KSCR231100205204 Page: 69 of 315



Test Mode: 06; Polarity: Vertical; Modulation:802.11ac; Bandwidth:20MHz; Channel:middle

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

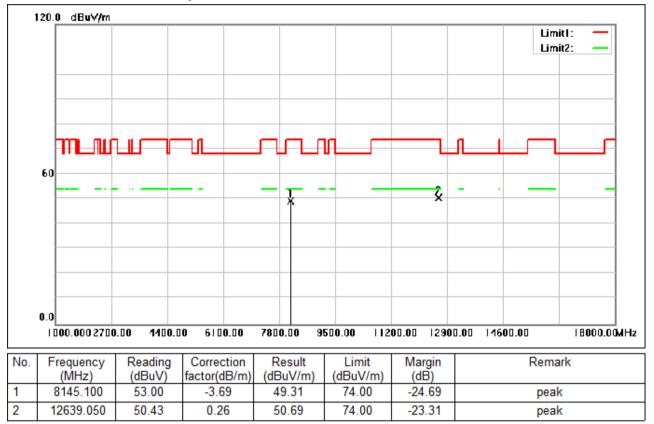
Report No.: KSCR231100205204 Page: 70 of 315



Test Mode: 06; Polarity: Horizontal; Modulation:802.11ac; Bandwidth:20MHz; Channel:High

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

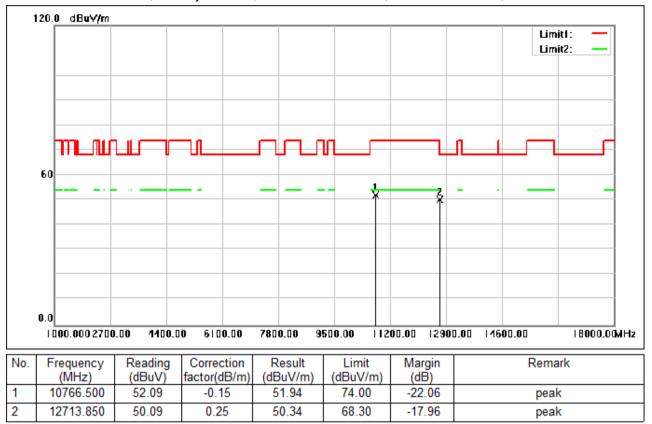
Report No.: KSCR231100205204 Page: 71 of 315



Test Mode: 06; Polarity: Vertical; Modulation:802.11ac; Bandwidth:20MHz; Channel:High

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100205204 Page: 72 of 315



Test Mode: 06; Polarity: Horizontal; Modulation:802.11ac; Bandwidth:40MHz; Channel:Low

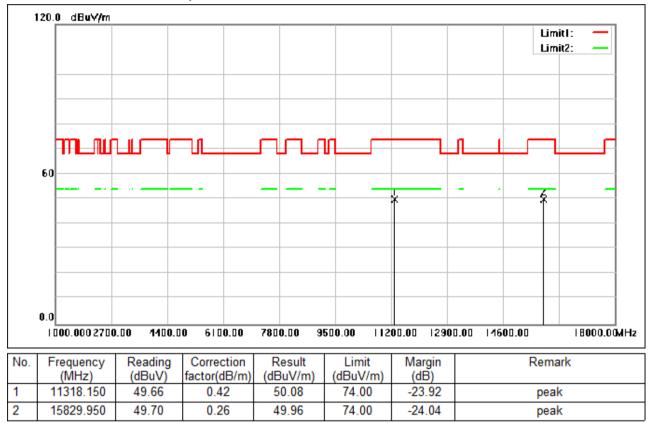
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100205204 Page: 73 of 315

Test Mode: 06; Polarity: Vertical; Modulation:802.11ac; Bandwidth:40MHz; Channel:Low

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

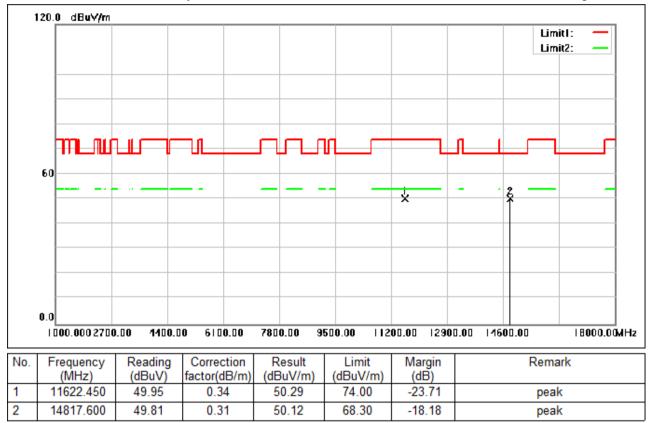
Report No.: KSCR231100205204 Page: 74 of 315



Test Mode: 06; Polarity: Horizontal; Modulation:802.11ac; Bandwidth:40MHz; Channel:middle

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

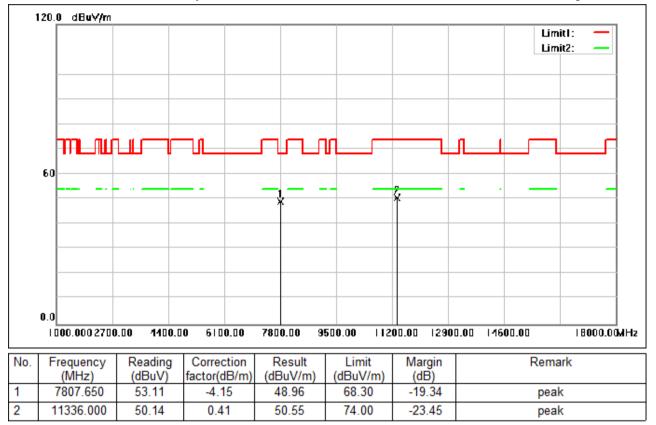
Report No.: KSCR231100205204 Page: 75 of 315



Test Mode: 06; Polarity: Vertical; Modulation:802.11ac; Bandwidth:40MHz; Channel:middle

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

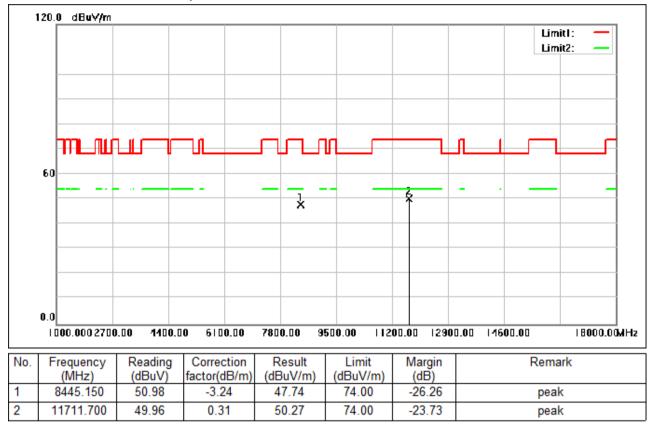
Report No.: KSCR231100205204 Page: 76 of 315



Test Mode: 06; Polarity: Horizontal; Modulation:802.11ac; Bandwidth:40MHz; Channel:High

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

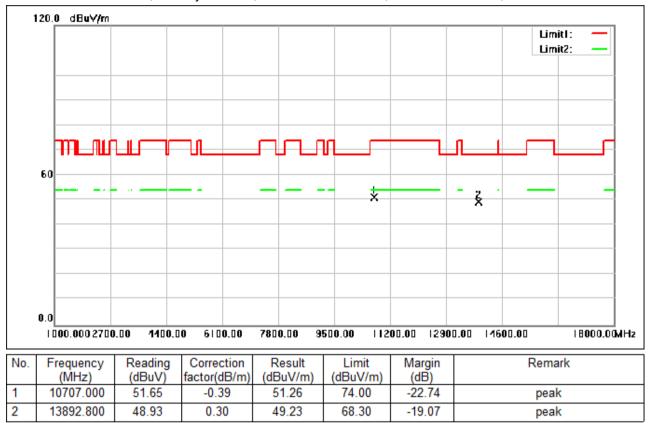
Report No.: KSCR231100205204 Page: 77 of 315



Test Mode: 06; Polarity: Vertical; Modulation:802.11ac; Bandwidth:40MHz; Channel:High

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

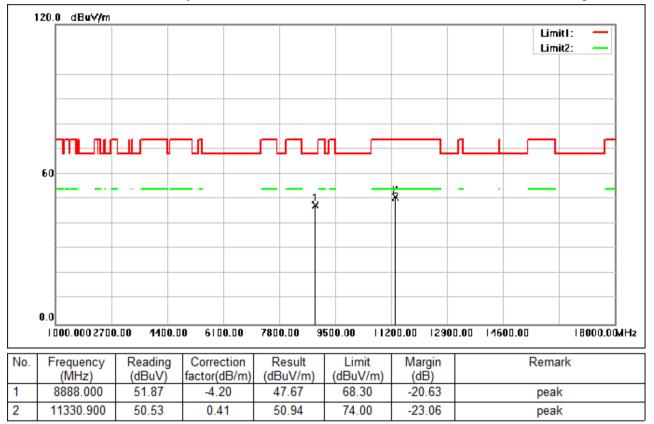
Report No.: KSCR231100205204 Page: 78 of 315



Test Mode: 06; Polarity: Horizontal; Modulation:802.11ac; Bandwidth:80MHz; Channel:Low

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100205204 Page: 79 of 315



Test Mode: 06; Polarity: Vertical; Modulation:802.11ac; Bandwidth:80MHz; Channel:Low

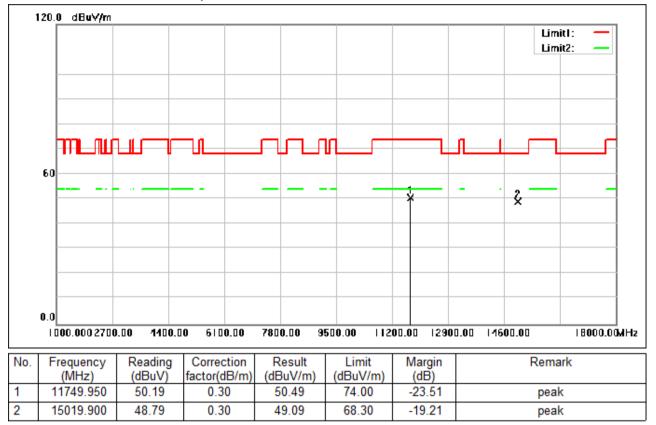
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100205204 Page: 80 of 315

Test Mode: 06; Polarity: Horizontal; Modulation:802.11ac; Bandwidth:80MHz; Channel:High

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

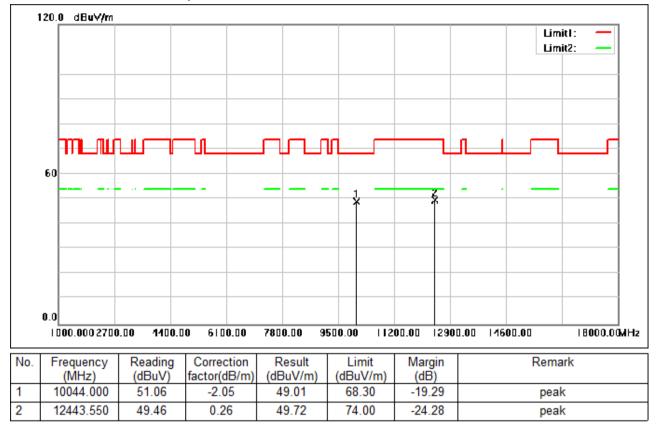
Report No.: KSCR231100205204 Page: 81 of 315



Test Mode: 06; Polarity: Vertical; Modulation:802.11ac; Bandwidth:80MHz; Channel:High

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

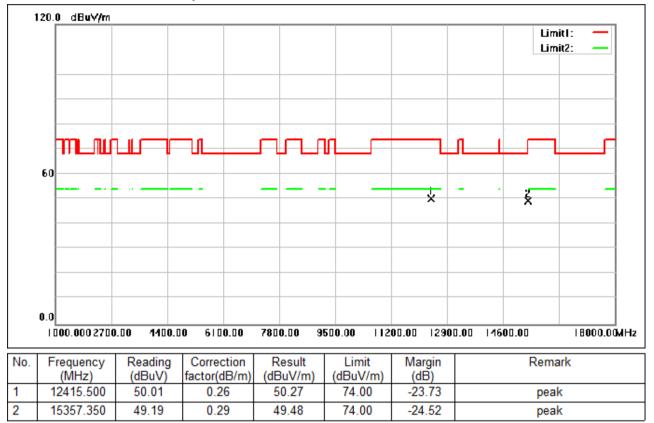
Report No.: KSCR231100205204 Page: 82 of 315



Test Mode: 07; Polarity: Vertical; Modulation:802.11a; Bandwidth:20MHz; Channel:Low

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

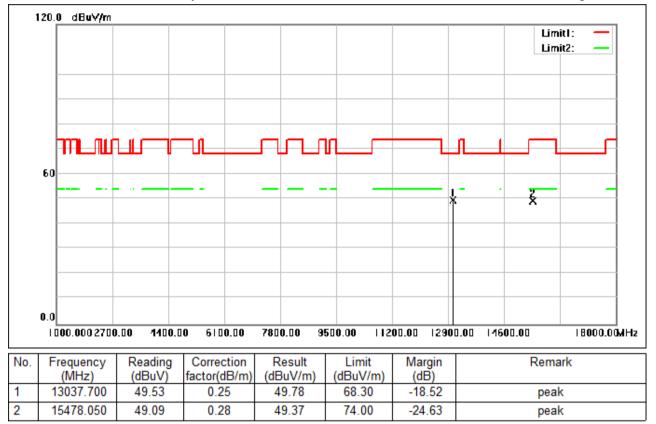
Report No.: KSCR231100205204 Page: 83 of 315



Test Mode: 07; Polarity: Horizontal; Modulation:802.11a; Bandwidth:20MHz; Channel:middle

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

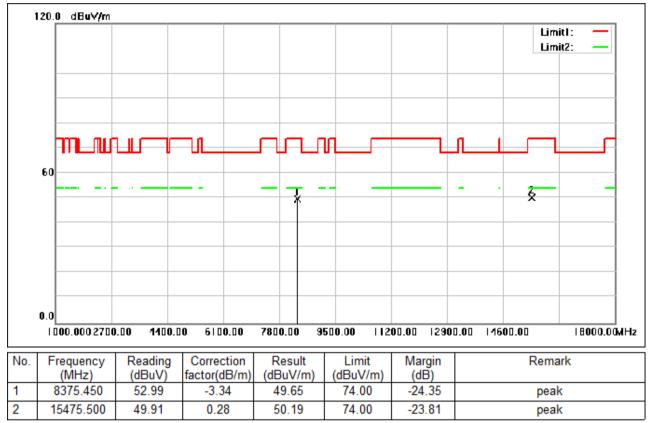
Report No.: KSCR231100205204 Page: 84 of 315



Test Mode: 07; Polarity: Vertical; Modulation:802.11a; Bandwidth:20MHz; Channel:middle

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

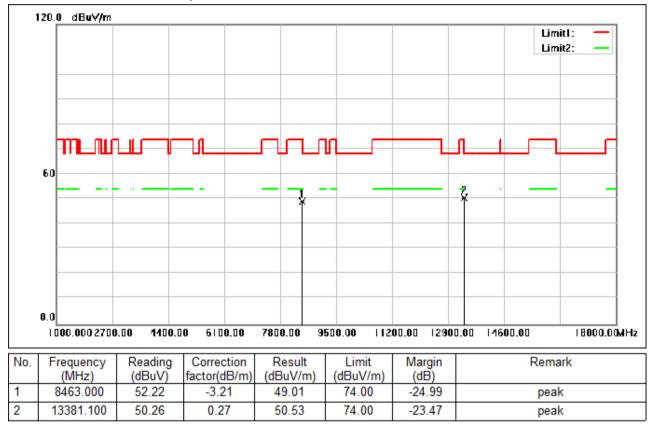
Report No.: KSCR231100205204 Page: 85 of 315



Test Mode: 07; Polarity: Horizontal; Modulation:802.11a; Bandwidth:20MHz; Channel:High

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

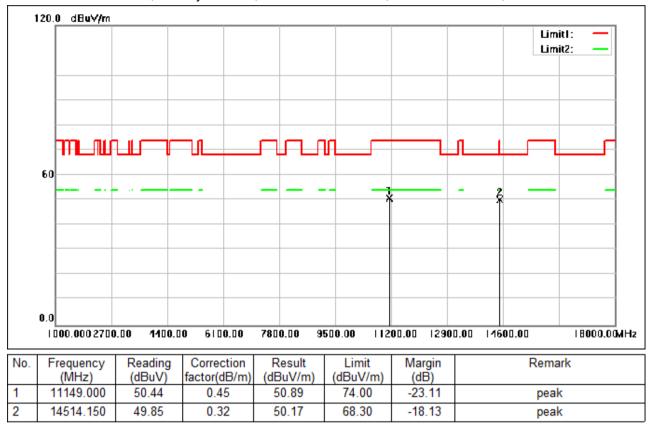
Report No.: KSCR231100205204 Page: 86 of 315



Test Mode: 07; Polarity: Vertical; Modulation:802.11a; Bandwidth:20MHz; Channel:High

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

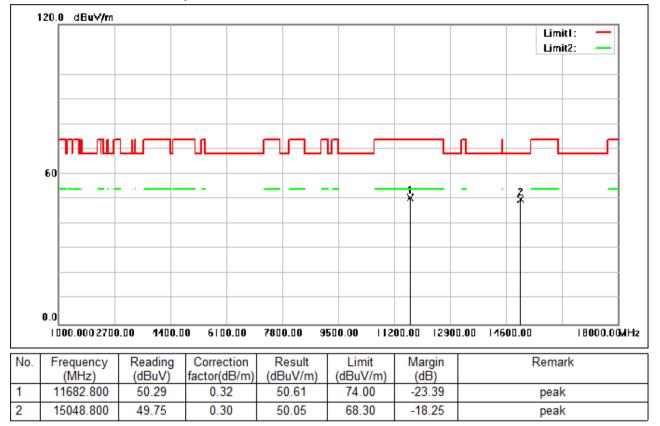
Report No.: KSCR231100205204 Page: 87 of 315



Test Mode: 07; Polarity: Horizontal; Modulation:802.11ac; Bandwidth:20MHz; Channel:Low

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

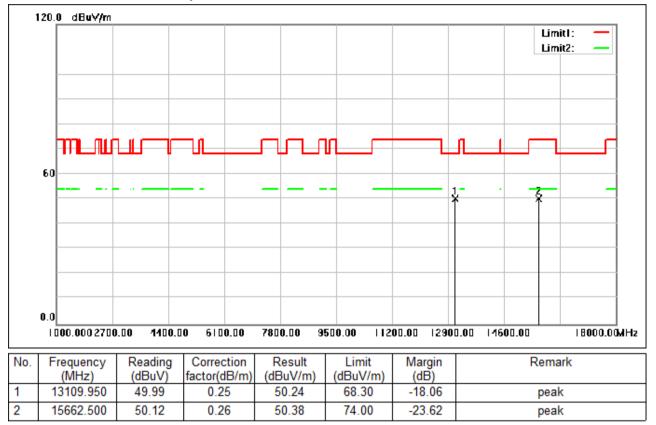
Report No.: KSCR231100205204 Page: 88 of 315



Test Mode: 07; Polarity: Vertical; Modulation:802.11ac; Bandwidth:20MHz; Channel:Low

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

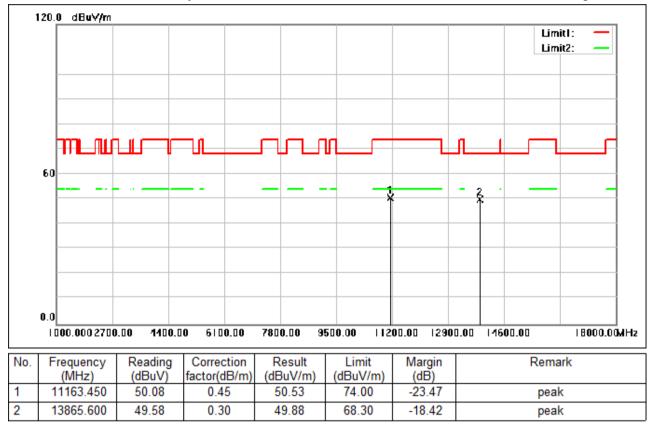
Report No.: KSCR231100205204 Page: 89 of 315



Test Mode: 07; Polarity: Horizontal; Modulation:802.11ac; Bandwidth:20MHz; Channel:middle

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

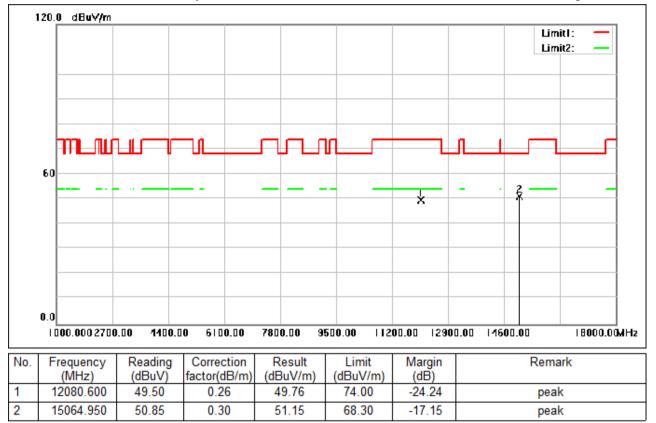
Report No.: KSCR231100205204 Page: 90 of 315



Test Mode: 07; Polarity: Vertical; Modulation:802.11ac; Bandwidth:20MHz; Channel:middle

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

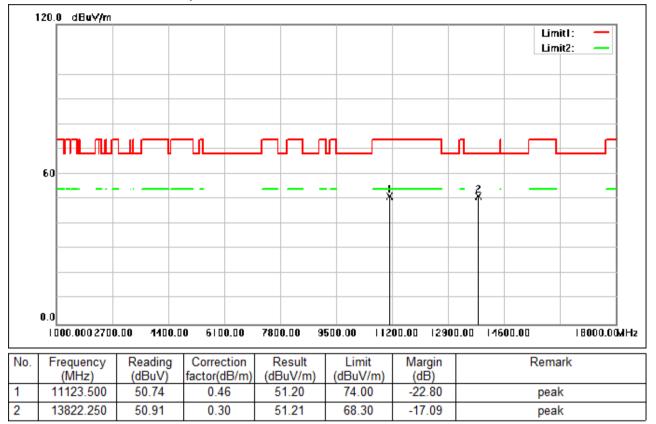
Report No.: KSCR231100205204 Page: 91 of 315



Test Mode: 07; Polarity: Horizontal; Modulation:802.11ac; Bandwidth:20MHz; Channel:High

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

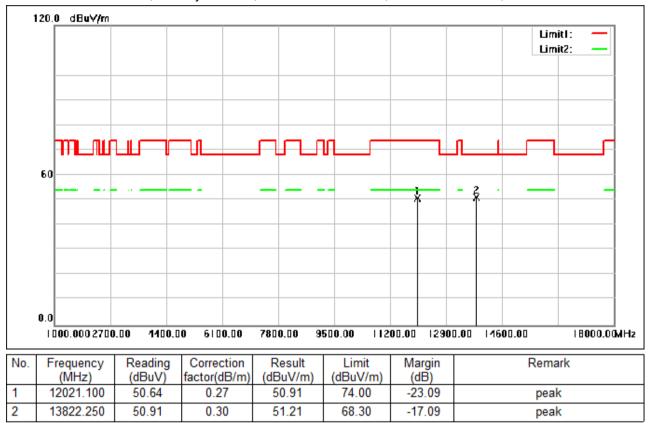
Report No.: KSCR231100205204 Page: 92 of 315



Test Mode: 07; Polarity: Vertical; Modulation:802.11ac; Bandwidth:20MHz; Channel:High

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

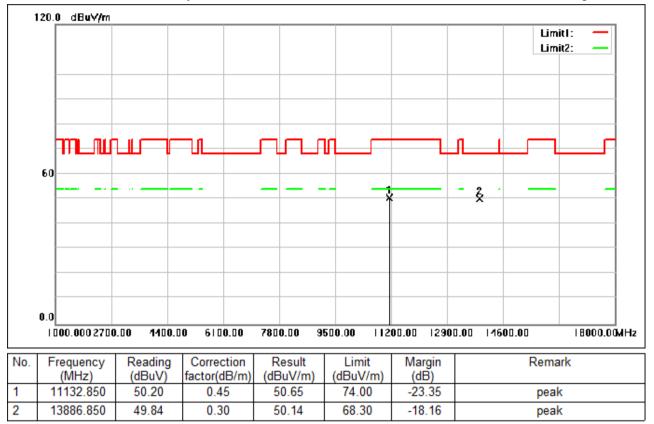
Report No.: KSCR231100205204 Page: 93 of 315



Test Mode: 07; Polarity: Horizontal; Modulation:802.11ac; Bandwidth:40MHz; Channel:Low

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

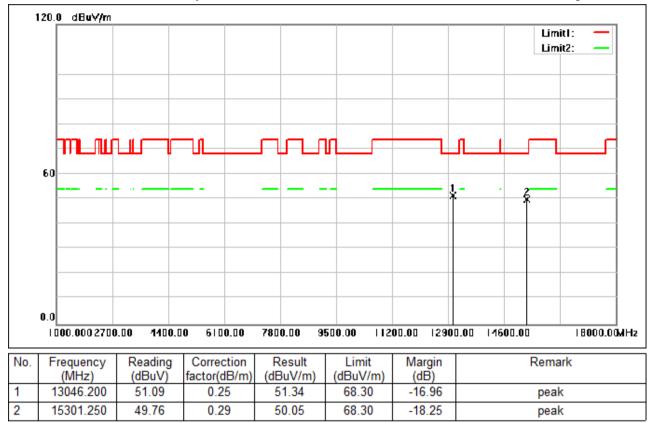
Report No.: KSCR231100205204 Page: 94 of 315



Test Mode: 07; Polarity: Vertical; Modulation:802.11ac; Bandwidth:40MHz; Channel:Low

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

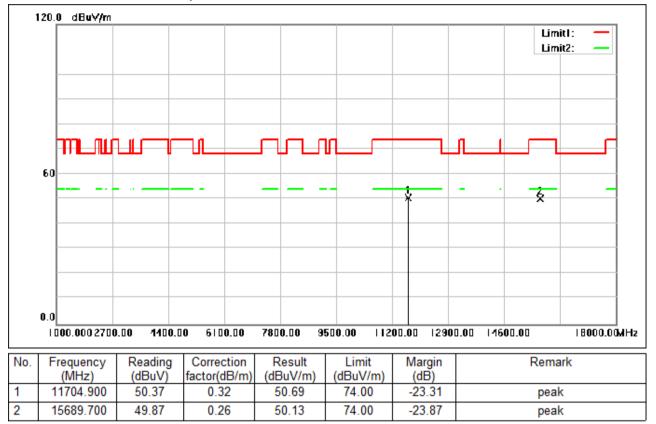
Report No.: KSCR231100205204 Page: 95 of 315



Test Mode: 07; Polarity: Horizontal; Modulation:802.11ac; Bandwidth:40MHz; Channel:High

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

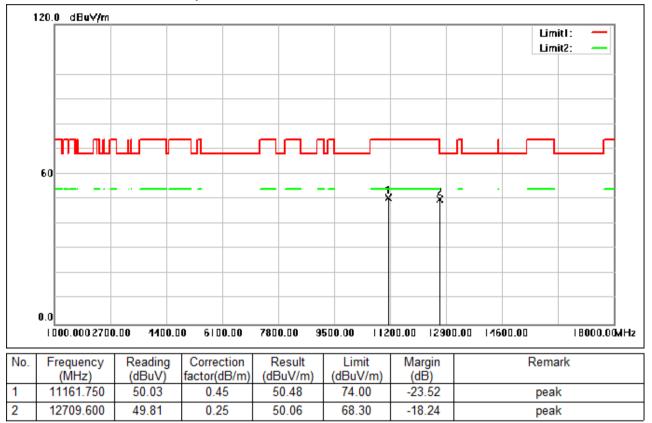
Report No.: KSCR231100205204 Page: 96 of 315



Test Mode: 07; Polarity: Vertical; Modulation:802.11ac; Bandwidth:40MHz; Channel:High

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

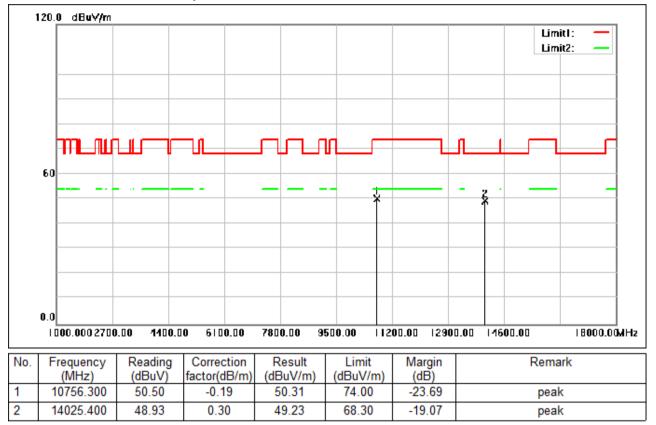
Report No.: KSCR231100205204 Page: 97 of 315



Test Mode: 07; Polarity: Horizontal; Modulation:802.11ac; Bandwidth:80MHz; Channel:Low

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100205204 Page: 98 of 315



Test Mode: 07; Polarity: Vertical; Modulation:802.11ac; Bandwidth:80MHz; Channel:Low

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100205204 Page: 99 of 315

Test Mode: 07; Polarity: Horizontal; Modulation:802.11a; Bandwidth:20MHz; Channel:Low

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100205204 Page: 100 of 315

7.8 Radiated Emissions which fall in the restricted bands

Test Requirement47 CFR Part 15, Subpart C 15.209 & Subpart E 15.407(b)Test Method:KDB 789033 D02 II GMeasurement Distance:3M

Limit:

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

*(1) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

(2) For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

(3) For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

(4) For transmitters operating in the 5.725-5.85 GHz band:

(i) All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

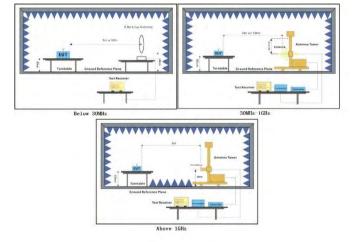
Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

7.8.1 E.U.T. Operation

Operating Environment:						
Temperature:	23.4 °C	Humidity:	50.7 % RH	Atmospheric Pressure:	1010	mbar

7.8.2 Test Mode Description

Pre-scan /	Mode	Description
Final test	Code	Description



CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100205204 Page: 101 of 315

Final test	04	TX mode (U-NII-1)_Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @ MCS0 is the worst case of IEEE 802.11n/ac20/40/80, Only the data of worst case is recorded in the report.
Final test	05	TX mode (U-NII-2A) _Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @ MCS0 is the worst case of IEEE 802.11n/ac20/40/80, Only the data of worst case is recorded in the report.
Final test	06	TX mode (U-NII-2C) _Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @ MCS0 is the worst case of IEEE 802.11n/ac20/40/80, Only the data of worst case is recorded in the report.
Final test	07	TX mode (U-NII-3) _Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @ MCS0 is the worst case of IEEE 802.11n/ac20/40/80, Only the data of worst case is recorded in the report.

7.8.3 Test Setup Diagram

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100205204 Page: 102 of 315

7.8.4 Measurement Procedure and Data

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

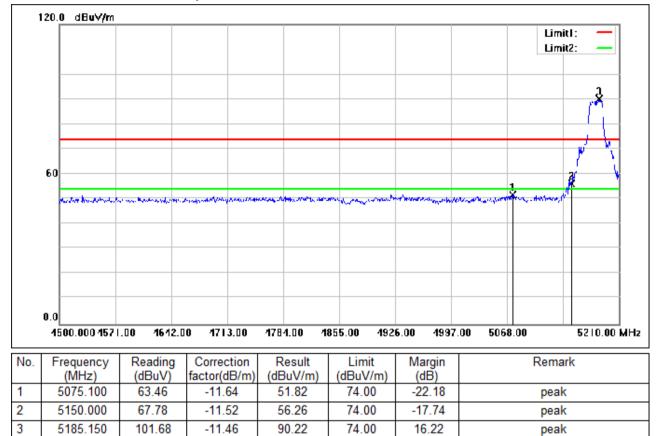
e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

h. Test the EUT in the lowest channel, the middle channel, the Highest channel.

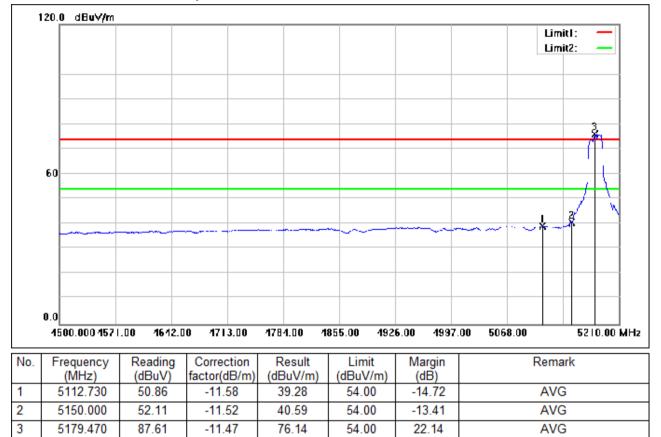
i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.


j. Repeat above procedures until all frequencies measured was complete.

Remark: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

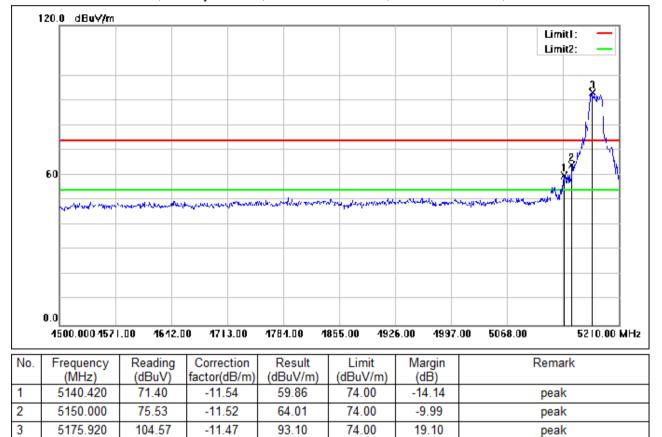
Report No.: KSCR231100205204 Page: 103 of 315



Test Mode: 04; Polarity: Horizontal; Modulation:802.11a; Bandwidth:20MHz; Channel:Low

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

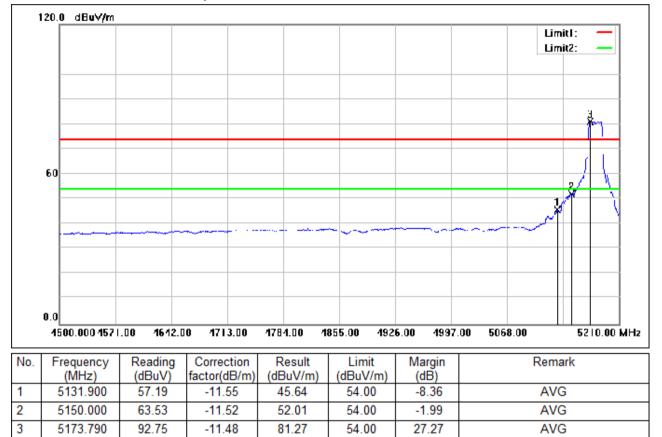
Report No.: KSCR231100205204 Page: 104 of 315



Test Mode: 04; Polarity: Horizontal; Modulation:802.11a; Bandwidth:20MHz; Channel:Low

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

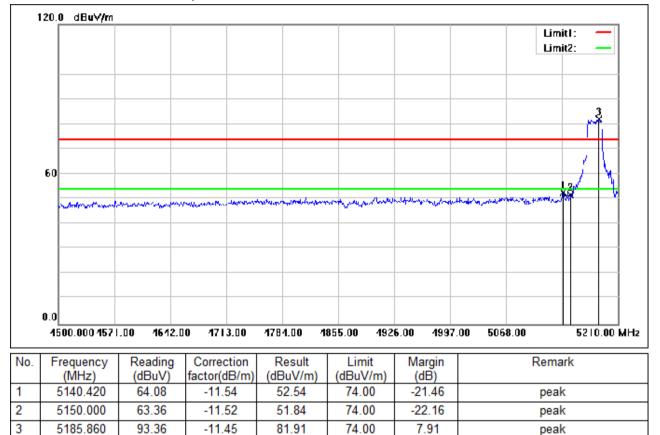
Report No.: KSCR231100205204 Page: 105 of 315



Test Mode: 04; Polarity: Vertical; Modulation:802.11a; Bandwidth:20MHz; Channel:Low

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

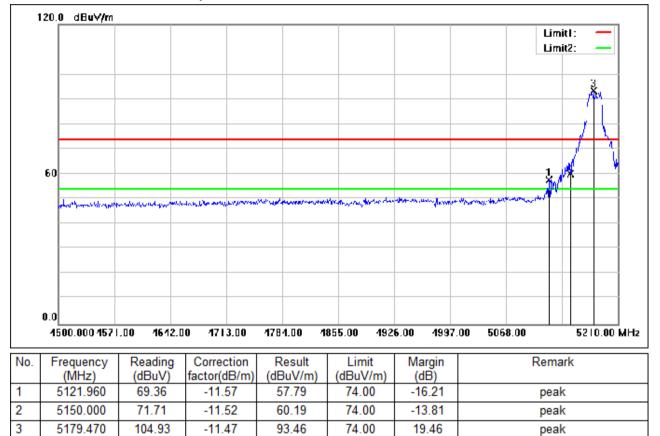
Report No.: KSCR231100205204 Page: 106 of 315



Test Mode: 04; Polarity: Vertical; Modulation:802.11a; Bandwidth:20MHz; Channel:Low

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

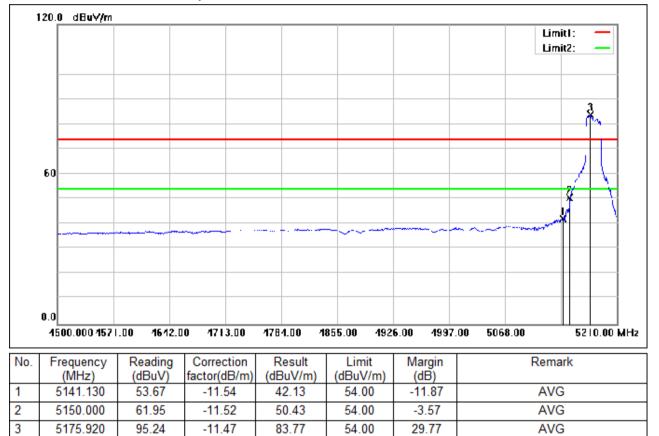
Report No.: KSCR231100205204 Page: 107 of 315



Test Mode: 04; Polarity: Horizontal; Modulation:802.11ac; Bandwidth:20MHz; Channel:Low

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

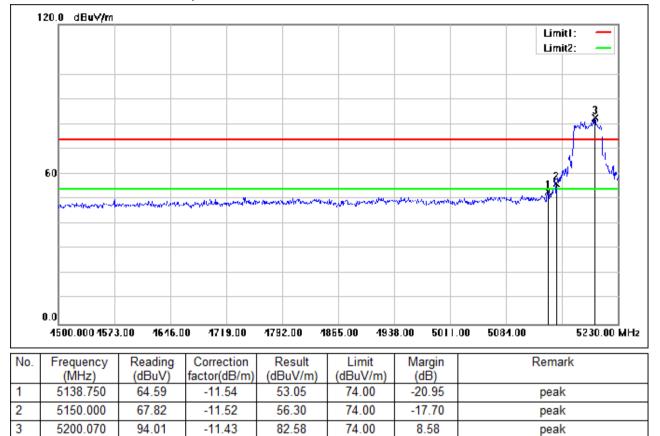
Report No.: KSCR231100205204 Page: 108 of 315



Test Mode: 04; Polarity: Vertical; Modulation:802.11ac; Bandwidth:20MHz; Channel:Low

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100205204 Page: 109 of 315



Test Mode: 04; Polarity: Vertical; Modulation:802.11ac; Bandwidth:20MHz; Channel:Low

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

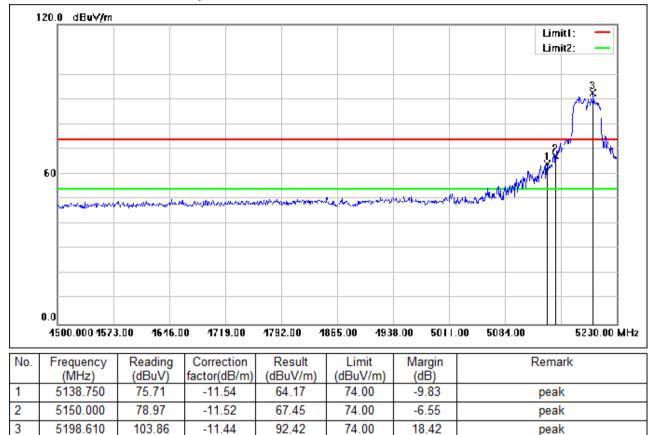
Report No.: KSCR231100205204 Page: 110 of 315



Test Mode: 04; Polarity: Horizontal; Modulation:802.11ac; Bandwidth:40MHz; Channel:Low

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

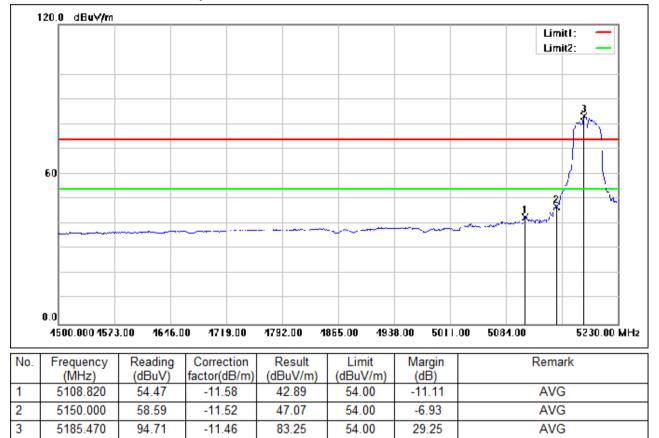
Report No.: KSCR231100205204 Page: 111 of 315



Test Mode: 04; Polarity: Horizontal; Modulation:802.11ac; Bandwidth:40MHz; Channel:Low

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

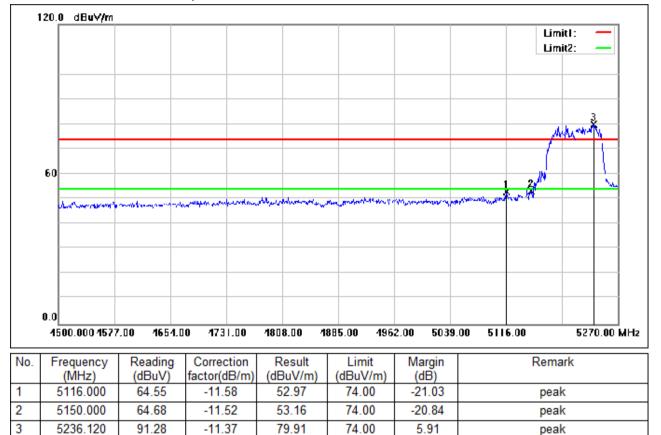
Report No.: KSCR231100205204 Page: 112 of 315



Test Mode: 04; Polarity: Vertical; Modulation:802.11ac; Bandwidth:40MHz; Channel:Low

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

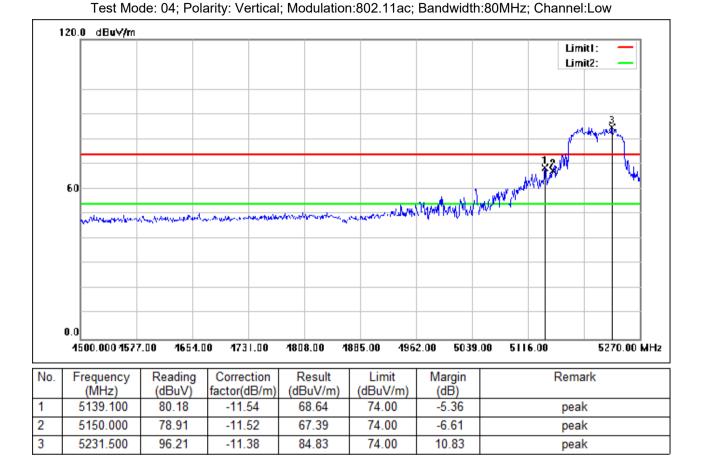
Report No.: KSCR231100205204 Page: 113 of 315



Test Mode: 04; Polarity: Vertical; Modulation:802.11ac; Bandwidth:40MHz; Channel:Low

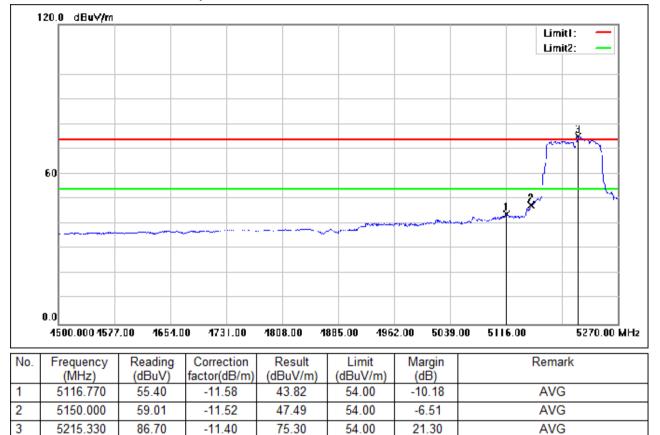
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100205204 Page: 114 of 315



Test Mode: 04; Polarity: Horizontal; Modulation:802.11ac; Bandwidth:80MHz; Channel:Low

CCSEM-TRF-001 Rev. 02 Sep 01, 2023


Report No.: KSCR231100205204 Page: 115 of 315

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

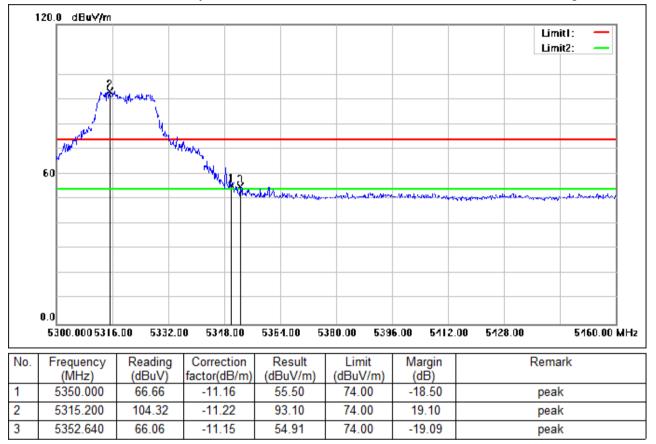
Report No.: KSCR231100205204 Page: 116 of 315



Test Mode: 04; Polarity: Vertical; Modulation:802.11ac; Bandwidth:80MHz; Channel:Low

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

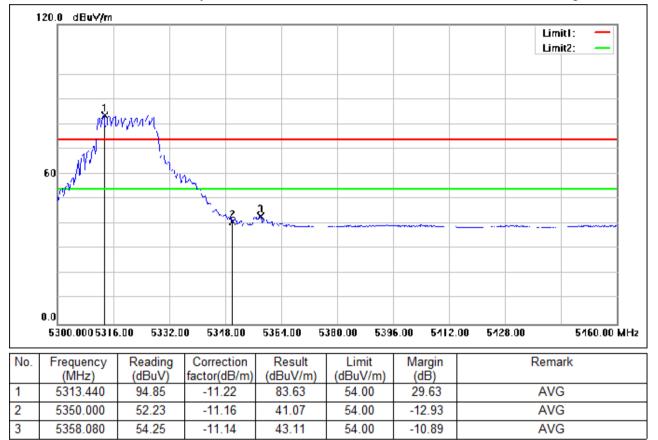
Report No.: KSCR231100205204 Page: 117 of 315



Test Mode: 05; Polarity: Horizontal; Modulation:802.11a; Bandwidth:20MHz; Channel:High

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

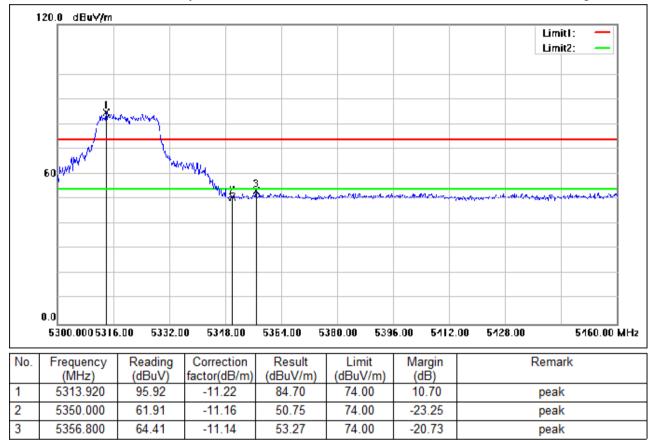
Report No.: KSCR231100205204 Page: 118 of 315



Test Mode: 05; Polarity: Vertical; Modulation:802.11a; Bandwidth:20MHz; Channel:High

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100205204 Page: 119 of 315



Test Mode: 05; Polarity: Vertical; Modulation:802.11a; Bandwidth:20MHz; Channel:High

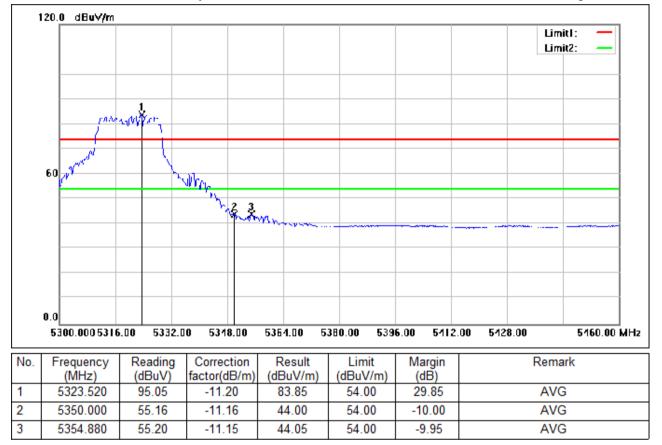
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100205204 Page: 120 of 315

Test Mode: 05; Polarity: Horizontal; Modulation:802.11ac; Bandwidth:20MHz; Channel:High

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

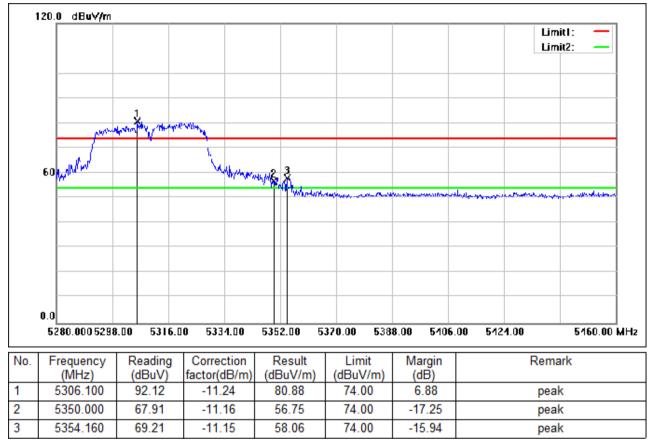
Report No.: KSCR231100205204 Page: 121 of 315



Test Mode: 05; Polarity: Vertical; Modulation:802.11ac; Bandwidth:20MHz; Channel:High

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

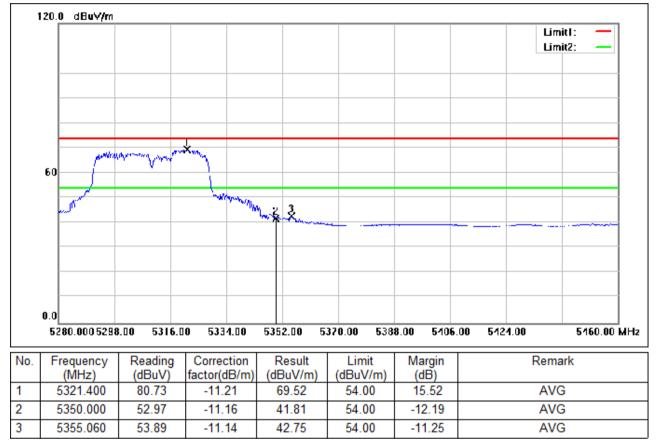
Report No.: KSCR231100205204 Page: 122 of 315



Test Mode: 05; Polarity: Vertical; Modulation:802.11ac; Bandwidth:20MHz; Channel:High

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100205204 Page: 123 of 315



Test Mode: 05; Polarity: Horizontal; Modulation:802.11ac; Bandwidth:40MHz; Channel:High

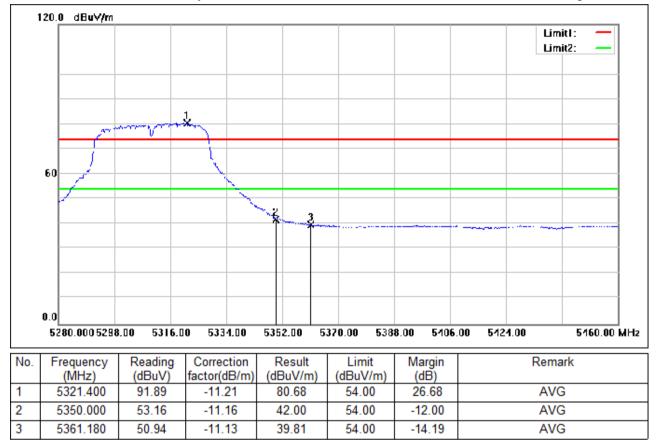
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100205204 Page: 124 of 315

Test Mode: 05; Polarity: Horizontal; Modulation:802.11ac; Bandwidth:40MHz; Channel:High

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100205204 Page: 125 of 315



Test Mode: 05; Polarity: Vertical; Modulation:802.11ac; Bandwidth:40MHz; Channel:High

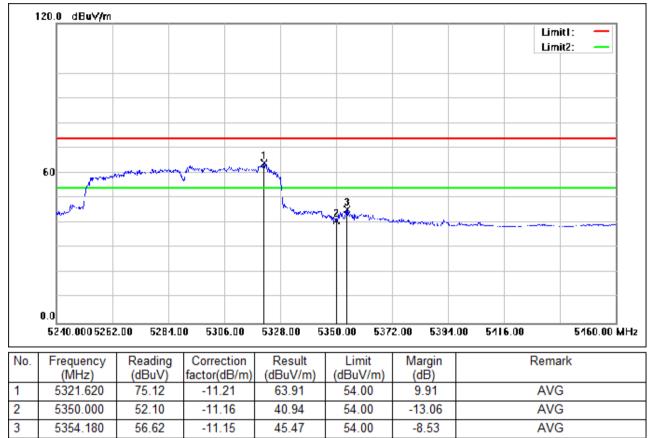
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100205204 Page: 126 of 315

Test Mode: 05; Polarity: Vertical; Modulation:802.11ac; Bandwidth:40MHz; Channel:High

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

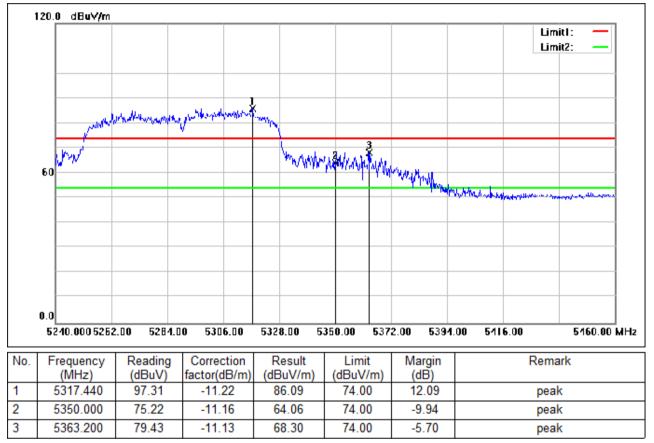
Report No.: KSCR231100205204 Page: 127 of 315



Test Mode: 05; Polarity: Horizontal; Modulation:802.11ac; Bandwidth:80MHz; Channel:High

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

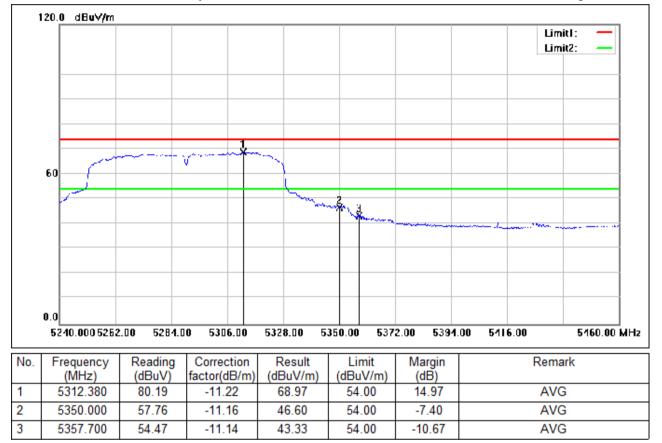
Report No.: KSCR231100205204 Page: 128 of 315



Test Mode: 05; Polarity: Horizontal; Modulation:802.11ac; Bandwidth:80MHz; Channel:High

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

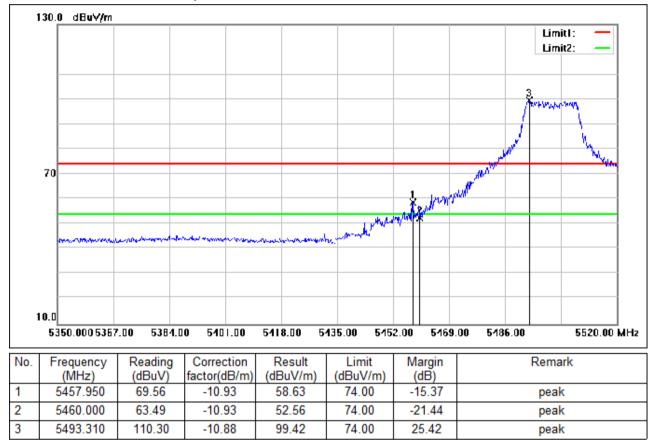
Report No.: KSCR231100205204 Page: 129 of 315



Test Mode: 05; Polarity: Vertical; Modulation:802.11ac; Bandwidth:80MHz; Channel:High

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

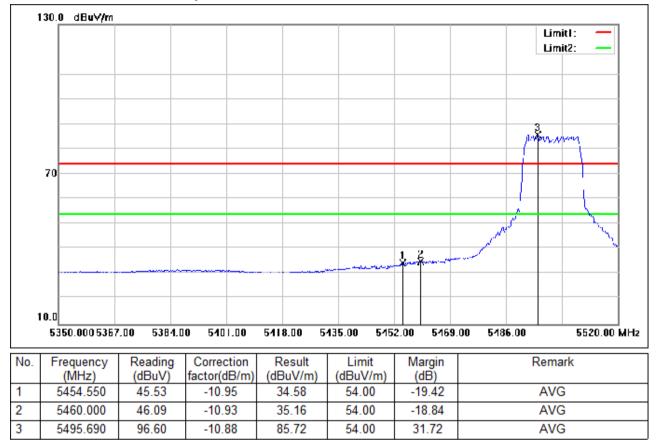
Report No.: KSCR231100205204 Page: 130 of 315



Test Mode: 05; Polarity: Vertical; Modulation:802.11ac; Bandwidth:80MHz; Channel:High

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

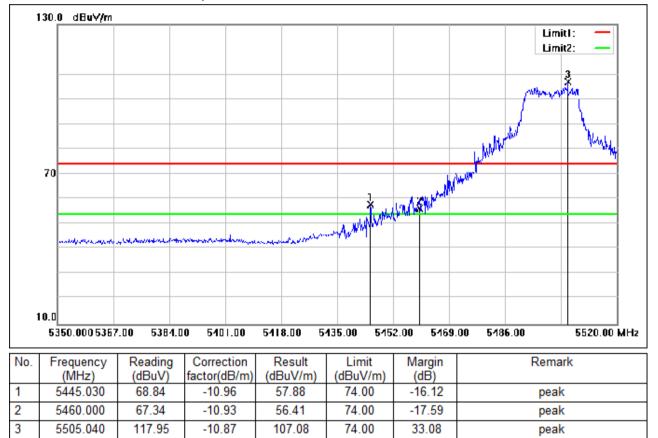
Report No.: KSCR231100205204 Page: 131 of 315



Test Mode: 06; Polarity: Horizontal; Modulation:802.11a; Bandwidth:20MHz; Channel:Low

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

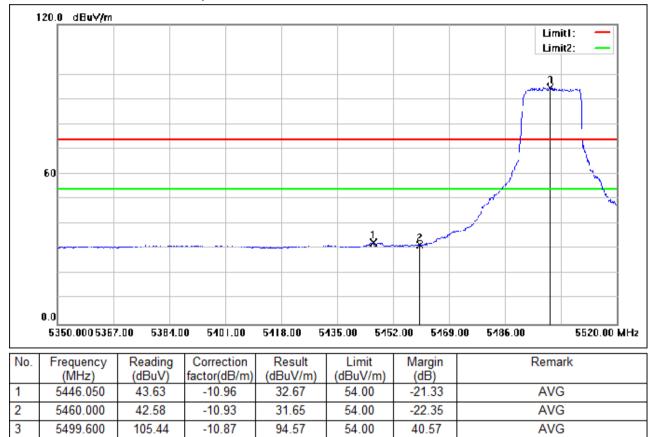
Report No.: KSCR231100205204 Page: 132 of 315



Test Mode: 06; Polarity: Horizontal; Modulation:802.11a; Bandwidth:20MHz; Channel:Low

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

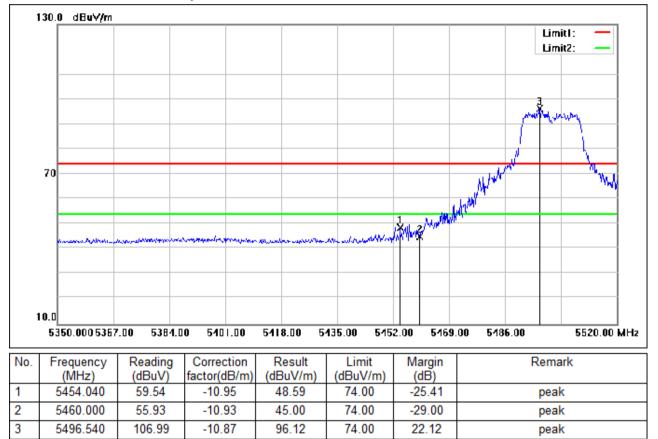
Report No.: KSCR231100205204 Page: 133 of 315



Test Mode: 06; Polarity: Vertical; Modulation:802.11a; Bandwidth:20MHz; Channel:Low

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

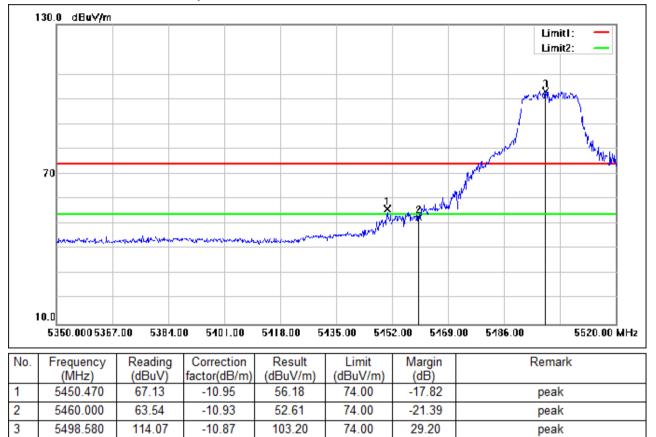
Report No.: KSCR231100205204 Page: 134 of 315



Test Mode: 06; Polarity: Vertical; Modulation:802.11a; Bandwidth:20MHz; Channel:Low

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

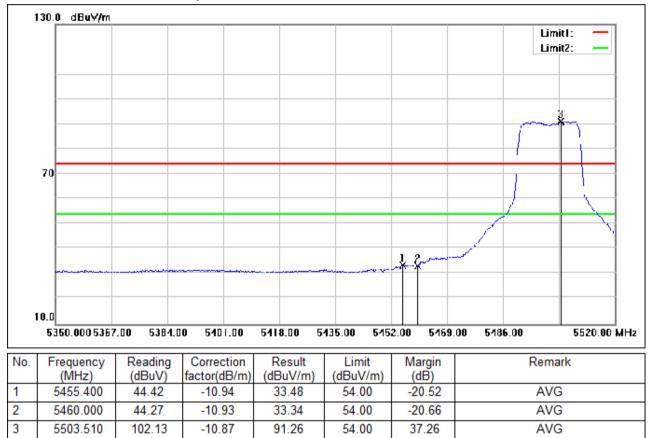
Report No.: KSCR231100205204 Page: 135 of 315



Test Mode: 06; Polarity: Horizontal; Modulation:802.11ac; Bandwidth:20MHz; Channel:Low

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

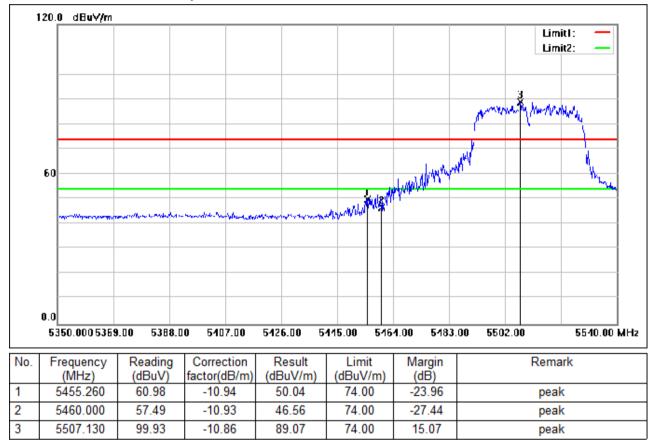
Report No.: KSCR231100205204 Page: 136 of 315



Test Mode: 06; Polarity: Vertical; Modulation:802.11ac; Bandwidth:20MHz; Channel:Low

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

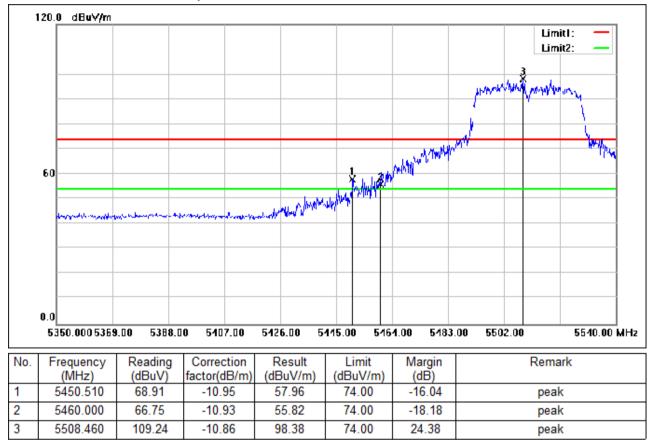
Report No.: KSCR231100205204 Page: 137 of 315



Test Mode: 06; Polarity: Vertical; Modulation:802.11ac; Bandwidth:20MHz; Channel:Low

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

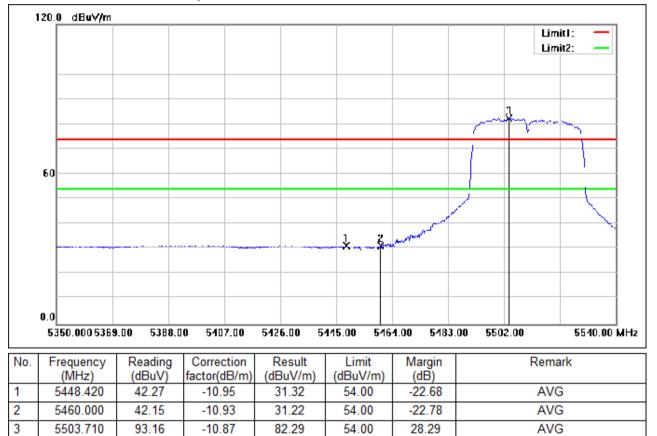
Report No.: KSCR231100205204 Page: 138 of 315



Test Mode: 06; Polarity: Horizontal; Modulation:802.11ac; Bandwidth:40MHz; Channel:Low

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

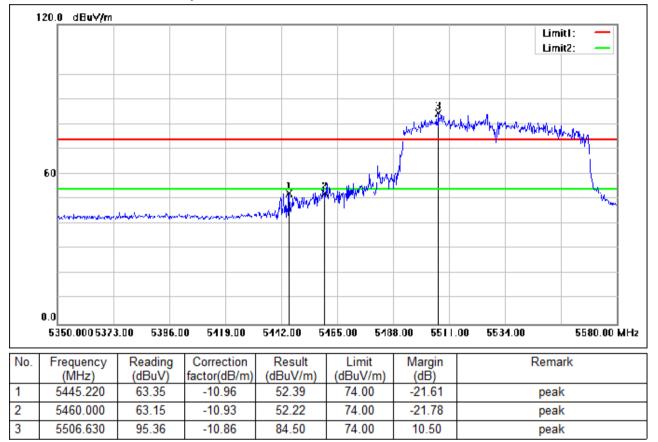
Report No.: KSCR231100205204 Page: 139 of 315



Test Mode: 06; Polarity: Vertical; Modulation:802.11ac; Bandwidth:40MHz; Channel:Low

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

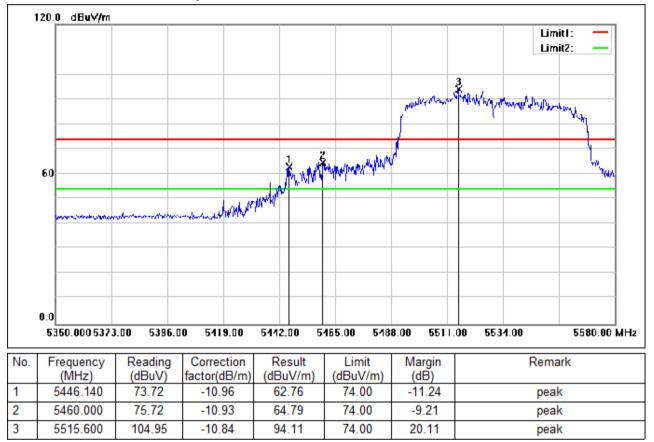
Report No.: KSCR231100205204 Page: 140 of 315



Test Mode: 06; Polarity: Vertical; Modulation:802.11ac; Bandwidth:40MHz; Channel:Low

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

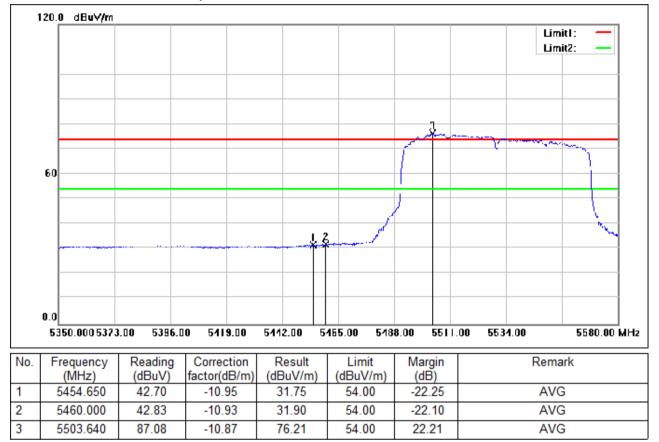
Report No.: KSCR231100205204 Page: 141 of 315



Test Mode: 06; Polarity: Horizontal; Modulation:802.11ac; Bandwidth:80MHz; Channel:Low

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

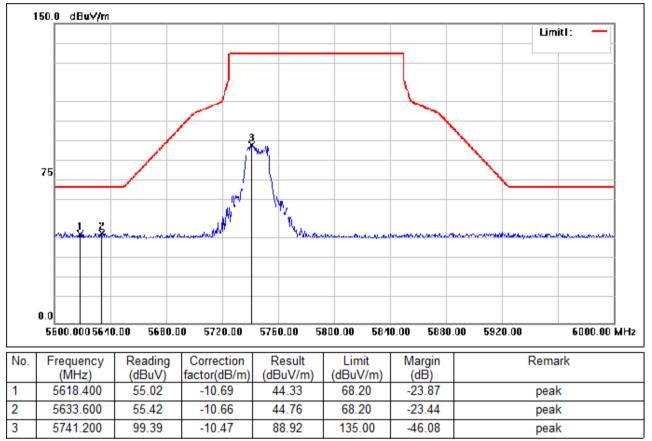
Report No.: KSCR231100205204 Page: 142 of 315



Test Mode: 06; Polarity: Vertical; Modulation:802.11ac; Bandwidth:80MHz; Channel:Low

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

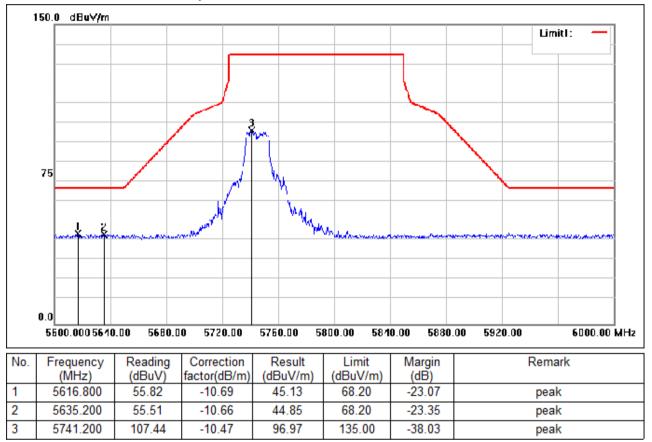
Report No.: KSCR231100205204 Page: 143 of 315



Test Mode: 06; Polarity: Vertical; Modulation:802.11ac; Bandwidth:80MHz; Channel:Low

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

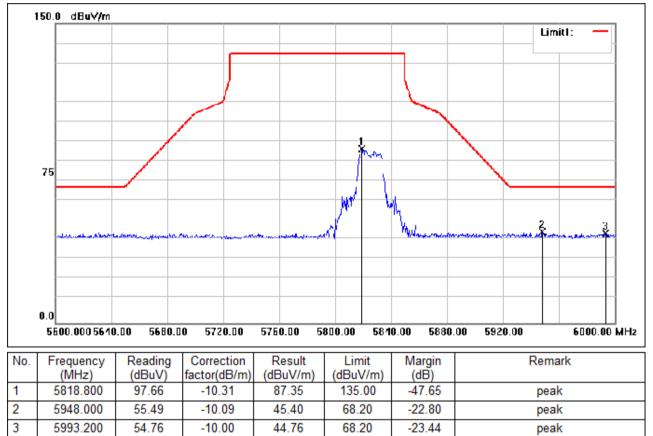
Report No.: KSCR231100205204 Page: 144 of 315



Test Mode: 07; Polarity: Horizontal; Modulation:802.11a; Bandwidth:20MHz; Channel:Low

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

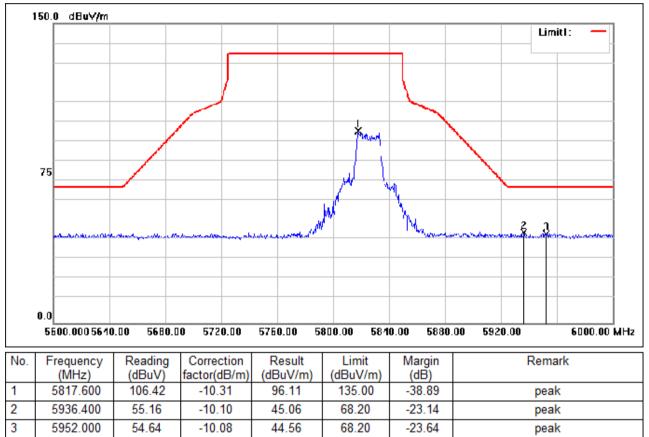
Report No.: KSCR231100205204 Page: 145 of 315



Test Mode: 07; Polarity: Vertical; Modulation:802.11a; Bandwidth:20MHz; Channel:Low

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

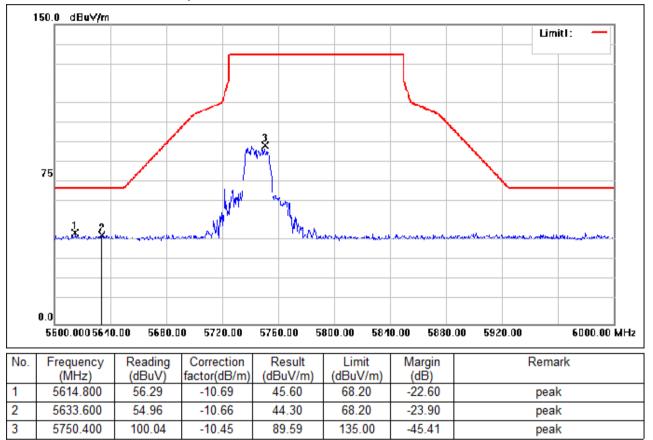
Report No.: KSCR231100205204 Page: 146 of 315



Test Mode: 07; Polarity: Horizontal; Modulation:802.11a; Bandwidth:20MHz; Channel:High

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

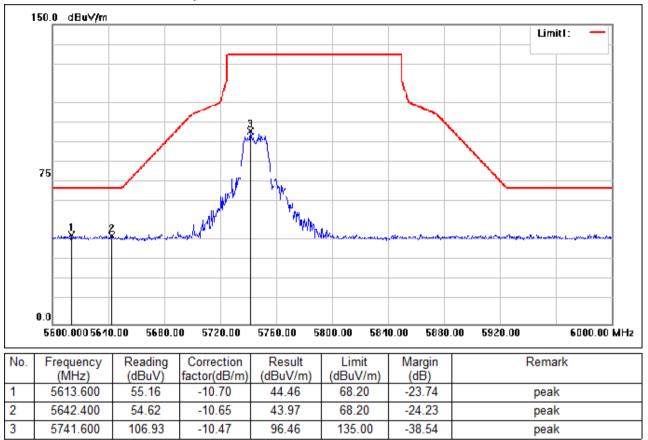
Report No.: KSCR231100205204 Page: 147 of 315



Test Mode: 07; Polarity: Vertical; Modulation:802.11a; Bandwidth:20MHz; Channel:High

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

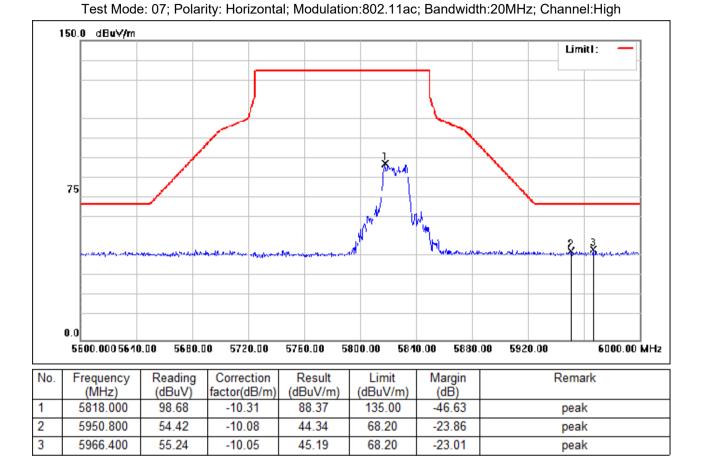
Report No.: KSCR231100205204 Page: 148 of 315



Test Mode: 07; Polarity: Horizontal; Modulation:802.11ac; Bandwidth:20MHz; Channel:Low

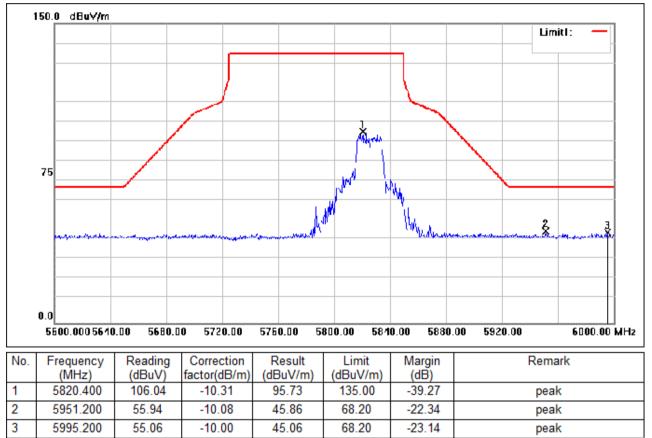
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100205204 Page: 149 of 315



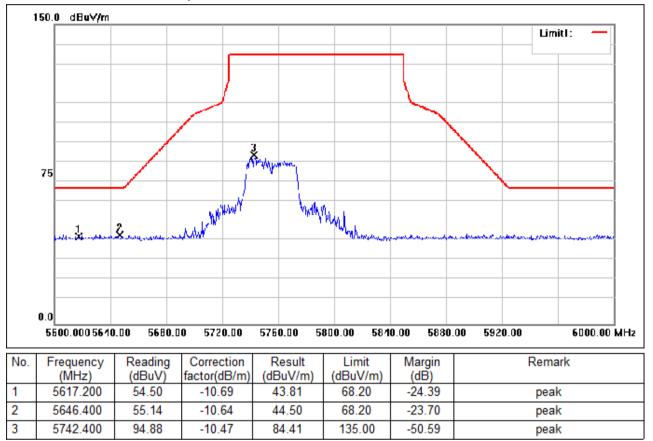
Test Mode: 07; Polarity: Vertical; Modulation:802.11ac; Bandwidth:20MHz; Channel:Low

CCSEM-TRF-001 Rev. 02 Sep 01, 2023


Report No.: KSCR231100205204 Page: 150 of 315

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

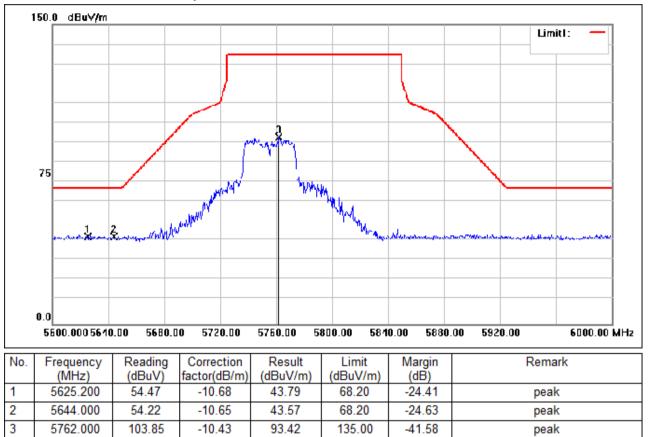
Report No.: KSCR231100205204 Page: 151 of 315



Test Mode: 07; Polarity: Vertical; Modulation:802.11ac; Bandwidth:20MHz; Channel:High

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

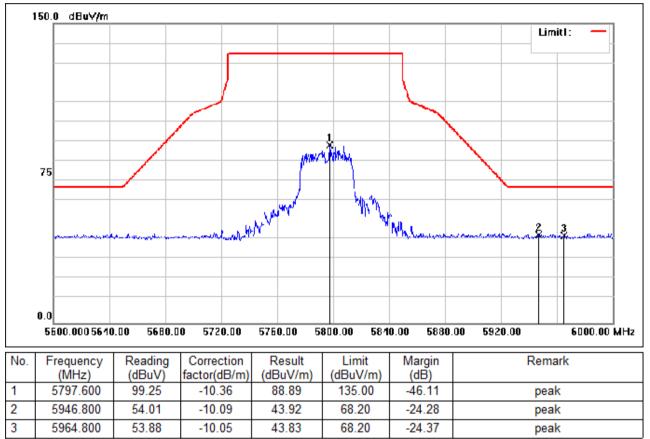
Report No.: KSCR231100205204 Page: 152 of 315



Test Mode: 07; Polarity: Horizontal; Modulation:802.11ac; Bandwidth:40MHz; Channel:Low

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

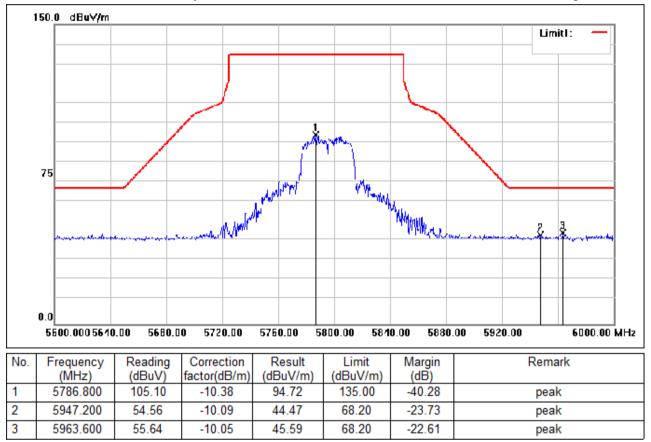
Report No.: KSCR231100205204 Page: 153 of 315



Test Mode: 07; Polarity: Vertical; Modulation:802.11ac; Bandwidth:40MHz; Channel:Low

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100205204 Page: 154 of 315



Test Mode: 07; Polarity: Horizontal; Modulation:802.11ac; Bandwidth:40MHz; Channel:High

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

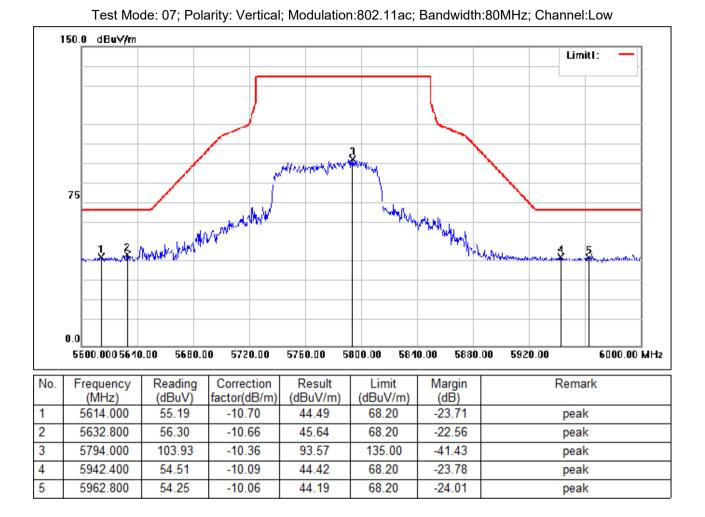
Report No.: KSCR231100205204 Page: 155 of 315



Test Mode: 07; Polarity: Vertical; Modulation:802.11ac; Bandwidth:40MHz; Channel:High

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100205204 Page: 156 of 315



Test Mode: 07; Polarity: Horizontal; Modulation:802.11ac; Bandwidth:80MHz; Channel:Low

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100205204 Page: 157 of 315

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100205204 Page: 158 of 315

7.9 Frequency Stability

Test Requirement	47 CFR Part 15, Subpart E 15.407 (g)
Test Method:	ANSI C63.10 (2013) Section 6.8

7.9.1 E.U.T. Operation

Operating Environment: Temperature: 23.5 °C

Humidity: 50.5 % RH

Atmospheric Pressure: 1010 mbar

7.9.2 Test Mode Description

Pre-scan / Final test	Mode Code	Description
Final test	04	TX mode (U-NII-1)_Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @ MCS0 is the worst case of IEEE 802.11n/ac20/40/80, Only the data of worst case is recorded in the report.
Final test	05	TX mode (U-NII-2A) _Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @ MCS0 is the worst case of IEEE 802.11n/ac20/40/80, Only the data of worst case is recorded in the report.
Final test	06	TX mode (U-NII-2C) _Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @ MCS0 is the worst case of IEEE 802.11n/ac20/40/80, Only the data of worst case is recorded in the report.
Final test	07	TX mode (U-NII-3) _Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @ MCS0 is the worst case of IEEE 802.11n/ac20/40/80, Only the data of worst case is recorded in the report.

7.9.3 easurement Procedure and Data

Please Refer to Appendix for Details

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100205204 159 of 315 Page:

7.10 Non-occupancy period

Test Requirement	KDB 905462 D02 Section 5.1
Test Method:	KDB 905462 D02 Section 7.8.3

Limit:

		Applicability	
Test item	Limit	Master Device or client with Radar Detection	Client without Radar Detection
Non-occupancy period	Minimum 30 minutes	Yes	Not required
Channel Availability Check Time	60 seconds	Yes	Not required
Channel Move Time	10 seconds See Note 1.	Yes	Yes
Channel Closing Transmission Time	200 milliseconds + an aggregate of 60 milliseconds over remaining 10 second period. See Notes 1 and 2.	Yes	Yes
U-NII Detection Bandwidth	Minimum 100% of the U-NII 99% transmission power bandwidth. See Note 3.	Yes	Not required

Note 1: Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst.

Note 2: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Note 3: During the U-NII Detection Bandwidth detection test, radar type 0 should be used. For each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

7.10.1 E.U.T. Operation

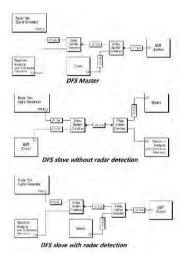
Operating Environment: Temperature: 23.5 °C

Humidity: 50.5 % RH

Atmospheric Pressure: 1010 mbar

7.10.2 Test Mode Description

Pre-scan / Final test	Mode Code	Description
Final test	05	TX mode (U-NII-2A) _Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @ MCS0 is the worst case of IEEE 802.11n/ac20/40/80, Only the data of worst case is



CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100205204 Page: 160 of 315

		recorded in the report.
Final test	06	TX mode (U-NII-2C) _Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @ MCS0 is the worst case of IEEE 802.11n/ac20/40/80, Only the data of worst case is recorded in the report.

7.10.3 Test Setup Diagram

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100205204 Page: 161 of 315

7.10.4 Measurement Procedure and Data

1) The radar pulse generator is setup to provide a pulse at frequency that the master and client are operating. A type 0 radar pulse with a 1us pulse width and a 1428us PRI is used for the testing.

2) The vector signal generator is adjusted to provide the radar burst (18 pulses) at the level of approximately -61dBm at the antenna port of the master device.

3) A trigger is provided from the pulse generator to the DFS monitoring system in order to capture the traffic and the occurrence of the radar pulse.

4) EUT will associate with the master at channel. The file "iperf.exe" specified by the FCC is streamed from the PC 2 through the master and the client device to the PC 1 and played in full motion video using Media Player Classic Ver. 6.4.8.6 in order to properly load the network for the entire period of the test.

5) When radar burst with a level equal to the DFS Detection Threshold +1dB is generated on the operating channel of the U-NII device. At time T0 the radar waveform generator sends a burst of pulse of the radar waveform at Detection Threshold +1dB.

6) Observe the transmissions of the EUT at the end of the radar Burst on the Operating Channel. Measure and record the transmissions from the UUT during the observation time (Channel Move Time). One 15 seconds plot is reported for the Short Pulse Radar Type 0. The plot for the Short Pulse Radar Types start at the end of the radar burst. The Channel Move Time will be calculated based on the zoom in 600ms plot of the Short Pulse Radar Type.

7) Measurement of the aggregate duration of the Channel Closed Transmission Time method. With the spectrum analyzer set to zero span tuned to the center frequency of the EUT operating channel at the radar simulated frequency, peak detection, and max hold, the dwell time per bin is given by: Dwell (0.3ms) = S (12000ms) / B (4000); where Dwell is the dwell time per spectrum analyzer sampling bin, S is sweep time and B is the number of spectrum analyzer sampling bins. An upper bound of the aggregate duration of the intermittent control signals of Channel Closing Transmission Time is calculated by: C (ms)= N X Dwell (0.3ms); where C is the Closing Time, N is the number of spectrum analyzer sampling bins (intermittent control signals) showing a U-NII transmission and Dwell is the dwell time per bin.

8) Measurement the EUT for more than 30 minutes following the channel move time to verify that no transmission or beacons occur on this channel.

Please Refer to Appendix for Details

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100205204 Page: 162 of 315

7.11 Channel Move Time

Test Requirement	KDB 905462 D02 Section 5.1
Test Method:	KDB 905462 D02 Section 7.8.3

Limit:

		Applicability	
Test item	Limit	Master Device or client with Radar Detection	Client without Radar Detection
Non-occupancy period	Minimum 30 minutes	Yes	Not required
Channel Availability Check Time	60 seconds	Yes	Not required
Channel Move Time	10 seconds See Note 1.	Yes	Yes
Channel Closing Transmission Time	200 milliseconds + an aggregate of 60 milliseconds over remaining 10 second period. See Notes 1 and 2.	Yes	Yes
U-NII Detection Bandwidth	Minimum 100% of the U-NII 99% transmission power bandwidth. See Note 3.	Yes	Not required

Note 1: Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst.

Note 2: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Note 3: During the U-NII Detection Bandwidth detection test, radar type 0 should be used. For each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

7.11.1 E.U.T. Operation

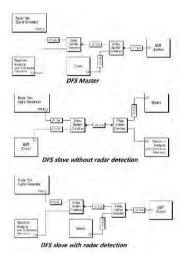
Operating Environment: Temperature: 23.5 °C

Humidity: 50.6 % RH

Atmospheric Pressure: 1010 mbar

7.11.2 Test Mode Description

Pre-scan / Final test	Mode Code	Description
Final test	05	TX mode (U-NII-2A) _Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @ MCS0 is the worst case of IEEE 802.11n/ac20/40/80, Only the data of worst case is



CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100205204 Page: 163 of 315

		recorded in the report.
Final test	06	TX mode (U-NII-2C) _Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @ MCS0 is the worst case of IEEE 802.11n/ac20/40/80, Only the data of worst case is recorded in the report.

7.11.3 Test Setup Diagram

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100205204 Page: 164 of 315

7.11.4 Measurement Procedure and Data

1) The radar pulse generator is setup to provide a pulse at frequency that the master and client are operating. A type 0 radar pulse with a 1us pulse width and a 1428us PRI is used for the testing.

2) The vector signal generator is adjusted to provide the radar burst (18 pulses) at the level of approximately -61dBm at the antenna port of the master device.

3) A trigger is provided from the pulse generator to the DFS monitoring system in order to capture the traffic and the occurrence of the radar pulse.

4) EUT will associate with the master at channel. The file "iperf.exe" specified by the FCC is streamed from the PC 2 through the master and the client device to the PC 1 and played in full motion video using Media Player Classic Ver. 6.4.8.6 in order to properly load the network for the entire period of the test.

5) When radar burst with a level equal to the DFS Detection Threshold +1dB is generated on the operating channel of the U-NII device. At time T0 the radar waveform generator sends a burst of pulse of the radar waveform at Detection Threshold +1dB.

6) Observe the transmissions of the EUT at the end of the radar Burst on the Operating Channel. Measure and record the transmissions from the UUT during the observation time (Channel Move Time). One 15 seconds plot is reported for the Short Pulse Radar Type 0. The plot for the Short Pulse Radar Types start at the end of the radar burst. The Channel Move Time will be calculated based on the zoom in 600ms plot of the Short Pulse Radar Type.

7) Measurement of the aggregate duration of the Channel Closed Transmission Time method. With the spectrum analyzer set to zero span tuned to the center frequency of the EUT operating channel at the radar simulated frequency, peak detection, and max hold, the dwell time per bin is given by: Dwell (0.3ms) = S (12000ms) / B (4000); where Dwell is the dwell time per spectrum analyzer sampling bin, S is sweep time and B is the number of spectrum analyzer sampling bins. An upper bound of the aggregate duration of the intermittent control signals of Channel Closing Transmission Time is calculated by: C (ms)= N X Dwell (0.3ms); where C is the Closing Time, N is the number of spectrum analyzer sampling bins (intermittent control signals) showing a U-NII transmission and Dwell is the dwell time per bin.

8) Measurement the EUT for more than 30 minutes following the channel move time to verify that no transmission or beacons occur on this channel.

Please Refer to Appendix for Details

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100205204 165 of 315 Page:

7.12 Channel Closing Transmission Time

Test Requirement	KDB 905462 D02 Section 5.1
Test Method:	KDB 905462 D02 Section 7.8.3

Limit:

		Applicability	
Test item	Limit	Master Device or client with Radar Detection	Client without Radar Detection
Non-occupancy period	Minimum 30 minutes	Yes	Not required
Channel Availability Check Time	60 seconds	Yes	Not required
Channel Move Time	10 seconds See Note 1.	Yes	Yes
Channel Closing Transmission Time	200 milliseconds + an aggregate of 60 milliseconds over remaining 10 second period. See Notes 1 and 2.	Yes	Yes
U-NII Detection Bandwidth	Minimum 100% of the U-NII 99% transmission power bandwidth. See Note 3.	Yes	Not required

Note 1: Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst.

Note 2: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Note 3: During the U-NII Detection Bandwidth detection test, radar type 0 should be used. For each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

7.12.1 E.U.T. Operation

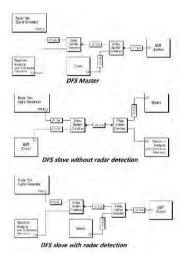
Operating Environment: Temperature: 23.5 °C

Humidity: 50.3 % RH

Atmospheric Pressure: 1010 mbar

7.12.2 Test Mode Description

Pre-scan / Final test	Mode Code	Description
Final test	05	TX mode (U-NII-2A) _Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @ MCS0 is the worst case of IEEE 802.11n/ac20/40/80, Only the data of worst case is



CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100205204 Page: 166 of 315

		recorded in the report.
Final test	06	TX mode (U-NII-2C) _Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @ MCS0 is the worst case of IEEE 802.11n/ac20/40/80, Only the data of worst case is recorded in the report.

7.12.3 Test Setup Diagram

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100205204 Page: 167 of 315

7.12.4 Measurement Procedure and Data

1) The radar pulse generator is setup to provide a pulse at frequency that the master and client are operating. A type 0 radar pulse with a 1us pulse width and a 1428us PRI is used for the testing.

2) The vector signal generator is adjusted to provide the radar burst (18 pulses) at the level of approximately -61dBm at the antenna port of the master device.

3) A trigger is provided from the pulse generator to the DFS monitoring system in order to capture the traffic and the occurrence of the radar pulse.

4) EUT will associate with the master at channel. The file "iperf.exe" specified by the FCC is streamed from the PC 2 through the master and the client device to the PC 1 and played in full motion video using Media Player Classic Ver. 6.4.8.6 in order to properly load the network for the entire period of the test.

5) When radar burst with a level equal to the DFS Detection Threshold +1dB is generated on the operating channel of the U-NII device. At time T0 the radar waveform generator sends a burst of pulse of the radar waveform at Detection Threshold +1dB.

6) Observe the transmissions of the EUT at the end of the radar Burst on the Operating Channel. Measure and record the transmissions from the UUT during the observation time (Channel Move Time). One 15 seconds plot is reported for the Short Pulse Radar Type 0. The plot for the Short Pulse Radar Types start at the end of the radar burst. The Channel Move Time will be calculated based on the zoom in 600ms plot of the Short Pulse Radar Type.

7) Measurement of the aggregate duration of the Channel Closed Transmission Time method. With the spectrum analyzer set to zero span tuned to the center frequency of the EUT operating channel at the radar simulated frequency, peak detection, and max hold, the dwell time per bin is given by: Dwell (0.3ms) = S (12000ms) / B (4000); where Dwell is the dwell time per spectrum analyzer sampling bin, S is sweep time and B is the number of spectrum analyzer sampling bins. An upper bound of the aggregate duration of the intermittent control signals of Channel Closing Transmission Time is calculated by: C (ms)= N X Dwell (0.3ms); where C is the Closing Time, N is the number of spectrum analyzer sampling bins (intermittent control signals) showing a U-NII transmission and Dwell is the dwell time per bin.

8) Measurement the EUT for more than 30 minutes following the channel move time to verify that no transmission or beacons occur on this channel.

Please Refer to Appendix for Details

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100205204 Page: 168 of 315

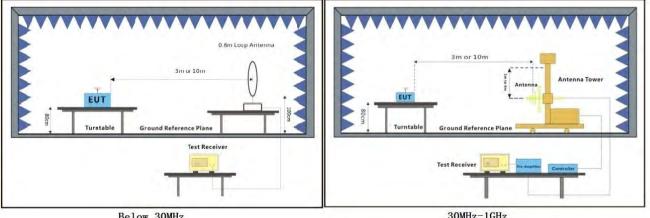
7.13 Radiated Emissions (Below 1GHz)

Test Requirement	47 CFR Part 15, Subpart C 15.209 & Subpart E 15.407(b)
Test Method:	KDB 789033 D02 II G
Measurement Distance:	3M

Limit:

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)		
0.009-0.490	2400/F(kHz)	300		
0.490-1.705	24000/F(kHz)	30		
1.705-30.0	30	30		
30-88	100	3		
88-216	150	3		
216-960	200	3		
960-1000	500	3		

7.13.1 E.U.T. Operation


Operating Environment:

Temperature: 23.5 °C Humidity: 50.6 % RH Atmospheric Pressure: 1010 mbar

7.13.2 Test Mode Description

Pre-scan / Final test	Mode Code	Description
Final test	04	TX mode (U-NII-1)_Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @ MCS0 is the worst case of IEEE 802.11n/ac20/40/80, Only the data of worst case is recorded in the report.

7.13.3 Test Setup Diagram

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100205204 Page: 169 of 315

7.13.4 Measurement Procedure and Data

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using quasi-peak method as specified and then reported in a data sheet.

g. Test the EUT in the lowest channel, the middle channel, the Highest channel.

h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.

i. Repeat above procedures until all frequencies measured was complete.

Remark:

1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

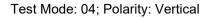
2. For emission below 1GHz, through the pre-scan found the worst case is the lowest channel of 802.11a. Only the worst case is recorded in the report.

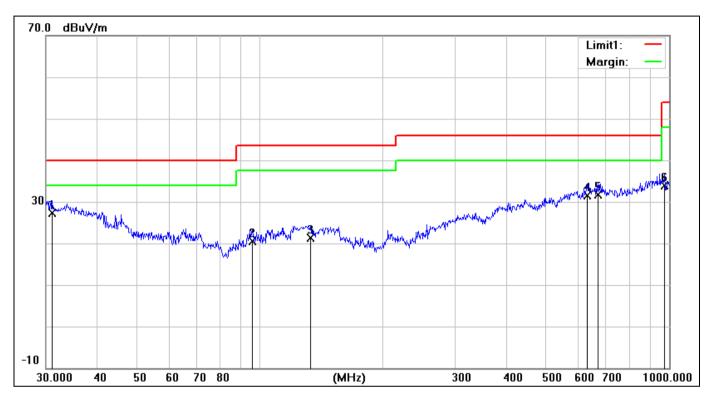
3. Scan from 9kHz to 30MHz, the disturbance below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.


4. The disturbance below 1GHz was very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100205204 Page: 170 of 315




No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)	
1	31.6202	2.35	25.20	27.55	40.00	-12.45	100	265	QP
2	128.5630	2.50	19.46	21.96	43.50	-21.54	100	4	QP
3	297.2241	6.44	20.62	27.06	46.00	-18.94	100	52	QP
4	452.7196	5.06	24.35	29.41	46.00	-16.59	100	0	QP
5	813.1114	2.17	29.41	31.58	46.00	-14.42	100	2	QP
6	881.4067	2.36	29.41	31.77	46.00	-14.23	100	150	QP

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100205204 Page: 171 of 315

No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)	
1	31.0702	2.14	25.19	27.33	40.00	-12.67	200	93	QP
2	95.7622	4.13	16.28	20.41	43.50	-23.09	100	118	QP
3	132.6850	2.09	19.30	21.39	43.50	-22.11	200	168	QP
4	629.4772	3.94	27.58	31.52	46.00	-14.48	200	35	QP
5	670.4891	4.24	27.44	31.68	46.00	-14.32	100	81	QP
6	975.7527	2.55	31.27	33.82	54.00	-20.18	100	224	QP

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100205204 Page: 172 of 315

8 Test Setup Photo

Refer to Appendix - Test Setup Photo for KSCR2311002052AT

9 EUT Constructional Details (EUT Photos)

Refer to Appendix - Photographs of EUT Constructional Details for KSCR2311002052AT