FCC RADIO TEST REPORT FCC 47 CFR PART 15 SUBPART C

Test Standard	FCC Part 15.247
FCC ID	2API8-RITGAA00A1001
Brand name	Renown
Product name	Patient Information Display
Model No.	PID-1000S
Test Result	Pass

The test Result was tested by Compliance Certification Services Inc. The test data, data evaluation, test procedures, and equipment configurations shown in this report were given in ANSI C63.10: 2013 and compliance standards.

The test results of this report relate only to the tested sample (EUT) identified in this report.

The test Report of full or partial shall not copy. Without written approval of Compliance Certification Services Inc. (Wugu Laboratory)

Approved by:

sam Clearing

Sam Chuang Manager Tested by:

my Ching.

Jerry Chuang Engineer

Rev.	Issue Date	Revisions	Revised By
00	March 5, 2018	Initial Issue	Becca Chen
01	May 18, 2018	 Modify FCC ID in page 1. Modify Instrument calibration in page 7. Modify The worst mode of measurement remark 2 in page 11. 	Becca Chen
02	May 22, 2018	1. Modify The worst mode of measurement remark 2 in page 11.	Becca Chen

Revision History

Table of contents

1.	GENERAL INFORMATION	. 4
1.1	EUT INFORMATION	. 4
1.2	EUT CHANNEL INFORMATION	. 5
1.3	ANTENNA INFORMATION	. 5
1.4	MEASUREMENT UNCERTAINTY	. 6
1.5	FACILITIES AND TEST LOCATION	. 7
1.6	INSTRUMENT CALIBRATION	
1.7	SUPPORT AND EUT ACCESSORIES EQUIPMENT	. 8
1.8	TEST METHODOLOGY AND APPLIED STANDARDS	. 8
2.	TEST SUMMERY	. 9
3.	DESCRIPTION OF TEST MODES	10
3.1	THE WORST MODE OF OPERATING CONDITION	10
3.2	THE WORST MODE OF MEASUREMENT	11
3.3	EUT DUTY CYCLE	
4.	TEST RESULT	13
4.1	AC POWER LINE CONDUCTED EMISSION	13
4.2	6DB BANDWIDTH AND OCCUPIED BANDWIDTH (99%)	16
4.3	OUTPUT POWER MEASUREMENT	
4.4	POWER SPECTRAL DENSITY	26
4.5	CONDUCTED BANDEDGE AND SPURIOUS EMISSION	31
4.6	RADIATION BANDEDGE AND SPURIOUS EMISSION	41
APP	ENDIX I PHOTOGRAPHS OF EUT	

1. GENERAL INFORMATION

1.1 EUT INFORMATION

Applicant	Renown Information Technology Corp. 15F., NO.207-3, SEC. 3, BEIXIN RD., XINDIAN DIST., NEW TAIPEI CITY 23143, TAIWAN (R.O.C)
Manufacturer	Renown Information Technology Corp. 15F., NO.207-3, SEC. 3, BEIXIN RD., XINDIAN DIST., NEW TAIPEI CITY 23143, TAIWAN (R.O.C)
Equipment	Patient Information Display
Model No.	PID-1000S
Model Discrepancy	N/A
Received Date	February 7, 2018
Date of Test	February 21 ~ 27, 2018
Output Power(W)	IEEE 802.11b mode: 0.0592 IEEE 802.11g mode: 0.1002 IEEE 802.11n HT 20 MHz mode: 0.0991
Power Supply	Powered from host device via USB Cable: 5Vdc, 1A

1.2 EUT CHANNEL INFORMATION

Frequency Range	2412MHz-2462MHz
Modulation Type	1. IEEE 802.11b mode: CCK 2. IEEE 802.11g mode: OFDM 3. IEEE 802.11n HT 20 MHz mode: OFDM
Bandwidth	 IEEE 802.11b mode: 11 Channels IEEE 802.11g mode: 11 Channels IEEE 802.11n HT 20 MHz mode: 11 Channels

Remark:

Refer as ANSI 63.10:2013 clause 5.6.1 Table 4 for test channels

Number of frequencies to be tested					
Frequency range inNumber ofLocation in frequencywhich device operatesfrequenciesrange of operation					
☐ 1 MHz or less	1	Middle			
1 MHz to 10 MHz	2	1 near top and 1 near bottom			
⊠ More than 10 MHz	3	1 near top, 1 near middle, and 1 near bottom			

1.3 ANTENNA INFORMATION

Antenna Type	PIFA PCB Dipole Coils
Antenna Gain	Gain: -2.41dBi

1.4 MEASUREMENT UNCERTAINTY

PARAMETER	UNCERTAINTY
AC Powerline Conducted Emission	+/- 2.96
Emission bandwidth, 20dB bandwidth	+/- 1.4003
RF output power, conducted	+/- 1.1372
Power density, conducted	+/- 1.4003
3M Semi Anechoic Chamber / 30M~200M	+/- 4.0138
3M Semi Anechoic Chamber / 200M~1000M	+/- 3.9483
3M Semi Anechoic Chamber / 1G~8G	+/- 2.5975
3M Semi Anechoic Chamber / 8G~18G	+/- 2.6112
3M Semi Anechoic Chamber / 18G~26G	+/- 2.7389
3M Semi Anechoic Chamber / 26G~40G	+/- 2.9683
3M Semi Anechoic Chamber / 40G~60G	+/- 1.8509
3M Semi Anechoic Chamber / 60G~75G	+/- 1.9869
3M Semi Anechoic Chamber / 75G~110G	+/- 2.9651
3M Semi Anechoic Chamber / 110G~170G	+/- 2.7807
3M Semi Anechoic Chamber / 170G~220G	+/- 3.6437
3M Semi Anechoic Chamber / 220G~325G	+/- 4.2982

Remark:

1. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2

2.ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report.

1.5 FACILITIES AND TEST LOCATION

All measurement facilities used to collect the measurement data are located at

No.11, Wugong 6th Rd., Wugu Dist., New Taipei City 24891, Taiwan. (R.O.C.)

Test site	Test Engineer	Remark
AC Conduction Room	Eric Lee	-
Radiation	Jerry Chuang	-
RF Conducted	Eric Lee	-

Remark: The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22.

1.6 INSTRUMENT CALIBRATION

RF Conducted Test Site					
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due
Power Meter	Anritsu	ML2495A	1012009	07/03/2017	07/02/2018
Power Sensor	Anritsu	MA2411B	917072	07/03/2017	07/02/2018
Spectrum Analyzer	R&S	FSV 40	101073	10/02/2017	10/01/2018
Directional Coupler	Agilent	87301D	MY44350252	07/25/2017	07/24/2018
SUCOFLEX Cable	HUBER SUHNER	SUCOFLEX 104PEA	25157	07/31/2017	07/30/2018
Divider	Solvang Technology	2-18GHz 4Way	STI08-0015	07/26/2017	07/25/2018

3M 966 Chamber Test Site						
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due	
Bilog Antenna	Sunol Sciences	JB3	A030105	06/20/2017	06/19/2018	
Horn Antenna	ETC	MCTD 1209	DRH13M02003	08/25/2017	08/24/2018	
Loop Ant	COM-POWER	AL-130	121051	03/21/2018	03/20/2019	
Pre-Amplifier	EMEC	EM330	60609	06/07/2017	06/06/2018	
Spectrum Analyzer	Agilent	E4446A	US42510252	11/27/2017	11/26/2018	
Antenna Tower	CCS	CC-A-1F	N/A	N.C.R	N.C.R	
Controller	CCS	CC-C-1F	N/A	N.C.R	N.C.R	
Turn Table	CCS	CC-T-1F	N/A	N.C.R	N.C.R	
Pre-Amplifier	HP	8449B	3008A00965	06/27/2017	06/26/2018	
Filter	Micro-Tronics	BRM50702	120	05/15/2017	05/14/2018	
Cable	HUBER SUHNER	SUCOFLEX 104PEA	25157	07/31/2017	07/30/2018	
Cable	HUBER SUHNER	SUCOFLEX 104PEA	20995	07/31/2017	07/30/2018	

AC Conducted Emissions Test Site						
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due	
LISN	SCHAFFNER	NNB41	03/10013	02/06/2018	02/05/2019	
LISN	SCHWARZBECK	NSLK 8127	8127-541	02/09/2018	02/08/2019	
EMI Test Receiver	R&S	ESCI	100064	05/17/2017	05/16/2018	

Note:

1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. N.C.R. = No Calibration Required.

1.7 SUPPORT AND EUT ACCESSORIES EQUIPMENT

	EUT Accessories Equipment								
No.	No. Equipment Brand Model Series No. FCC ID								
	N/A								

	Support Equipment								
No.	No. Equipment Brand Model Series No. FCC ID								
1.	NB(B)	TOSHIBA	PORTEGE R30-A	N/A	PD97260H				

1.8 TEST METHODOLOGY AND APPLIED STANDARDS

The test methodology, setups and results comply with all requirements in accordance with ANSI C63.10:2013, FCC Part 2, FCC Part 15.247, KDB 558074 D01 v04

2. TEST SUMMERY

FCC Standard Section	Report Section	Test Item	Result
15.203	1.3	Antenna Requirement	Pass
15.207(a)	4.1	AC Conducted Emission	Pass
15.247(a)(2)	4.2	6 dB Bandwidth	Pass
15.247(b)	4.3	Output Power Measurement	Pass
15.247(e)	4.4	Power Spectral Density	Pass
15.247(d)	4.5	Conducted Band Edge	Pass
15.247(d)	4.5	Conducted Emission	Pass
15.247(d)	4.6	Radiation Band Edge	Pass
15.247(d)	4.6	Radiation Spurious Emission	Pass

3. DESCRIPTION OF TEST MODES

3.1 THE WORST MODE OF OPERATING CONDITION

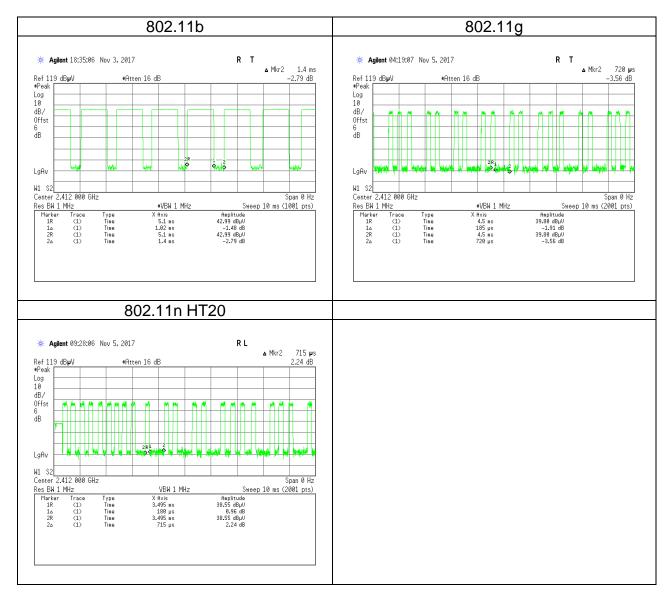
Operation mode	IEEE 802.11b mode :1Mbps IEEE 802.11g mode :6Mbps IEEE 802.11n HT20 mode :MCS0
Test Channel Frequencies	IEEE 802.11b mode : 1. Lowest Channel : 2412MHz 2. Middle Channel : 2437MHz 3. Highest Channel : 2462MHz IEEE 802.11g mode : 1. Lowest Channel : 2412MHz 2. Middle Channel : 2437MHz 3. Highest Channel : 2462MHz IEEE 802.11n HT20 mode : 1. Lowest Channel : 2412MHz 2. Middle Channel : 2437MHz 3. Highest Channel : 2437MHz 3. Highest Channel : 2462MHz
Operation Transmitter	IEEE 802.11b mode :1T1R IEEE 802.11g mode :1T1R IEEE 802.11n HT20 mode :1T1R

Remark: EUT pre-scanned data rate of output power for each mode, the worst data rate were recorded in this report.

3.2 THE WORST MODE OF MEASUREMENT

AC Power Line Conducted Emission					
Test Condition	AC Power line conducted emission for line and neutral				
Voltage/Hz	DC 5V				
Test Mode	Mode 1: Powered from host device via USB Cable.				
Worst Mode	Mode 1 Mode 2 Mode 3 Mode 4				

I	Radiated Emission Measurement Above 1G				
Test Condition	Band edge, Emission for Unwanted and Fundamental				
Voltage/Hz	DC 5V				
Test Mode	Mode 1: Powered from host device via USB Cable.				
Worst Mode	🔀 Mode 1 🗌 Mode 2 🗌 Mode 3 🗌 Mode 4				
Worst Position	 Placed in fixed position. Placed in fixed position at X-Plane (E2-Plane) Placed in fixed position at Y-Plane (E1-Plane) Placed in fixed position at Z-Plane (H-Plane) 				
Worst Polarity	Horizontal X Vertical				


Radiated Emission Measurement Below 1G					
Test Condition	Radiated Emission Below 1G				
Voltage/Hz	Voltage/Hz DC 5V				
Test Mode Mode 1: Powered from host device via USB Cable.					
Worst Mode Mode 1 Mode 2 Mode 3 Mode 4					

Remark:

- 1. The worst mode was record in this test report.
- 2. EUT pre-scanned in three axis, X, Y, Z and two polarity, Horizontal and Vertical for radiated measurement. The worst case (Z-Plane and Vertical Polarity) were recorded in this report
- 3. For below 1G, AC power line conducted emission and radiation emission were performed the EUT transmit at the highest output power channel as worse case.

3.3 EUT DUTY CYCLE

Duty Cycle									
Configuration	TX ON (ms)	TX ALL (ms)	Duty Cycle (%)	Duty Factor(dB)					
802.11b	1.0200	1.4000	72.86%	1.38					
802.11g	0.1850	0.7200	25.69%	5.90					
802.11n HT 20	0.1800	0.7150	25.17%	5.99					

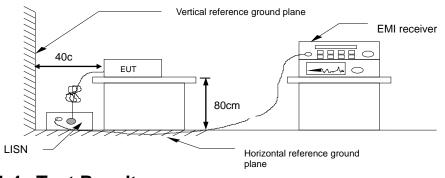
4. TEST RESULT

4.1 AC POWER LINE CONDUCTED EMISSION

4.1.1 Test Limit

According to §15.207(a)(2)

Frequency Range	Limits(dBµV)			
(MHz)	Quasi-peak	Average		
0.15 to 0.50	66 to 56*	56 to 46*		
0.50 to 5	56	46		
5 to 30	60	50		

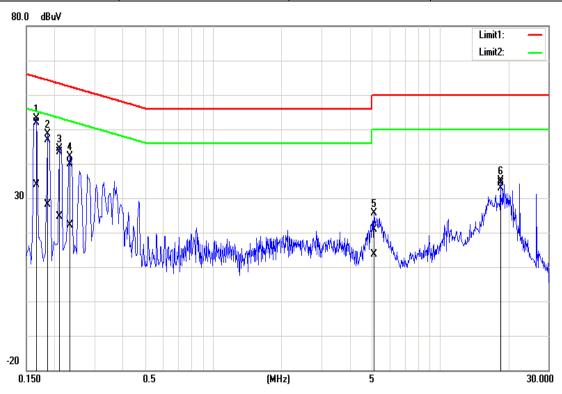

* Decreases with the logarithm of the frequency.

4.1.2 Test Procedure

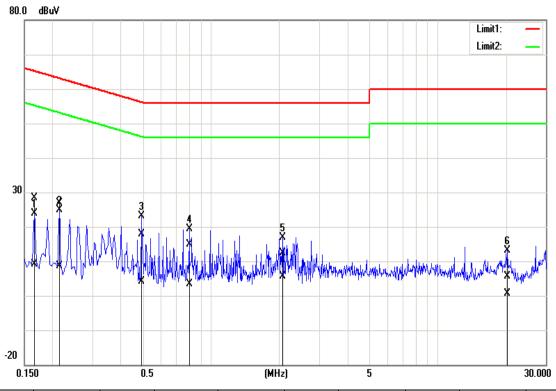
Test method Refer as ANSI 63.10:2013 clause 6.2,

- 1. The EUT was placed on a non-conducted table, which is 0.8m above horizontal ground plane and 0.4m above vertical ground plane.
- 2. EUT connected to the line impedance stabilization network (LISN)
- 3. Receiver set RBW of 9kHz and Detector Peak, and note as quasi-peak and average.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. Recorded Line for Neutral and Line.

4.1.3 Test Setup



Pass.


Test Data

Test Mode:	Mode 1	Temp/Hum	24(°C) / 50%RH
Test Voltage:	DC 5V	Test Date	2018/2/21
Phase:	Line	Test Engineer	Eric Lee

No.	Frequency	QuasiPeak reading	Average reading	Correction factor	QuasiPeak result	Average result	QuasiPeak limit	Average limit	QuasiPeak margin	Average margin	Remark
	(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)	
1*	0.1660	51.84	33.79	0.05	51.89	33.84	65.16	55.16	-13.27	-21.32	Pass
2	0.1860	46.92	28.17	0.05	46.97	28.22	64.21	54.21	-17.24	-25.99	Pass
3	0.2100	43.26	24.60	0.05	43.31	24.65	63.21	53.21	-19.90	-28.56	Pass
4	0.2340	39.81	22.16	0.05	39.86	22.21	62.31	52.31	-22.45	-30.10	Pass
5	5.1380	20.75	13.59	0.09	20.84	13.68	60.00	50.00	-39.16	-36.32	Pass
6	18.4340	33.89	32.51	0.40	34.29	32.91	60.00	50.00	-25.71	-17.09	Pass

Test Mode	Test Mode: Mode 1		Temp/Hum	24(°C) / 50%RH
Test Voltag	e:	DC 5V	Test Date	2018/2/21
Phase:		Neutral	Test Engineer	Eric Lee

No.	Frequency	QuasiPeak reading	Average reading	Correction factor	QuasiPeak result	Average result	QuasiPeak limit	Average limit	QuasiPeak margin	Average margin	Remark
	(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)	
1	0.1540	43.30	23.99	0.12	43.42	24.11	65.78	55.78	-22.36	-31.67	Pass
2	0.1780	40.69	20.35	0.12	40.81	20.47	64.58	54.58	-23.77	-34.11	Pass
3	0.2020	36.45	19.19	0.12	36.57	19.31	63.53	53.53	-26.96	-34.22	Pass
4	0.3620	26.29	18.93	0.13	26.42	19.06	58.68	48.68	-32.26	-29.62	Pass
5	5.2340	20.08	13.33	0.24	20.32	13.57	60.00	50.00	-39.68	-36.43	Pass
6*	18.4340	34.04	32.68	0.47	34.51	33.15	60.00	50.00	-25.49	-16.85	Pass

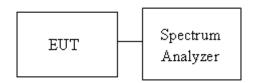
4.2 6DB BANDWIDTH AND OCCUPIED BANDWIDTH (99%)

4.2.1 Test Limit

According to §15.247(a)(2)

6 dB Bandwidth :

Limit	Shall be at least 500kHz
-------	--------------------------

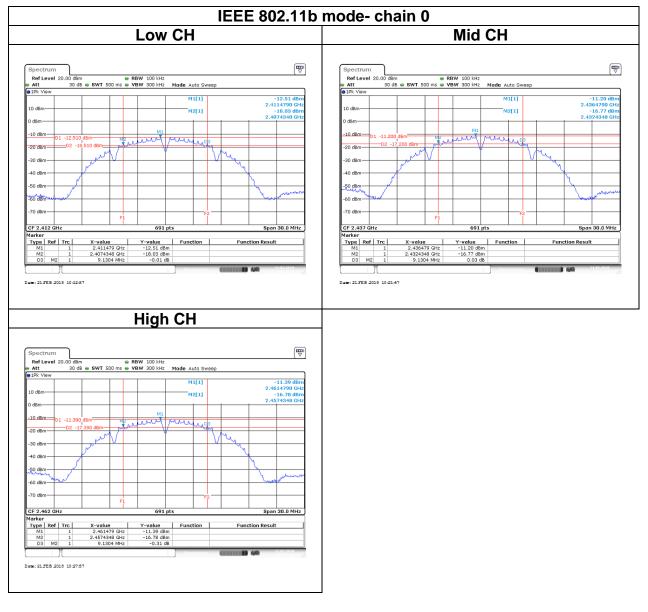

Occupied Bandwidth(99%) : For reporting purposes only.

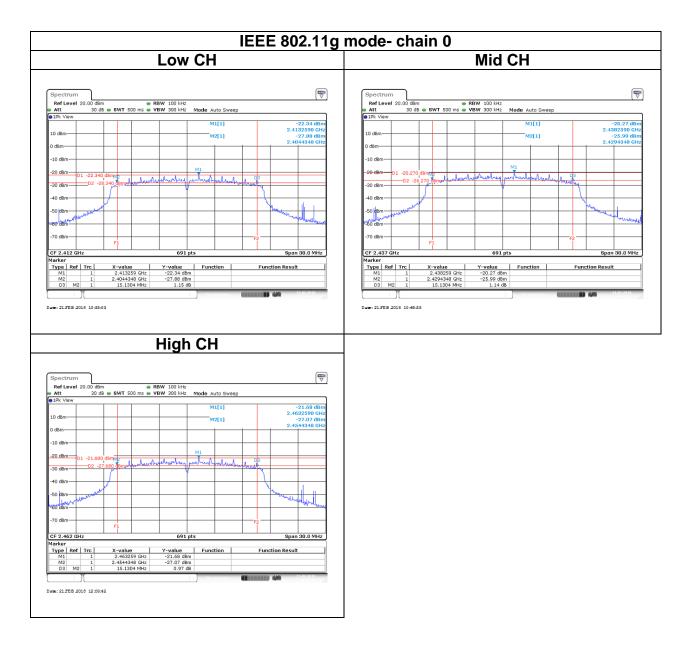
4.2.2 Test Procedure

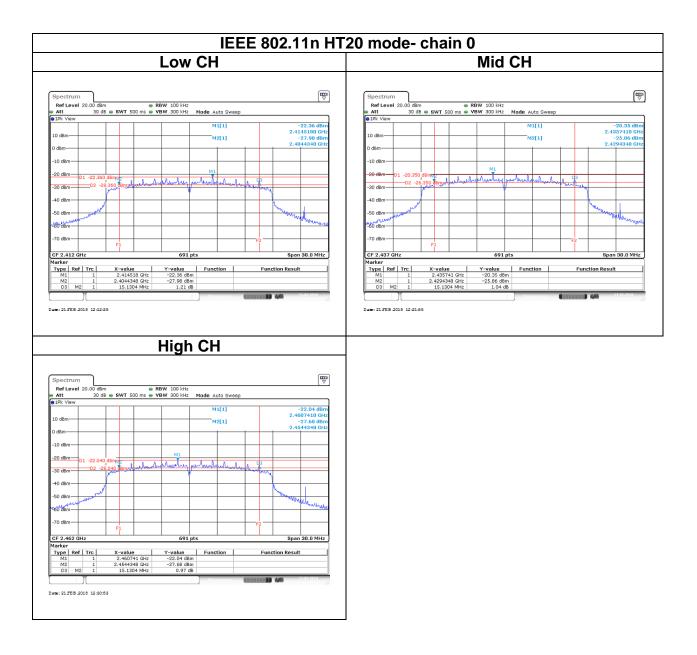
Test method Refer as KDB 558074 D01 v04, Section 8.1 and ANSI 63.10:2013 clause 6.9.2,

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW =100KHz, VBW = 300KHz and Detector = Peak, to measurement 6dB Bandwidth
- 4. SA set RBW = 1% ~ 5% OBW, VBW = three times the RBW and Detector = Peak, to measurement 99% Bandwidth
- 5. Measure and record the result of 6 dB Bandwidth and 99% Bandwidth. in the test report.

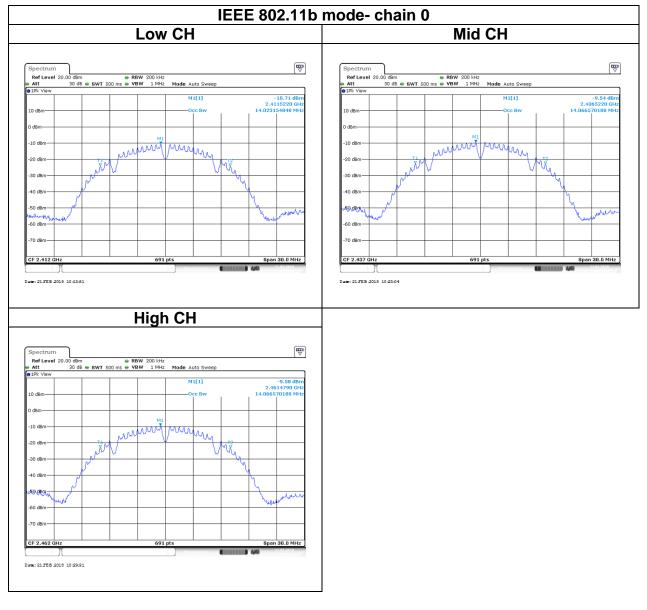
4.2.3 Test Setup

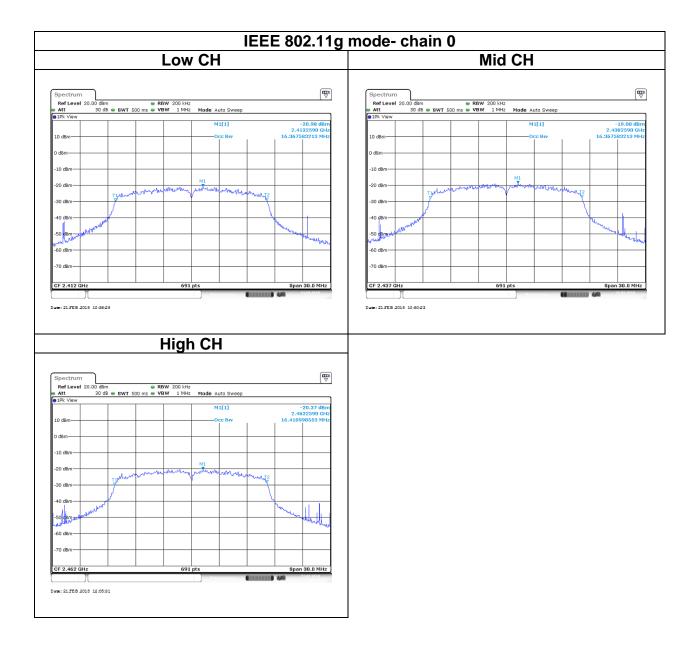

4.2.4 Test Result

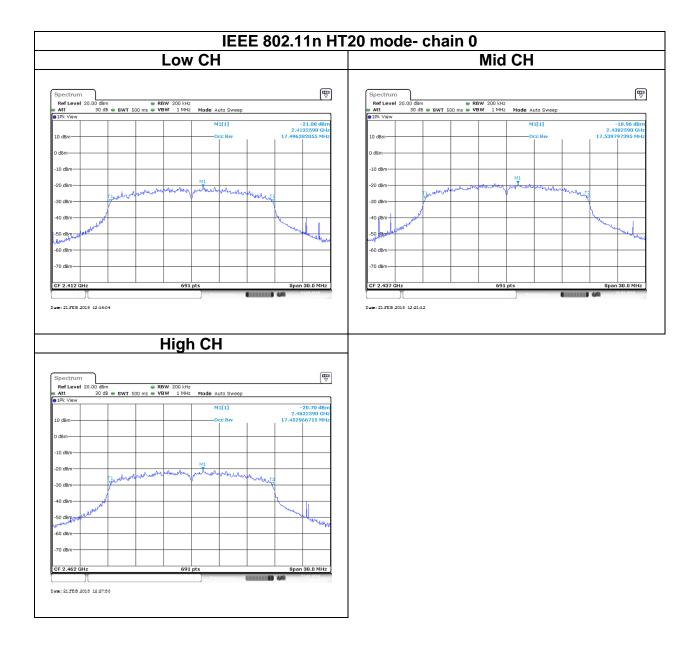

	Test mode: IEEE 802.11b mode / 2412-2462 MHz											
ChannelFrequency (MHz)Chain 0 OBW(99%) (MHz)Chain 1 OBW(99%) (MHz)Chain 1 OBW(99%) (MHz)Chain 0 6dB BW (MHz)Chain 1 6dB BW (MHz)6dB Im (MHz)												
Low	2412	14.0231		9.1304								
Mid	2437	14.0665		9.1304		≥500						
High	2462	14.0665		9.1304								


	Test mode: IEEE 802.11g mode / 2412-2462 MHz											
Channel	Channel Frequency (MHz) Chain 0 Chain 1 Chain 0 Chain 1 Chain 0 Chain 1 Chain 0 Chain 1 6dB BW (MHz) (MHz) (MHz) (MHz) (MHz) (MHz)											
Low	2412	16.3675		15.1304								
Mid	2437	16.3675		15.1304		≥500						
High	2462	16.4109		15.1304								

	Test mode: IEEE 802.11n HT 20 MHz mode / 2412-2462 MHz												
Channel	nnel Frequency (MHz) Chain 0 Chain 1 Chain 0 Chain 1 (MHz) (MHz) (MHz) (MHz) (MHz) (MHz) (MHz) (MHz) (MHz)												
Low	2412	17.4963		15.1304									
Mid	2437	17.5397		15.1304		≥500							
High	2462	17.4529		15.1304									


6dB BW Test Data





OBW(99%) Test Data

4.3 OUTPUT POWER MEASUREMENT

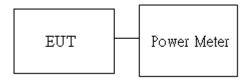
4.3.1 Test Limit

According to §15.247(b)

Peak output power :

For systems using digital modulation in the 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt(30 dBm), base on the use of antennas with directional gain not exceed 6 dBi If transmitting antennas of directional gain greater than 6dBi are used the peak output power the conducted output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

	Antenna not exceed 6 dBi : 30dBm
Limit	Antenna with DG greater than 6 dBi :
	[Limit = 30 − (DG − 6)] Point-to-point operation :
	Point-to-point operation :


Average output power : For reporting purposes only.

4.3.2 Test Procedure

Test method Refer as KDB 558074 D01 v04, Section 9.1.2.

- 1. The EUT RF output connected to the power meter by RF cable.
- 2. Setting maximum power transmit of EUT.
- 3. The path loss was compensated to the results for each measurement.
- 4. Measure and record the result of Peak output power and Average output power. in the test report.

4.3.3 Test Setup

4.3.4 Test Result

Peak output power :

	WIFI 2.4G													
Config	СН	Freq.	Powe	er Set	PK Powe	er (dBm)	PK Total	PK Total	Limit					
Config	Сп	(MHz)	Chain 0	Chain 1	Chain 0	Chain 1	Power (dBm)	Power (W)	Limit					
IEEE	Low	2412	de fault	I	16.41		16.41	0.0438						
802.11b Data rate:	Mid	2437	de fault		17.72		17.72	0.0592						
1Mbps	High	2462	de fault	I	17.08		17.08	0.0511						
IEEE	Low	2412	de fault	I	19.36		19.36	0.0863						
802.11g Data rate:	Mid	2437	de fault	I	20.01		20.01	0.1002	30					
6Mbps	High	2462	de fault	I	19.51		19.51	0.0893						
IEEE	Low	2412	de fault		19.34		19.34	0.0859						
802.11n HT 20 Data	Mid	2437	de fault	I	19.96		19.96	0.0991						
rate: MCS 0	High	2462	de fault	-	19.56		19.56	0.0904						

Average output power :

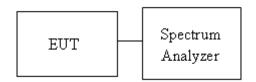
	WIFI 2.4G											
Config	СН	Freq. AV Pow		er (dBm)	AV Total							
Config	Сп	(MHz)	Chain 0	Chain 1	Power (dBm)							
IEEE	Low	2412	14.20		14.20							
802.11b Data rate:	Mid	2437	15.69		15.69							
1Mbps	High	2462	14.84		14.84							
IEEE	Low	2412	10.05		10.05							
802.11g Data rate:	Mid	2437	14.87		14.87							
6Mbps	High	2462	10.91		10.91							
IEEE	Low	2412	9.19		9.19							
802.11n HT 20 Data	Mid	2437	12.87		12.87							
rate: MCS 0	High	2462	9.64		9.64							

4.4 POWER SPECTRAL DENSITY

4.4.1 Test Limit

According to §15.247(e)

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

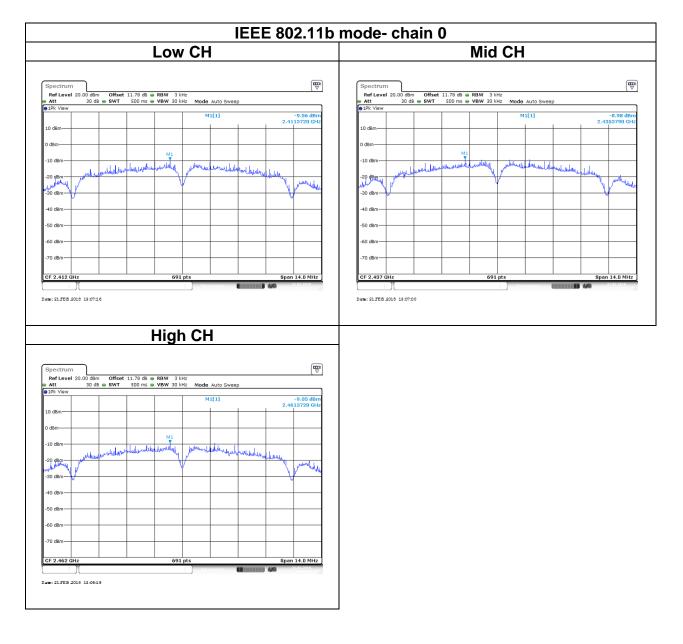

Antenna not exceed 6 dBi : 8dBm
Antenna with DG greater than 6 dBi :
[Limit = 8 − (DG − 6)] □ Point-to-point operation :
Point-to-point operation:

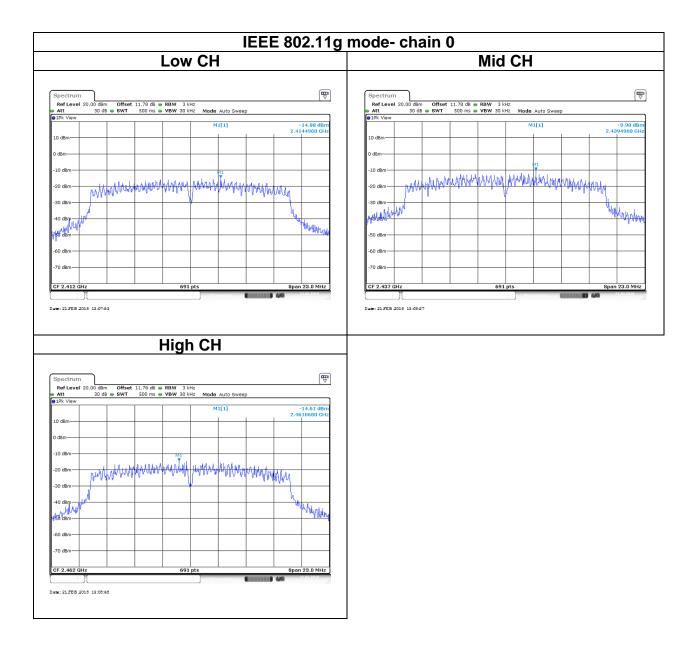
4.4.2 Test Procedure

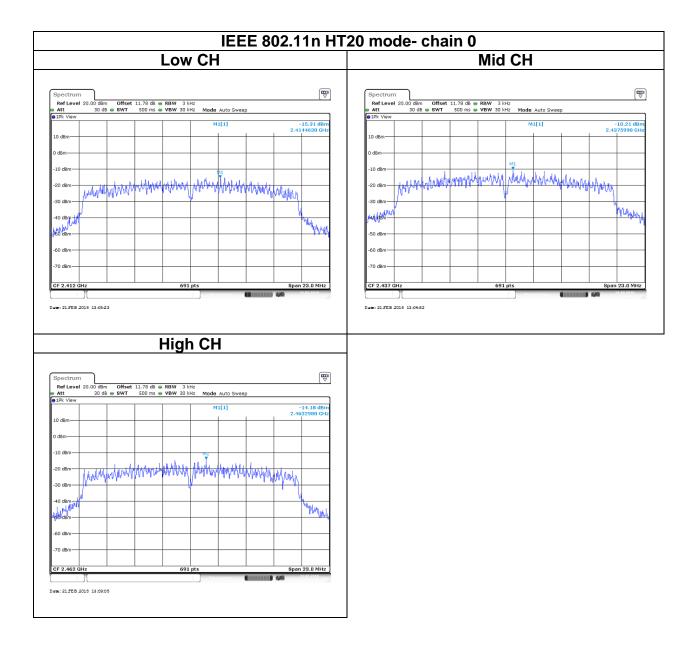
Test method Refer as KDB 558074 D01 v04, Section 10.2

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW = 3kHz, VBW = 30kHz, Span = 1.5 times DTS Bandwidth (6 dB BW), Detector = Peak, Sweep Time = Auto and Trace = Max hold.
- 4. The path loss and Duty Factor were compensated to the results for each measurement by SA.
- 5. Mark the maximum level.
- 6. Measure and record the result of power spectral density. in the test report.

4.4.3 Test Setup


4.4.4 Test Result


	Test mode: IEEE 802.11b mode / 2412-2462 MHz										
ChannelFrequency (MHz)Chain 0 PPSDChain 1 PPSDTotal PPSDLimit (dBm)Channel(MHz)(MHz)(MHz)Chain 1 (dBm)Total (dBm)Limit (dBm)											
Low	2412	-9.56	-	-9.56							
Mid	2437	-8.98	-	-8.98	8						
High	2462	-9.05	-	-9.05							


	Test mode: IEEE 802.11g mode / 2412-2462 MHz										
ChannelFrequency (MHz)Chain 0 PPSDChain 1 PPSDTotal PSSDLimit (dBm)Channel(MHz)(MHz)(MHz)(MHz)(MHz)											
Low	2412	-14.88	-	-14.88							
Mid	2437	-9.90	-	-9.90	8						
High	2462	-14.61	-	-14.61							

	Test mode: IEEE 802.11n HT 20 MHz mode / 2412-2462 MHz										
ChannelFrequency (MHz)Chain 0 PPSDChain 1 PPSDTotal PSSDLimit (dBm)Channel(MHz)(MHz)(Chain 0 (DBm)Chain 1 PPSDTotal PSSDLimit (dBm)											
Low	2412	-15.31	-	-15.31							
Mid	2437	-10.21	-	-10.21	8						
High	2462	-14.18	-	-14.18							

Test Data

4.5 CONDUCTED BANDEDGE AND SPURIOUS EMISSION

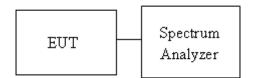
4.5.1 Test Limit

According to §15.247(d)

In any 100 kHz bandwidth outside the authorized frequency band,

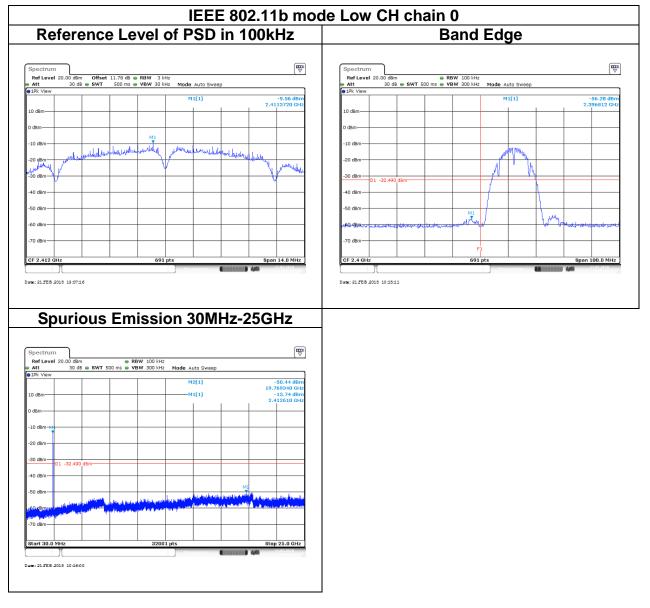
Non-restricted bands shall be attenuated at least 20 dB/30 dB relative to the maximum PSD level in 100 kHz by RF conducted or a radiated measurement which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

4.5.2 Test Procedure

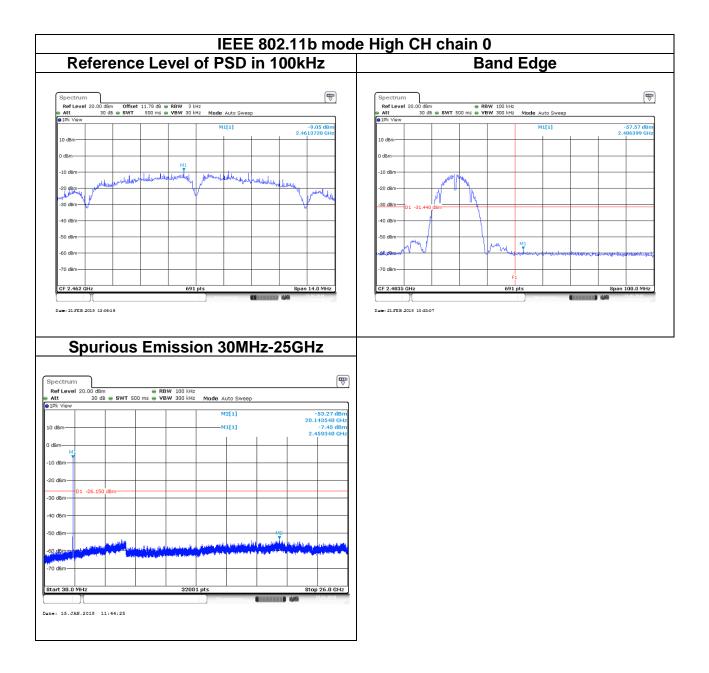

Test method Refer as KDB 558074 D01 v04, Section 11.

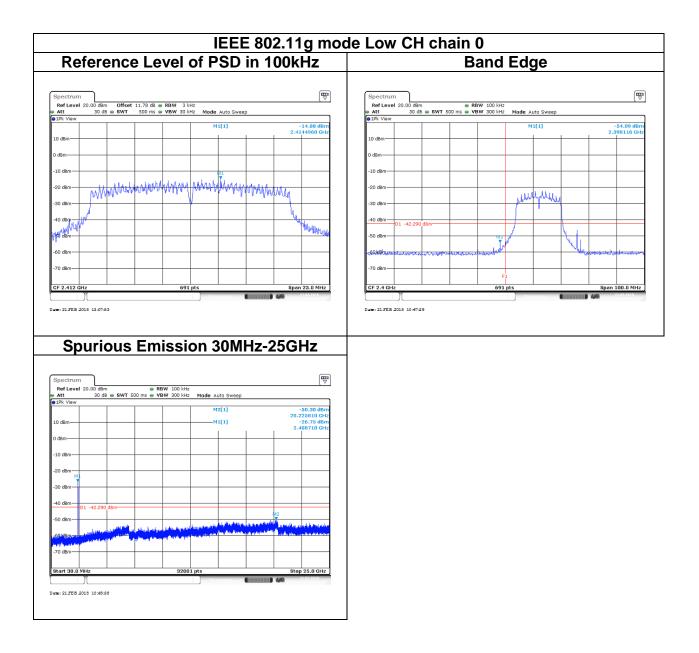
1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.

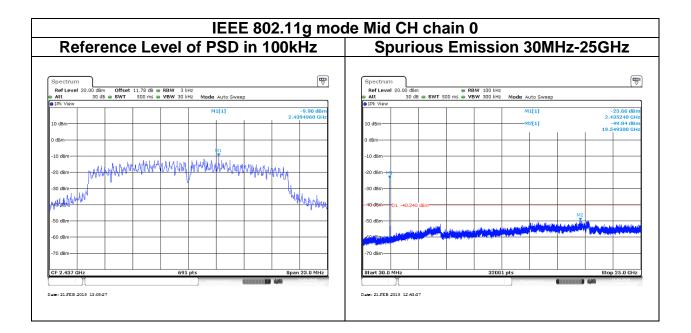
2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.

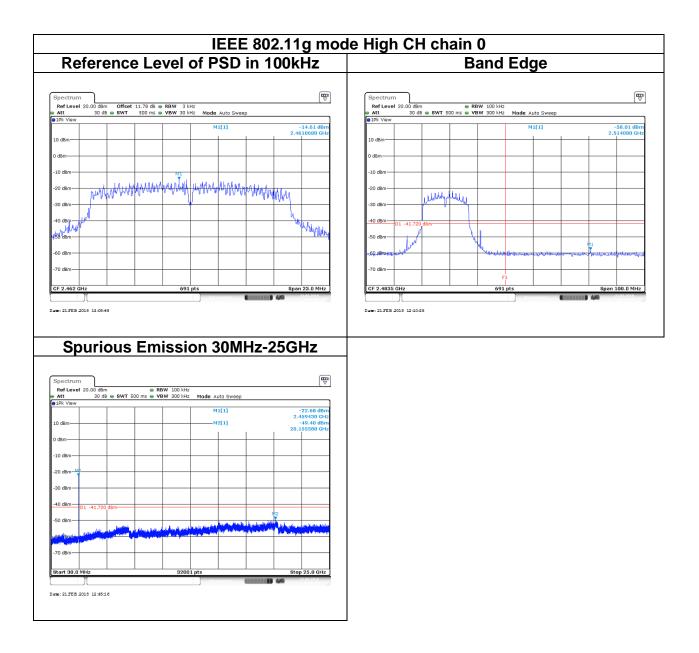

3. In any 100 kHz bandwidth outside the authorized frequency band, shall be attenuated at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when conducted power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

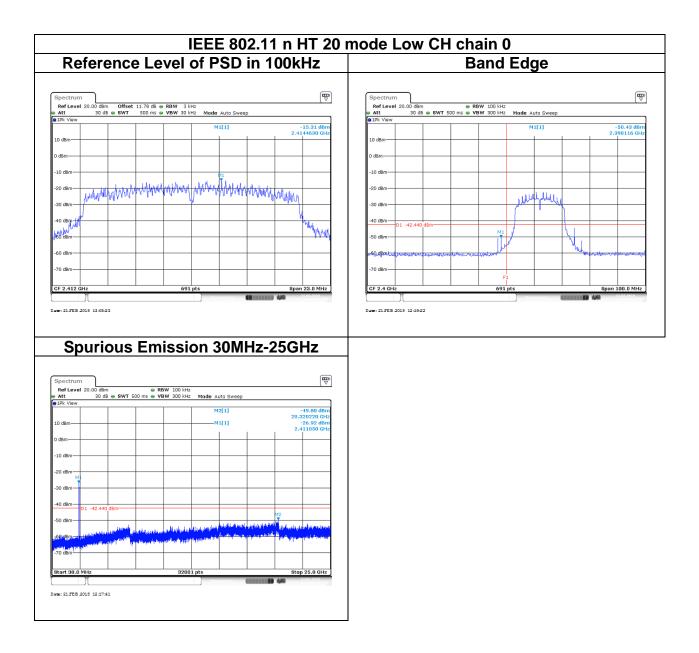

4.5.3 Test Setup

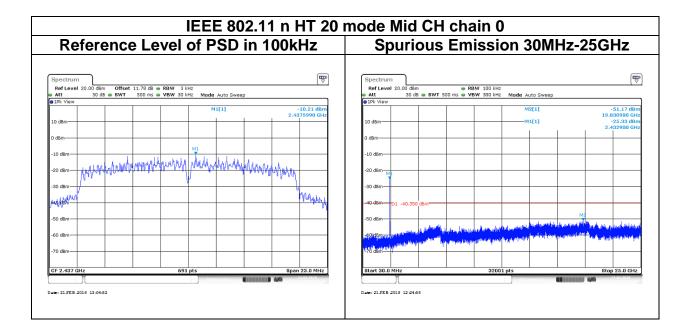


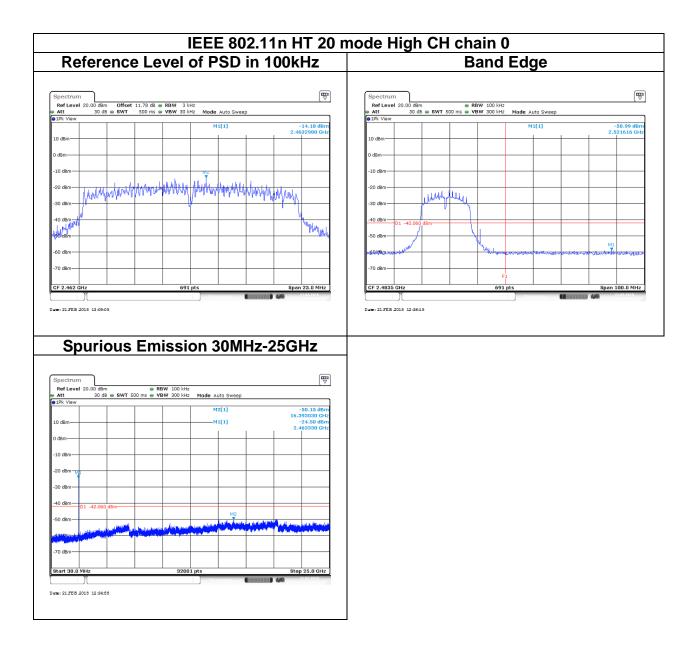

4.5.4 Test Result


Test Data









4.6 RADIATION BANDEDGE AND SPURIOUS EMISSION

4.6.1 Test Limit

FCC according to §15.247(d), §15.209 and §15.205,

In any 100 kHz bandwidth outside the authorized frequency band, all harmonic and spurious must be least 20 dB below the highest emission level with the authorized frequency band. Radiation emission which fall in the restricted bands must also follow the FCC section 15.209 as below limit in table.

Below 30 MHz

Frequency	Field Strength (microvolts/m)	Magnetic H-Field (microamperes/m)	Measurement Distance (metres)
9-490 kHz	2,400/F (F in kHz)	2,400/F (F in kHz)	300
490-1,705 kHz	24,000/F (F in kHz)	24,000/F (F in kHz)	30
1.705-30 MHz	30	N/A	30

Above 30 MHz

Frequency	Field Strength (microvolts/m)	Measurement Distance (metres)
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

4.6.2 Test Procedure

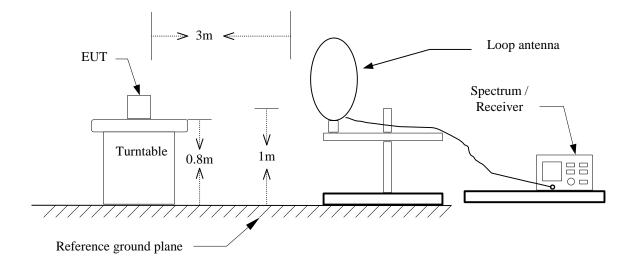
Test method Refer as KDB 558074 D01 v04, Section 12.1.

1. The EUT is placed on a turntable, Above 1 GHz is 1.5m and below 1 GHz is 0.8m above ground plane. The EUT Configured un accordance with ANSI C63.10, and the EUT set in a continuous mode.

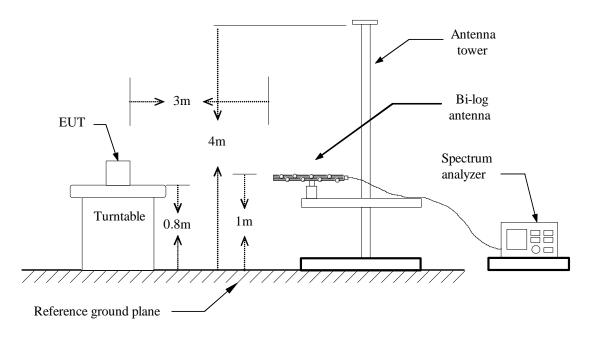
2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level. And EUT is set 3m away from the receiving antenna, which is scanned from 1m to 4m above the ground plane to find out the highest emissions. Measurement are made polarized in both the vertical and the horizontal positions with antenna.

3. Span shall wide enough to full capture the emission measured. The SA from 9kHz to 26.5GHz set to the low, Mid and High channels with the EUT transmit.

Note: No emission found between lowest internal used/generated frequency to 30MHz(9KHz~30MHz)

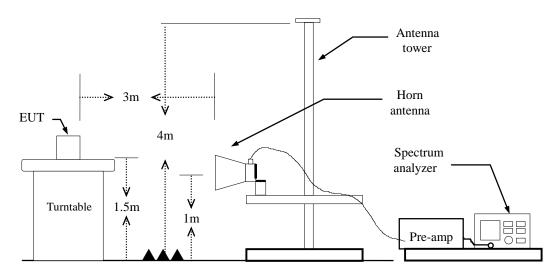

- 5. The SA setting following :
 - (1) Below 1G : RBW = 100kHz, VBW ≥ 3 RBW, Sweep = Auto, Detector = Peak, Trace = Max hold.
 - (2) Above 1G:
 - (2.1) For Peak measurement : RBW = 1MHz, VBW ≥ 3 RBW, Sweep = Auto, Detector = Peak, Trace = Max hold.
 - (2.2) For Average measurement : RBW = 1MHz, VBW

If Duty Cycle \geq 98%, VBW=10Hz.

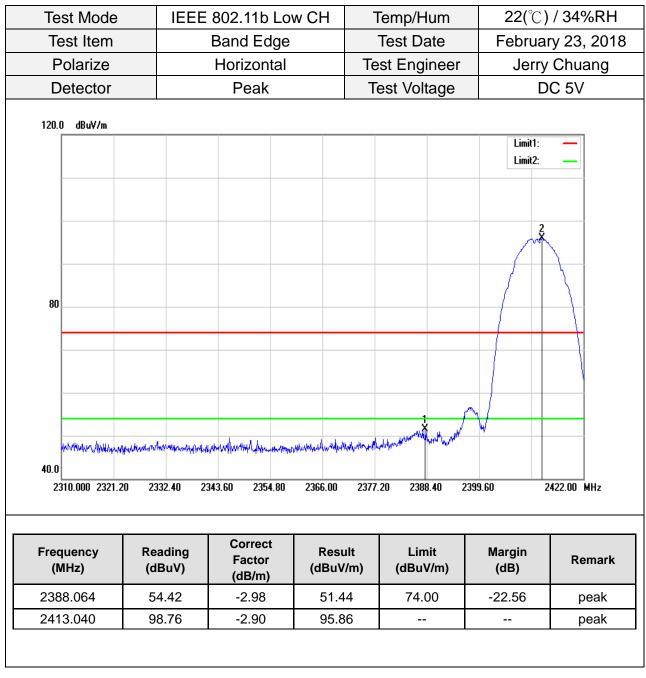

If Duty Cycle < 98%, VBW=1/T.

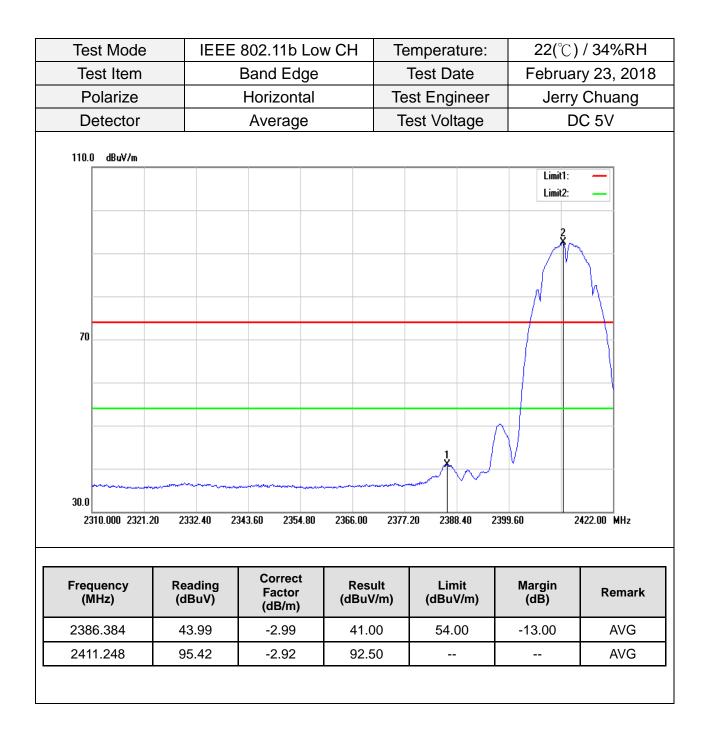
Configuration	Duty Cycle (%)	T(ms)	1/T (kHz)	VBW Setting
802.11b	73%	1.0200	980.392	1kHz
802.11g	26%	0.1850	5.405	5.6kHz
802.11n HT20	25%	0.1800	5.556	5.6kHz

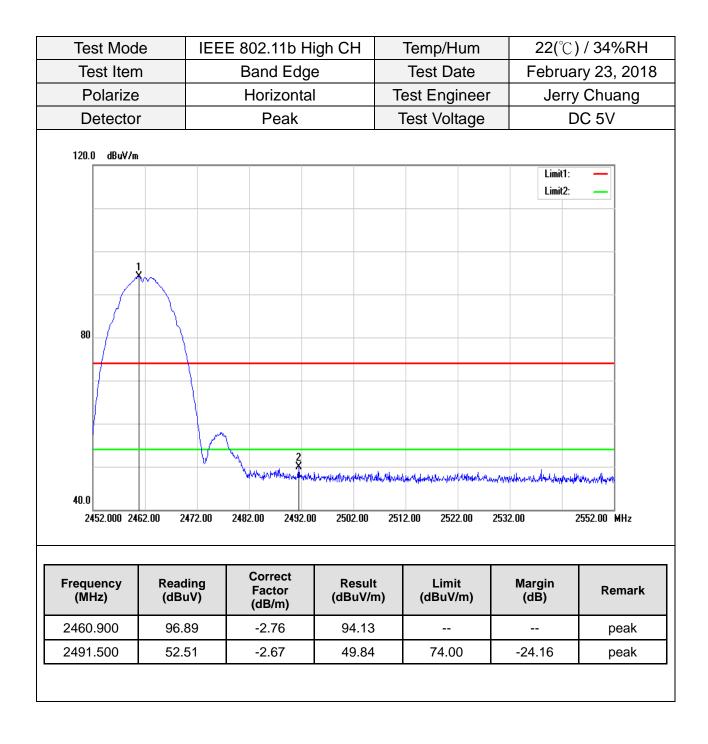
4.6.3 Test Setup <u>9kHz ~ 30MHz</u>

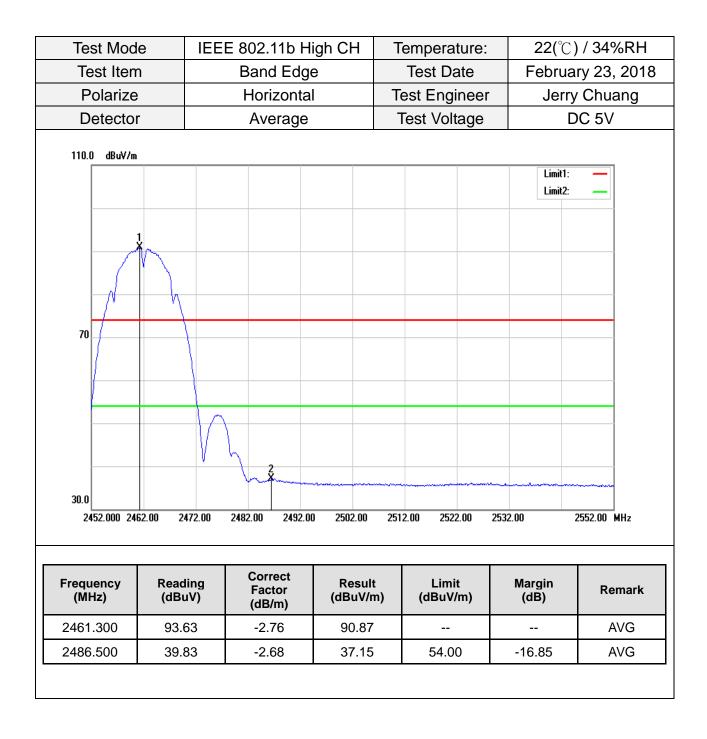


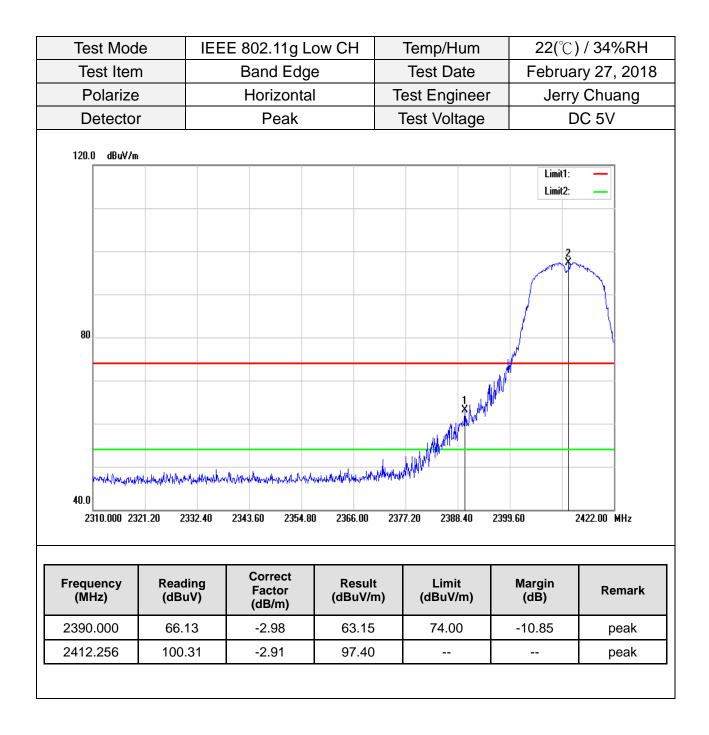
<u> 30MHz ~ 1GHz</u>

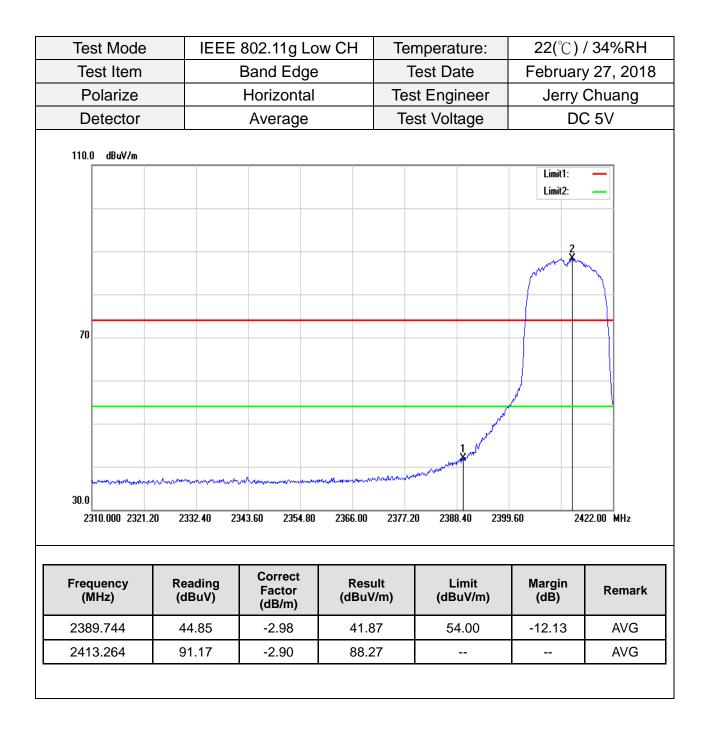

CESRF Compliance Certification Services Inc.

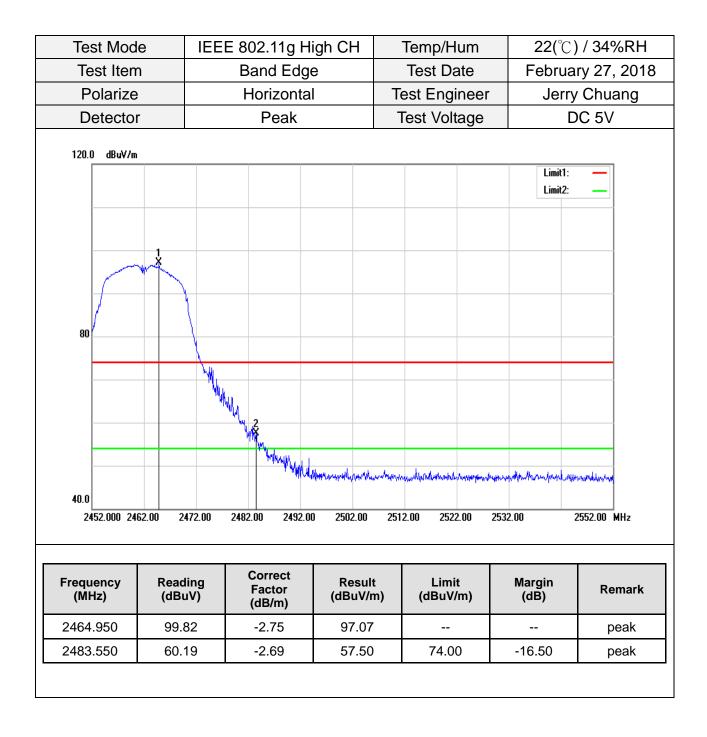

Above 1 GHz

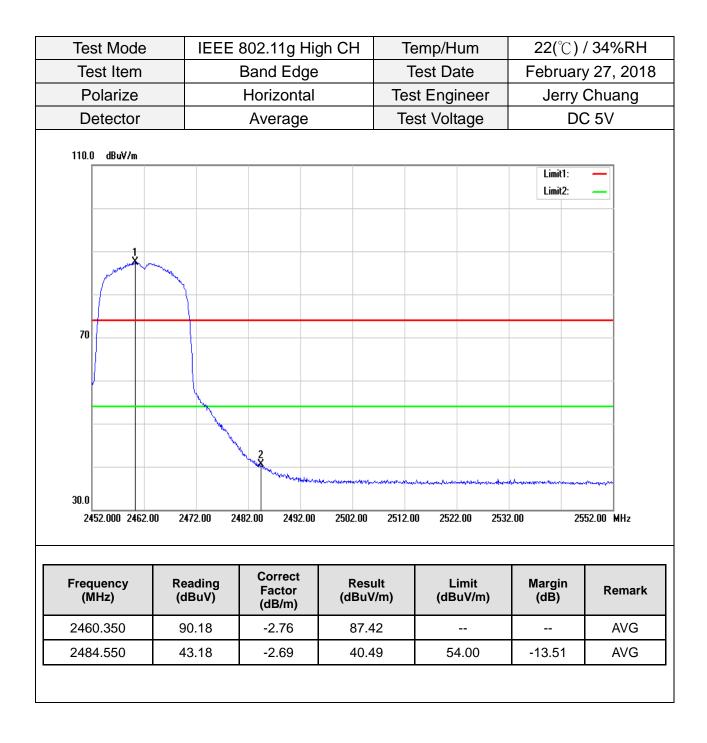



4.6.4 Test Result

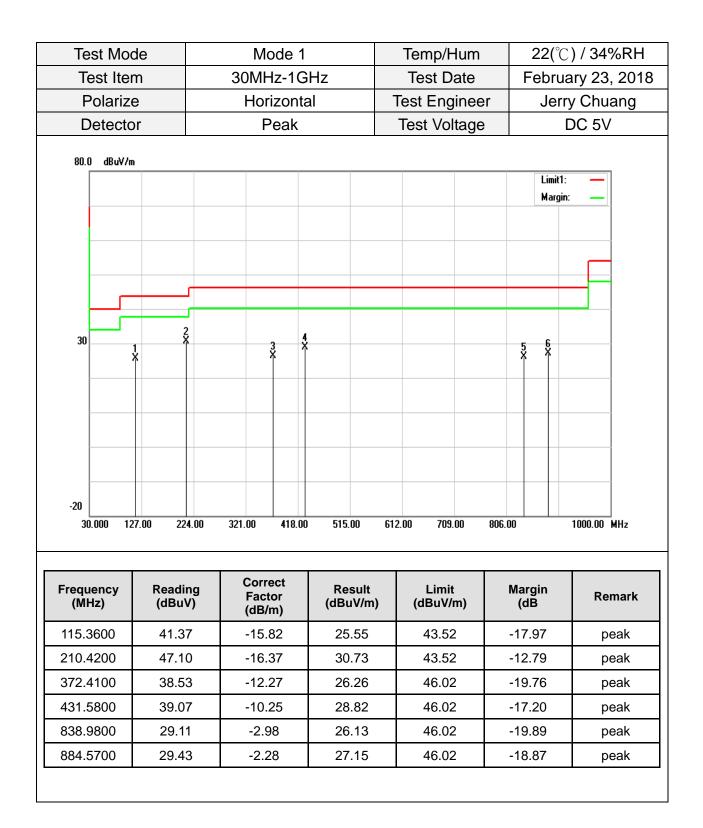

Band Edge Test Data







Test Mode	IEEE 80	2.11n HT 20	Low CH	Temp/Hum	22(°C)	22(°C) / 34%RH	
Test Item		Band Edge		Test Date	Februa	ry 27, 201	
Polarize		Horizontal		Test Enginee	er Jerry	[,] Chuang	
Detector		Peak		Test Voltage	e D	0C 5V	
120.0 dBuV/m							
80					Limit1: Limit2:		
40.0 2310.000 23	21.20 2332.40	2343.60 2354.8	л	2377.20 2388.40	2399.60	2422.00 MHz	
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	
	63.40	-2.98	60.42	74.00	-13.58	peak	
2389.632			1				


Test Mode	IEEE 8	302.11n HT 2	0 Low CH	Temperature	: 22(°C	22(°C) / 34%RH	
Test Item		Band Edge	e	Test Date	Februa	ary 27, 2018	
Polarize		Horizontal		Test Enginee	r Jerr	y Chuang	
Detector		Average		Test Voltage	e [DC 5V	
110.0 dBuV/	m						
70					Limit1: Limit2:		
30.0 2310.000 2	321.20 2332.40	2343.60 2354	80 2366.00	2377.20 2388.40	2399.60	2422.00 MHz	
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	
2390.000	44.01	-2.98	41.03	54.00	-12.97	AVG	
2413.488	90.87	-2.90	87.97			AVG	

Test Mode	IEEE 802.1	1n HT 20 Hi	igh CH	Temp/Hum		22(°∁) / 34%RH	
Test Item	Ba	and Edge		Test [Date	February 27, 2018	
Polarize	H	orizontal		Test En	gineer	Jerry	Chuang
Detector	Peak			Test Vo	oltage	DC	C 5V
120.0 dBuV/m							
						Limit1: Limit2:	_
+	~						
80							
	<u> </u>						
	- V	. 3					
		482.00 2492.00		4			
40.0		······································	in with a strong to faith of the sector	Here and the filt of the second	kenideren frijdenmekerken. Johreft	halanyaykaatopaddaaada.aafaaad	hurseftikkunde
2452.000 2462	.00 2472.00 24	482.00 2492.00	2502.00	2512.00 2	522.00 253	2.00 25	52.00 MHz
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/n		Limit IBuV/m)	Margin (dB)	Remark
2460.250	98.34	-2.76	95.58				peak
2483.500	59.21	-2.69	56.52		74.00	-17.48	peak

Test Mode	IEEE 802	.11n HT 20 F	ligh CH	Temperature:	22(℃)	22(°C) / 34%RH	
Test Item		Band Edge		Test Date	Februa	ry 27, 2018	
Polarize		Horizontal		Test Engineer	Jerry	Chuang	
Detector		Average		Test Voltage	D	C 5V	
110.0 dBu∀/m							
					Limit1: Limit2:	_	
Justice	1						
\int							
70							
		Mar 2					
		V 2	al manufacture	and the stand water and the stand of the sta			
30.0							
2452.000 246	2.00 2472.00	2482.00 2492.0	D 2502.00 2	512.00 2522.00	2532.00 2	552.00 MHz	
		Correct					
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	
2463.650	89.50	-2.75	86.75			AVG	
2483.750	42.80	-2.69	40.11	54.00	-13.89	AVG	

Below 1G Test Data

Test Mo	de	Mod	e 1	Temp/	Hum	22(℃) / 34%RH		
Test Ite	m	30MHz	-1GHz	Test E	Date	February 23, 201		
Polariz	e	Vert	ical	Test En	gineer	Jerry	/ Chuang	
Detecto	or	Peak		Test Vo	oltage		DC 5V	
80.0 dBu∀/	m					Limit1: Margin:		
30		3X		5				
-20 30.000 1	27.00 224.0	0 321.00	418.00 515.00	612.00 70)9.00 806.	00	1000.00 MHz	
Frequency (MHz)	Reading (dBuV)	Correc Factor (dB/m)	Kesult (dBuV/m	Lin) (dBu)		Margin (dB)	Remark	
115.3600	44.09	-15.82	28.27	43.	52	-15.25	peak	
232.7300	38.82	-16.57	22.25	46.0	02	-23.77	peak	
372.4100	36.98	-12.27	24.71	46.0	02	-21.31	peak	
457.7700	36.47	-9.43	27.04	46.0	02	-18.98	peak	
575.1400	31.77	-7.23	24.54	46.0	02	-21.48	peak	
915.6100	33.54	-1.75	31.79	46.0	22	-14.23	peak	

Above 1G Test Data

Test Mo	de l	IEEE 802.11b L	ow CH	Temp/Hum	22(℃)	/ 34%RH
Test Iter		Harmonic		Test Date		y 27, 2018
Polarize		Vertical		Test Engineer		Chuang
Detecto	r	Peak and Average		Test Voltage		C 5V
110.0 dBuV/i	m					
	_				Limit1: Limit2:	_
70						
	1 X					
	×					
30.0						
1000.000 3	550.00 6100.0	00 8650.00 11200.	00 13750.00 16	6300.00 18850.00	21400.00 26	6500.00 MHz
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
4823.500	41.89	4.38	46.27	74.00	-27.73	peak

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test Mo		IEEE	802.11b l		Temp/Hum			22(℃) / 34%RH	
Test Ite			Harmoni			est Date		February 27, 201	
Polariz	e		Horizonta	al		Enginee		ry Chuang	
Detecto	or	Peak and Average		Tes	st Voltage	•	DC 5V		
110.0 dBuV/	m								
							Limit Limit		
70									
	1 X								
20.0									
30.0 1000.000 3	550.00 61	00.00 86	50.00 11200).00 13750.00	16300.0	0 18850.00	21400.00	26500.00 MHz	
Frequency (MHz)	Readir (dBuV	ng /)	Correct Factor (dB/m)	Result (dBuV/n		Limit (dBuV/m)	Margin (dB)	Remark	
4823.500	44.44	1	4.38	48.82		74.00	-25.18	peak	
N/A									
	1								

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test Mod		IEEE	802.11b		-	emp/Hum		22(°C) / 34%RH	
Test Iter			Harmon			est Date		February 27, 201	
Polarize			Vertica			t Enginee		erry Chuang	
Detecto	r	Pe	ak and Av	rage	Te	st Voltage)	DC 5V	
110.0 dBuV/r	n								
	-							mit1: —	
							Li	mit2:	
70									
70									
	-								
	Å								
30.0									
1000.000 3	550.00 61	00.00	8650.00 1120	0.00 13750.00	16300.	00 18850.00	21400.00	26500.00 MHz	
F	Deed		Correct	Decel		1			
Frequency (MHz)	Readi (dBu	ng)	Factor (dB/m)	Resul (dBuV/r		Limit (dBuV/m)	Margin (dB)	Remark	
4872.000	42.4	7	4.46	46.93		74.00	-27.07	peak	
N/A									

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

			Temp/Hum	()	22(℃) / 34%RH	
า	Harmoni	с	Test Date	Februa	ry 27, 2018	
	Horizonta	al	Test Engineer		Chuang	
ſ	Peak and Ave	erage	Test Voltage	D	C 5V	
				Limit1: Limit2:	_	
X						
50.00 6100.00	8650.00 11200	.00 13750.00	16300.00 18850.00	21400.00 2	6500.00 MHz	
Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	
46.34	4.46	50.80	74.00	-23.20	peak	
	Reading (dBuV)	Horizonta Peak and Ave Peak and Peak	Horizontal Peak and Average Peak and Average Image: Stress of the second se	Horizontal Test Engineer Peak and Average Test Voltage Image: Stress of the stress	Horizontal Test Engineer Jerry r Peak and Average Test Voltage D Imit: Imit: Imit: Imit: Imit: Imit: Imit: Imit: Imit: Imit	

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

	Mode	•	IEE)2.11b		H		p/Hum				/ 34%	
	t Item			Н	larmon	ic		Tes	t Date		Feb	oruary	/ 27,	2018
Pol	larize				Vertica			Test E	Ingine	er	L	Jerry		ng
Det	tector		Р	eak	and Av	/erage		Test '	Voltage	•		DC	C 5V	
110.0	dBuV/m													
												.imit1: .imit2:	_	
_														
70														
_														
		1 X												
30.0														
1000).000 3550).00 61	00.00	8650.	00 1120	00.00 13	750.00 1	6300.00	18850.00	2140	0.00	26	500.00 M	Hz
										_				
Frequen (MHz)		Readir (dBu\	ng /)	F	orrect actor dB/m)		esult uV/m)		_imit BuV/m)		Margiı (dB)	n	Ren	nark
4924.00	00	38.36	6		4.55	4	2.91	7	4.00		-31.09	9	ре	ak
N/A														
										+		-+		

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test N	Node	IEE	E 802	2.11b H	ligh Cl	-	Temp/	Hum	22(°(C)/34%RH
Test	ltem		На	irmoni	С		Test [Date	Febru	ary 27, 2018
Pola	rize		Но	rizonta	al	1	Fest En	gineer	Jer	ry Chuang
Dete	ctor	F	'eak a	nd Ave	erage		Test Vo	oltage		DC 5V
110.0 d	Bu¥/m									
									Limit	
70										
	1									
30.0										
	00 3550.00 (6100.00	8650.00	11200).00 137	50.00 16	300.00 1	8850.00 2	21400.00	26500.00 MHz
			Cor	rect						
Frequenc (MHz)	y Read (dBu		Fa	ctor B/m)		sult ıV/m)	Lin (dBu'		Margin (dB)	Remark
4924.000) 40.4	41	4.	55	44	.96	74.	00	-29.04	peak
N/A										
							1			

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

	Mode	•		IEE		02.11 (-		ſemp			-) / 349	
	Item				l	Harmo		;			Test			F		ary 27	
Pola	arize					Vertic					est E					y Chu	
Det	ector			Ρ	eak	and A	ve	rage		Т	est \	/olta	ige		C	DC 5V	
110.0	dBu∀/m																
															Limit1: Limit2:		
70																	
		1	<														
30.0																	
1000.	000 3550).00	610).00	8650	D.OO 11	200.	00 137	50.00	1630	0.00	18850	.00 21	400.00		26500.00	MHz
Frequen (MHz)	су	Rea (dl	ading BuV)	9		Correct Factor (dB/m)			sult ıV/m)			.imit suV/m	1)	Març (dE		Re	mark
4827.00	00	4().69			4.38		45	.07		74	4.00		-28.	93	р	eak
N/A																	

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test Mo	de	IEE		2.11g l		4	Tem	p/Hum) / 34%	
Test Ite	m		Ha	armoni	С		Tes	t Date		Februa	ary 27,	2018
Polariz	е		Ho	orizonta	al	-	Test E	Inginee	r	Jerr	y Chua	ng
Detecto	or	F	eak a	and Av	erage		Test	Voltage		[DC 5V	
110.0 dBuV/	m											
										Limit1: Limit2:	_	
70												
	1											
	×											
30.0												
1000.000 3	550.00	6100.00	8650.0	0 1120).00 137	50.00 16	5300.00	18850.00	21400.	00	26500.00 M	Hz
Frequency (MHz)	Read (dB	ding uV)	Fa	orrect actor B/m)		sult ıV/m)		_imit BuV/m)	N	largin (dB)	Ren	nark
4824.000	44.	.66	4	.38	49	.04	7	4.00	-:	24.96	ре	ak
N/A												
									-			
	1				1		1		1			

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test Mo	de	IEEE	802.11g	Mid CH	Tem	p/Hum	22(℃) / 34%RH
Test Ite	m		Harmon	ic	Tes	t Date	Februa	ry 27, 2018
Polariz	е		Vertica		Test E	Engineer	Jerry	/ Chuang
Detecto	or	Pea	ak and Av	erage	Test	Voltage	C	DC 5V
110.0 dBuV/	m							
							Limit1: Limit2:	_
70								
	1							
	×							
30.0								
1000.000 3	550.00 61	00.00 8	650.00 1120	0.00 13750.00	16300.00	18850.00	21400.00	26500.00 MHz
Frequency (MHz)	Readi (dBu'	ng V)	Correct Factor (dB/m)	Result (dBuV/m		Limit BuV/m)	Margin (dB)	Remark
4876.000	44.3	6	4.47	48.83	7	74.00	-25.17	peak
N/A								
		I		1				1

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test Mod		IEE	E 802.1	-			Temp/			. ,	/ 34%RH
Test Iter			Harm				Test I				y 27, 2018
Polarize	e		Horizo				est En	-			Chuang
Detecto	r	Pe	eak and	Ave	erage		Test Vo	oltage		D	C 5V
110.0 dBu¥/n	N										
										Limit1: Limit2:	
70											
	*										
30.0 1000.000 35	550.00 610	0.00	8650.00	11200.	00 1375	0.00 16	300.00 1	8850.00	21400.00	26	500.00 MHz
Frequency (MHz)	Readin (dBuV	ng /)	Correc Factor (dB/m)	r	Res (dBu	sult V/m)	Lir (dBu		Mar (di	gin 3)	Remark
4869.000	46.50)	4.45		50.	.95	74.	00	-23.	05	peak
N/A											
		-+									

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test Mo	de	IEE			High C	Н	Tem	p/Hum		22(°C)	/ 34%	RH
Test Ite	m		Ha	irmon	ic		Tes	t Date	F	ebrua	ry 27,	201
Polariz	е		V	ertica			Test E	Inginee	r	Jerry	Chua	ng
Detecto	or	F	eak a	nd Av	erage		Test	Voltage	1	D	C 5V	
110.0 dBuV/	'n											
										Limit1: Limit2:	_	
										Linitz.		
70												
70												
	1 X											
30.0												
1000.000 3	8550.00 6	5100.00	8650.00	1120	0.00 137	'50.00 1	6300.00	18850.00	21400.00	2	26500.00 M	Hz
					-							
Frequency (MHz)	Read (dBu	ing ıV)	Fa	rrect ctor 3/m)		esult uV/m)		Limit BuV/m)	Maı (d		Ren	nark
4924.000	38.4	18	4.	55	43	3.03	7	4.00	-30	.97	ре	ak
N/A												
					<u> </u>							
					1							

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test Mod		IEEE	802.11g H			Temp			°C)/34%RH
Test Iten	n		Harmoni	С		Test	Date	Febr	uary 27, 2018
Polarize	;		Horizont	al	٦	lest Er	ginee	r Je	rry Chuang
Detecto	r	Pea	ak and Av	erage		Test V	oltage		DC 5V
110.0 dBuV/n	ı								
70									
	1 X								
30.0 1000.000 35	50.00 610	0.00 8	650.00 1120	D.OO 13750.	00 16	300.00 1	8850.00	21400.00	26500.00 MHz
Frequency (MHz)	Readin (dBuV)	g)	Correct Factor (dB/m)	Resi (dBuV			mit ıV/m)	Margin (dB)	Remark
4924.000	37.55		4.55	42.1	0	74	.00	-31.90	peak
N/A									

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test Mode	IEEE 8	02.11n HT 20	Low CH	Temp	/Hum	22(℃) / 34%RH
Test Item		Harmonic		Test	Date	Februa	ry 27, 2018
Polarize		Vertical		Test Er	ngineer	Jerry	/ Chuang
Detector	Pe	eak and Avera	ige	Test V	oltage	C	DC 5V
110.0 dBu¥/r	n					Limit1: Limit2:	_
70							
30.0 1000.000 3	550.00 6100.00) 8650.00 11200	0.00 13750.00	16300.00	18850.00 21	400.00	26500.00 MHz
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m		mit ıV/m)	Margin (dB)	Remark
4824.000	40.86	4.38	45.24	74	.00	-28.76	peak
N/A							

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test Mode	•	IEEE		1n HT 2		СН	Tem	p/Hum		22(°C)	/ 34%	6RH
Test Item			H	larmoni	C		Tes	t Date	Fe	ebrua	ry 27,	2018
Polarize			Н	orizonta	al		Test E	Enginee	er		Chua	ng
Detector			Peak	and Ave	erage		Test	Voltage	•	D	C 5V	
110.0 dBuV	/m									Limit1:	_	
70										Limit2:		
		1										
30.0 1000.000 3	3550.00	6100	.00 865	i0.00 112	00.00 137	50.00 1	6300.00	18850.00	21400.00	2	6500.00 M	Hz
Frequency (MHz)		eading dBuV)	I	Correct Factor (dB/m)		esult uV/m)		imit uV/m)	Març (dB		Ren	nark
4823.500	2	2.88		4.38	47	.26	74	4.00	-26.	74	pe	ak
N/A												
	I						1		<u>I</u>			

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test Mode		EEE 80)2.11n	hHT 20	O Mid C	Н	Temp	o/Hum	22(°C) / 34%RH
Test Item			Hari	monic			Test	Date	Febr	ruary 27, 2018
Polarize			Ve	rtical		-	Fest E	nginee	r Je	erry Chuang
Detector		Pe	eak an	d Aver	age		Test \	/oltage		DC 5V
110.0 dBu¥/i	n								Lim	ir1·
									Lim	
70										
		1 X								
30.0										
1000.000 3	550.00	6100.00	8650.0	0 1120	0.00 1375).00 16	300.00	18850.00	21400.00	26500.00 MHz
Frequency (MHz)	Re (d	ading BuV)	Fa	orrect actor B/m)	Res (dBu			.imit suV/m)	Margin (dB)	Remark
4874.000	4	1.79	4	.47	46.	26	7	4.00	-27.74	peak
N/A										

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test Mode	IEEE 802.2	11n HT 20 M	id CH	Temp/Hum	22(°C)	/ 34%RH
Test Item	F	larmonic		Test Date	Februar	y 27, 201
Polarize	Н	lorizontal		Test Enginee	r Jerry	Chuang
Detector	Peak	and Average	e	Test Voltage	D	C 5V
110.0 dBuV/m						
					Limit1: Limit2:	_
70						
	1 X					
30.0						
1000.000 3550.	00 6100.00 8	650.00 11200.00	13750.00 1	6300.00 18850.00	21400.00 26	500.00 MHz
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m	Margin) (dB)	Remark
4865.000	45.56	4.46	50.02	74.00	-23.98	peak
N/A						

- fundamental frequency. 2. For above 1GHz, the EUT peak value was under average limit, therefore the
 - Average value compliance with the average limit

Test Mode	IEEE 802	11n HT 20 H	ligh CH	Temp/	Hum	22(℃)	/ 34%RH
Test Item		Harmonic	Test Date		February 27, 2018		
Polarize		Vertical		Test Engineer		Jerry Chuang	
Detector	Peak and Average			Test Vo	ltage	DC 5V	
110.0 dBu¥/n	n					Limit1: Limit2:	_
70							
30.0 1000.000 35	550.00 6100.00	8650.00 11200.	.00 13750.00	16300.00 18	850.00 214	00.00 2	26500.00 MHz
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Lim) (dBu)		Margin (dB)	Remark
4924.000	38.11	4.55	42.66	74.0	00	-31.34	peak
N/A							

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test Mode	IEEE 802	IEEE 802.11n HT 20 High CH			Hum	22(°C) / 34%RH		
Test Item		Harmonic	Test D		February 27, 2018			
Polarize		Horizontal		Test Eng	gineer	Jerry Chuang		
Detector	Peak and Average			Test Vo	ltage	DC 5V		
110.0 dBu∀/m								
						Limit1: Limit2:	Limit1: — Limit2: —	
70								
	X							
30.0								
1000.000 355	50.00 6100.00	8650.00 11200	.00 13750.00	16300.00 18	850.00 214	100.00	26500.00 MHz	
Frequency (MHz	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m	Lim) (dBu\		Margin (dB)	Remark	
4924.000	37.60	4.55	42.15	74.(00	-31.85	peak	
N/A								
N/A								

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

--End of Test Report--