

243 Jubug-Ri,Yangji-Myeon, Yongin-Si, Gyeonggi-Do, Korea 17159 Tel: +82-31-323-6008 Fax: +82-31-323-6010 <u>http://www.ltalab.com</u>

> Dates of Tests: January 11 ~ February 09, 2018 Test Report S/N: LR500111802C Test Site : LTA CO., LTD.

CERTIFICATION OF COMPLIANCE

FCC ID IC ID APPLICANT 2API2-WINIX-QS 23527-WINIXQS WINIX INC.,

Equipment Class Manufacturing Description	:	Part 15 Spread Spectrum Transmitter (DSS) Air Purifuer
	•	
Manufacturer	:	WINIX INC.,
Model name	:	WINIX QS
Test Device Serial No.:	:	Identical prototype
FCC Rule Part(s)	:	FCC Part 15.247
		Subpart C ; ANSI C-63.4-2014 / ANSI C-63.10-2013
IC Rule Part(s)	:	RSS-247 and Issue No.2 DATE : 2017
Frequency Range	:	2402 ~ 2480 MHz
RF power	:	Max 7.23 dBm – Conducted (Basic)
		Max 1.44 dBm – Conducted (EDR)
Data of issue	:	February 12, 2018

This test report is issued under the authority of:

Yong-Cheol Wang, Manager

The test was supervised by:

Jae-Hum Yeon, Test Engineer

This test result only responds to the tested sample. It is not allowed to copy this report even partly without the allowance of the test laboratory. The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

TABLE OF CONTENTS

1. GENERAL INFORMATION	3
2. INFORMATION ABOUT TEST ITEM	4
3. TEST REPORT	5
3.1 SUMMARY OF TESTS	5
3.2 FREQUENCY HOPPING SYSTEM REQUIREMENTS	6
3.3 TECHNICAL CHARACTERISTICS TEST	8
3.3.1 CARRIER FREQUENCY SEPARATION	8
3.3.2 NUMBER OF HOPPING FREQUENCIES	10
3.3.3 20 dB BANDWIDTH	12
3.3.4 TIME OF OCCUPANCY (Dwell Time)	19
3.3.5 TRANSMITTER OUTPUT POWER	24
3.3.6 BAND EDGE	28
3.3.7 CONDUCTED SPURIOUS EMISSIONS	34
3.3.8 RADIATED SPURIOUS EMISSIONS	39
3.3.9 AC Conducted Emissions	58
3.4 MEASUREMENT UNCERTAINTY	71

APPENDIX

APPENDIX	TEST EQUIPMENT USED FOR TESTS	 72

1. General information

<u>1-1 Test Performed</u>

Company name	LTA Co., Ltd.	
Address	243, Jubug-ri, Yar	ngji-Myeon, Youngin-Si, Kyunggi-Do, Korea. 449-822
Web site	http://www.ltalab	.com
E-mail	chahn@ltalab.com	<u>n</u>
Telephone	+82-31-323-6008	3
Facsimile	+82-31-323-6010)
		4 1 IGO/IEG 17005 1:1:4 "G 1

Quality control in the testing laboratory is implemented as per ISO/IEC 17025 which is the "General requirements for the competents of calibration and testing laboratory".

1-2 Accredited agencies

LTA Co., Ltd. is approved to perform EMC testing by the following agencies:

Agency	Country	Accreditation No.	Validity	Reference
NVLAP	U.S.A	200723-0	UPDATING	ECT accredited Lab.
RRA	KOREA	KR0049	-	EMC accredited Lab.
FCC	U.S.A	649054	2019-04-13	FCC CAB
	C-4948,	2020-09-10	VCCI as sisteration	
	T-2416,	2020-09-10		
VCCI	VCCI JAPAN	R-4483(10 m),	4483(10 m), 2020-10-15	VCCI registration
		G-847	2018-12-13	
IC	CANADA	5799A-1	2019-11-07	IC filing
KOLAS	KOREA	NO.551	2021-08-20	KOLAS accredited Lab.

2. Information about test item

2-1 Client & Manufacturer

Company name	:	WINIX INC.,
Address	:	607, 3na, 295, Gongdan 1-daero, Siheung-si, Gyeonggi-do Seoul, Korea
Tel / Fax	:	TEL No: +82-31-499-5088 / FAX No: +82-31-498-2617

<u>2-2 Equipment Under Test (EUT)</u>

Model name	:	WINIX QS
Serial number	:	Identical prototype
Date of receipt	:	January 11, 2018
EUT condition	:	Pre-production, not damaged
Antenna type	:	Monopole Antenna Max Gain 0 dBi
Frequency Range	:	2402 ~ 2480MHz
		Max 7.23 dBm – Conducted (Basic)
RF output power		Max 1.44 dBm – Conducted (EDR)
Number of channels	:	79
Channel spacing	:	1 MHz
Channel Access Protocol	:	Frequency Hopping Spread Spectrum (FHSS)
Type of Modulation	:	Basic Mode(GFSK), EDR Mode(Pi/4 DQPSK, 8DPSK)
Power Source	:	AC 110 V
Firmware Version	:	V1.0.0

2-3 Tested frequency

Bluetooth	LOW	MID	HIGH
Frequency (MHz) – Basic & EDR	2402	2441	2480

2-4 Ancillary Equipment

Equipment	Model No.	Serial No.	Manufacturer	
Notebook	CR720	MS-1736	MSI	

3. Test Report

3.1 Summary of tests

FCC Part	Parameter	Limit	Test	Status	
Section(s)			Condition	(note 1)	
15.247(a)	Carrier Frequency Separation	$\geq 2/3$ of 20dB BW		C	
15.247(a)	Number of Hopping Frequencies	\geq 15 channels		С	
15.247(a)	20 dB Bandwidth 99% Bandwidth	_		С	
15.247(a)	Dwell Time	\leq 0.4 seconds	Conducted	C	
15.247(b)	Transmitter Output Power	$\leq 1 \text{W for 1Mbps}$ $\leq 125 \text{mW for 2,3Mbps}$		С	
15.247(d)	Conducted Spurious emission	> 20 dBc		C	
15.247(d)	Band Edge	> 20 dBc		С	
15.249 / 15.209	Field Strength of Harmonics	< 54 dBuV (at 3m)	Dellard	C	
15.109	Field Strength	_	- Radiated	С	
15.207 /15.107	AC Conducted Emissions	EN 55022	Line Conducted	С	
15.203	Antenna requirement	_	_	C	
Note 1: C=Complies NC=Not Complies NT=Not Tested NA=Not Applicable					
Note 2: The data in thi	s test report are traceable to the nationa	al or international standards.			

Note 1: Antenna Requirement

 \rightarrow The WINIX Inc., FCC ID: 2API2-WINIX-QS unit complies with the requirement of §15.203.

The antenna type is Monopole Antenna.

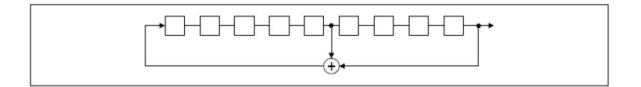
The sample was tested according to the following specification: *FCC Parts 15.247; ANSI C-63.4-2014;ANSI C-63.10-2013 *FCC KDB Publication No. 558074 D01 v03r05 *FCC TCB Workshop 2012, April *RSS-247 and Issue No.2 Date:2017

3.2 Frequency Hopping System Requirements

3.2.1 Standard Applicable

According to FCC Part 15.247(a)(1), The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

(g) Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section.


(h) The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

3.2.2 EUT Pseudorandom Frequency Hopping Sequence

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage, and the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones. Number of shift register stages: 9

Length of pseudo-random sequence: 29-1 = 511 bits

Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

0246	62 64	78 1	73 75 77
		<u> </u>	<u>i</u>

Each frequency used equally on the average by each transmitter.

The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

3.2.3 Frequency Hopping System

This transmitter device is frequency hopping device, and complies with FCC part 15.247 rule.

This device uses Bluetooth radio which operates in 2400-2483.5 MHz band. Bluetooth uses a radio technology called frequency-hopping spread spectrum, which chops up the data being sent and transmits chunks of it on up to 79 bands (1 MHz each; centred from 2402 to 2480 MHz) in the range 2,400-2,483.5 MHz. The transmitter switches hop frequencies 1,600 times per second to assure a high degree of data security. All Bluetooth devices participating in a given piconet are synchronized to the frequency-hopping channel for the piconet. The frequency hopping sequence is determined by the master's device address and the phase of the hopping sequence (the frequency to hop at a specific time) is determined by the master's internal clock. Therefore, all slaves in a piconet must know the master's device address and must synchronize their clocks with the master's clock.

Adaptive Frequency Hopping (AFH) was introduced in the Bluetooth specification to provide an effective way for a Bluetooth radio to counteract normal interference. AFH identifies "bad" channels, where either other wireless devices are interfering with the Bluetooth signal or the Bluetooth signal is interfering with another device. The AFH-enabled Bluetooth device will then communicate with other devices within its piconet to share details of any identified bad channels. The devices will then switch to alternative available "good" channels, away from the areas of interference, thus having no impact on the bandwidth used.

*Example for a Bluetooth device using channel numbers would be : Chan 44, 35, 78, 03, 15, 21, 76, 40, 56, 13, 02, 19, 67, 39, 78, 20, 21, 64, 75 etc.

3.3 TECHNICAL CHARACTERISTIC TEST

3.3.1 Carrier Frequency Separation

Procedure:

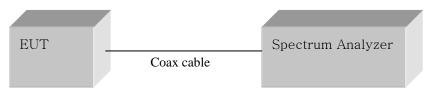
The test follows DA00-705. The carrier frequency separation was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function enabled.

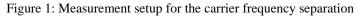
After the trace being stable, the reading value between the peaks of the adjacent channels using the marker-delta function was recorded as the measurement results.

The spectrum analyzer is set to:

Span = 2~ 3 MHz (wide enough to capture the peaks of two adjacent channels)RBW = 10 kHz (1% of the span or more)Sweep = autoVBW = 10 kHzDetector function = peakTrace = max holdTrace = max hold

Measurement Data:

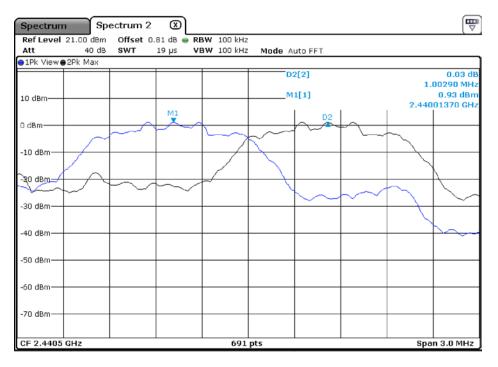

Test Results		
Carrier Frequency Separation (MHz)	Result	
0.999 (Basic)	Complies	
1.003 (EDR)	Complies	


- See next pages for actual measured spectrum plots.

Minimum Standard:

The EUT shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or two-thirds of 20 dB bandwidth of the hopping channel, whichever is greater.

Measurement Setup



Carrier Frequency Separation

Basic Mode

Spectrum	Spectrum 2	\otimes						
Ref Level 25.9).81 dB 🔵 RBW						
Att	45 dB SWT	19 µs VBV	🗸 100 kHz	Mode Aut	to FFT			
⊜1Pk Max								
an dam				D2	[1]			0.02 dB 98.60 kHz
20 dBm				M1	C+1			7.22 dBm
				(WLL)	[4]		2 441	00000 GHz
10 dBm							2	50000 4112
	-		\bigwedge	\sim		\cap		\backslash
0 dBm	-+			-				
				Γ				
-10 dBm					\geq			
00.40.00								
-20 dBm								
-30 dBm								
-40 dBm								
50.40								
-50 dBm								
-60 dBm								
-70 dBm								
CF 2.441 GHz			691 p	ots			Spar	n 3.0 MHz

EDR Mode

3.3.2 Number of Hopping Frequencies

Procedure:

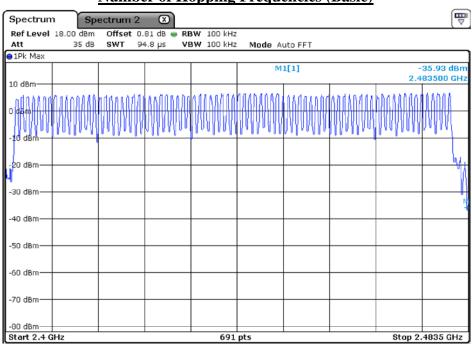
The test follows DA00-705. The number of hopping frequencies was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function enabled.

To get higher resolution, four frequency ranges within the 2400 \sim 2483.5 MHz FH band were examined.

The spectrum analyzer is set to (Bluetooth):Frequency rangeStart = 2400.0 MHz,Stop = 2483.5 MHzRBW = 100 kHz (1% of the span or more)Sweep = autoVBW = 100 kHz (VBW \geq RBW)Detector function = peakTrace = max holdSpan > 40 MHz

Measurement Data : Complies

Total number of Hopping Channels	79 (Basic, EDR)


- See next pages for actual measured spectrum plots.

Minimum Standard:

At least 15 channels


Measurement Setup

Same as the Chapter 3.3.1 (Figure 1)

Number of Hopping Frequencies (Basic)

Number of Hopping Frequencies (EDR)

3.3.3 20 dB Bandwidth

Procedure:

The bandwidth at 20 dB below the highest inband spectral density was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function disabled at the highest, middle and the lowest available channels..

After the trace being stable, Use the marker-to-peak function to set the marker to the peak of the emission. Use the marker-delta function to measure 20 dB down one side of the emission. Reset the marker-delta function, and move the marker to the other side of the emission, until it is (as close as possible to) even with the reference marker level. The marker-delta reading at this point is the 20 dB bandwidth of the emission.

The spectrum analyzer is set to (Bluetooth):

Center frequency = the highest, middle and the lowest channelsSpan = 3 MHz (approximately 2 or 3 times of the 20 dB bandwidth)RBW = 30 kHzSweep = autoVBW = 30 kHz (VBW \geq RBW)Detector function = peakTrace = max hold

Measurement Data: Basic Mode

Frequency	Channel No.	Test Results(MHz)				
(MHz)	Channel No.	20dB Bandwidth	99% Bandwidth			
2402	0	0.803	0.890			
2441	39	0.790	0.951			
2480	78	0.795	0.951			

- See next pages for actual measured spectrum plots.

Measurement Data: EDR Mode

Frequency	Channel No.	Test Results(MHz)				
(MHz)	Channel No.	20dB Bandwidth	99% Bandwidth			
2402	0	1.229	1.172			
2441	39	1.259	1.172			
2480	78	1.259	1.172			

- See next pages for actual measured spectrum plots.

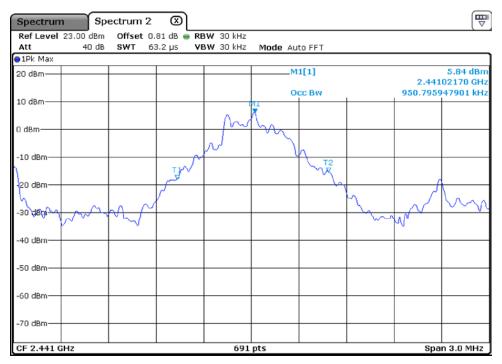
Minimum Standard:

N/A

Measurement Setup

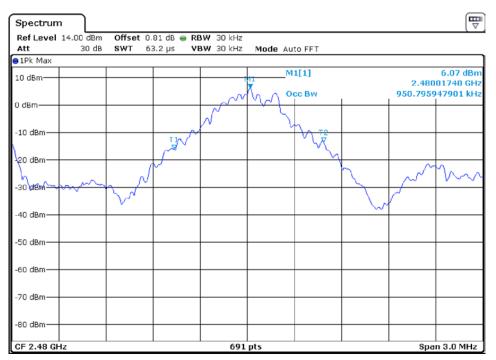
Same as the Chapter 3.3.1 (Figure 1)

20 dB Bandwidth ₽ Spectrum Ø Spectrum 2 Ref Level 22.00 dBm Offset 0.81 dB 👄 RBW 30 kHz Att 40 dB SWT 63.2 µs VBW 30 kHz Mode Auto FFT ●1Pk Max 4.50 dBm 2.40201740 GHz -M1[1] ndB 20.00 dB 10 dBm-803.20000000 kHz Bw 41 Q factor 2990.6 0 dBm-Λ -10 dBm· 12 A -20 dBm-SQ dBm-40 dBm -50 dBm--60 dBm· -70 dBm-Span 3.0 MHz CF 2.402 GHz 691 pts

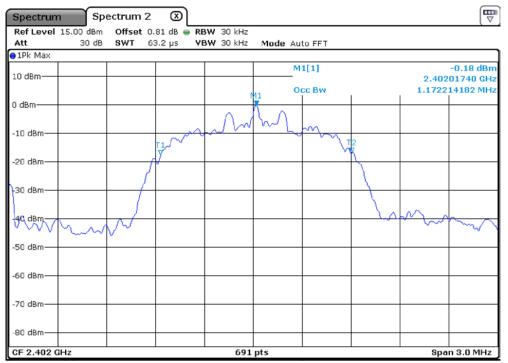

Channel 0 of Basic mode

Channel 39 of Basic mode

20 dB Bandwidth

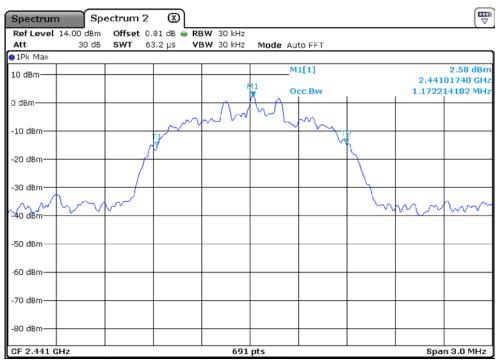

Spectrum Spe	ectrum 2 🛞					
Ref Level 23.00 dBm	Offset 0.81 dB 🖷 RE	3W 30 kHz				
Att 40 dB	SWT 63.2 µs VI	30 kHz	Mode Auto FFT			
●1Pk Max						
20 dBm-			M1[1]			5.94 dBm
					2.441	01740 GHz
10 dBm		ļ,	ndB H Bw		790 2000	20.00 dB 100000 kHz
			Q factor		790.2000	3089.3
0 dBm		1 m	bo I			
0 dBm		\mathcal{N}				
-10 dBm	TJV		¥\ <u>T</u> 2			
-20 dBm			- my			
5				h	2	m
-30 / Bbl				<u> </u>	~	
-40 dBm				+ \		
-50 dBm						
-60 dBm						
-70 dBm						
-/0 UBIII						
CF 2.441 GHz		691	nts		Sna	n 3.0 MHz
GF 2.771 GH2		091	pts		эра	1 3.0 MHZ

Channel 78 of Basic mode


20 dB Bandwidth

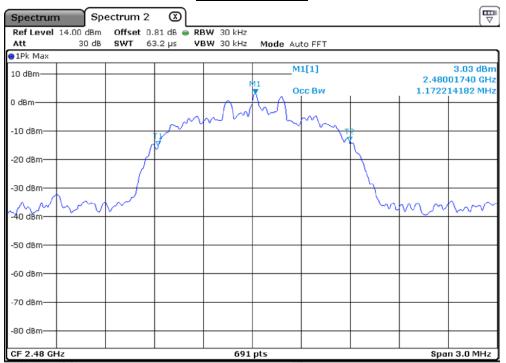
Spectrum Sp	ectrum 2 🛞					
Ref Level 24.00 dBm	Offset 0.81 dB 👄 RB	3W 30 kHz				
Att 40 dB	SWT 63.2 µs VE	3W 30 kHz	Mode Auto FFT			
●1Pk Max						
20 dBm			M1[1]			6.63 dBm
			ndB		2.480	01740 GHz 20.00 dB
10 dBm			пав 41Вw		794.5000	20.00 dB 00000 kHz
10 dbill		, i	V Q factor		19110000	3121.5
		m	ha I			
0 dBm			~~~~			
		\mathcal{N})/			
-10 dBm	TIM			+		
			m m			
-20 dBm	<u> </u>				<u> </u>	<u> </u>
man . M	man			M	N	$\sim\sim$
-30 / 66/	a			M	W	
-40 dBm				.0		
-50 dBm						
-60 dBm						
-00 ubiii						
-70 dBm						
CF 2.48 GHz		691	nts		Sna	n 3.0 MHz
5. 2.10 GHz		571	P.2		590	

<u>Channel 1 of EDR mode</u> <u>20 dB Bandwidth</u>


Spectrum	Spectr	um 2	\otimes					
Ref Level 14. Att	.00 dBm Off 30 dB SW		1dB <mark>e RB</mark> 2µs VB	W 30 kHz	Mode Aut	O FET		
1Pk Max	50 GD 01		2 4 5 4 6	N 30 KH2	HOUE AU	.0111		
10 dBm						L[1]		-0.21 dBm 01740 GHz
0 dBm							 1.22870	20.00 dB 00000 MHz 1955.0
-10 dBm			\sim	~1 ~~		ww	 	
-20 dBm			F					
-3@ dBm							~ ~	
-40 dBm	m						· ()	\sim
-50 dBm								
-70 dBm								
-80 dBm								
CF 2.402 GHz				691	pts		Spai	n 3.0 MHz

Channel 39 of EDR mode

Ref Level 14.00 dBm Offset 0.81 dB ● RBW 30 kHz Att 30 dB SWT 63.2 µs VBW 30 kHz Mode Auto FFT ● 1Pk Max
M1 M1[1] 2.45 dt 10 dBm M1 2.44101740 G 0 dBm M1 ndB 20.00 0 dBm M1 0 factor 125900000 M
0 dBm 0 dBm 0 dBm 0 dBm 0 factor 1933
0 dBm 1.25900000 M 9 factor 193
-10 dBm
-20 dBm
-30 dBm
-50 dBm
-60 dBm
-70 dBm
-80 dBm
CF 2.441 GHz 691 pts Span 3.0 MH


20 dB Bandwidth

Channel 78 of EDR mode

Spectrum Sp	ectrum 2 🛛 🛞					
Ref Level 14.00 dBm	Offset 0.81 dB 👄 R	BW 30 kHz				
Att 30 dB	SWT 63.2 µs V	BW 30 kHz M	ode Auto FFT			
●1Pk Max						
10 dBm			M1[1]		2,480	2.83 dBm 01740 GHz
			ndB			20.00 dB
0 dBm		. Anh	Q factor		1.25900	00000 MHz 1969.8
-10 dBm	- m		how			
	T <u></u> ↓		×	12 V		
-20 dBm				\uparrow		
-30 dBm						
m				m	mm	hm
940 dBm						
-50 dBm						
-60 dBm						
-70 dBm						
-80 dBm						
CF 2.48 GHz		691 pts			Sna	n 3.0 MHz
		051 pc5			opa	

20 dB Bandwidth

3.3.4 Time of Occupancy (Dwell Time)

Procedure:

The test follows DA00-705. The dwell time was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function enabled.

The spectrum analyzer is set to :	
Center frequency = 2441 MHz	Span = zero
RBW = 1 MHz	$VBW = 1 MHz (VBW \ge RBW)$
Trace = max hold	Detector function = peak

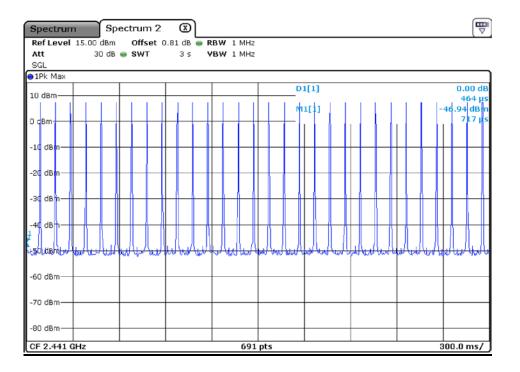
Measurement Data (Basic,EDR):

Mode	Number of transmission in a 31.6s (79Hopping*0.4)	Length of Transmission Time (msec)	Result (msec)	Limit (msec)
DH1	30(Times / 3sec) *10.533 = 315.99	0.464	146.61	400
DH3	15(Times / 3sec) *10.533 = 158.00	1.717	271.29	400
DH5	10(Times / 3sec) *10.533 = 105.33	2.986	314.52	400
3-DH5	10(Times / 3sec) *10.533 = 105.33	2.957	311.46	400

- See next pages for actual measured spectrum plots.

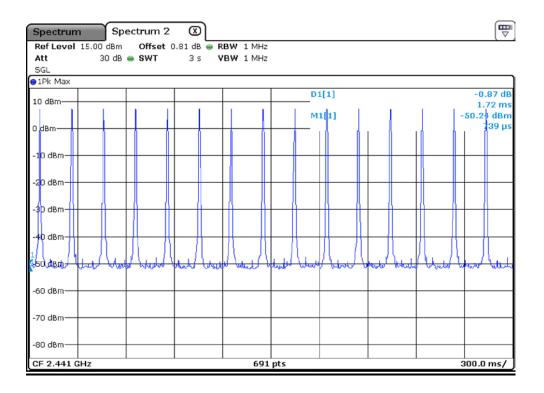
- dwell time = {(number of hopping per second / number of slot) x duration time per channel} x 0.4 ms

Minimum Standard:

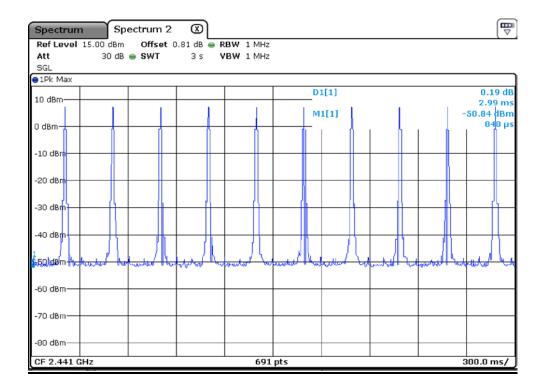

0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed

Measurement Setup

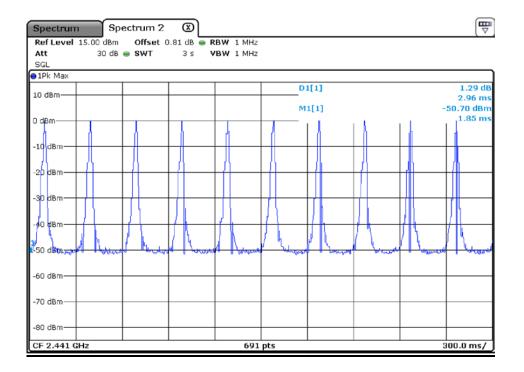
Same as the Chapter 3.3.1 (Figure 1)


DH1 at Basic mode

	ectrum 2 🛞					
Ref Level 15.00 dBm		BW 1 MHz				
Att 30 dB SGL	<mark>⊜SWT</mark> 5ms V	BW 1 MHz				
1Pk Max						
JPK MGA			D1[1]			1.55 dB
10 dBm			DI(I)		4	63.77 µs
			M1[1]			.12 dBm
0 dBm					7	17.39 µs
-10 dBm						
-20 dBm						
-30 dBm			1.1.161	المعا		
So dom						
-40 dBm						
-50 dBm						
his developent with	St. Mar why have been been been been been been been be	may make a product the	mapped	Willeralle	hartalhytakk	Holling
-60 dBm						
-70 dBm						
-80 dBm						
CF 2.441 GHz		691 pts			50	10.0 µs/


DH3 at Basic mode

Spectrum	Spectrum 2	\otimes			
Ref Level 15.00 d Att 30	Bm Offset C dB = SWT	0.81 dB			
SGL 30	ub 🖶 3W1	STIS YDW I MHZ			
1Pk Max					
			D1[1]		-0.22 dB
10 dBm					1.71739 ms
			M1[1]		-58.43 dBm
0 dBm (~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<u> </u>	I	739.13 µs
-10 dBm					
-20 dBm					
-30 dBm					
oo abiii					
-40 dBm					
-40 ubiii					
-50 dBm				A	يراب والألبان والراب
Why party and		D	an play representation	manner	NAVI, MANUALANA NA
60 dBm					the second secon
-70 dBm					
-80 dBm					
CF 2.441 GHz		691	. pts		500.0 μs/


DH5 at Basic mode

Spectrum		ectrum 2	⊗						
Ref Level Att		Offset 0 SWT		BW 1 MHz BW 1 MHz					
SGL									
●1Pk Max					D	1[1]			1.12 dB
10 dBm						.[1]		2	2.98551 ms
0 dBm					М	1[1]		-	-60.00 dBm 847.83 μs
-10 dBm									
-20 dBm									
-30 dBm									
-40 dBm									
-50 dBm									
	how the						gente	og og her have been her	apolithightly
									Ů
-70 dBm									
-80 dBm									
CF 2.441 G	Hz			691	pts				500.0 µs/

3-DH5 at EDR mode

Spectrum	ı Sp	ectrum 2	⊗						
Ref Level Att	15.00 dBm 30 dB	Offset 0 SWT		BW 1 MHz					
SGL									
●1Pk Max 10 dBm						1[1]			3.53 dB 2.95652 ms
0 dBm					M	1[1] 			58.83 dBm 84783 ms
-10 dBm									
-20 dBm—			n	l di nalitikataka	ent the	manative	portin	verblief	ww
-30 dBm				1					
-40 dBm									
	yporthadd	halpertabilit	whilling						- Ciplu
-70 dBm									
-80 dBm									
CF 2.441 G	Hz			691	pts				500.0 µs/

3.3.5 Transmitter Output Power

Procedure:

The test follows DA00-705. The peak output power was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function disabled at the highest, middle and the lowest available channels.. After the trace being stable, Use the marker-to-peak function to set the marker to the peak of the emission. The indicated level is the peak output power.

The spectrum analyzer is set to :

Center frequency = the highest, middle and the lowest channelsSpan = 10 MHz (approximately 5 times of the 20 dB bandwidth)RBW = 3 MHz (greater than the 20 dB bandwidth of the emission being measured)VBW = 3 MHz (VBW \geq RBW)Detector function = peakTrace = max holdSweep = auto

Measurement Data : Basic Mode

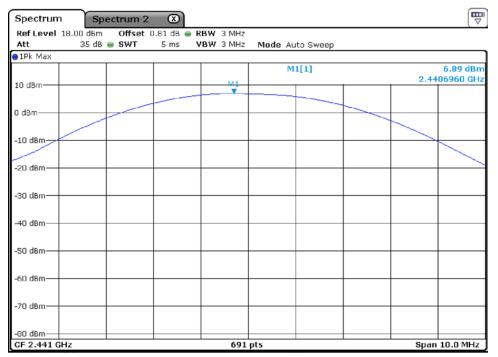
Frequency	Ch.	Test Results					
(MHz)	CII.	dBm	mW	Result			
2402	0	5.61	3.64	Complies			
2441	39	6.89	4.89	Complies			
2480	78	7.23	5.28	Complies			

Measurement Data : EDR Mode

Frequency	Ch.	Test Results					
(MHz)	CII.	dBm	mW	Result			
2402	0	-1.82	0.66	Complies			
2441	39	1.01	1.26	Complies			
2480	78	1.44	1.39	Complies			

- See next pages for actual measured spectrum plots.

Minimum Standard:	For frequency hopping systems with at least 75 non-overlapping hopping
	channels: 1 watt. For all other frequency hopping systems: 0.125 W.


Measurement Setup

Same as the Chapter 3.3.1 (Figure 1)

<u>Channel 1</u> Basic mode

Spectrum	Spectrum 2	$\overline{\mathbf{x}}$			
Ref Level 18.00).81 dB 👄 RBW 3 MHz			
	idB 👄 SWT	5 ms VBW 3 MHz	Mode Auto Sweep		
●1Pk Max			M1[1]	2.40	5.61 dBm
10 dBm			M1 ▼		
0 dBm					
-10 dBm	-				
-20 dBm					
-30 dBm					
-40 dBm					
-50 dBm					
-60 dBm					
-70 dBm					
-80 dBm CF 2.402 GHz		691	nte	0.000	10.0 MHz

Channel 39 Basic mode

Basic mode							
Spectrum	Spectrum 2						
Ref Level 18.00		0.81 dB 👄 RBW 3 MHz					
Att	35 dB 🔵 SWT	5 ms VBW 3 MHz	Mode Auto Sweep				
JIFK Max			M1[1]	7.23 dBm			
10 dBm		M1		2.4796380 GHz			
0 dBm							
-10 dBm							
-20 dBm							
-30 dBm							
-40 dBm							
-to ubiii							
-50 dBm							
-60 dBm							
-70 dBm							
-80 dBm							
CF 2.48 GHz		691	pts	Span 10.0 MHz			

<u>Channel 79</u> Basia mada

<u>Channel 1</u> EDR mode

Spectrum	Spectrum 2	8			
Ref Level 17.0 Att	00 dBm Offset 35 dB 👄 SWT	0.81 dB 👄 RBW 3 MHz 5 ms VBW 3 MHz	Mode Auto Sweep		
●1Pk Max					
10 dBm			M1[1]		-1.82 dBm 2.4023760 GHz
0 dBm			M1		
-10 dBm					
-20 dBm					
-30 dBm					
-40 dBm					
-50 dBm					
-60 dBm					
-70 dBm					
-80 dBm					
CF 2.402 GHz		691	pts	1	Span 10.0 MHz

Channel 39 EDR mode

							i		1/ 1	noue			
Spectrun	n	Sp	ec	trum 2	2	8							
Ref Level				Offset				V 3 №					
Att		35 dB	•	SWT	5	ms	VBV	V 3 M	1Hz	Mode Au	ito Sweep		
🔵 1Pk Max													
10 dBm					_					M	1[1]	2.44	1.01 dBm 06240 GHz
								M	ļ				
0 dBm				_	7								
-10 dBm—		~	F		+								
-20 dBm—			╞		+				_				
-30 dBm													
-40 dBm—			t		\top								
-50 dBm—			┝		+		_		_				
-60 dBm			1		_								
-70 dBm													
-70 ubiii													
-80 dBm-												8	10.0 Mile
GF 2.441 (JHZ								591	pus		span	10.0 MHz

<u>Channel 79</u> EDR mode

Spectrun	n Sp	ectrum 2	×					
Att	17.00 dBm 35 dB	Offset SWT	0.81 dB 👄 R 5 ms 🛛 V	BW 3 MHz BW 3 MHz	Mode Au	uto Sweep		
🔵 1Pk Max								
10 dBm					M	1[1]	 2.47	1.44 dBm 96820 GHz
				M1				
0 dBm								
-10 dBm								
-20 dBm-							/	
all doin								
-30 dBm								
-40 dBm								
50 d0								
-50 dBm								
-60 dBm								
-70 dBm								
00.10								
-80 dBm								
CF 2.48 GI	Hz			691	pts		Span	10.0 MHz

3.3.6 Band Edge

Procedure:

The bandwidth at 20 dB down from the highest inband spectral density is measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function disabled at the highest, middle and the lowest available channels.

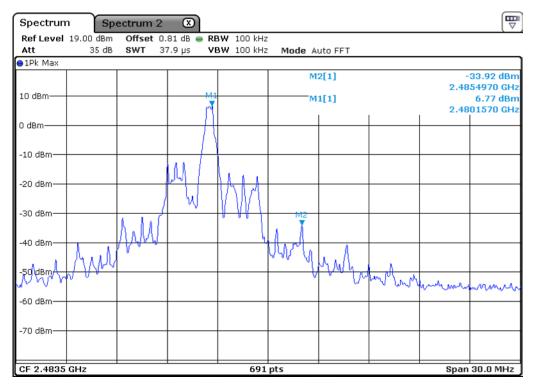
After the trace being stable, Use the marker-to-peak function to measure 20 dB down both sides of the intentional emission.

The spectrum analyzer is set to:

Center frequency = the highest, middle and the lowest channels						
RBW = 100 kHz	VBW = 100 kHz					
Span = 10~30 MHz	Detector function = peak					
Trace = max hold	Sweep = auto					

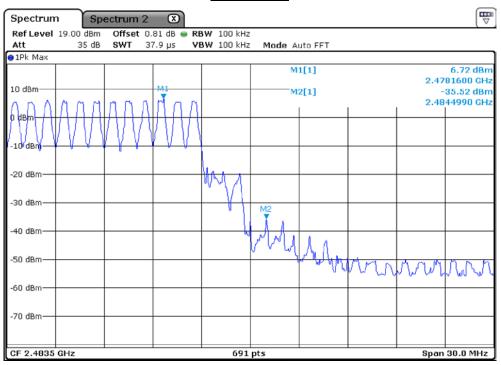
Measurement Data: Complies

- All conducted emission in any 100 kHz bandwidth outside of the spread spectrum band was at least 20 dB lower than the highest inband spectral density. Therefore the applying equipment meets the requirement.
- See next pages for actual measured spectrum plots.

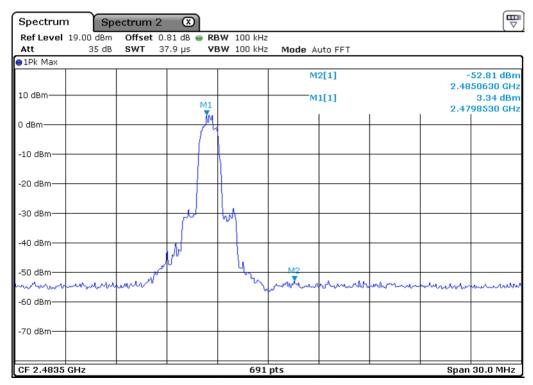

Minimum Standard: > 20 dBc

Measurement Setup

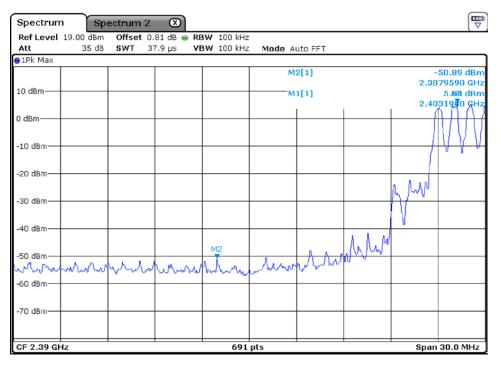
Same as the Chapter 3.3.1 (Figure 1)


Band Edge (Basic) Lower edge

Spectrum	ר Spe	ectrum	2 🛞						
Ref Level	28.00 dBm	Offset	0.81 dB 👄 RI	3W 100 kHz					
Att	45 dB	SWT	37.9 µs 🛛 🛛 🗸	BW 100 kHz	Mode A	uto FFT			
⊖1Pk Max									
					M	2[1]			42.55 dBm
20 dBm								2.38	57020 GHz
					M	1[1]		0.40	4.81 dBm 21560 GHz
10 40						1	1	2.40	21360 GHZ
10 dBm								h	11
								l f	Y
0 dBm									
-10 dBm									1
									1.1.6
-20 dBm									1 14
20 00								A A A (\mathbb{W}
								HIN	Da /
-30 dBm									
								0	
-40 dBm			<u>M2</u>				hull		
markow	mouton	mon	Towen how	mound	mm	mm			
-50 dBm									
-60 dBm									
00 00111									
70 d0 m									
-70 dBm	17			691	nte			Snan	30.0 MHz
UP 2.39 GP	12			091	hra	-		əhqu	30.0 MHZ


		Lower	edge		
Spectrum Sp	ectrum 2 🛛 🛞				
Ref Level 19.00 dBm		W 100 kHz			,
Att 35 dB	SWT 37.9 µs VB	W 100 kHz	Mode Auto FFT		
JIPK Mdx			M2[1]		-50.89 dBm 2.3879590 GHz
10 dBm			M1[1]		5.688 dBm
0 dBm					2.40319 3 0 GHz
-10 dBm					/\V_V
-20 dBm				Δ.	m
-30 dBm					
-40 dBm		M2		hh	
-50 dBm	mann	Murm	Morth	10 · V ·	
-60 dBm					
-70 dBm					
CF 2.39 GHz		691 p	ts		Span 30.0 MHz

Band Edge- Hopping(Basic)


Band Edge (EDR) Lower edge

Spectrum	n Spe	ectrum 2	2 🛞						
Ref Level	22.00 dBm	Offset	0.81 dB 👄	RBW 100 kH					
Att	40 dB	SWT	37.9 µs	VBW 100 kH	z Mode /	Auto FFT			
⊖1Pk Max									
			_		N	12[1]			50.59 dBm
								2.38	77420 GHz
10 dBm					[►]	11[1]		0.40	0.20 dBm 20260 GHz
						1	1	1 1	
0 dBm								M	1
o ubiii								J	9
								f	n i
-10 dBm			_					+	
-20 dBm									
-30 dBm									
-30 0011									A
								W	wy .
-40 dBm									
				M2					W.L.
-50.dBm	u y man	Inna	a and wash		1 Aunstral	unna	mount	har	
		- 00			W			v -	
-60 dBm									
SO UDIT									
-70 dBm									
CF 2.39 GH	lz			69	1 pts			Span	30.0 MHz

Band Edge- Hopping (EDR)

Lower edge

Spectrum	Spectrum 2 🛛 🗴						
Ref Level 19.00 d Att 35		3W 100 kHz BW 100 kHz					
1Pk Max	dB SWT 37.9 µs VI	BW IUU KHZ	Mode A	Uto FFI			
10 dBm	M1			2[1] 1[1]	1	2.48	51.02 dBm 99690 GHz 3.25 dBm 00270 GHz
9480 70 WM	white was a first of the						
-20 dBm							
-30 dBm		4					
-40 dBm					M2		
-60 dBm	_	Ware	mannon	Muthim	Muthar	mm	nnord
-70 dBm							
CF 2.4835 GHz		691	pts			Span	30.0 MHz

Frequency		ding			Correction	Limits		Result		Margin	
	[dBu	V/m]	Pol.		Factor	[dBuV/m]		[dBuV/m]		[dB]	
[MHz]	AV /	/ Peak		Antenna	Amp. Gain+CableLoss	AV / Peak		AV / Peak		AV / Peak	
2321.6	32.47	42.05	V	27.88	22.9	54	74	37.45	47.03	16.55	26.97
2317.1	32.51	42.06	V	28.09	23.11	54	74	37.49	47.04	16.51	26.96
2321.8	32.21	41.89	V	27.88	22.9	54	74	37.19	46.87	16.81	27.13

Radiated Band edges in the restricted band 2310-2390 MHz measurement (Basic)

Radiated Band edges in the restricted band 2483.5-2500 MHz measurement

Fre	equency		ding			Correction		Limits Result		Margin		
		[dBu	V/m]	Pol.		Factor Amp.	[dBuV/m]		[dBuV/m]		[dB]	
[[MHz]	AV /	' Peak		Antenna	Gain+CableLoss	AV / Peak		AV / Peak		[MHz]	
2	485.2	34.11	44.67	V	27.88	22.9	54	74	39.09	49.65	14.91	24.35
2	486.1	33.97	43.47	V	27.88	22.9	54	74	38.95	48.45	15.05	25.55
2	486.5	33.92	43.88	V	27.88	22.9	54	74	38.9	48.86	15.1	25.14

Radiated Band edges in the restricted band 2310-2390 MHz measurement (EDR)

Frequency	Rea	ding			Correction	Limits		Res	sult	Margin	
riequency	[dBu	V/m]	Pol.		Factor	[dBuV/m]		[dBuV/m]		[dB]	
[N41 - 7	0.17	' Peak	POI.	0	Amp.	AV / Peak		AV / Peak			
[MHz]	AV /	Реак		Antenna	Gain+CableLoss	AV / Peak		AV 7 Peak		AV / Peak	
2377.1	30.26	40.54	V	27.88	22.9	54	74	35.24	45.52	18.76	28.48
2377.9	29.97	39.47	V	27.88	22.9	54	74	34.95	44.45	19.05	29.55
2379.4	29.95	39.52	V	27.88	22.9	54	74	34.93	44.5	19.07	29.5

Radiated Band edges in the restricted band 2483.5-2500 MHz measurement

Frequency	Rea	ding			Correction	Limits		Result		Margin	
	[dBu	V/m]	Pol.		Factor	[dBuV/m]		[dBuV/m]		[dB]	
[MHz]	AV	' Peak		Antenna	Amp.	AV	/ Peak	AV /	Peak	ГМI	471
[11112]		Touk		7 internite	Gain+CableLoss	AV / Peak					
2485.7	30.22	40.42	V	27.88	22.9	54	74	35.2	45.4	18.8	28.6
2485.9	30.05	40.37	V	27.88	22.9	54	74	35.03	45.35	18.97	28.65
2486.6	30.31	40.48	V	27.88	22.9	54	74	35.29	45.46	18.71	28.54

Note : This EUT was tested in 3 orthogonal positions and the worst-case data was presented.

3.3.7 Conducted Spurious Emissions

Procedure:

The test follows DA00-705. The conducted spurious emissions were measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function disabled at the highest, middle and the lowest available channels..

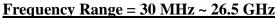
After the trace being stable, set the marker on the peak of any spurious emission recorded.

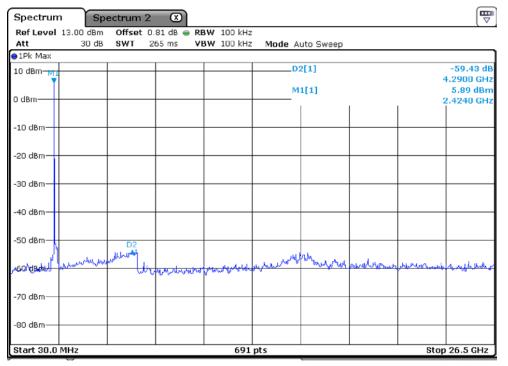
The spectrum analyzer is set to:	
Span = wide enough to capture the peak level	of the in-band emission and all spurious emissions
RBW = 100 kHz	Sweep = auto
VBW = 100 kHz	Detector function = peak
Trace = max hold	

Measurement Data: Complies

- All conducted emission in any 100 kHz bandwidth outside of the spread spectrum band was at least 20 dB lower than the highest inband spectral density. Therefore the applying equipment meets the requirement.
- See next pages for actual measured spectrum plots.

Minimum Standard: > 20 dBc	Minimum Standard:	
----------------------------	-------------------	--

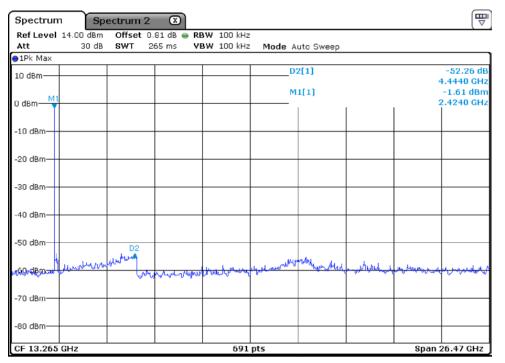

Measurement Setup


Same as the Chapter 3.3.1 (Figure 1)

		ange = 50 mil		
Spectrum Sp	ectrum 2 🛛 🙁			
Ref Level 14.00 dBm		3W 100 kHz		
Att 30 dB	SWT 265 ms VE	3W 100 kHz Mode	Auto Sweep	
●1Pk Max				
10 dBm			D2[1]	-58.90 dB 3.7160 GHz
T			M1[1]	4.46 dBm
0 dBm				2.3860 GHz
-10 dBm				
-10 0011				
0.0 10.0				
-20 dBm				
-30 dBm				
-40 dBm				
-50 dBm	D2			
di .	Allary 1			
NEARdBORK COMMAN	which two has	Dillow Barry & Barry Barry Barry Barry	Norman Mary mary	ك الرجن محد روان المحافظ المراجع المحافظ
	An all many me			
-70 dBm				
-80 dBm				
-oo ubiii				
CF 13.265 GHz	II	691 pts		Span 26.47 GHz

<u>Unwanted Emission – Low channel (Basic)</u> <u>Frequency Range = 30 MHz ~ 26.5 GHz</u>

<u>Unwanted Emission – Middle channel</u>


Spectrum Spe	ectrum 2 🙁			
Ref Level 14.00 dBm	Offset 0.81 dB 👄 RE	BW 100 kHz		
Att 30 dB	SWT 265 ms VE	BW 100 kHz Mode A	uto Sweep	
IPk Max				
10 dBm		D	2[1]	-59.29 dB
10 dBm M1				3.6770 GHz
		M	1[1]	5.82 dBm
0 dBm			I I	2.4620 GHz
-10 dBm				
-20 dBm				
-30 dBm				
-30 aBm				
-40 dBm				
-50 dBm	D2			
	1. And U			
LEPISBRY HUMLIN	warren and	Jan mar and the warder	White and and a real and a second and a seco	فيصبغ بريعيا والمسير وسيسر والطاريس
1 An Astron In .	mound	have buch	1 1	M
70.40				
-70 dBm				
-80 dBm				
CF 13.265 GHz 691 pts Span 26.47 GHz				

<u>Unwanted Emission – High channel</u> Frequency Range = 30 MHz ~ 26.5 GHz

Spectrum	pectrum	2 🛛						E
Ref Level 14.00 dBi		2 🖸 0.81 dB 🖷 R	BW 100 kHz					(🗸
Att 30 d			BW 100 kHz	Mode Au	ito Sweep			
1Pk Max								
10 dBm				D2	[1]			-50.25 di
				0.4.1	(1)		4	4.5200 GH -3.54 dBr
		_			41			-3.34 UBI 2.3860 GH
Ť								1
-10 dBm								
-20 dBm	_							
-30 dBm	_	_						
-40 dBm								
-50 dBm								
٨	D2							
60 HBter mur	repairing in	thentragen	and the strengt	hunne	un alyout	mundulation	all and a second	Augus war was
		- www.www.www						
-70 dBm								
-80 dBm								
CF 13.265 GHz			691 p	ots			Span 2	26.47 GHz

<u>Unwanted Emission – Low channel (EDR)</u> Frequency Range = 30 MHz ~ 26.5 GHz

<u>Unwanted Emission – Middle channel</u> <u>Frequency Range = 30 MHz ~ 26.5 GHz</u>

Spectrum	Spectrum 2	X					
		.81 dB 👄 RBW 1 265 ms VBW 1		uto Sweep			
●1Pk Max 10 dBm			D	2[1]			-54.69 dB I.4820 GHz
0 dBm			M	1[1]			0.95 dBm 2.4620 GHz
-10 dBm							
-20 dBm							
-30 dBm							
-40 dBm							
-50 dBm	D2			a.d			
KGB (BR JA WANN	working wer	www.uth	white and the second second	marging	unherren	ala mana ang ang ang ang ang ang ang ang ang	May and a start of the of
-70 dBm							
-80 dBm							
CF 13.265 GHz			691 pts			Span 2	26.47 GHz

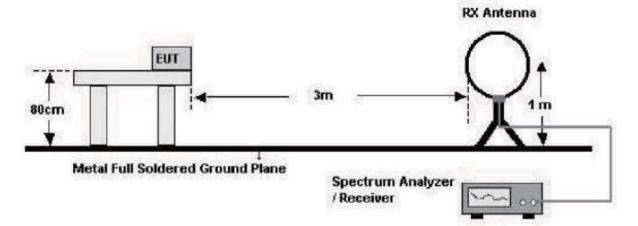
<u>Unwanted Emission – High channel</u> Frequency Range = 30 MHz ~ 26.5 GHz

3.3.8 Radiated Spurious Emissions

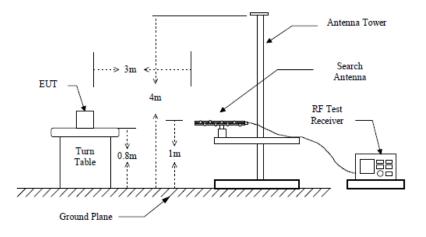
Procedure:

Radiated emissions from the EUT were measured according to the dictates of DA00-705. The EUT was placed on a 0.8 m high wooden table inside a shielded enclosure. An antenna was placed near the EUT and measurements of frequencies and amplitudes of field strengths were recorded for reference during final measurements. For final radiated testing, measurements were performed in OATS. Measurements were performed with the EUT oriented in 3 orthogonal axis and rotated 360 degrees to determine worst-case orientation for maximum emissions.

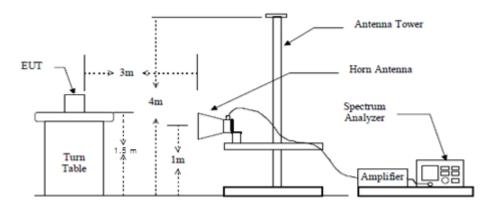
- (a) In the frequency range of 9 kHz to 30 MHz, magnetic field is measured with Loop Test Antenna. The Test Antenna is positioned with its plane vertical at 3 m distance from the EUT. The center of the Loop Test Antenna is 1m above the ground. During the measurement the Loop Test Antenna rotates about its vertical axis for maximum response at each azimuth about the EUT.
- (b) In the frequency range above 30 MHz, Bi-Log Test Antenna (30 MHz to 1 GHz) and Horn Test Antenna (above 1 GHz) are used. Test Antenna is 3 m away from the EUT. Test Antenna height is carried from 1 m to 4m above the ground to determine the maximum value of the field strength. The emission levels at both horizontal and vertical polarizations should be tested.


The spectrum analyzer is set to:

Center frequency = the worst channel Frequency Range = 9 kHz ~ 10^{th} harmonic. RBW = 120 kHz (30 MHz ~ 1 GHz) = 1 MHz (1 GHz ~ 10^{th} harmonic) Span = 100 MHz Trace = max hold


 $VBW \geq RBW$

Detector function = peak Sweep = auto



below 1 GHz (30 MHz to 1 GHz)

above 1 GHz

Measurement Data: Complies

- See next pages for actual measured data.
- No other emissions were detected at a level greater than 20 dB below limit include from 9 kHz to 30 MHz.

Frequency (MHz)	Limit (uV/m) @ 3m
0.009 ~ 0.490	2400/F(kHz) (@ 300m)
0.490 ~ 1.705	24000/F(kHz) (@ 30m)
1.705 ~ 30	30(@ 30m)
30 ~ 88	100 **
88 ~ 216	150 **
216 ~ 960	200 **
Above 960	500

Minimum Standard: FCC Part 15.209(a)

** Except as provided in 15.209(g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g. 15.231 and 15.241.

Measurement Data : Basic Mode (BDR)

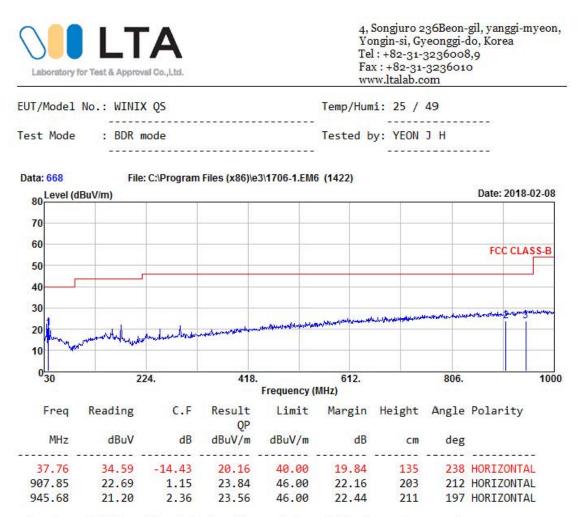
F	Rea	ding		Correction		Lin	nits	Res	ult	Mar	gin		
Frequency	[dBuV/m]		Pol.	Factor	D.C.F	[dBuV/m]		[dBuV/m]		[dB]			
[MHz]	AV / Peak			Antenna+(Cable-Amp.Gain)		AV/	AV/Peak		AV/Peak AV/		Peak	AV / Peak	
10575.54	21.01	32.68	н	26.77	-30.16	54.0	74.0	17.62	29.29	36.38	44.71		
7497.66	21.05	33.10	н	26.17	-30.16	54.0	74.0	17.06	29.11	36.96	44.89		
10215.02	22.03	32.32	Н	26.19	-30.16	54.0	74.0	18.06	28.35	35.94	45.65		

- No other emissions were detected at a level greater than 20dB below limit.

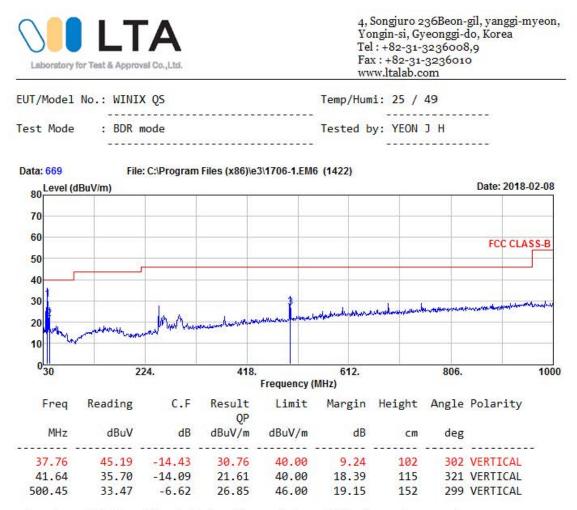
- D.C.F (Duty Cycle Correction Factor) = 20log(The worst Case DWELL Time/100ms)

 $= 20\log(3.101 \text{ms}/100 \text{ms}) = -30.16$

Measurement Data : EDR Mode

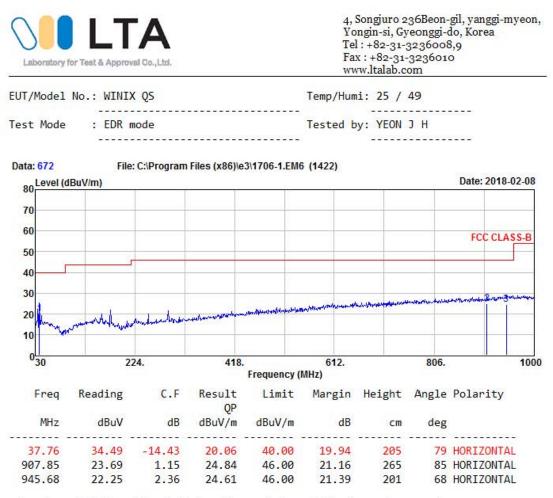

Fraguanay	Rea	ding		Correction		Lin	nits	Res	ult	Mar	gin
Frequency	[dBu	V/m]	Pol.	Factor	D.C.F	[dBu	V/m]	[dBu\	//m]	[d	в]
[MHz]	AV / Peak			Antenna+(Cable-Amp.Gain)		AV/Peak		AV/Peak AV/P		AV / Peak	
10484.23	21.16	33.27	V	26.57	-30.60	54.0	74.0	17.13	29.24	36.87	44.76
10606.15	21.52	31.23	н	26.85	-30.60	54.0	74.0	17.77	27.48	36.23	46.52
18450.74	22.03	36.05	Н	24.96	-30.60	54.0	74.0	16.39	30.41	37.61	43.59

- No other emissions were detected at a level greater than 20dB below limit.

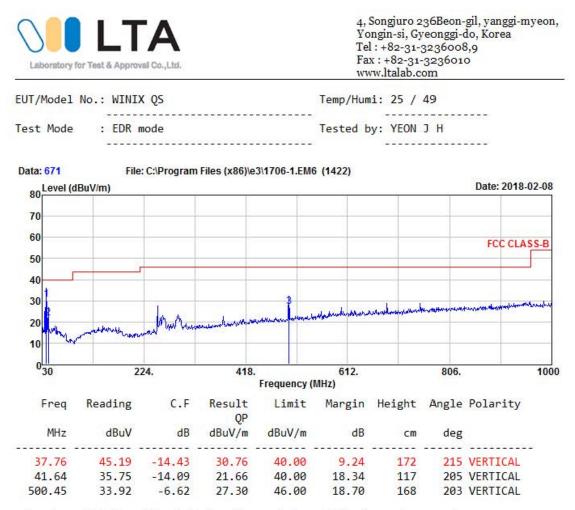

- D.C.F (Duty Cycle Correction Factor) = 20log(The worst Case DWELL Time/100ms)

 $= 20\log(2.949 \text{ms}/100 \text{ms}) = -30.60$

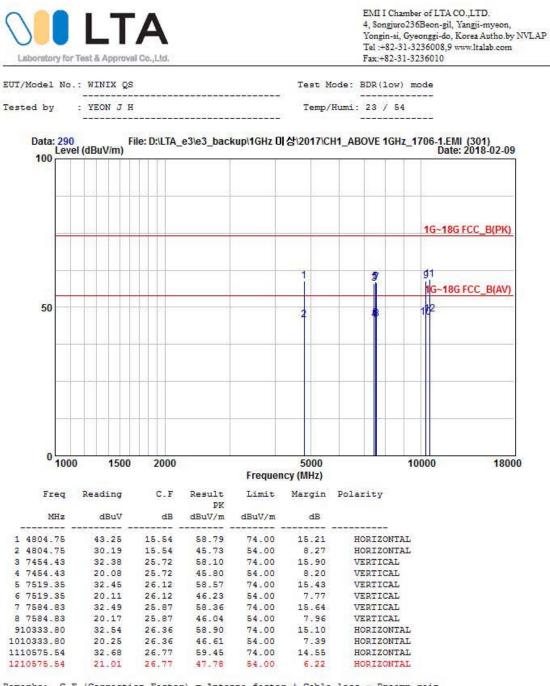
Radiated Emissions – Basic mode (below 1GHz)

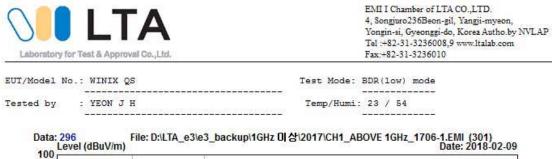


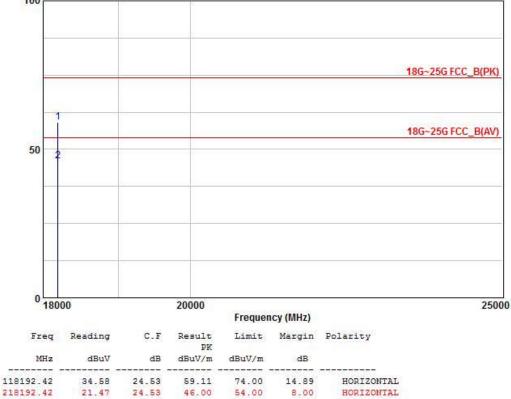
Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain

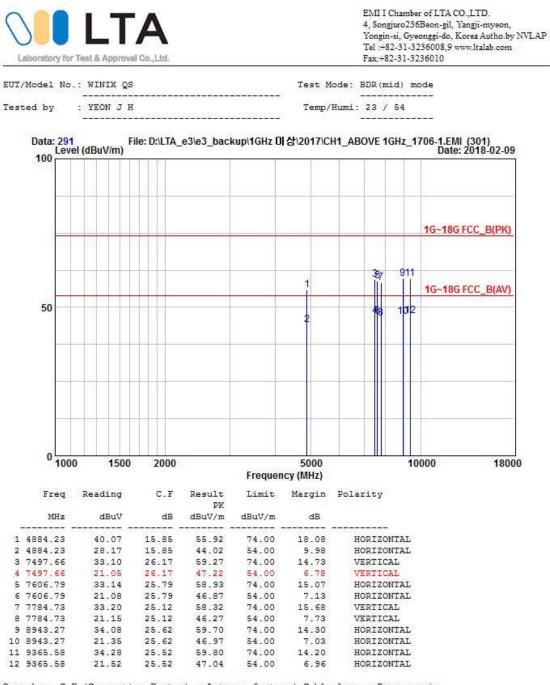


Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain

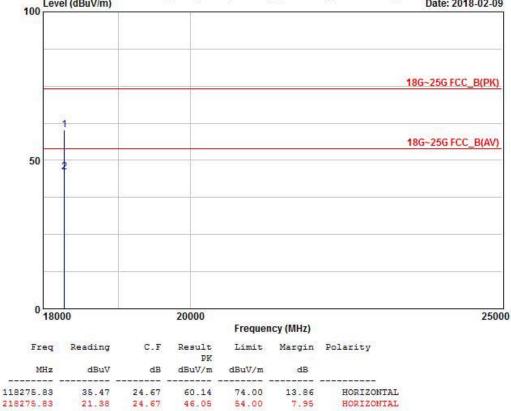

Radiated Emissions – EDR mode (below 1GHz)

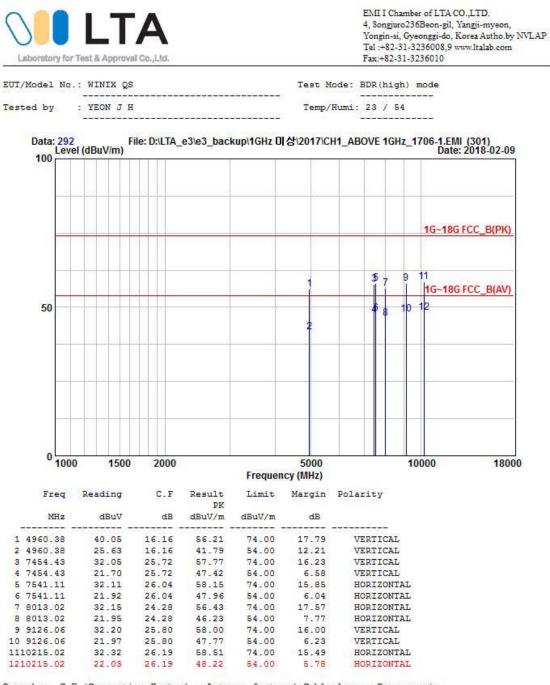


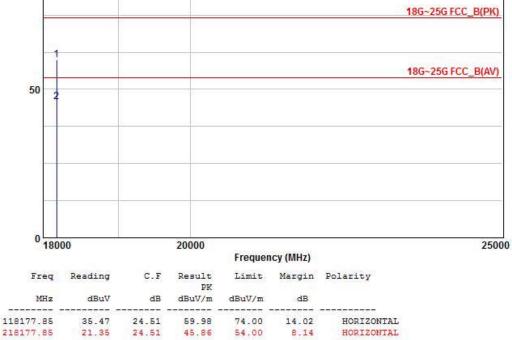

Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain

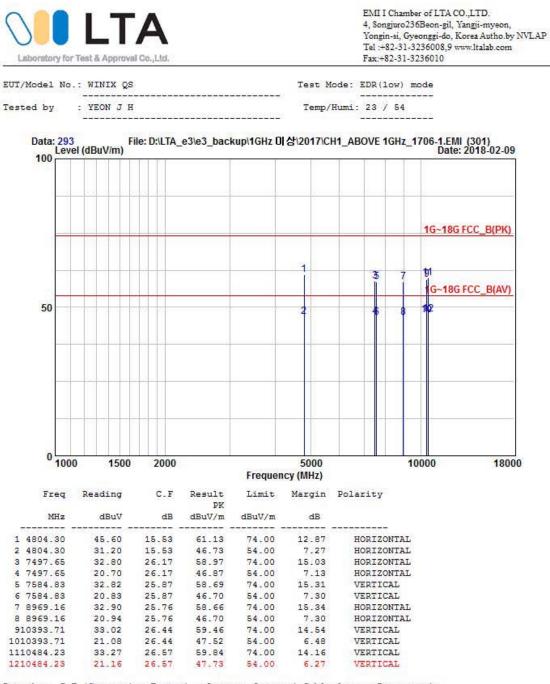


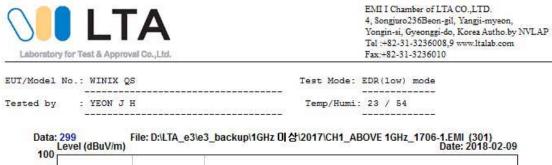
Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain

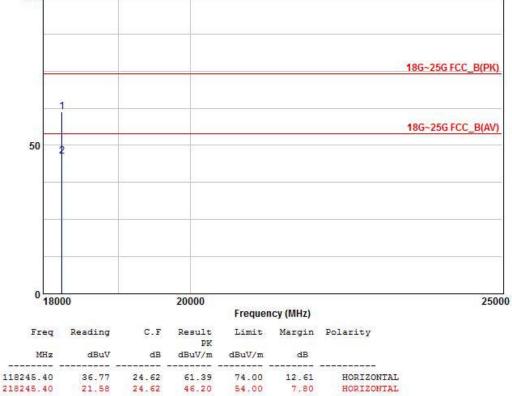


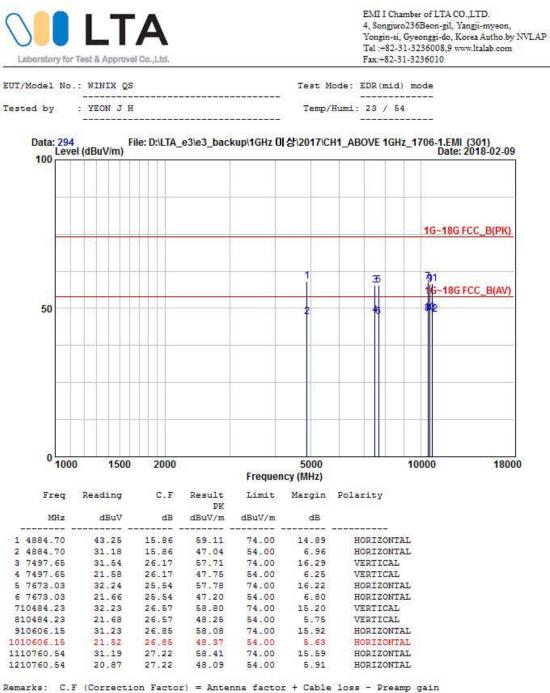


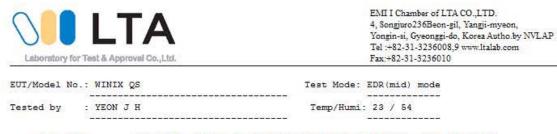


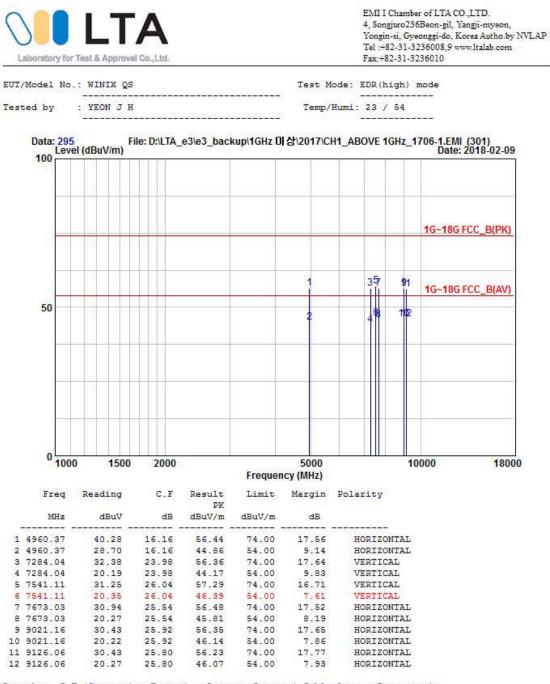


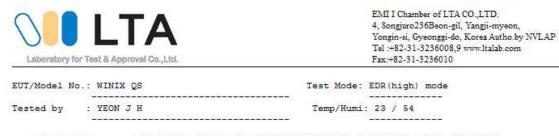









Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain Blue : Vertical Black : Horizontal



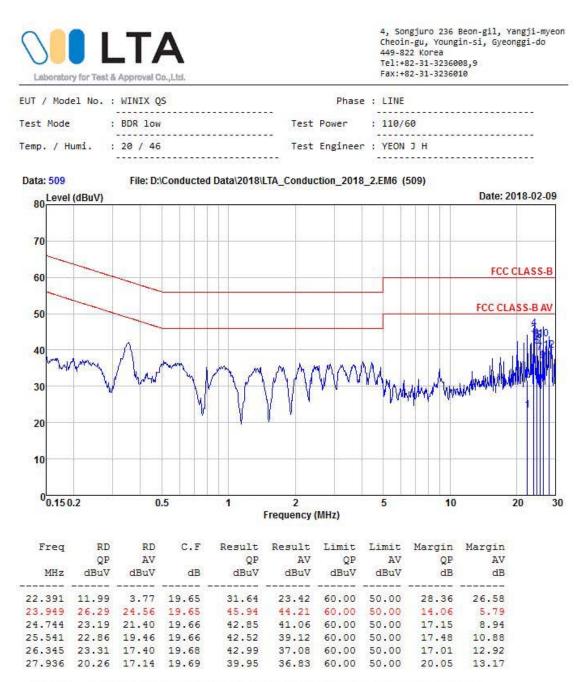

Blue : Vertical Black : Horizontal

3.3.9 AC Conducted Emissions

Procedure:

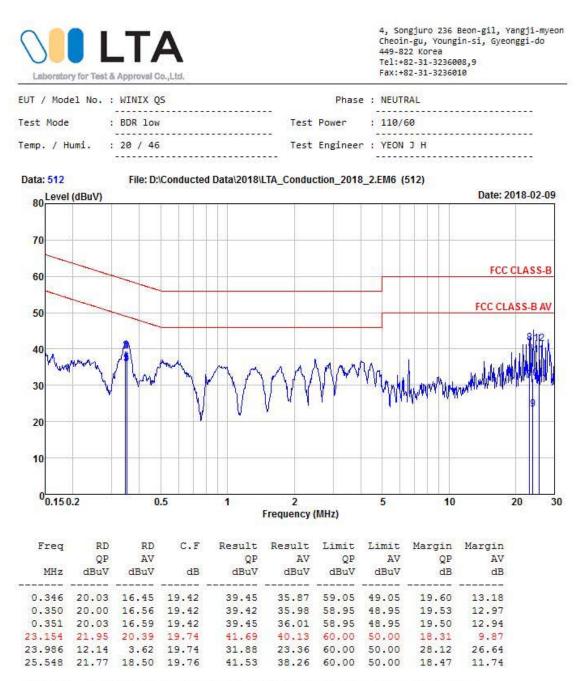
AC power line conducted emissions from the EUT were measured according to the dictates of ANSI C63.4:2003. The conducted emissions are measured in the shielded room with a spectrum analyzer in peak hold. While the measurement, EUT had its hopping function disabled at the middle channels in line with Section 15.31(m). Emissions closest to the limit are measured in the quasi-peak mode (QP) with the tuned receiver using a bandwidth of 9 kHz. The emissions are maximized further by cable manipulation and Exerciser operation. The highest emissions relative to the limit are listed.

Measurement Data: Complies

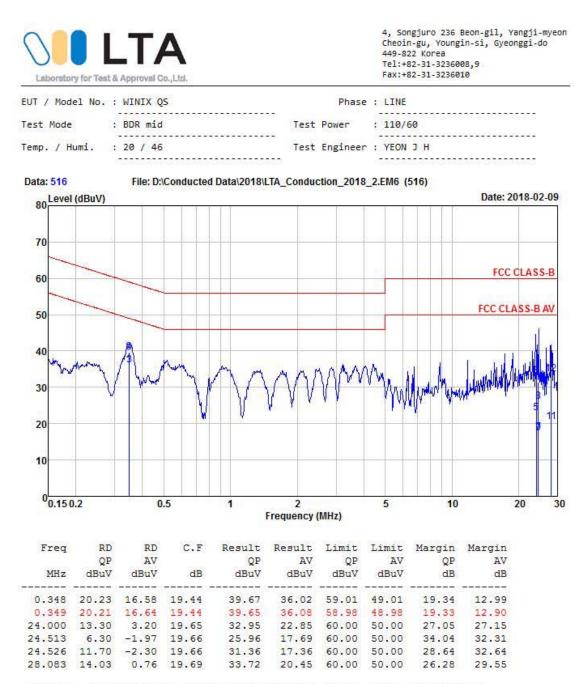

- Refer to the next page.
- No other emissions were detected at a level greater than 20dB below limit
- It gave the worse case emissions

Minimum Standard: FCC Part 15.207(a)/EN 55022

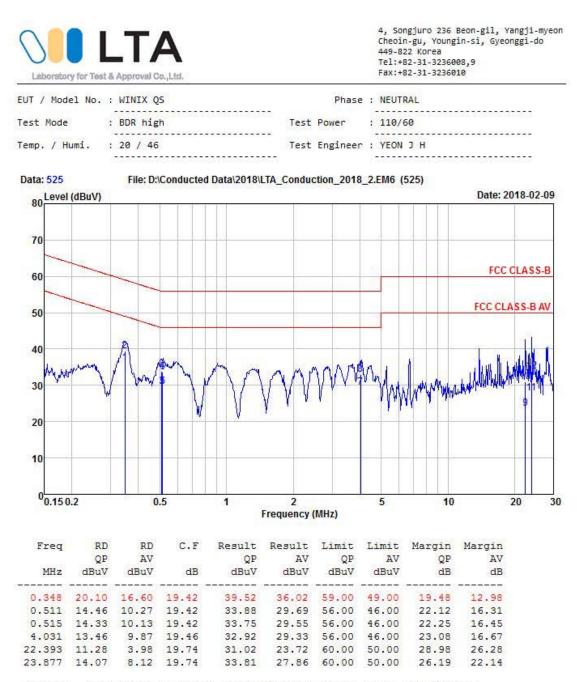
Frequency Range	Conducted Limit (d.					
(MHz)	1t892 ㅂ BuV)					
	Quasi-Peak	Average				
0.15 ~ 0.5	66 to 56 *	56 to 46 *				
0.5 ~ 5	56	46				
5 ~ 30	60	50				


* Note: The limits will decrease with the frequency logarithmically within 0.15MHz to 0.5MHz

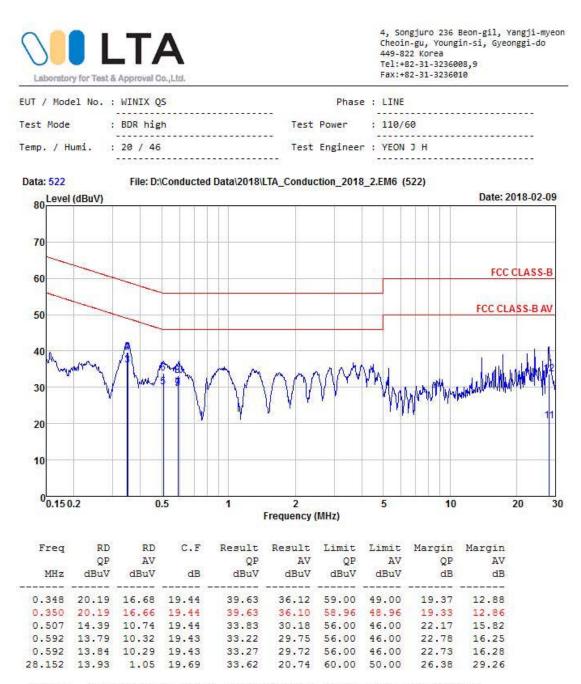
Conducted Emissions – 2.4 GHz BDR(LOW) mode + LINE


Remarks: C.F (Correction Factor) = Insertion loss + Cable loss + Pulse Limiter

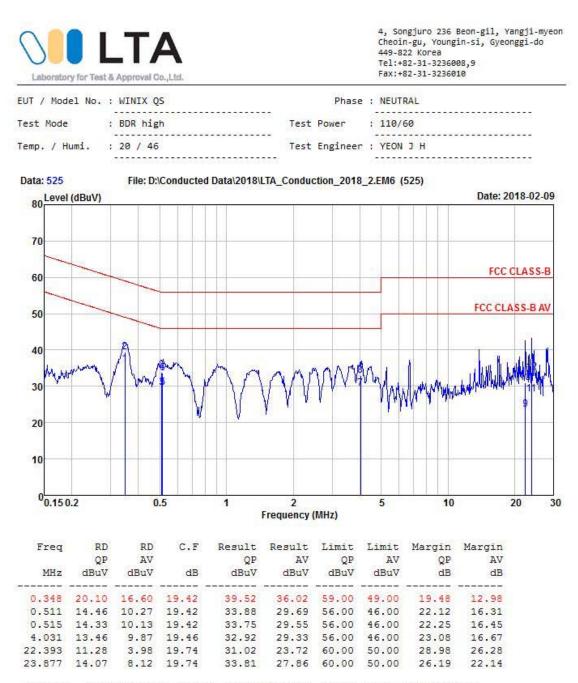
Conducted Emissions – 2.4 GHz BDR(LOW) mode +NEUTRAL


Remarks: C.F (Correction Factor) = Insertion loss + Cable loss + Pulse Limiter

Conducted Emissions – 2.4 GHz BDR(MID) mode + LINE


Remarks: C.F (Correction Factor) = Insertion loss + Cable loss + Pulse Limiter

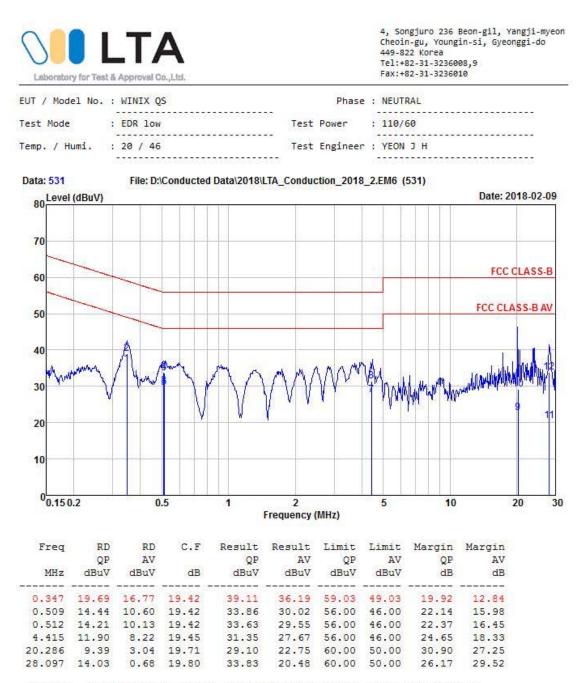
<u>Conducted Emissions – 2.4 GHz BDR(MID) mode + NEUTRAL</u>


Remarks: C.F (Correction Factor) = Insertion loss + Cable loss + Pulse Limiter

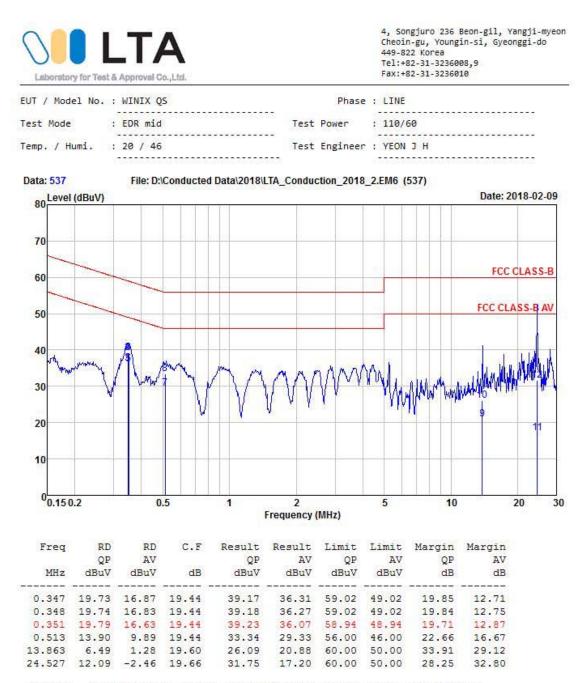
<u>Conducted Emissions – 2.4 GHz BDR(HIGH) mode + LINE</u>


Remarks: C.F (Correction Factor) = Insertion loss + Cable loss + Pulse Limiter

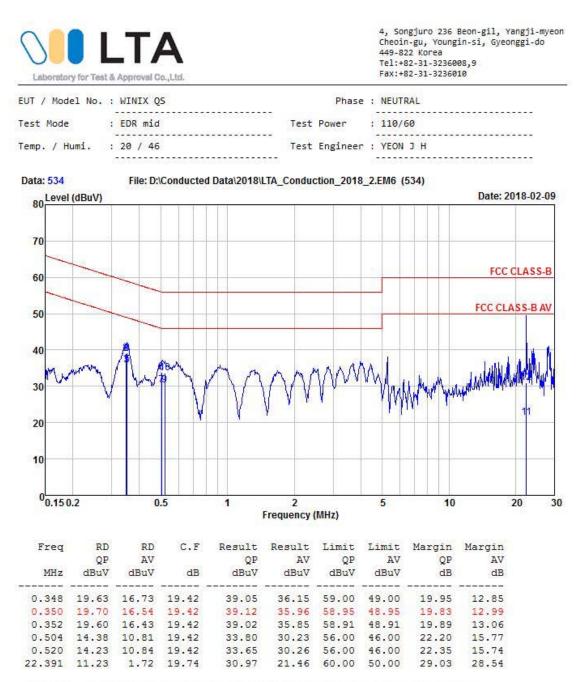
Conducted Emissions – 2.4 GHz BDR(HIGH) mode + NEUTRAL


Remarks: C.F (Correction Factor) = Insertion loss + Cable loss + Pulse Limiter

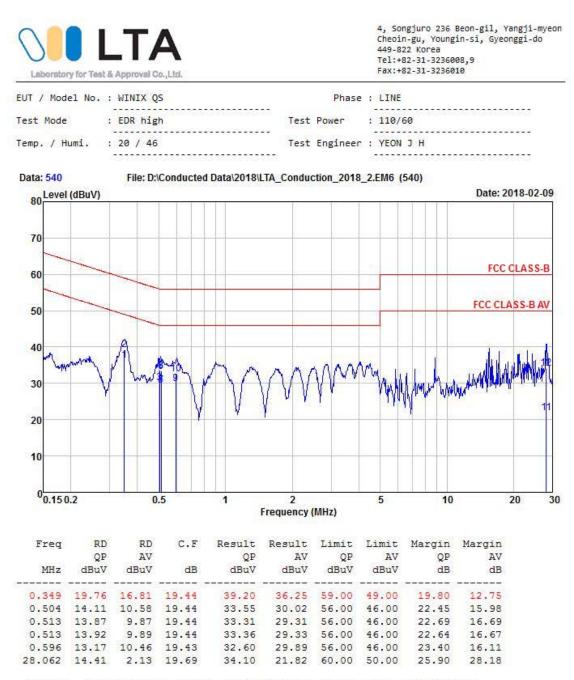
Conducted Emissions – 2.4 GHz EDR(LOW) mode + LINE


Remarks: C.F (Correction Factor) = Insertion loss + Cable loss + Pulse Limiter

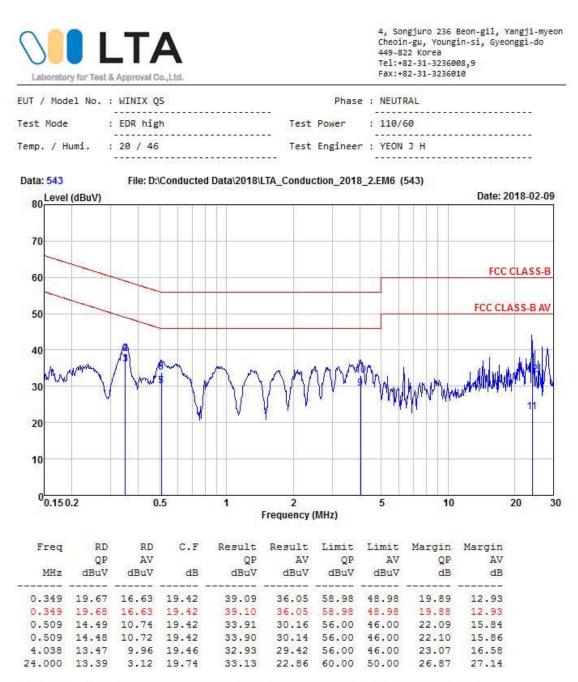
Conducted Emissions – 2.4 GHz EDR(LOW) mode + NEUTRAL


Remarks: C.F (Correction Factor) = Insertion loss + Cable loss + Pulse Limiter

Conducted Emissions – 2.4 GHz EDR(MID) mode + LINE


Remarks: C.F (Correction Factor) = Insertion loss + Cable loss + Pulse Limiter

Conducted Emissions – 2.4 GHz EDR(LOW) mode + NEUTRAL


Remarks: C.F (Correction Factor) = Insertion loss + Cable loss + Pulse Limiter

<u>Conducted Emissions – 2.4 GHz EDR(HIGH) mode + LINE</u>

Remarks: C.F (Correction Factor) = Insertion loss + Cable loss + Pulse Limiter

Conducted Emissions – 2.4 GHz EDR(HIGH) mode + NEUTRAL

Remarks: C.F (Correction Factor) = Insertion loss + Cable loss + Pulse Limiter

3.4 Measurement Uncertainty

Parameter	Uncertainty
Centre Frequency	$\pm 1 \times 10^{-5} \text{ MHz}$
Occupied Channel Bandwidth	±5 %
RF output power, conducted	±1.5 dB
Power Spectral Density, conducted	±3 dB
Unwanted Emissions, conducted	±3 dB
All emissions, radiated	$\pm 6 \text{ dB}$
Temperature	±1 °C
Humidity	±5 %
DC and low frequency voltages	±3 %
Time	±5 %
Duty Cycle	±5 %

APPENDIX

TEST EQUIPMENT USED FOR TESTS

	Use	Description	Model No.	Serial No.	Manufacturer	Interval	Last Cal. Date
1		Signal Analyzer (9 kHz ~ 30 GHz)	FSV30	100757	R&S	1 year	2017-09-07
2		Signal Generator (~3.2 GHz)	8648C	3623A02597	HP	1 year	2017-03-20
3		SYNTHESIZED CW GENERATOR	83711B	US34490456	HP	1 year	2017-03-20
4		Attenuator (3 dB)	8491A	37822	HP	1 year	2017-09-07
5		Attenuator (10 dB)	8491A	63196	HP	1 year	2017-09-07
6		EMI Test Receiver (~7 GHz)	ESCI7	100722	R&S	1 year	2017-09-07
7		RF Amplifier (~1.3 GHz)	8447D OPT 010	2944A07684	HP	1 year	2017-09-07
8		RF Amplifier (1~26.5 GHz)	8449B	3008A02126	HP	1 year	2017-03-21
9		Horn Antenna (1~18 GHz)	3115	00114105	ETS	2 year	2016-08-04
10		DRG Horn (Small)	3116B	81109	ETS-Lindgren	2 year	2016-05-03
11		DRG Horn (Small)	3116B	133350	ETS-Lindgren	2 year	2016-05-03
12		TRILOG Antenna	VULB 9160	9160-3237	SCHWARZBECK	2 year	2017-04-17
13		Temp.Humidity Data Logger	SK-L200TH II A	00801	SATO	1 year	2017-03-21
14		Splitter (SMA)	ZFSC-2-2500	SF617800326	Mini-Circuits	-	-
15		DC Power Supply	6674A	3637A01657	Agilent	-	-
16		AC Power Supply	HK-80	LR001	DaeRim	-	-
17		Frequency Counter	5342A	2826A12411	HP	1 year	2017-03-21
18		Power Meter	EPM-441A	GB32481702	HP	1 year	2017-03-20
19		Power Sensor	8481A	3318A94972	HP	1 year	2017-12-26
20		Audio Analyzer	8903B	3729A18901	HP	1 year	2017-09-07
21		Modulation Analyzer	8901B	3749A05878	HP	1 year	2017-09-07
22		TEMP & HUMIDITY Chamber	YJ-500	LTAS06041	JinYoung Tech	1 year	2017-09-07
23		Stop Watch	HS-3	812Q08R	CASIO	2 year	2017-03-21
24		LISN	KNW-407	8-1430-1	Kyoritsu	1 year	2017-09-07
25		Two-Lime V-Network	ESH3-Z5	893045/017	R&S	1 year	2017-03-20
26		UNIVERSAL RADIO COMMUNICATION TESTER	CMU200	106243	R&S	1 year	2017-03-20
27		Highpass Filter	WHKX1.5/15G-10SS	74	Wainwright Instruments	1 year	2017-03-20
28		Highpass Filter	WHKX3.0/18G-10SS	118	Wainwright Instruments	1 year	2017-03-20
29		OSP120 BASE UNIT	OSP120	101230	R&S	1 year	2017-03-21
30		Signal Generator(100 kHz ~ 40 GHz)	SMB100A03	177621	R&S	1 year	2017-03-23
31		Signal Analyzer (10 Hz ~ 40 GHz)	FSV40	101367	R&S	1 year	2017-03-21
32		Signal Analyzer (9 kHz ~ 30 GHz)	FSV30	100757	R&S	1 year	2017-09-07
32		Signal Generator (~3.2 GHz)	8648C	3623A02597	HP	1 year	2017-03-20