

TEST RESULT CERTIFICATION

Applicant's name
 \qquad
 Address
 \qquad

: MeiG Smart Technology Co., Ltd \#5 Lingxia Road,Fenghuang the 4th Industrial Park,Fuyong Street,Bao'an District,Shenzhen,Guangdong,China

Manufacture's Name \qquad : MeiG Smart Technology Co., Ltd

The 1st, 2nd, 3rd floor, BuildingA ,B, \#5 Lingxia Road, Fenghuang the

Address

\qquad 4th Industrial Park, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China

Product discription

Product Name \qquad : SLM757-module
Brand Name \qquad MeiGLink
Model Name. : SLM757

Series Model N/A

Test Standards \qquad : FCC Part 22H and 24E, 27

Test procedure \qquad KDB 971168 D01 v03r01,ANSI C63.26(2015)

This device described above has been tested by STS and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.
This report shall not be reproduced except in full, without the written approval of STS, this document only be altered or revised by STS, personal only, and shall be noted in the revision of the document.

Date of Test

Date of performance of tests 09 Apr. 2018~24 Apr. 2018
Date of Issue 25 Apr. 2018
Test Result \qquad Pass

TABLE OF CONTENTS Page

1 INTRODUCTION 6
1.1 TEST FACTORY 6
1.2 MEASUREMENT UNCERTAINTY 6
2 PRODUCT INFORMATION 7
3 TEST CONFIGURATION OF EQUIPMENT UNDER TEST 8
4 MEASUREMENT INSTRUMENTS 9
5 TEST ITEMS 10
5.1 CONDUCTED OUTPUT POWER 10
5.2 PEAK TO AVERAGE RATIO 11
5.3 TRANSMITTER RADIATED POWER (EIRP/ERP) 12
5.4 OCCUPIED BANDWIDTH 13
5.5 FREQUENCY STABILITY 14
5.6 SPURIOUS EMISSIONS AT ANTENNA TERMINALS 15
5.7 BAND EDGE 16
5.8 FIELD STRENGTH OF SPURIOUS RADIATION MEASUREMENT 17
APPENDIX A.TESTRESULT 19
A1.CONDUCTED OUTPUT POWER 19
A2. PEAK-TO-AVERAGE RADIO 22
A3. TRANSMITTER RADIATED POWER (EIRP/ERP) 23
A4. OCCUPIED BANDWIDTH (99\% OCCUPIED BANDWIDTH/26DB BANDWIDTH) 24
A5.FREQUENCY STABILITY 28
A6. SPURIOUS EMISSIONS AT ANTENNA TERMINALS 30
A7. BAND EDGE 33
A8. FIELD STRENGTH OF SPURIOUS RADIATION MEASUREMENT 36
APPENDIX BPHOTOS OF TEST SETUP 39

Revision History

Rev.	Issue Date	Report NO.	Effect Page	Contents
00	25 Apr. 2018	STS1804055W01	ALL	Initial Issue

SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:
The radiated emission testing was performed according to the procedures of KDB 971168 D01 v03r01,ANSI C63.26(2015)

FCC Rules	Test Description	Test Limit	Test Result	Reference
2.1049	Conducted OutputPower	Reporting Only	PASS	
$\begin{aligned} & 2.0146 \\ & 24.232 \end{aligned}$	Peak-to-AverageRatio	$<13 \mathrm{~dB}$	PASS	
$\begin{gathered} \hline 2.1046 \\ 22.913 \\ 24.232 \\ 27.50 \end{gathered}$	Effective Radiated Power/Equivalent Isotropic Radiated Power	< 7 Watts max. ERP(Part 22) < 2 Watts max. EIRP(Part 24) <1 Watts max. EIRP(Part 27)	PASS	
$\begin{gathered} 2.1049 \\ 22.917 \\ 24.238 \\ 27.53 \end{gathered}$	Occupied Bandwidth	Reporting Only	PASS	
$\begin{gathered} 2.1055 \\ 22.355 \\ 24.235 \\ 27.54 \end{gathered}$	Frequency Stability	$<2.5 \text { ppm (Part 22) }$ Emission must remain in band (Part 24) Emission must remain in band (Part 27)	PASS	
$\begin{gathered} 2.1051 \\ 22.917 \\ 24.238 \\ 27.53 \end{gathered}$	Spurious Emission at Antenna Terminals	< 43+10log 10(P[Watts])	PASS	
$\begin{gathered} 2.1053 \\ 22.917 \\ 24.238 \\ 27.53 \end{gathered}$	Field Strength of Spurious Radiation	$<43+10 \log 10$ (P[Watts])	PASS	
$\begin{gathered} \hline 2.1051 \\ 22.917 \\ 24.238 \\ 27.53 \end{gathered}$	Band Edge	< 43+10log 10(P[Watts])	PASS	

1 INTRODUCTION

1.1 TEST FACTORY

Shenzhen STS Test Services Co., Ltd.

Add. : 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China
CNAS Registration No.: L7649; FCC Registration No.: 625569
IC Registration No.: 12108A; A2LA Certificate No.: 4338.01;

1.2 MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements ofANSI C63.4-2014. All measurement uncertainty values are shown with a coverage factor of $\mathrm{k}=2$ toindicate a 95% level of confidence. The measurement data shown herein meets or exceeds the UCISPRmeasurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly tospecified limits to determine compliance.

No.	Item	Uncertainty
1	RF power,conducted	$\pm 0.70 \mathrm{~dB}$
2	Spurious emissions,conducted	$\pm 1.19 \mathrm{~dB}$
5	All emissions,radiated(<1G) $30 \mathrm{MHz}-200 \mathrm{MHz}$	$\pm 2.83 \mathrm{~dB}$
6	All emissions,radiated(<1G) $200 \mathrm{MHz}-1000 \mathrm{MHz}$	$\pm 2.94 \mathrm{~dB}$
7	All emissions,radiated(>1G)	$\pm 3.03 \mathrm{~dB}$
8	Temperature	$\pm 0.5^{\circ} \mathrm{C}$
9	Humidity	$\pm 2 \%$

2 PRODUCT INFORMATION

Product Name	SLM757-module
Hardware version number:	SLM757-A_MB_PCB_V1.02
Software version number:	SLM757AMG_EQ000_2EE0.21E13EB.484806A_171110 100_V01_T05
FCC ID:	2APJ4-SLM757
Tx Frequency:	WCDMA: Band V: $824 \mathrm{MHz} \sim 849 \mathrm{MHz}$ Band II: $1850 \mathrm{MHz} \sim 1910 \mathrm{MHz}$ Band IV: $1710 \mathrm{MHz} \sim 1755 \mathrm{MHz}$
Rx Frequency:	WCDMA: Band V: $869 \mathrm{MHz} \sim 894 \mathrm{MHz}$ Band II: $1930 \mathrm{MHz} \sim 1990 \mathrm{MHz}$ Band IV: $2110 \mathrm{MHz} \sim 2155 \mathrm{MHz}$
Max RF Output Power:	WCDMABand V:23.87dBm, WCDMA Band II:23.90dBm WCDMA Band IV:22.95dBm
Type of Emission:	WCDMA850: 4M70F9W WCDMA1900: 4M70F9W WCDMA1700: 4M72F9W
SIM Card:	SIM 1 and SIM 2 is a chipset unit and tested as single chipset,SIM 1 is used to tested
Power Supply:	DC 3.8V
Extreme Temp. Tolerance:	-30C to +50C

3 TEST CONFIGURATION OF EQUIPMENT UNDER TEST

Antenna port conducted and radiated test items were performed according to KDB 971168 D01 and ANSI C63.26 2015 Power

Meas. License Digital Systems with maximum output power.
Radiated measurements were performed with rotating EUT in different three orthogonal test planes to find the maximum emission.

Radiated emissions were investigated as following frequency range:

1. 30 MHz to 10 th harmonic for WCDMA Band V.
2. 30 MHz to 10 th harmonic for WCDMA Band IV.
3. 30 MHz to 10th harmonic for WCDMA Band II.

All modes and data rates and positions were investigated.
Test modes are chosen to be reported as the worst case configuration below:

	TEST MODES	
BAND	RADIATED TCS	CONDUCTED TCS
WCDMA BAND V	RMC 12.2KBPS LINK	RMC 12.2KBPS LINK
WCDMA BAND II	RMC 12.2KBPS LINK	RMC 12.2KBPS LINK
WCDMA BAND IV	RMC 12.2KBPS LINK	RMC 12.2KBPS LINK

4 MEASUREMENT INSTRUMENTS

Kind of Equipment	Manufacturer	Type No.	Serial No.	Last Calibration	Calibrated Until
EMI Test Receiver	R\&S	ESW	101535	2017.06.01	2018.05.31
Signal Analyzer	Agilent	N9020A	MY49100060	2017.03.11	2018.03.10
Test Receiver	R\&S	ESCI	101427	2017.10.15	2018.10.14
Universal Radio Communication Tester	R\&S	CMW500	117239	2017.06.15	2018.06.14
Bilog Antenna	TESEQ	CBL6111D	34678	2017.03.24	2018.03.23
Horn Antenna	Schwarzbeck	BBHA 9120D	9120D-1343	2017.10.27	2018.10.26
SHF-EHF Horn Antenna ($15 \mathrm{G}-40 \mathrm{GHz}$)	BBHA 9170	SCHWARZBECK	BBHA9170367	2017.05.02	2018.05.01
Low frequency cable	EM	R01	N/A	2017.03.12	2018.03.11
Low frequency cable	EM	R06	N/A	2017.03.12	2018.03.11
High frequency cable	SCHWARZBECK	R04	N/A	2017.03.12	2018.03.11
High frequency cable	SCHWARZBECK	R02	N/A	2017.03.12	2018.03.11
Pre-mplifier (0.1M-3GHz)	EM	EM330	60538	2017.03.12	2018.03.11
PreAmplifier $(1 \mathrm{G}-26.5 \mathrm{GHz})$	Agilent	8449B	60538	2017.10.15	2018.10.14
Pre-mplifier (18G-40G)	MINI-CIRCUITS	AP-040G	1382501	2017.05.15	2018.05.14
$\begin{gathered} \text { Band Reject fil- } \\ \operatorname{ter}(1920-1980 \mathrm{MHz}) \end{gathered}$	COM-MW	ZBSF-1920-1980	0092	2017.10.15	2018.10.14
Band Reject fil-ter(880-915MHz)	COM-MW	ZBSF-C897.5-35	707	2017.10.15	2018.10.14
Band Reject fil-ter(1710-1785MHz)	COM-MW	ZBSF-C1747.5-75	708	2017.10.15	2018.10.14
$\begin{gathered} \text { Band Reject fil- } \\ \text { ter(1850-1910MHz) } \end{gathered}$	COM-MW	ZBSF-C1880-60	709	2017.10.15	2018.10.14
$\begin{gathered} \text { Band Reject fil- } \\ \text { ter(} 2500-2570 \mathrm{MHz}) \end{gathered}$	COM-MW	ZBSF-C2535-70	710	2017.10.15	2018.10.14
Highpass Filter	WHKX7.0/18G-8SS	Wainwright	18	2017.10.15	2018.10.14
trun table	EM	SC100_1	60531	N/A	N/A
Antnna mast	EM	SC100	N/A	N/A	N/A

Equipment with a calibration date of "NCR" shown in this list was not used to make direct calibrated measurements.

5 TEST ITEMS

5.1 CONDUCTED OUTPUT POWER

Test overview

A system simulator was used to establish communication with the EUT. Its parameters were set to enforce EUT transmitting at the maximum power. The measured power in the radio frequency on the transmitter output terminals shall be reported.

Test procedures

1. The transmitter output port was connected to the system simulator.
2. Set eut at maximum power through the system simulator.
3. Select lowest, middle, and highest channels for each band and different modulation.
4. Measure and record the power level from the system simulator.

Test setup

5.2 PEAK TO AVERAGE RATIO

TEST OVERVIEW

According to $\S 24.232(\mathrm{~d})$, power measurements for transmissions by stations authorized under this section may be made either in accordance with a commission-approved average power technique or in compliance with paragraph (e) of this section. In both instances, equipment employed must be authorized in accordance with the provisions of $\S 24.51$. In measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 db .

TEST PROCEDURES

1. The testing follows fcckdb 971168 v 03 r 01 section
2. The eut was connected to the and peak and av system simulator\& spectrum analysis reads
3. Select lowest, middle, and highest channels for each band and different modulation.
4. Set the test probe and measure average power of the spectrum analysis

TEST SETUP

5.3 TRANSMITTER RADIATED POWER (EIRP/ERP)
 TEST OVERVIEW

Effective Radiated Power (ERP) and Equivalent Isotropic Radiated Power (EIRP) measurements are performed using the substitution method described in ANSI C63.26 2015 with the EUT transmitting into an integral antenna. Measurements on signals operating below 1 GHz are performed using vertically polarized tuned dipole antennas. Measurements on signals operating above 1 GHz are performed using vertically polarized broadband horn antennas. All measurements are performed as RMS average measurements while the EUT is operating at maximum power, and at the appropriate frequencies.

TEST PROCEDURE

1. The testing follows FCC KDB 971168 D01 Section 5.2.1. (for CDMA/WCDMA), and ANSI C63.26-2015 Section 5.2.
2. The transmitter was placed on a wooden turntable, and it was transmitting into a non-radiating load which was also placed on the turntable.
3. The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3 -orthogonal axis.
4. The frequency range up to tenth harmonic of the fundamental frequency was investigated.
5. Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a nonradiating cable. The absolute levels of the spurious emissions were measured by the substitution.
6. Effective Isotropic Radiated Power (EIRP) was measured by substitution method according
to TIA/EIA-603-D. The EUT was replaced by the substitution antenna at same location, and
then a known power from S.G. was applied into the dipole antenna through a Tx cable, and
then recorded the maximum Analyzer reading through raised and lowered the test antenna.
The correction factor (in dB) = S.G. - Tx Cable loss + Substitution antenna gain - Analyzer
reading. Then the EUT's EIRP/ERP was calculated with the correction factor,
ERP/EIRP = P.SG + GT - LC
ERP/EIRP = effective or equivalent radiated power, respectively (expressed in the same units as PMe as, typically dBW or dBm);
PMeas $(\mathrm{PK})=$ measured transmitter output power or PSD, in dBm or dBW ;
GT = gain of the transmitting antenna, in dBd (ERP) or dBi (EIRP);
$\mathrm{LC}=$ signal attenuation in the connecting cable between the transmitter and antenna, in dB .

5.4 OCCUPIED BANDWIDTH

TEST OVERVIEW

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured.
The 26 dB emission bandwidth is defined as the frequency range between two points, one above and one below the carrier frequency, at which the spectral density of the emission is attenuated 26 dB below the maximum in-band spectral density of the modulated signal. Spectral density (power per unit bandwidth) is to be measured with a detector of resolution bandwidth equal to approximately 1.0% of the emission bandwidth.
All modes of operation were investigated and the worst case configuration results are reported in this section.

TEST PROCEDURE

1. The signal analyzer's automatic bandwidth measurement capability was used to perform the 99% occupied bandwidth and the 26 dB bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
2. RBW $=1-5 \%$ of the expected OBW
3. VBW $\geq 3 \times$ RBW
4. Detector $=$ Peak
5. Trace mode = max hold
6. Sweep = auto couple
7.The trace was allowed to stabilize
7. If necessary, steps $2-7$ were repeated after changing the RBW such that it would be within $1-5 \%$ of the 99% occupied bandwidth observed in Step 7

TEST SETUP

[^0]
5.5 FREQUENCY STABILITY
 Test Overview

Frequency stability testing is performed in accordance with the guidelines of ANSI C63.26 2015. The frequency stability of the transmitter is measured by:
a.) Temperature: The temperature is varied from $-30^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$ in $10^{\circ} \mathrm{C}$ increments using an environmental chamber.
b.) Primary Supply Voltage: The primary supply voltage is varied from 85% to 115% of the nominal value for non hand-carried battery and AC powered equipment. For hand-carried, battery-powered equipment, primary supply voltage is reduced to the battery operating end point which shall be specified by the manufacturer.
For Part 22, the frequency stability of the transmitter shall be maintained within $\pm 0.00025 \%$ (± 2.5 ppm) of the center frequency. For Part 24 the frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

Test Procedure

Temperature Variation

1. The testing follows fcckdb 971168 D01 section 9.0
2. The EUT was set up in the thermal chamber and connected with the system simulator.
3. With power OFF, the temperature was decreased to $-30^{\circ} \mathrm{C}$ and the EUT was stabilized before testing. Power was applied and the maximum change in frequency was recorded within one minute.
4. With power OFF, the temperature was raised in $10^{\circ} \mathrm{C}$ steps up to $50^{\circ} \mathrm{C}$. The EUT was stabilized at each step for at least half an hour. Power was applied and the maximum frequency change was recorded within one minute.
Voltage Variation
5. The testing follows FCC KDB 971168 D01 Section 9.0.
6. The EUT was placed in a temperature chamber at $25 \pm 5^{\circ} \mathrm{C}$ and connected with the system simulator.
7. The power supply voltage to the EUT was varied from 85% to 115% of the nominal value measured at the input to the EUT.
8. The variation in frequency was measured for the worst case.

TEST SETUP

5.6 SPURIOUS EMISSIONS AT ANTENNA TERMINALS
 Test Overview

The power of any emission outside of the authorized operating frequency ranges must be lower than the transmitter power (P) by a factor of at least $43+10 \log (P) d B$.
It is measured by means of a calibrated spectrum analyzer and scanned from 30 MHz up to a frequency including its 10th harmonic.

Test procedure

1. The testing FCC KDB 971168 D01 v03r01 Section 6.0. and ANSI C63.26-2015-Section 5.7
2. The EUT was connected to the spectrum analyzer and system simulator via a power divider.
3. The RF output of EUT was connected to the spectrum analyzer by an RF cable and attenuator. The path loss was compensated to the results for each measurement.
4. The middle channel for the highest RF power within the transmitting frequency was measured.
5. The conducted spurious emission for the whole frequency range was taken.
6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
7. The limit line is derived from $43+10 \log (P) d B$ below the transmitter power $P($ Watts $)$
$=P(W)-[43+10 \log (P)](d B)$
$=[30+10 \log (\mathrm{P})](\mathrm{dBm})-[43+10 \log (\mathrm{P})](\mathrm{dB})$
$=-13 \mathrm{dBm}$.

Test Setup

5.7 BAND EDGE

OVERVIEW

All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.
The minimum permissible attenuation level of any spurious emission is $43+\log 10$ ($\mathrm{P}[\mathrm{Watts}]$), where P is the transmitter power in Watts.

TEST PROCEDURE

1.The testing FCC KDB 971168 D01 v03r01 Section 6.0. and ANSI C63.26-2015-Section 5.5.
2. Start and stop frequency were set such that the band edge would be placed in the center of the Plot.
3. The EUT was connected to the spectrum analyzer and system simulator via a power divider.
4. The RF output of EUT was connected to the spectrum analyzer by an RF cable and attenuator.

The path loss was compensated to the results for each measurement.
5. The band edges of low and high channels for the highest RF powers were measured.
6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
7.The limit line is derived from $43+10 \log (P) d B$ below the transmitter power $P($ Watts $)$
$=P(W)-[43+10 \log (P)](d B)$
$=[30+10 \log (\mathrm{P})](\mathrm{dBm})-[43+10 \log (\mathrm{P})](\mathrm{dB})$
$=-13 \mathrm{dBm}$.

TEST SETUP

5.8 FIELD STRENGTH OF SPURIOUS RADIATION MEASUREMENT

Test overview

Radiated spurious emissions measurements are performed using the substitution method described inANSI/TIA-603-D-2010 with the EUT transmitting into an integral antenna. Measurements on signalsoperating below 1 GHz are performed using horizontally and vertically polarized tuned dipole antennas.Measurements on signals operating above 1 GHz are performed using vertically and horizontally polarizedhorn antennas. All measurements are performed as peak measurements while the EUT isoperating at maximum power and at the appropriate frequencies.
It is measured by means of a calibrated spectrum analyzer and scanned from 30 MHz up to a frequency including its 10th harmonic.

Test procedure

1. The testing FCC KDB 971168 D01 Section 5.8 and ANSI C63.26-2015-Section 5.5.
2. $\mathrm{RBW}=100 \mathrm{kHz}$ for emissions below 1 GHz and 1 MHz for emissions above 1 GHz
3. VBW $\geq 3 \times$ RBW
4. Span $=1.5$ times the OBW
5.No. of sweep points $>2 \times$ span/RBW
5. Detector $=$ Peak
6. Trace mode = max hold
7. The trace was allowed to stabilize
8. Effective Isotropic Spurious Radiation was measured by substitution method according to TIA/EIA-603-D. The EUT was replaced by the substitution antenna at same location, and then a known power from S.G. was applied into the dipole antenna through a Tx cable, and then recorded the maximum Analyzer reading through raised and lowered the test antenna. The correction factor $($ in dB$)=$ S.G. - Tx Cable loss + Substitution antenna gain - Analyzer reading. Then the EUT's EIRP/ERP was calculated with the correction factor, ERP/EIRP = P.SG + GT - LC
ERP/EIRP = effective or equivalent radiated power, respectively (expressed in the same units as PMeas, t ypically dBW or dBm);
P.SG = measured transmitter output power or PSD, in dBm or dBW;

GT = gain of the transmitting antenna, in dBd (ERP) or dBi (EIRP);
$\mathrm{LC}=$ signal attenuation in the connecting cable between the transmitter and antenna, in dB.

TEST SETUP

For radiated test from 30 MHz to 1 GHz

For radiated test from above 1 GHz

APPENDIX A.TESTRESULT A1.CONDUCTED OUTPUT POWER UMTS BAND V

Mode	Frequency (MHz)	AVG Power
WCDMA 850 RMC	826.4	23.85
	836.6	23.75
	846.6	23.87
HSDPA Subtest 1	826.4	23.04
	836.6	23.15
	846.6	22.90
HSDPA Subtest 2	826.4	22.62
	836.6	22.72
	846.6	22.43
HSDPA Subtest 3	826.4	22.12
	836.6	22.27
	846.6	22.00
HSDPA Subtest 4	826.4	21.73
	836.6	21.77
	846.6	21.57
HSUPA Subtest 1	826.4	23.02
	836.6	23.14
	846.6	22.45
HSUPA Subtest 2	826.4	22.10
	836.6	22.15
	846.6	21.50
HSUPA Subtest 3	826.4	22.07
	836.6	21.70
	846.6	21.07
HSUPA Subtest 4	826.4	21.63
	836.6	21.30
	846.6	20.60
HSUPA Subtest 5	826.4	20.21
	836.6	19.88
	846.6	19.12

UMTS BAND II

Mode	Frequency(MHz)	AVG Power
WCDMA 1900 RMC	1852.4	23.24
	1880	23.57
	1907.6	23.90
HSDPA Subtest 1	1852.4	22.52
	1880	23.44
	1907.6	23.66
HSDPA Subtest 2	1852.4	22.03
	1880	23.01
	1907.6	23.17
HSDPA Subtest 3	1852.4	21.72
	1880	22.57
	1907.6	22.76
HSDPA Subtest 4	1852.4	21.28
	1880	22.09
	1907.6	22.34
HSUPA Subtest 1	1852.4	22.45
	1880	23.40
	1907.6	23.17
HSUPA Subtest 2	1852.4	21.64
	1880	22.41
	1907.6	22.24
HSUPA Subtest 3	1852.4	21.59
	1880	22.00
	1907.6	21.80
HSUPA Subtest 4	1852.4	21.24
	1880	21.64
	1907.6	21.50
HSUPA Subtest 5	1852.4	19.82
	1880	20.17
	1907.6	20.04

UMTS BAND IV

Mode	Frequency(MHz)	AVG Power
WCDMA 1900 RMC	1712.6	22.95
	1740	22.70
	1752.4	22.78
HSDPA Subtest 1	1712.6	22.48
	1740	22.42
	1752.4	22.08
HSDPA Subtest 2	1712.6	22.00
	1740	21.94
	1752.4	21.66
HSDPA Subtest 3	1712.6	21.52
	1740	21.51
	1752.4	21.29
HSDPA Subtest 4	1712.6	21.04
	1740	21.09
	1752.4	20.79
HSUPA Subtest 1	1712.6	22.40
	1740	22.38
	1752.4	21.67
HSUPA Subtest 2	1712.6	21.55
	1740	21.47
	1752.4	20.70
HSUPA Subtest 3	1712.6	21.47
	1740	21.00
	1752.4	20.28
HSUPA Subtest 4	1712.6	21.07
	1740	20.66
	1752.4	19.87
HSUPA Subtest 5	1712.6	19.63
	1740	19.20
	1752.4	18.41

A2. PEAK-TO-AVERAGE RADIO

Mode	Frequency (MHz)	PEAK Power (dBm)	AVG Power (dBm)	$\begin{aligned} & \hline \text { PAR } \\ & \text { (dB) } \\ & \hline \end{aligned}$
WCDMA 850 RMC	826.4	26.77	23.85	2.92
	836.6	26.58	23.75	2.83
	846.6	26.68	23.87	2.81
HSDPA 850	826.4	25.81	23.04	2.77
	836.6	25.96	23.15	2.81
	846.6	25.83	22.90	2.93
HSUPA 850	826.4	25.66	23.02	2.64
	836.6	25.81	23.14	2.67
	846.6	25.09	22.45	2.64
WCDMA 1900 RMC	1852.4	25.75	23.24	2.51
	1880	26.21	23.57	2.64
	1907.6	26.54	23.90	2.64
HSDPA 1900	1852.4	25.18	22.52	2.66
	1880	26.27	23.44	2.83
	1907.6	26.64	23.66	2.98
HSUPA 1900	1852.4	25.05	22.45	2.60
	1880	26.18	23.40	2.78
	1907.6	25.75	23.17	2.58
WCDMA 1700 RMC	1712.6	25.47	22.95	2.52
	1740	25.51	22.70	2.81
	1752.4	25.74	22.78	2.96
HSDPA 1700	1712.6	25.18	22.48	2.70
	1740	25.35	22.42	2.93
	1752.4	24.66	22.08	2.58
HSUPA 1700	1712.6	25.15	22.40	2.75
	1740	25.25	22.38	2.87
	1752.4	24.66	21.67	2.99

A3. TRANSMITTER RADIATED POWER (EIRP/ERP)

Radiated Power (ERP) for WCDMA Band V							
Mode	Frequency	Result					Conclusion
		S G. Level (dBm)	Cable loss	Gain (dBi)	PMeas E.R.P (dBm)	Polarization Of Max.ERP	
Band V	826.4	15.52	0.44	6.5	21.58	Horizontal	Pass
	826.4	17.26	0.44	6.5	23.32	Vertical	Pass
	835	15.47	0.45	6.5	21.52	Horizontal	Pass
	835	17.20	0.45	6.5	23.25	Vertical	Pass
	846.4	15.48	0.46	6.5	21.52	Horizontal	Pass
	846.4	17.32	0.46	6.5	23.36	Vertical	Pass

Radiated Power (EIRP) for WCDMA Band II							
Mode	Frequency	Result					Conclusion
		S G. Level (dBm)	Cable loss	Gain (dBi)	$\begin{gathered} \text { PMeas } \\ \text { E.I.R.P. }(\mathrm{dBm}) \end{gathered}$	Polarization Of Max.EIRP	
Band II	1852.4	12.85	2.41	10.35	20.79	Horizontal	Pass
	1852.4	14.77	2.41	10.35	22.71	Vertical	Pass
	1880	13.16	2.42	10.35	21.09	Horizontal	Pass
	1880	15.12	2.42	10.35	23.05	Vertical	Pass
	1907.4	13.68	2.43	10.35	21.6	Horizontal	Pass
	1907.4	15.43	2.43	10.35	23.35	Vertical	Pass

Radiated Power (EIRP) for WCDMA Band IV							
Mode	Frequency	Result					Conclusion
		S G. Level (dBm)	Cable loss	Gain (dBi)	PMeas E.I.R.P.(dBm)	Polarization Of Max.EIRP	
Band II	1712.6	12.58	2.07	10.13	20.64	Horizontal	Pass
	1712.6	14.35	2.07	10.13	22.41	Vertical	Pass
	1740	12.26	2.08	10.13	20.31	Horizontal	Pass
	1740	14.15	2.08	10.13	22.2	Vertical	Pass
	1752.4	12.26	2.09	10.13	20.3	Horizontal	Pass
	1752.4	14.2	2.09	10.13	22.24	Vertical	Pass

A4. OCCUPIED BANDWIDTH (99\% OCCUPIED BANDWIDTH/26dB BANDWIDTH)

Occupied Bandwidth for UMTS band V			
Mode	Frequency (MHz)	Occupied Bandwidth $(99 \%)(\mathrm{MHz})$	Emission Bandwidth $(-26 \mathrm{dBc})(\mathrm{MHz})$
Low Channel	826.4	4.1351	4.696
Middle Channel	836.6	4.1264	4.696
High Channel	846.6	4.1153	4.696

Occupied Bandwidth for UMTS band II			
Mode	Frequency (MHz)	Occupied Bandwidth $(99 \%)(\mathrm{MHz})$	Emission Bandwidth $(-26 \mathrm{dBc})(\mathrm{MHz})$
Low Channel	1852.4	4.1281	4.696
Middle Channel	1880	4.1166	4.687
High Channel	1907.6	4.1125	4.667

Occupied Bandwidth for UMTS band IV			
Mode	Frequency (MHz)	Occupied Bandwidth $(99 \%)(\mathrm{MHz})$	Emission Bandwidth $(-26 \mathrm{dBc})(\mathrm{MHz})$
Low Channel	1712.6	4.1273	4.689
Middle Channel	1740	4.1320	4.695
High Channel	1752.4	4.1283	4.716

UMTS BAND V CH 4132

UMTS BAND V CH 4183

UMTS BAND V CH 4233

UMTS BAND II CH 9262

UMTS BAND II CH 9400

UMTS BAND II CH 9538

UMTS BAND IV CH 9262

UMTS BAND IV CH 9400

UMTS BAND IV CH 9538

A5.FREQUENCY STABILITY

WCDMA V Middle Channel/836.6MHz					
Temperature $\left({ }^{\circ} \mathrm{C}\right)$	Voltage (Volt)	Freq. Dev. (Hz)	Freq. Dev. (ppm)	Limit	Result
50		34.91	0.042		
40		22.73	0.027		
30		18.21	0.022		
20		15.59	0.019		
10	Normal Voltage	35.83	0.043		
0		27.52	0.033	2.5ppm	PASS
-10		33.64	0.040		
-20		14.43	0.017		
-30		28.37	0.034		
25	Maximum Voltage	29.83	0.036		
25	BEP	23.61	0.028		

1. The frequency fundamental emissions stay within the authorized frequency block based on the frequency deviation measured is small.

WCDMA II Middle Channel/ $\mathbf{1 8 8 0 \mathrm { MHz }}$					
Temperature (${ }^{\circ} \mathrm{C}$)	Voltage (Volt)	Freq. Dev. (Hz)	Freq. Dev. (ppm)	Limit	Result
50		24.96	0.013		
40		15.98	0.009		
30		35.94	0.019		
20		14.26	0.008		
10	Normal Voltage	28.73	0.015	Within Au-	
0		29.14	0.016	thorized	PASS
-10		22.52	0.012	Band	
-20		33.33	0.018		
-30		12.26	0.007		
25	Maximum Voltage	17.50	0.009		
25	BEP	30.73	0.016		

1. The frequency fundamental emissions stay within the authorized frequency block based on the frequency deviation measured is small.
Shenzhen STS Test Services Co., Ltd.

WCDMA IV Middle Channel/1740MHz

Temperature ($\left.{ }^{\circ} \mathrm{C}\right)$	Voltage (Volt)	Freq. Dev. (Hz)	Freq. Dev. (ppm)	Limit	Result
50	Normal Voltage	17.18	0.009	Within Authorized Band	PASS
40		28.61	0.015		
30		18.82	0.010		
20		30.48	0.016		
10		20.54	0.011		
0		20.25	0.011		
-10		36.27	0.019		
-20		30.72	0.016		
-30		35.74	0.019		
25	Maximum Voltage	22.90	0.012		
25	BEP	31.47	0.017		

1. The frequency fundamental emissions stay within the authorized frequency block based on the frequency deviation measured is small.

A6. SPURIOUS EMISSIONS AT ANTENNA TERMINALS

WCDMA Band V (RMC 12.2Kbps)

Lowest Channel

Middle Channel

Highest Channel

WCDMA Band II (RMC 12.2Kbps)(30M-20G)

Lowest Channel

Middle Channel

Highest Channel

WCDMA Band IV (RMC 12.2Kbps)(30M-20G)

Lowest Channel

Middle Channel

Highest Channel

WCDMA Band VRMC 12.2Kbps
Lowest Band Edge

Highest Band Edge

WCDMA Band IIRMC 12.2Kbps
Lowest Band Edge

Highest Band Edge

WCDMA Band IVRMC 12.2Kbps

Lowest Band Edge

Highest Band Edge

A8. FIELD STRENGTH OF SPURIOUS RADIATION MEASUREMENT UMTS band V(30-9000)MHz

WCDMA Band V: (30-9000)MHz							
The wost testresults channel $4132 / 826.4 \mathrm{MHz}$							
Frequency(MHz)	$\begin{gathered} \text { S G.Lev } \\ (\mathrm{dBm}) \end{gathered}$	Ant(dBi)	Loss	PMea	Limit	Margin	Polarity
				(dBm)	(dBm)	(dB)	
1652.12	-40.16	9.40	4.75	-35.51	-13.00	-22.51	H
2479.66	-39.82	10.60	8.39	-37.61	-13.00	-24.61	H
3305.73	-32.19	12.00	11.79	-31.98	-13.00	-18.98	H
1652.08	-43.45	9.40	4.75	-38.80	-13.00	-25.80	V
2479.24	-44.05	10.60	8.39	-41.84	-13.00	-28.84	V
3305.64	-42.55	12.00	11.79	-42.34	-13.00	-29.34	V
The Worst Test Results Channel 4183/836.6MHz							
Frequency(MHz)	S G.Lev (dBm)	Ant(dBi)	Loss	PMea	Limit	Margin	Polarity
				(dBm)	(dBm)	(dB)	
1673.06	-40.78	9.50	4.76	-36.04	-13.00	-23.04	H
2509.67	-39.38	10.70	8.40	-37.08	-13.00	-24.08	H
3346.28	-31.02	12.20	11.80	-30.62	-13.00	-17.62	H
1672.98	-43.57	9.40	4.75	-38.92	-13.00	-25.92	V
2509.82	-44.35	10.60	8.39	-42.14	-13.00	-29.14	V
3346.08	-43.87	12.20	11.82	-43.49	-13.00	-30.49	V
The Worst Test Results Channel 4233/846.6MHz							
Frequency(MHz)	S G.Lev (dBm)	Ant(dBi)	Loss	PMea	Limit	Margin	Polarity
				(dBm)	(dBm)	(dB)	
1693.38	-40.52	9.60	4.77	-35.69	-13.00	-22.69	H
2539.40	-39.16	10.80	8.50	-36.86	-13.00	-23.86	H
3386.31	-32.33	12.50	11.90	-31.73	-13.00	-18.73	H
1693.63	-43.27	9.60	4.77	-38.44	-13.00	-25.44	V
2539.07	-45.21	10.80	8.50	-42.91	-13.00	-29.91	V
3385.93	-43.86	12.50	11.90	-43.26	-13.00	-30.26	V

Note: (1) Below 30 MHz no Spurious found is the worst condition.
(2) Above 3 GHz amplitude of spurious emissions which are attenuated by more than 20Db below the permissible value

UMTS band II(30-20000)MHz

WCDMA Band II: (30-20000)MHz							
The Worst Test Results for Channel $9262 / 1852.4 \mathrm{MHz}$							
Frequency(MHz)	$\begin{gathered} \text { S G.Lev } \\ (\mathrm{dBm}) \end{gathered}$	Ant(dBi)	Loss	PMea	Limit	Margin	Polarity
				(dBm)	(dBm)	(dB)	
3704.19	-34.33	12.60	12.93	-34.66	-13.00	-21.66	H
5557.56	-34.88	13.10	17.11	-38.89	-13.00	-25.89	H
7409.58	-32.86	11.50	22.20	-43.56	-13.00	-30.56	H
3704.48	-34.84	12.60	12.93	-35.17	-13.00	-22.17	V
5557.62	-34.66	13.10	17.11	-38.67	-13.00	-25.67	V
7409.63	-32.58	11.50	22.20	-43.28	-13.00	-30.28	V
The Worst Test Results for Channel 9400/1880MHz							
Frequency(MHz)	$\begin{gathered} \text { S G.Lev } \\ (\mathrm{dBm}) \end{gathered}$	Ant(dBi)	Loss	PMea	Limit	Margin	Polarity
				(dBm)	(dBm)	(dB)	
3760.11	-34.30	12.60	12.93	-34.63	-13.00	-21.63	H
5640.28	-34.02	13.10	17.11	-38.03	-13.00	-25.03	H
7520.28	-33.58	11.50	22.20	-44.28	-13.00	-31.28	H
3760.05	-35.89	12.60	12.93	-36.22	-13.00	-23.22	V
5640.30	-34.20	13.10	17.11	-38.21	-13.00	-25.21	V
7520.16	-31.97	11.50	22.20	-42.67	-13.00	-29.67	V
The Worst Test Results for Channel 9538/1907.6MHz							
Frequency(MHz)	$\begin{gathered} \text { S G.Lev } \\ (\mathrm{dBm}) \end{gathered}$	Ant(dBi)	Loss	PMea	Limit	Margin	Polarity
				(dBm)	(dBm)	(dB)	
3815.65	-34.37	12.60	12.93	-34.70	-13.00	-21.70	H
5722.22	-34.78	13.10	17.11	-38.79	-13.00	-25.79	H
7630.27	-32.93	11.50	22.20	-43.63	-13.00	-30.63	H
3815.40	-35.47	12.60	12.93	-35.80	-13.00	-22.80	V
5722.17	-35.15	13.10	17.11	-39.16	-13.00	-26.16	V
7630.25	-32.18	11.50	22.20	-42.88	-13.00	-29.88	V

Note: (1) Below 30 MHz no Spurious found is the worst condition.
(2) Above 6 GHz amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value

UMTS band IV(30-20000)MHz

WCDMA Band IV: (30-20000)MHz							
The Worst Test Results for Channel $9262 / 1712.6 \mathrm{MHz}$							
Frequency(MHz)	S G.Lev (dBm)	Ant(dBi)	Loss	PMea	Limit	Margin	Polarity
				(dBm)	(dBm)	(dB)	
3424.71	-34.85	12.90	12.05	-34.00	-13.00	-21.00	H
5137.79	-35.41	12.80	16.27	-38.88	-13.00	-25.88	H
6850.20	-32.26	12.30	20.13	-40.09	-13.00	-27.09	H
3425.07	-35.93	12.90	12.05	-35.08	-13.00	-22.08	V
5137.58	-35.16	12.80	16.27	-38.63	-13.00	-25.63	V
6850.27	-32.56	12.30	20.13	-40.39	-13.00	-27.39	V
The Worst Test Results for Channel 9400/1740MHz							
Frequency(MHz)	S G.Lev (dBm)	Ant(dBi)	Loss	PMea	Limit	Margin	Polarity
				(dBm)	(dBm)	(dB)	
3479.95	-34.20	12.90	12.05	-33.35	-13.00	-20.35	H
5219.76	-35.47	12.80	16.27	-38.94	-13.00	-25.94	H
6959.52	-32.63	12.30	20.13	-40.46	-13.00	-27.46	H
3479.53	-35.84	12.90	12.05	-34.99	-13.00	-21.99	V
5219.78	-34.92	12.80	16.27	-38.39	-13.00	-25.39	V
6959.78	-31.98	12.30	20.13	-39.81	-13.00	-26.81	V
The Worst Test Results for Channel 9538/1752.4MHz							
Frequency(MHz)	S G.Lev (dBm)	Ant(dBi)	Loss	PMea	Limit	Margin	Polarity
				(dBm)	(dBm)	(dB)	
3504.45	-34.63	12.90	12.05	-33.78	-13.00	-20.78	H
5256.89	-34.30	12.80	16.27	-37.77	-13.00	-24.77	H
7009.10	-32.39	12.30	20.13	-40.22	-13.00	-27.22	H
3504.34	-35.73	12.90	12.05	-34.88	-13.00	-21.88	V
5256.85	-34.40	12.80	16.27	-37.87	-13.00	-24.87	V
7009.37	-32.37	12.30	20.13	-40.20	-13.00	-27.20	V

Note: (1) Below 30 MHz no Spurious found is the worst condition.
(2) Above 6 GHz amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value

RADIATED SPURIOUS EMISSION

$※ ※ ※ ※ ※ E N D ~ O F ~ T H E ~ R E P O R T ※ ※ ※ ※ ※$

[^0]: Spectrum Analyzer

