

FCC Radio Test Report

FCC ID: 2APDTA02BT

Report No. Equipment Model Name Brand Name Applicant Address	 BTL-FCCP-1-2011T130 Aquarius - 02 over ear for music ANC Earphone A02BT IONE IONE ELECTRONIC TECHNOLOGY CO.,LTD. TAIWAN BRANCH 8F-2, #75, Sec. 1, Hsin Tai Wu Rd. Hsichih, Taipei Hsien, Taiwan, R.O.C.
Radio Function	: Bluetooth EDR
FCC Rule Part(s) Measurement Procedure(s)	: FCC Part15, Subpart C (15.247) : ANSI C63.10-2013
Date of Receipt Date of Test Issued Date	: 2020/11/25 : 2020/11/25 ~ 2020/12/23 : 2021/1/22

The above equipment has been tested and found in compliance with the requirement of the above standards by BTL Inc.

Prepared by Peter Chen, Engineer **ac-MRA** Testing Laboratory 0659 Approved by Scott Hsu , Manager BTL Inc. No.18, Ln. 171, Sec. 2, Jiuzong Rd., Neihu Dist., Taipei City 114, Taiwan Tel: +886-2-2657-3299 Fax: +886-2-2657-3331 Web: www.newbtl.com

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **BTL** issued reports.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

BTL's laboratory quality assurance procedures are in compliance with the ISO/IEC 17025 requirements, and accredited by the conformity assessment authorities listed in this test report.

BTL is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.

CONTENTS

REPO	RT ISSUED HISTORY	5
1	SUMMARY OF TEST RESULTS	6
1.1	TEST FACILITY	7
1.2	MEASUREMENT UNCERTAINTY	7
1.3	TEST ENVIRONMENT CONDITIONS	8
1.4	TABLE OF PARAMETERS OF TEST SOFTWARE SETTING	8
1.5	DUTY CYCLE	9
2	GENERAL INFORMATION	10
2.1	DESCRIPTION OF EUT	10
2.2	TEST MODES	12
2.3	BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	13
2.4	SUPPORT UNITS	14
3	AC POWER LINE CONDUCTED EMISSIONS TEST	15
3.1	LIMIT	15
3.2	TEST PROCEDURE	15
3.3	DEVIATION FROM TEST STANDARD	15
3.4	TEST SETUP	16
3.5	TEST RESULT	16
4	RADIATED EMISSIONS TEST	17
4.1	LIMIT	17
4.2	TEST PROCEDURE	18
4.3	DEVIATION FROM TEST STANDARD	18
4.4	TEST SETUP	18
4.5	EUT OPERATING CONDITIONS	19
4.6	TEST RESULT – 30 MHZ TO 1 GHZ	20
4.7	TEST RESULT – ABOVE 1 GHZ	20
5	NUMBER OF HOPPING CHANNEL	21
5.1	APPLIED PROCEDURES	21
5.2	TEST PROCEDURE	21
5.3	DEVIATION FROM STANDARD	21
5.4	TEST SETUP	21
5.5	EUT OPERATION CONDITIONS	21
5.6		21
6 6 1	AVERAGE TIME OF OCCUPANCY APPLIED PROCEDURES / LIMIT	22 22
6.1 6.2	TEST PROCEDURES / LIMIT	22 22
6.2 6.3	DEVIATION FROM STANDARD	22
0.3 6.4	TEST SETUP	22
6.5	EUT OPERATION CONDITIONS	22
6.6	TEST RESULTS	22
0.0 7	HOPPING CHANNEL SEPARATION MEASUREMENT	22
, 7.1	APPLIED PROCEDURES / LIMIT	23
7.2	TEST PROCEDURE	23
7.3	DEVIATION FROM STANDARD	23
7.4	TEST SETUP	23
7.5	TEST RESULTS	23
8	BANDWIDTH TEST	24
-	-	-

8.1	APPLI	ED PROCEDURES	24
8.2	TEST	PROCEDURE	24
8.3	DEVIA	TION FROM STANDARD	24
8.4	TEST	SETUP	24
8.5	EUT C	PERATION CONDITIONS	24
8.6	TEST	RESULTS	24
9	OUTPUT	POWER TEST	25
9.1	APPLI	ED PROCEDURES / LIMIT	25
9.2	TEST	PROCEDURE	25
9.3	DEVIA	TION FROM STANDARD	25
9.4	TEST	SETUP	25
9.5	EUT C	PERATION CONDITIONS	25
9.6	TEST	RESULTS	25
10	ANTENN	A CONDUCTED SPURIOUS EMISSION	26
10.1	APPLI	ED PROCEDURES / LIMIT	26
10.2	TEST	PROCEDURE	26
10.3	DEVIA	TION FROM STANDARD	26
10.4	TEST	SETUP	26
10.5	EUT C	PERATION CONDITIONS	26
10.6	TEST	RESULTS	26
11	LIST OF	MEASURING EQUIPMENTS	27
12	EUT TES	ЭТ РНОТО	29
13	EUT PHO	DTOS	29
APPENDI	ХA	AC POWER LINE CONDUCTED EMISSIONS	30
APPENDI	ХВ	RADIATED EMISSIONS - 30 MHZ TO 1 GHZ	35
APPENDI	ХC	RADIATED EMISSIONS - ABOVE 1 GHZ	38
APPENDI	ХD	NUMBER OF HOPPING CHANNEL	55
APPENDI	ХE	AVERAGE TIME OF OCCUPANCY	57
APPENDI	XF	HOPPING CHANNEL SEPARATION MEASUREMENT	60
APPENDI	X G	BANDWIDTH	62
APPENDI	ХН	OUTPUT POWER	64
APPENDI	XI	ANTENNA CONDUCTED SPURIOUS EMISSION	66

REPORT ISSUED HISTORY

Report Version	Description	Issued Date
R00	Original Issue.	2021/1/7
R01	Revised Typo.	2021/1/11
R02	Revised report to address TCB's comments.	2021/1/15
R03	Revised report to address TCB's comments.	2021/1/22

SUMMARY OF TEST RESULTS 1

Test procedures according to the technical standards.

FCC Part 15, Subpart C (15.247)								
Standard(s) Section	Description	Description Test Result		Remark				
15.207	AC Power Line Conducted Emissions	APPENDIX A	Pass					
15.205 15.209 15.247(d)	Radiated Emissions	APPENDIX B APPENDIX C	Pass					
15.247 (a)(1)(iii) Number of Hopping Frequency		APPENDIX D	Pass					
15.247 (a)(1)(iii)	Average Time of Occupancy	APPENDIX E	Pass					
15.247 (a)(1)	Hopping Channel Separation	APPENDIX F	Pass					
15.247 (a)(1)	Bandwidth	APPENDIX G	Pass					
15.247 (b)(1)	Output Power	APPENDIX H	Pass					
15.247(d)	Antenna conducted Spurious Emission	APPENDIX I	Pass					
15.203	Antenna Requirement		Pass					

NOTE:

"N/A" denotes test is not applicable in this Test Report.
 The report format version is TP.1.1.1.

1.1 TEST FACILITY

The test facilities used to collect the test data in this report:

No. 68-1, Ln. 169, Sec. 2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan The test sites and facilities are covered under FCC RN: 674415 and DN: TW0659.

\boxtimes	C05	CB08	CB11	\boxtimes	CB15	CB16
\boxtimes	SR06					

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expanded uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k} = 2$, providing a level of confidence of approximately **95** %. The measurement instrumentation uncertainty considerations contained in CISPR 16-4-2. The BTL measurement uncertainty is less than the CISPR 16-4-2 U_{cispr} requirement.

A. AC power line conducted emissions test:

Test Site	Method	Measurement Frequency Range	U (dB)
C05	CISPR	150 kHz ~ 30MHz	3.44

B. Radiated emissions test :

Test Site	Measurement Frequency Range	U,(dB)
	0.03 GHz ~ 0.2 GHz	4.17
	0.2 GHz ~ 1 GHz	4.72
CB15	1 GHz ~ 6 GHz	5.21
CB15	6 GHz ~ 18 GHz	5.51
	18 GHz ~ 26 GHz	3.69
	26 GHz ~ 40 GHz	4.23

C. Conducted test :

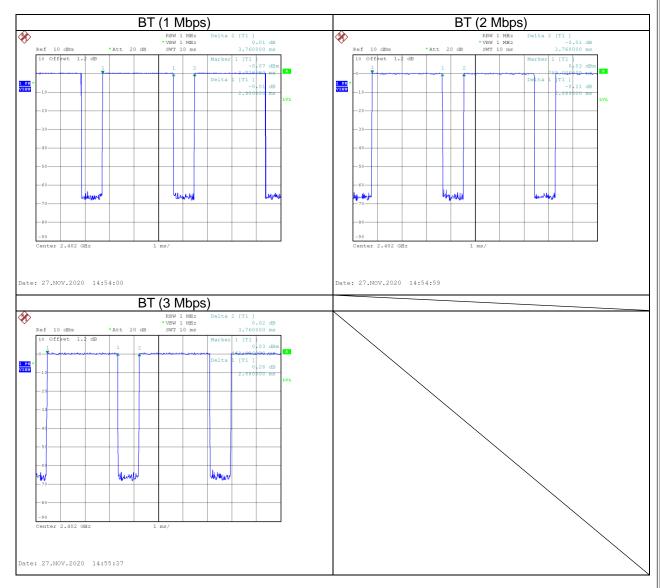
Test Item	U,(dB)
Number of Hopping Frequency	0.00
Average Time of Occupancy	1.20
Hopping Channel Separation	1.20
Bandwidth	1.13
Peak Output Power	1.06
Antenna conducted Spurious Emission	1.14
Conducted Band edges	1.13

NOTE:

Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

1.3 TEST ENVIRONMENT CONDITIONS

Test Item	Environment Condition	Test Voltage	Tested by
AC Power Line Conducted Emissions	19 °C, 75 %	AC 120V	Nero Hsieh
Radiated emissions below 1 GHz	22 °C, 68 %	AC 120V	Jay Kao
Radiated emissions above 1 GHz	22 °C, 68 %	AC 120V	Jay Kao
Number of Hopping Frequency	23.5 °C, 53 %	AC 120V	Tim Lee
Average Time of Occupancy	23.5 °C, 53 %	AC 120V	Tim Lee
Hopping Channel Separation	23.5 °C, 53 %	AC 120V	Tim Lee
Bandwidth	23.5 °C, 53 %	AC 120V	Tim Lee
Output Power	23.5 °C, 53 %	AC 120V	Tim Lee
Antenna conducted Spurious Emission	23.5 °C, 53 %	AC 120V	Tim Lee


1.4 TABLE OF PARAMETERS OF TEST SOFTWARE SETTING

Test Software	RF_test V1.0					
Modulation Mode	2402 MHz	Data Rate				
GFSK	3	3	3	1 Mbps		
π/4-DQPSK	3	3	3	2 Mbps		
8DPSK	3	3	3	3 Mbps		

1.5 DUTY CYCLE

If duty cycle is \geq 98 %, duty factor is not required. If duty cycle is < 98 %, duty factor shall be considered.

Remark	Delta 1			Delta 2	On Time/Period	10 log(1/Duty Cycle)
Mode	ON	Numbers	On Time (B)	Period (ON+OFF)	Duty Cycle	Duty Factor
Mode	(ms)	(ON)	(ms)	(ms)	(%)	(dB)
BT (1 Mbps)	2.900	1	2.900	3.760	77.13%	1.13
BT (2 Mbps)	2.880	1	2.880	3.760	76.60%	1.16
BT (3 Mbps)	2.880	1	2.880	3.760	76.60%	1.16

2 GENERAL INFORMATION

2.1 DESCRIPTION OF EUT

E en lie en eust	America 00 aver and for music ANO Forshard
Equipment	Aquarius - 02 over ear for music ANC Earphone
Model Name	A02BT
Brand Name	IONE
Model Difference	N/A
Power Source	#1 Supplied from USB port.
Fower Source	#2 Supplied from battery.(Li-ion Polymer Battery / FT603048P)
Deuver Deting	#1 DC 5 V, 400 mA
Power Rating	#2 DC 3.7 V, 900 mA (3.33 Wh)
	1 * USB Cable
Products Covered	1 * Audio Cable
	1 * Plug adapter
Frequency Range	2400 MHz ~ 2483.5 MHz
Operation Frequency	2402 MHz ~ 2480 MHz
Modulation Type	GFSK, π/4-DQPSK, 8DPSK
Modulation Technology	FHSS
Transfer Rate	1/2/3Mbps
	1 Mbps: 0.74 dBm
Output Power Max.	2 Mbps: 1.58 dBm
	3 Mbps: 1.72 dBm
Test Model	A02BT
Sample Status	Engineering Sample
EUT Modification(s)	N/A

NOTE:

(1) For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.

(2) Channel List:

BIL

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	27	2429	54	2456
01	2403	28	2430	55	2457
02	2404	29	2431	56	2458
03	2405	30	2432	57	2459
04	2406	31	2433	58	2460
05	2407	32	2434	59	2461
06	2408	33	2435	60	2462
07	2409	34	2436	61	2463
08	2410	35	2437	62	2464
09	2411	36	2438	63	2465
10	2412	37	2439	64	2466
11	2413	38	2440	65	2467
12	2414	39	2441	66	2468
13	2415	40	2442	67	2469
14	2416	41	2443	68	2470
15	2417	42	2444	69	2471
16	2418	43	2445	70	2472
17	2419	44	2446	71	2473
18	2420	45	2447	72	2474
19	2421	46	2448	73	2475
20	2422	47	2449	74	2476
21	2423	48	2450	75	2477
22	2424	49	2451	76	2478
23	2425	50	2452	77	2479
24	2426	51	2453	78	2480
25	2427	52	2454		
26	2428	53	2455		

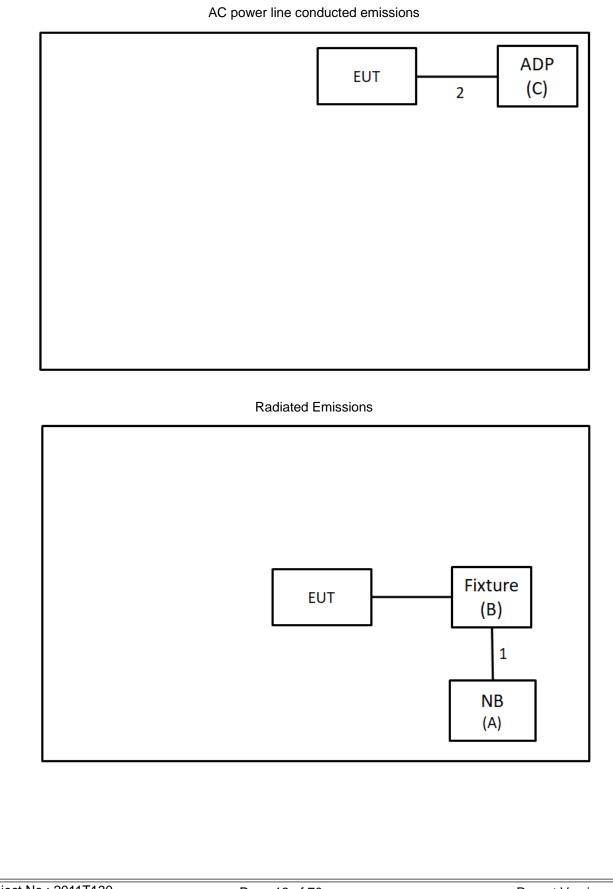
(3) Table for Filed Antenna:

Ant.	Brand	Part Number	Туре	Connector	Gain (dBi)
1	YAGEO	ANT-3216A063R2400A	SMD	N/A	1.69

2.2 TEST MODES

Test Items	Test mode	Channel	Note
AC power line conducted emissions	Normal/Idle	-	-
Transmitter Radiated Emissions (below 1GHz)	3 Mbps	00	-
Transmitter Radiated Emissions	1/3 Mbps	00/78	Bandedge
(above 1GHz)	1/3 Mbps	00/39/78	Harmonic
Number of Hopping Frequency	1/3 Mbps	00~78	-
Average Time of Occupancy	1/3 Mbps	00/39/78	-
Hopping Channel Separation	1/3 Mbps	00/39/78	-
Bandwidth	1/3 Mbps	00/39/78	-
Peak Output Power	1/2/3 Mbps	00/39/78	-
Antenna conducted Spurious Emission	1/3 Mbps	00/39/78	-

NOTE:


(1) The Radiated emissions test was verified based on the worst conducted power and Bandwidth test results reported in the original report.

- (2) For radiated emission band edge test, both Vertical and Horizontal are evaluated, but only the worst case (Horizontal) is recorded.
- (3) All X, Y and Z axes are evaluated, but only the worst case (Y axis) is recorded.
- (4) There were no emissions found below 30 MHz within 20 dB of the limit.

2.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Equipment letters and Cable numbers refer to item numbers described in the tables of clause 2.4.

2.4 SUPPORT UNITS

Item	Equipment	Brand	Model No.	Series No.	Remarks
A	NB	acer	MS2351	N/A	Furnished by test lab.
В	Fixture	N/A	HW-597	N/A	Supplied by test requester
С	Adapter	SAMSUNG	EP-TA12JWS	N/A	Furnished by test lab.
Item	Shielded	Ferrite Core	Length	Cable Type	Remarks
1	N/A	N/A	1m	USB extension Cable	Furnished by test lab.
2	N/A	N/A	1.2m	USB type C	Supplied by test requester

3 AC POWER LINE CONDUCTED EMISSIONS TEST

3.1 LIMIT

Frequency	Limit (dBµV)
(MHz)	Quasi-peak	Average
0.15 - 0.5	66 - 56 *	56 - 46 *
0.50 - 5.0	56	46
5.0 - 30.0	60	50

NOTE:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.
- (3) The test result calculated as following:
 - Measurement Value = Reading Level + Correct Factor
 - Correct Factor = Insertion Loss + Cable Loss + Attenuator Factor (if use)

Margin Level = Measurement Value - Limit Value

Calculation example:

Reading Level		Correct Factor		Measurement Value
38.22	+	3.45	Π	41.67

Measurement Value		Limit Value		Margin Level
41.67	-	60	Ш	-18.33

The following table is the setting of the receiver.

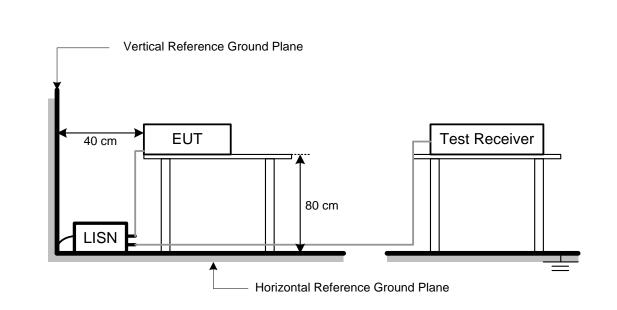
Receiver Parameter	Setting		
Attenuation	10 dB		
Start Frequency	0.15 MHz		
Stop Frequency	30 MHz		
IF Bandwidth	9 KHz		

3.2 TEST PROCEDURE

a. The EUT was placed 0.8 m above the horizontal ground plane with the EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipment were powered from an additional LISN(s).

- The LISN provides 50 Ohm/50uH of impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle to keep the cable above 40 cm.
- c. Excess I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable will be terminated, using the correct terminating impedance. The overall length shall not exceed 1 m.
- The LISN is spaced at least 80 cm from the nearest part of the EUT chassis. d
- e. For the actual test configuration, please refer to the related Item EUT TEST PHOTO.

NOTE:


- (1) In the results, each reading is marked as Peak, QP or AVG per the detector used. BW=9 kHz (6 dB Bandwidth)
- (2) All readings are Peak unless otherwise stated QP or AVG in column of Note. Both the QP and the AVG readings must be less than the limit for compliance.

3.3 DEVIATION FROM TEST STANDARD

No deviation.

3.4 TEST SETUP

3.5 TEST RESULT

Please refer to the APPENDIX A.

4 RADIATED EMISSIONS TEST

4.1 LIMIT

In case the emission fall within the restricted band specified on 15.205, then the 15.209 limit in the table below has to be followed.

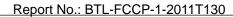
LIMITS OF RADIATED EMISSIONS MEASUREMENT (9 kHz to 1000 MHz)

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

LIMITS OF RADIATED EMISSIONS MEASUREMENT (Above 1000 MHz)

Frequency	Radiated I (dBu	Measurement Distance	
(MHz)	Peak	Average	(meters)
Above 1000	74	54	3

NOTE:

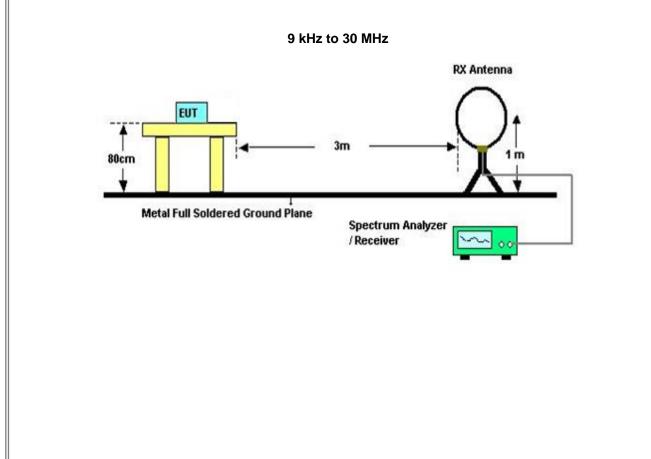

- (1) The limit for radiated test was performed according to FCC Part 15, Subpart C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).
- (4) The test result calculated as following:
 - Measurement Value = Reading Level + Correct Factor
 - Correct Factor = Antenna Factor + Cable Loss Amplifier Gain(if use)

Margin Level = Measurement Value - Limit Value

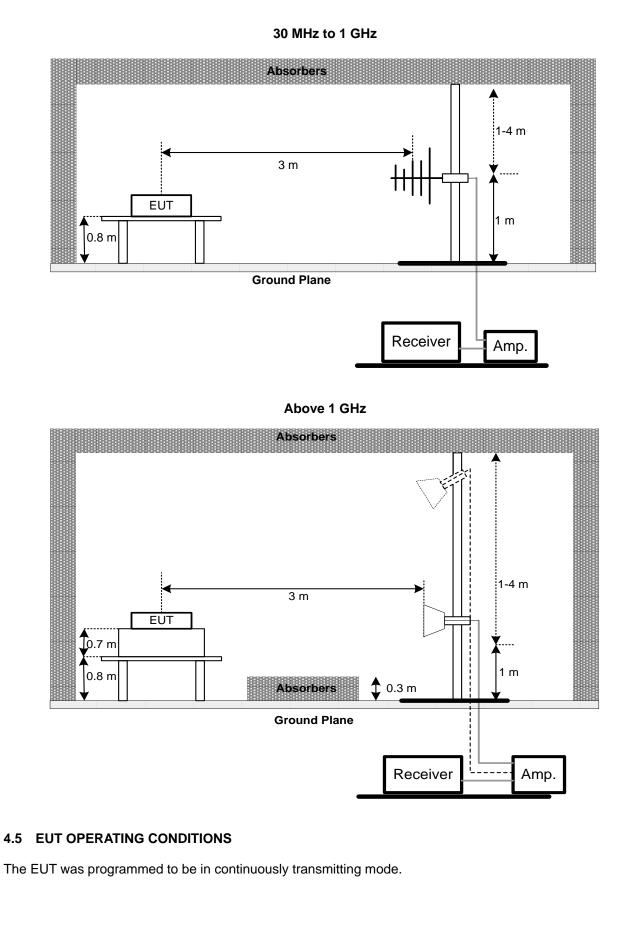
Calculation example.				
Reading Level		Correct Factor		Measurement Value
35.45	+	-11.37	=	24.08

Measurement Value		Limit Value		Margin Level
24.08	1	40	Π	-15.92

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RBW / VBW	1MHz / 3MHz for Peak,
(Emission in restricted band)	1MHz / 1/T for Average
Spectrum Parameter	Setting
Spectrum Parameter Attenuation	Setting Auto
•	
Attenuation	Auto
Attenuation Start ~ Stop Frequency	Auto 9KHz~90KHz for PK/AVG detector
Attenuation Start ~ Stop Frequency Start ~ Stop Frequency	Auto 9KHz~90KHz for PK/AVG detector 90KHz~110KHz for QP detector


4.2 TEST PROCEDURE

- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1GHz)
- b. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1GHz)
- c. The height of the equipment or of the substitution antenna shall be 0.8 m or 1.5 m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- e. The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1GHz.
- f. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- g. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1GHz)
- All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1GHz)
- i. For the actual test configuration, please refer to the related Item EUT TEST PHOTO.


4.3 DEVIATION FROM TEST STANDARD

No deviation.

4.4 TEST SETUP

4.6 TEST RESULT – 30 MHZ TO 1 GHZ

Please refer to the APPENDIX B.

4.7 TEST RESULT – ABOVE 1 GHZ

Please refer to the APPENDIX C.

NOTE:

(1) No limit: This is fundamental signal, the judgment is not applicable. For fundamental signal judgment was referred to Peak output test.

5 NUMBER OF HOPPING CHANNEL

5.1 APPLIED PROCEDURES

FCC Part15 (15.247), Subpart C					
Section	Test Item	Frequency Range (MHz)	Result		
15.247(a)(1)(iii)	Number of Hopping Channel	2400-2483.5	PASS		

Spectrum Parameters	Setting
Attenuation	Auto
Span Frequency	> Operating Frequency Range
RBW	100 KHz
VBW	100 KHz
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

5.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW=100KHz, VBW=100KHz, Sweep time = Auto.

5.3 DEVIATION FROM STANDARD

No deviation.

5.4 TEST SETUP

EUT	SPECTRUM
	ANALYZER

5.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

5.6 TEST RESULTS

Please refer to the APPENDIX D.

6 AVERAGE TIME OF OCCUPANCY

6.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247), Subpart C					
Section	Test Item	Limit	Frequency Range (MHz)	Result	
15.247(a)(1)(iii)	Average Time of Occupancy	0.4sec	2400-2483.5	PASS	

6.2 TEST PROCEDURE

- a. The transmitter output (antenna port) was connected to the spectrum analyzer
- b. Set RBW of spectrum analyzer to 1MHz and VBW to 1MHz.
- c. Use a video trigger with the trigger level set to enable triggering only on full pulses.
- d. Sweep Time is more than once pulse time.
- e. Set the center frequency on any frequency would be measure and set the frequency span to zero span.
- f. Measure the maximum time duration of one single pulse.
- g. Set the EUT for DH5, DH3 and DH1 packet transmitting.
- h. Measure the maximum time duration of one single pulse.
- i. Measure the maximum time duration of one single pulse. A Period Time = (channel number) $^{*}0.4$

For Normal Mode (79 Channel): DH1 Time Solt: Reading * (1600/2)*31.6/(channel number) DH3 Time Solt: Reading * (1600/2)*31.6/(channel number) DH5 Time Solt: Reading * (1600/2)*31.6/(channel number)

For AFH Mode (20 Channel): DH1 Time Solt: Reading * (1600/2)*8/(channel number) DH3 Time Solt: Reading * (1600/4)*8/(channel number) DH5 Time Solt: Reading * (1600/6)*8/(channel number)

6.3 DEVIATION FROM STANDARD

No deviation.

6.4 TEST SETUP

6.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

6.6 TEST RESULTS

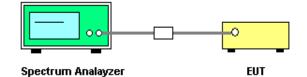
Please refer to the APPENDIX E.

7 Hopping Channel Separation Measurement

7.1 APPLIED PROCEDURES / LIMIT

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 KHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.

Spectrum Parameter	Setting	
Attenuation	Auto	
Span Frequency	> Measurement Bandwidth or Channel Separation	
RBW	30 KHz	
VBW	100 KHz	
Detector	Peak	
Trace	Max Hold	
Sweep Time	Auto	


7.2 TEST PROCEDURE

- a. The EUT must have its hopping function enabled
- b. Span = wide enough to capture the peaks of two adjacent channels Resolution (or IF) Bandwidth (RBW) ≥ 1% of the span Video (or Average) Bandwidth (VBW) ≥ RBW Sweep = Auto Detector function = Peak Trace = Max Hold

7.3 DEVIATION FROM STANDARD

No deviation.

7.4 TEST SETUP

7.5 TEST RESULTS

Please refer to the APPENDIX F.

8 BANDWIDTH TEST

8.1 APPLIED PROCEDURES

FCC Part15 (15.247), Subpart C				
Section	Test Item	Frequency Range (MHz)		
15.247(a)(2)	Bandwidth	2400-2483.5		

Spectrum Parameter	Setting		
Attenuation	Auto		
Span Frequency	> Measurement Bandwidth or Channel Separation		
RBW	30 KHz (20dB Bandwidth) / 30 KHz (Channel Separation)		
VBW	100 KHz (20dB Bandwidth) / 100 KHz (Channel Separation)		
Detector	Peak		
Trace	Max Hold		
Sweep Time	Auto		

8.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW= 30KHz, VBW=100KHz, Sweep Time = Auto.

8.3 DEVIATION FROM STANDARD

No deviation.

8.4 TEST SETUP

8.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

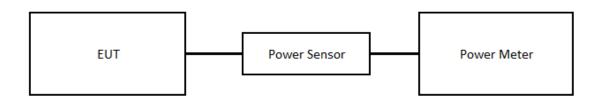
8.6 TEST RESULTS

Please refer to the APPENDIX G.

9 OUTPUT POWER TEST

9.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247), Subpart C					
Section	Test Item	Limit	Frequency Range (MHz)	Result	
15.247(b)(1)	Peak Output Power	0.125Watt or 21dBm	2400-2483.5	PASS	


9.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW= 3MHz, VBW= 3MHz, Sweep time = Auto.

9.3 DEVIATION FROM STANDARD

No deviation.

9.4 TEST SETUP

9.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

9.6 TEST RESULTS

Please refer to the APPENDIX H.

10 ANTENNA CONDUCTED SPURIOUS EMISSION

10.1 APPLIED PROCEDURES / LIMIT

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits.

10.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW= 100KHz, VBW=100KHz, Sweep time = Auto.
- c. Offset=antenna gain+cable loss

10.3 DEVIATION FROM STANDARD

No deviation.

10.4 TEST SETUP

10.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

10.6 TEST RESULTS

Please refer to the APPENDIX I.

		AC Pow	er Line Conducted	d Emissions		
tem	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until
1	TWO-LINE V-NETWORK	R&S	ENV216	101050	2020/6/11	2021/6/10
2	Test Cable	EMCI	EMC400-BM-BM- 5000	170501	2020/6/8	2021/6/7
3	EMI Test Receiver	R&S	ESCI	100080	2020/6/15	2021/6/14
4	Measurement Software	EZ	EZ_EMC (Version NB-03A1-01)	N/A	N/A	N/A
			Dedicted Emissio			
	Kind of		Radiated Emissic		Calibrated	Calibrated
tem	Equipment	Manufacturer	Type No.	Serial No.	Date	Until
1	Preamplifier	EMCI	EMC02325B	980217	2020/4/10	2021/4/9
2	Preamplifier	EMCI	EMC012645B	980267	2020/4/10	2021/4/9
3	Test Cable	EMCI	EMC-SM-SM-100 0	180809	2020/4/10	2021/4/9
4	Test Cable	EMCI	EMC104-SM-SM- 3000	151205	2020/4/10	2021/4/9
5	Test Cable	EMCI	EMC-SM-SM-700 0	180408	2020/4/10	2021/4/9
6	MXE EMI Receiver	Agilent	N9038A	MY554200087	2020/6/10	2021/6/9
7	Signal Analyzer	Agilent	N9010A	MY56480554	2020/8/25	2021/8/24
8	Horn Ant	SCHWARZBECK	BBHA 9120D	9120D-1342	2020/6/12	2021/6/1
9	Horn Ant	Schwarzbeck	BBHA 9170	BBHA 9170340	2020/7/9	2021/7/8
10	Loop Ant	EMCO	6502	274	2020/6/16	2021/6/1
11	Trilog-Broadband Antenna	Schwarzbeck	VULB 9168	VULB 9168-352	2020/7/24	2021/7/2
12	5dB Attenuator	EMCI	EMCI-N-6-05	AT-N0625	2020/7/24	2021/7/2
13	Measurement Software	EZ	EZ_EMC (Version NB-03A1-01)	N/A	N/A	N/A
		Num	ber of Hopping Fr	equency		
	Kind of				Calibrated	Calibrated
tem	Equipment	Manufacturer	Type No.	Serial No.	Date	Until
1	Spectrum Analyzer	R&S	FSP 40	100129	2020/6/15	2021/6/14
		Δνε	erage Time of Occ	unancy		
	Kind of				Calibrated	Calibrate
tem	Equipment Spectrum	Manufacturer	Type No.	Serial No.	Date	Until
1	Analyzer	R&S	FSP 40	100129	2020/6/15	2021/6/14
		Ног	ping Channel Sep	paration		
ltem	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until
1	Spectrum Analyzer	R&S	FSP 40	100129	2020/6/15	2021/6/14

	Bandwidth						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until	
1	Spectrum Analyzer	R&S	FSP 40	100129	2020/6/15	2021/6/14	

			Output Power	•		
Item	Kind of Equipment Manufactu		Type No.	Serial No.	Calibrated Date	Calibrated Until
1	Power Meter	Keysight	8990B	MY51000517	2020/4/6	2021/4/5
2	Power Sensor	Keysight	N1923A	MY58310005	2020/4/6	2021/4/5

	Antenna conducted Spurious Emission										
Item	n Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until					
1	Spectrum Analyzer	R&S	FSP 40	100129	2020/6/15	2021/6/14					

Remark: "N/A" denotes no model name, no serial no. or no calibration specified. All calibration period of equipment list is one year.

12 EUT TEST PHOTO

Please refer to document Appendix No.: TP-2011T130-FCCP-1 (APPENDIX-TEST PHOTOS).

13 EUT PHOTOS

Please refer to document Appendix No.: EP-2011T130-1 (APPENDIX-EUT PHOTOS).

APPENDIX A AC POWER LINE CONDUCTED EMISSIONS

No. Mk. Freq. Reading Level Correct Factor Measure- ment Limit Over MHz dBuV dB dBuV dBuV dB Detector Comment 1 0.2850 2.10 9.69 11.79 60.67 -48.88 QP 2 0.2850 -6.10 9.69 3.59 50.67 -47.08 AVG 3 * 0.5482 17.72 9.68 27.40 56.00 -28.60 QP 4 0.5482 -1.89 9.68 7.79 46.00 -38.21 AVG 5 0.7485 -3.52 9.68 6.16 56.00 -49.84 QP 6 0.7485 -6.81 9.68 2.87 46.00 -43.13 AVG 7 2.0085 -5.53 9.74 4.21 56.00 -51.79 QP 8 2.0085 -7.51 9.74 2.23 46.00 -43.77 AVG 9 2.9400 <th>t Mode</th> <th>Normal</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>Tested Date</th> <th>2020/12/18</th>	t Mode	Normal						Tested Date	2020/12/18
70 60 70<	Frequency	-						Phase	Line
60 7 7 7 7 7 9 60 7 7 7 9 60 7 7 7 9 60 7 7 7 7 7 7 7 9 60 7 <th>80.0 dBuV</th> <th>•</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	80.0 dBuV	•							
50 3 3 3 4 5 50 1	70								
a0 3 3 3 4 5 5 5 5 7 60 11 1	60								
30 3 3 3 3 4 5 5 30.00 20 1 4 5 5 7 1	50								
20 1	40								
10 1 1 4 5 5 30 11 12 12 130.00 11 12 12 130.00 11 12 12 130.00 11 12 12 130.00 11 12 12 130.00 11 12 12 130.00	30								
IO X I X I X I	20								
0.0 A X X X 30.00 0.150 0.5 (MHz) 5 30.00 No. Mk. Freq. Level Factor Measure- ment Limit Over Comment 0 1 0.2850 2.10 9.69 11.79 60.67 -48.88 QP 4 4 9.69 3.59 50.67 -47.08 AVG 4 4 9.68 7.79 46.00 -38.21 AVG 4 4 0.5482 17.72 9.68 6.16 56.00 -49.84 QP 4 4 4 9.68 7.79 46.00 -38.21 AVG 4 4 4 9.68 7.79 46.00 -43.13 AVG 4 4 4 9.68 7.79 46.00 -43.13 AVG 4 4 4 4 9.68 6.16 56.00 -49.84 QP 4 4 4 4 4 4 4 4 4 </th <th>10</th> <th>×</th> <th>V 9</th> <th></th> <th>Z</th> <th>х Х</th> <th></th> <th>11 *2</th> <th></th>	10	×	V 9		Z	х Х		11 *2	
No. Mk. Freq. Reading Level Correct Factor Measure- ment Limit Over MHz dBuV dB dBuV dB Detector Comment 1 0.2850 2.10 9.69 11.79 60.67 -48.88 QP 2 0.2850 -6.10 9.69 3.59 50.67 -47.08 AVG 3 * 0.5482 17.72 9.68 27.40 56.00 -28.60 QP 4 0.5482 -1.89 9.68 7.79 46.00 -38.21 AVG 5 0.7485 -3.52 9.68 6.16 56.00 -49.84 QP 6 0.7485 -6.81 9.68 2.87 46.00 -43.13 AVG 7 2.0085 -5.53 9.74 4.21 56.00 -51.79 QP 8 2.0085 -7.51 9.74 2.23 46.00 -43.77 AVG 9 2.9400 1.07 <th>0.0</th> <th>×</th> <th></th> <th></th> <th>\$</th> <th></th> <th></th> <th>×</th> <th></th>	0.0	×			\$			×	
No. Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV dB Detector Comment 1 0.2850 2.10 9.69 11.79 60.67 -48.88 QP 2 0.2850 -6.10 9.69 3.59 50.67 -47.08 AVG 3 * 0.5482 17.72 9.68 27.40 56.00 -28.60 QP 4 0.5482 -1.89 9.68 7.79 46.00 -38.21 AVG 5 0.7485 -3.52 9.68 6.16 56.00 -49.84 QP 6 0.7485 -6.81 9.68 2.87 46.00 -43.13 AVG 7 2.0085 -5.53 9.74 4.21 56.00 -51.79 QP 8 2.0085 -7.51 9.74 2.23 46.00 -43.77 AVG 9 2.9400 1.07	0.150		0.5		(MHz)		5		30.000
10.28502.109.6911.7960.67-48.88QP20.2850-6.109.693.5950.67-47.08AVG3*0.548217.729.6827.4056.00-28.60QP40.5482-1.899.687.7946.00-38.21AVG50.7485-3.529.686.1656.00-49.84QP60.7485-6.819.682.8746.00-43.13AVG72.0085-5.539.744.2156.00-51.79QP82.0085-7.519.742.2346.00-43.77AVG92.94001.079.7610.8356.00-45.17QP	•	. Level	Factor	ment	Limit				
2 0.2850 -6.10 9.69 3.59 50.67 -47.08 AVG 3 * 0.5482 17.72 9.68 27.40 56.00 -28.60 QP 4 0.5482 -1.89 9.68 7.79 46.00 -38.21 AVG 5 0.7485 -3.52 9.68 6.16 56.00 -49.84 QP 6 0.7485 -6.81 9.68 2.87 46.00 -43.13 AVG 7 2.0085 -5.53 9.74 4.21 56.00 -51.79 QP 8 2.0085 -7.51 9.74 2.23 46.00 -43.77 AVG 9 2.9400 1.07 9.76 10.83 56.00 -45.17 QP								Comment	
3 * 0.5482 17.72 9.68 27.40 56.00 -28.60 QP 4 0.5482 -1.89 9.68 7.79 46.00 -38.21 AVG 5 0.7485 -3.52 9.68 6.16 56.00 -49.84 QP 6 0.7485 -6.81 9.68 2.87 46.00 -43.13 AVG 7 2.0085 -5.53 9.74 4.21 56.00 -51.79 QP 8 2.0085 -7.51 9.74 2.23 46.00 -43.77 AVG 9 2.9400 1.07 9.76 10.83 56.00 -45.17 QP									
4 0.5482 -1.89 9.68 7.79 46.00 -38.21 AVG 5 0.7485 -3.52 9.68 6.16 56.00 -49.84 QP 6 0.7485 -6.81 9.68 2.87 46.00 -43.13 AVG 7 2.0085 -5.53 9.74 4.21 56.00 -51.79 QP 8 2.0085 -7.51 9.74 2.23 46.00 -43.17 AVG 9 2.9400 1.07 9.76 10.83 56.00 -45.17 QP									
5 0.7485 -3.52 9.68 6.16 56.00 -49.84 QP 6 0.7485 -6.81 9.68 2.87 46.00 -43.13 AVG 7 2.0085 -5.53 9.74 4.21 56.00 -51.79 QP 8 2.0085 -7.51 9.74 2.23 46.00 -43.77 AVG 9 2.9400 1.07 9.76 10.83 56.00 -45.17 QP									
6 0.7485 -6.81 9.68 2.87 46.00 -43.13 AVG 7 2.0085 -5.53 9.74 4.21 56.00 -51.79 QP 8 2.0085 -7.51 9.74 2.23 46.00 -43.77 AVG 9 2.9400 1.07 9.76 10.83 56.00 -45.17 QP									
7 2.0085 -5.53 9.74 4.21 56.00 -51.79 QP 8 2.0085 -7.51 9.74 2.23 46.00 -43.77 AVG 9 2.9400 1.07 9.76 10.83 56.00 -45.17 QP									
8 2.0085 -7.51 9.74 2.23 46.00 -43.77 AVG 9 2.9400 1.07 9.76 10.83 56.00 -45.17 QP									
9 2.9400 1.07 9.76 10.83 56.00 -45.17 QP	2.0085								
		- 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7	9.74						
10 2 9400 -0 58 9 76 9 18 46 00 -36 82 AVG					56.00	-45.17	QP		
	9 2.9400	0 1.07							
11 8.4750 -2.97 9.90 6.93 60.00 -53.07 QP 12 8.4750 -5.28 9.90 4.62 50.00 -45.38 AVG	2.9400 2.9400 2.9400	0 1.07 0 -0.58	9.76	9.18	46.00	-36.82	AVG		

Measurement Value = Reading Level + Correct Factor.
 Margin Level = Measurement Value - Limit Value.

st Mo	de	Normal						Tested Date	2020/12/18
Fest Frequency		-			Phase	Neutral			
80.0	dBuV								
70									
60									
50									
40									
30									
20			57 XX 8 3 X						
10	1		3 X 4 6 4 X			9 9 9		11 \$2 X	
0.0	×					X			
0.1	150		0.5		(MHz)		5		30.000
√o. Mł		Reading Level	Correct Factor	Measure- ment	Limit	Over			
	MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detector	Comment	
1	0.2558	-1.89	9.68	7.79	61.57	-53.78	QP		
2	0.2558		9.68	3.03	51.57	-48.54	AVG		
3	0.4987	1.81	9.68	11.49	56.02	-44.53	QP		
4	0.4987	-4.57	9.68	5.11	46.02	-40.91	AVG		
5	0.5505	9.92	9.68	19.60	56.00	-36.40	QP		
6	0.5505	-3.06	9.68	6.62	46.00	-39.38	AVG		
7	0.6157	10.61	9.68	20.29	56.00	-35.71	QP		
8 *	0.6157	5.06	9.68	14.74	46.00	-31.26	AVG		
9	2.9400	-4.42	9.76	5.34	56.00	-50.66	QP		
10	2.9400	-6.50	9.76	3.26	46.00	-42.74	AVG		
11	8.5672	-2.63	9.90	7.27	60.00	-52.73	QP		
12	8.5672	-5.18	9.90	4.72	50.00	-45.28	AVG		

(1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value - Limit Value.

st Mo	de	Idle						Tested Date	2020/12/18
est Fre	quency	-						Phase	Line
80.0	dBuV								
70									
60									
50									
40									
30			3 X						
20			5 X 6						
10		1 X 2	4 ×	7		30 X		11 \$2 X	
0.0		×		A X				×	
0.	150		0.5		(MHz)		5		30.000
No. MI	k. Freq.	Reading Level) Correct Factor	Measure- ment	Limit	Over			
	MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detector	Comment	
1	0.2670		9.68	11.60	61.21	-49.61	QP		
2	0.2670		9.68	3.21	51.21	-48.00	AVG		
3 *	0.5460		9.68	27.26	56.00	-28.74	QP		
4	0.5460		9.68	8.08	46.00	-37.92	AVG		
5	0.6180		9.68	18.41	56.00	-37.59	QP		
6	0.6180		9.68	13.63	46.00	-32.37	AVG		
7	1.0657		9.69	4.50	56.00	-51.50	QP		
8	1.0657		9.69	1.98	46.00	-44.02	AVG		
9	2.8568		9.76	11.43	56.00	-44.57	QP		
10	2.8568		9.76	10.02	46.00	-35.98	AVG		
11	7.7550		9.89	6.90	60.00	-53.10	QP		
12	7.7550	-5.32	9.89	4.57	50.00	-45.43	AVG		

(1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value - Limit Value.

ot Mode	Idle						Tested Date	2020/12/18
est Mode	laie							Neutral
est Frequency	-						Phase	Ineutral
80.0 dBuV								
70								
60								
50								
40								
30		7 \$						
20								
	5 X 6			9			11	
0.0	б Х			¥0 90			* 2 ×	
0.150		0.5		(MHz)		5		30.000
No. Mk. Free	Reading q. Level	Correct Factor	Measure- ment	Limit	Over			
MHz	: dBuV	dB	dBu∨	dBu∨	dB	Detector	Comment	
1 0.152	2 -2.04	9.68	7.64	65.88	-58.24	QP		
2 0.152	2 -3.81	9.68	5.87	55.88	-50.01	AVG		
3 0.195	0 -0.98	9.67	8.69	63.82	-55.13	QP		
4 0.195	0 -4.49	9.67	5.18	53.82	-48.64	AVG		
5 0.255	8 -2.00	9.68	7.68	61.57	-53.89	QP		
6 0.255	8 -6.70	9.68	2.98	51.57	-48.59	AVG		
7 0.546	0 18.18	9.68	27.86	56.00	-28.14	QP		
8 * 0.546	0 16.32	9.68	26.00	46.00	-20.00	AVG		
9 1.799	3 -5.29	9.73	4.44	56.00	-51.56	QP		
10 1.799	3 -7.24	9.73	2.49	46.00	-43.51	AVG		
			7.05					
11 8.547	0 -2.65	9.90	7.25	60.00	-52.75	QP		

(1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value - Limit Value.

APPENDIX B	RADIATED EMISSIONS - 30 MHZ TO 1 GHZ

BIL

		BT(3Mbps) 2402MHz				Test Date	2020/12/17				
Test Frequency							Polarizatio	n	Vertical		
	Temp			22	°C			Hum.		6	8%
80.0 dE	luV/m										
70											
60											
50											
40		1 X				ч×	* *	5 X			6 X
30				2 X	2						^
20											
10											
0.0											
30.000	127.00	224.00	321.0	00	418.00	515.0)0 6 [.]	12.00 70	9.00 806	.00	1000.00 MH
No.	Mk.	Freq.	Rea Lev		Correct Factor		asure- nent	Limit	Over		
		MHz	dB	uV	dB	dE	3uV/m	dBuV/m	dB	Detector	Comment
1	*	168.0310) 47.	60	-8.53	3	9.07	43.50	-4.43	QP	
2		384.0177	7 38.	04	-5.25	3	32.79	46.00	-13.21	peak	
3		482.8930) 40.	06	-3.07	3	6.99	46.00	-9.01	peak	
4		564.0497	7 38.	99	-1.46	3	37.53	46.00	-8.47	peak	
5		612.0970) 35.	84	-0.47	3	5.37	46.00	-10.63	peak	
6		936.1093	3 30.	11	4.82	3	4.93	46.00	-11.07	peak	

REMARKS:

Measurement Value = Reading Level + Correct Factor.
 Margin Level = Measurement Value - Limit Value.

	Test Mo st Frequ				Mbps) 2MHz		Test Date Polarizatio			/12/17 zontal	
	Temp				2°C		Hum.			8%	
80.0 dl	<u>lonn</u> 3uV/m	,		~~~	_ 0		Tiurri.			070	
											1
70											
60											
50											
40 —	1 X	2 X	3 X		4 ×			×د ۲	6 X		
30	X				^						
20											
10											
0.0											
30.000	127.00) 224.00	321.0	0	418.00	515.00 6	12.00 70	9.00 806	5.00	1000.00	ЧМ
No.	Mk.	Freq.	Read Lev		Correct Factor	Measure- ment	Limit	Over			
		MHz	dBu	ιV	dB	dBuV/m	dBuV/m	dB	Detector	Comme	nt
1		96.0247	48.6	60	-13.90	34.70	43.50	-8.80	QP		
2	*	168.0310) 51.′	13	-8.53	42.60	43.50	-0.90	QP		
3	!	288.0200			-7.68	40.88	46.00	-5.12	QP		
4		444.0607			-3.82	36.73	46.00	-9.27	peak		
5		732.3123			1.54	36.64	46.00	-9.36	peak		
6		852.0750	35.5	51	3.43	38.94	46.00	-7.06	peak		

APPENDIX C RADIATED EMISSIONS - ABOVE 1 GHZ

	Test Mo	de		BT(1Mbps)		Test Date	1	2020	/12/17
Г	Test Frequ)2MHz		Polarizatio			zontal
-	Temp			2	2°C		Hum.		6	8%
130.0	dBuV/m									
120										
110										
100										
90 -						3				
80										
70										
60			1 X		اللالة المستح المالية	a daard baard at an	ay and the open second had	un man stationarkater	Later of the street of the	5
50	er offer Afrikanski, offered	ra, na Marilla di Andrea di Andrea.			ann here and Article A					
40			2							6 X
30			×							
20										
10.0										
2302.	.000 2322.0	0 2342	.00	2362.00	2382.00	2402.00 2	2422.00 24	42.00 246	2.00	2502.00 MHz
No.	Mk.	Freq.		Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz		dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		2345.7		25.76	30.62	56.38	74.00	-17.62	peak	
2		2345.7		2.63	30.62	33.25	54.00	-20.75	AVG	
3	Х	2402.0		59.66	30.84	90.50	74.00	16.50	peak	NoLimit
4	*	2402.0		59.13	30.84	89.97	54.00	35.97	AVG	NoLimit
5		2491.8		26.67	31.20	57.87	74.00	-16.13	peak	
6		2491.8	73	2.99	31.20	34.19	54.00	-19.81	AVG	

	Test Mo			Mbps)		Test Date	-		/12/17
Tes	st Frequ			0MHz 2°C		Polarization	1		zontal
30.0 dB	Temp u¥/m	1	2	210		Hum.		0	8%
130.0 GD	47711								
120									
10									
00									
					\$ X				
0									
D									
. –					()				
0									
0 1								demparation and a	5
ريسيې <mark>کې بېسي</mark>	and the fundation	May mark proper barrens	Nepasan provident and state	makes of the second second	nound handman	the manual many	which the work of the second	adversignation and a second	windminist
0									
0 2									6
o ×									×
0									
0.0									
	0 2400.0	0 2420.00	2440.00	2460.00	2480.00 2			0.00	2580.00 MI
No.	Mk.	Freq.	Reading	Correct	Measure-	Limit	Over		
			Level	Factor	ment				
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		2382.367	25.12	30.76	55.88	74.00	-18.12	peak	
2	X	2382.367	2.54	30.76	33.30	54.00	-20.70	AVG	NI II
3	X *	2480.000	62.48	31.15	93.63	74.00	19.63	peak	NoLimit
4	*	2480.000	62.08	31.15	93.23	54.00	39.23	AVG	NoLimit
5		2569.193	26.70	31.52	58.22	74.00	-15.78	peak	
6		2569.193	3.27	31.52	34.79	54.00	-19.21	AVG	

Te	Test Mo st Frequ			3Mbps) 02MHz		Test Date Polarizatio	0		/12/17 zontal
IE	Temp			2°C		Hum.			2011.ai 8%
130.0 d	BuV/m		2	20		Tium.		0	0 /0
120									
110									
100									
90					3				
					Ä				
80									
70									
					- 11				
60									5
50	alpertifications	den and the second second	~~~~	manterior	and househay	hospitaliterations.	ula para ana ana ana ana ana ana ana ana ana	MAND Have A Martin Manger	san an a
40				2					6
30				×					×
20									
10.0	00 2322.0	0 2342.00	2362.00	2382.00	2402.00 24	422.00 244	42.00 246	2.00	2502.00 MI
2302.0 No.	00 2322.0 Mk.	Freq.	Reading	Correct	Measure-	Limit	0ver	2.00	2002.00 Mi
NO.	IVIN.	печ.	Level	Factor	ment	Linin	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		2386.287	26.09	30.77	56.86	74.00	-17.14	peak	20
2		2386.287	2.55	30.77	33.32	54.00	-20.68	AVG	
3	Х	2402.000	60.29	30.84	91.13	74.00	17.13	peak	NoLimit
4	*	2402.000	56.86	30.84	87.70	54.00	33.70	AVG	NoLimit
5		2486.600	25.55	31.17	56.72	74.00	-17.28	peak	
6		2486.600	2.96	31.17	34.13	54.00	-19.87	AVG	

Te	Test Mo st Frequ			3Mbps) 0MHz		Test Date Polarizatior	า		/12/17 zontal
	Temp			2°C		Hum.			8%
130.0 d	BuV/m								
120									
10									
00					3				
90 —					Å				
80									
70									
		ntupperioralitationspreasedy.htt	maharangen	utur manunarh	alled Waterson	any many many the	ntwithunarth	ang mang ang ang ang ang ang ang ang ang ang	5 Ж. ///////////////////////////////////
50 -									
2 20 X									6 X
20									
10.0									
2380.0	00 2400.0	0 2420.00	2440.00	2460.00	2480.00 2	500.00 252	20.00 254	0.00	2580.00 M
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Commen
1		2386.767	25.61	30.78	56.39	74.00	-17.61	peak	
2		2386.767	2.53	30.78	33.31	54.00	-20.69	AVG	
3	Х	2480.000	62.44	31.15	93.59	74.00	19.59	peak	NoLimit
4	*	2480.000	58.84	31.15	89.99	54.00	35.99	AVG	NoLimit
5		2568.940	26.59	31.52	58.11	74.00	-15.89	peak	
6		2568.940	3.16	31.52	34.68	54.00	-19.32	AVG	

	Test Mo					Mbp					Test D					/12/17	
IE	est Frequ					2MH	Z				olariza					rtical	
20.0 d	Temp BuV/m	5			Ζ.	2°C					Hum	l			6	8%	
20.0 u	DUY/III										1				1		
10																	
00																	
o 📃																	
0																	
0																	
0																	
0		x x															
0 -		X															
:0																	
o 📃																	
	00 3550.0	00 6100.	.00	8650.0	00	1120	D.00	1375	50.00	163	300.00	188	50.00	214	DO. OO	26500.	 00 MH
No.	Mk.	Freq.		Read	ing	Co	rect	Me	easure	ə-	Limit	t	Ove	er			
		•		Lev	el		ctor		ment								
		MHz		dBu			IB		3uV/n	n	dBuV/		dE		Detector	Comn	nent
1		4804.0		57.3			0.03		17.32		74.00		-26.		peak		
2	*	4804.0	00	53.3	37	-10	0.03	4	13.34		54.00)	-10.	66	AVG		

To	Test Mo				(1Mbps) 02MHz		Test Date Polarizatio			/12/17 zontal
Te	est Frequ Temp				22°C		Hum.			2011ai 8%
20.0 d	BuV/m	,			22 0		TIUIII.		0	0 /0
10										
00										
o										
0										
o 🦳										
0										
		_								
0		Š.								
o 📃		^								
0										
0										
_										
0										
.0										
	00 3550.0			8650.00	11200.00				00.00	26500.00 MH
No.	Mk.	Freq	•	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz		dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4804.0		59.87	-10.03	49.84	74.00	-24.16	peak	Comment
2	*	4804.0		56.93	-10.03	46.90	54.00	-7.10	AVG	

	Test Mo			1Mbps) 41MHz		Test Date Polarizatio			/12/17
IE	est Frequ Temp			22°C		Hum.	n		rtical 8%
120.0 d	Terriµ Bu¥/m)		20		num.		0	570
				ĺ		ĺ		1	
10									
00									
o 🔔									
0									
o 🥅									
_									
0									
0		j X							
o 📃		×							
0									
:0									
0									
.0									
)00 3550.0			11200.00				00.00	26500.00 MH
No.	Mk.	Freq.	Reading	Correct	Measure-	Limit	Over		
		N 41 I.	Level	Factor	ment		٦D	Data at a r	0
4		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	*	4882.000		-9.76	50.03	74.00	-23.97	peak	
2		4882.000	55.23	-9.76	45.47	54.00	-8.53	AVG	

	Test Mo st Frequ			1Mbps) I1MHz		Test Date Polarizatio			/12/17 zontal
10	Temp			2°C		Hum.			8%
20.0 d	BuV/m								
10									
00									
) <u> </u>									
		1							
		×							
<u>ا</u>									
۱ <u> </u>									
·									
	00 3550.0	0 6100.00	8650.00	11200.00	13750.00 1	6300.00 18	850.00 214	00.00	26500.00 MI
No.	Mk.	Freq.	Reading	Correct	Measure-	Limit	Over	00.00	20300.00 M
			Level	Factor	ment				
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4882.000		-9.76	48.65	74.00	-25.35	peak	
2	*	4882.000	54.18	-9.76	44.42	54.00	-9.58	AVG	

	Test Mo st Frequ			(1Mbps) 80MHz		Test Date Polarizatio			/12/17 rtical
10	Temp			22°C		Hum.	11		8%
20.0 d	BuV/m								
10									
00									
o 📃									
0									
0									
0		1							
		1 ≱ ×							
o 📃									
D									
D									
.0									
1000.0	00 3550.0)0 6100.0	0 8650.00	11200.00	13750.00 1	6300.00 18	850.00 214	00.00	26500.00 Mi
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4960.00		-9.49	47.38	74.00	-26.62	peak	
2	*	4960.00	51.66	-9.49	42.17	54.00	-11.83	AVG	

	Test Mo est Frequ			1Mbps) 80MHz		Test Date Polarizatio			/12/17 zontal
	Temp			2°C		Hum.			8%
20.0 d	Bu¥/m								
10									
00									
o									
)									
ר ו									
)		1 Ž X							
)		<u>^</u>							
)									
,									
,									
)									
.0									
	00 3550.0			11200.00				00.00	26500.00 M
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4960.000		-9.49	49.26	74.00	-24.74	peak	
2	*	4960.000	53.51	-9.49	44.02	54.00	-9.98	AVG	

	Test Mo			3Mbps)		Test Date			/12/17
IE	st Frequ			02MHz		Polarizatio	n		rtical
20.0 d	Temp BuV/m)	4	22°C		Hum.		6	8%
	BUALW								
10									
00									
0									
0									
0									
0									
		1 Ž							
0		2 X							
0									
o 📃									
0									
0									
).0									
1000.0	00 3550.0	0 6100.00	8650.00	11200.00	13750.00 1	6300.00 18	850.00 214	00.00	26500.00 MH
No.	Mk.	Freq.	Reading	Correct	Measure-	Limit	Over		
			Level	Factor	ment				
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4804.000		-10.03	52.18	74.00	-21.82	peak	
2	*	4804.000) 56.28	-10.03	46.25	54.00	-7.75	AVG	

	Test Mo			3Mbps)		Test Date	-)/12/17
Ie	st Frequ			2MHz		Polarizatio	n		zontal
20.0 dE	Temp		2	2°C		Hum.		6	8%
20.0 06	suv/m								
10									
00									
o									
o									
0									
0									
o 📃		1 Ž							
		x							
0									
0									
0									
0									
.0	0 3550.0	0 6100.00	8650.00	11200.00	13750.00 1	6300.00 18	850.00 214	100.00	26500.00 MI
No.	Mk.	Freq.	Reading	Correct	Measure-	Limit	Over	100.00	20300.00 MI
140.	iviix.	1109.	Level	Factor	ment	LIIII	0,00		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4804.000		-10.03	52.08	74.00	-21.92	peak	
2	*	4804.000	56.66	-10.03	46.63	54.00	-7.37	AVG	

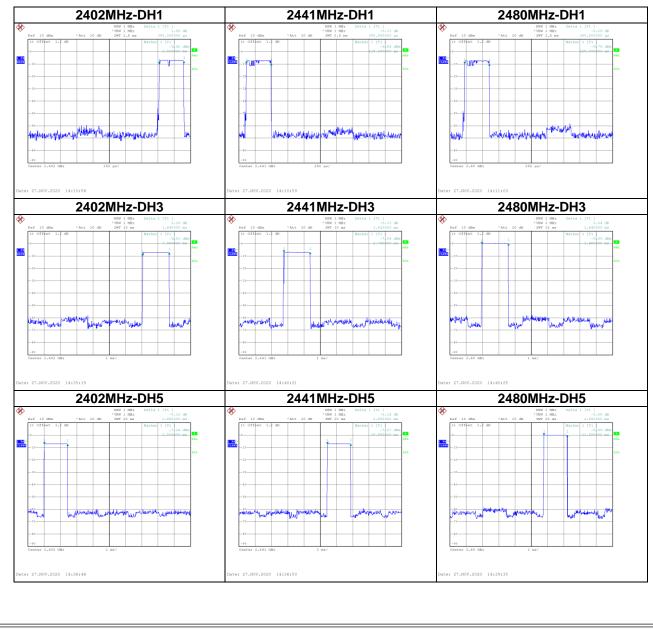
т.	Test Mo			3Mbps) 41MHz		Test Date Polarizatio			/12/17
IE	est Frequ Temp			<u>+11VIHZ</u> 22°C		Hum.	n		rtical 8%
120.0 d	Terriµ 1Bu∀/m)	4	20		num.		0	0 70
				ĺ					
10									
00									
o 🔔									
0									
0									
_									
0		1							
0		ž X							
o 📃		n							
0 -									
:0									
0									
.0									
)00 3550.0	0 6100.0		11200.00				00.00	26500.00 MI
No.	Mk.	Freq.	Reading	Correct	Measure-	Limit	Over		
			Level	Factor	ment			<u> </u>	0
4		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	*	4882.000		-9.76	53.45	74.00	-20.55	peak	
2	~	4882.000) 57.95	-9.76	48.19	54.00	-5.81	AVG	

	Test Mo st Frequ			3Mbps) 1MHz		Test Date Polarizatio			/12/17 zontal
	Temp			2°C		Hum.			8%
20.0 d	Bu¥/m	•		20					0,0
10									
00									
0									
0									
0									
0									
0		1 Ž							
0		x							
o									
o 📃									
0									
o 📃									
.0									
	00 3550.0	0 6100.00	8650.00	11200.00	13750.00 1	6300.00 18	850.00 214	00.00	26500.00 MH
No.	Mk.	Freq.	Reading	Correct	Measure-	Limit	Over		
			Level	Factor	ment				
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4882.000		-9.76	52.47	74.00	-21.53	peak	
2	*	4882.000	56.31	-9.76	46.55	54.00	-7.45	AVG	

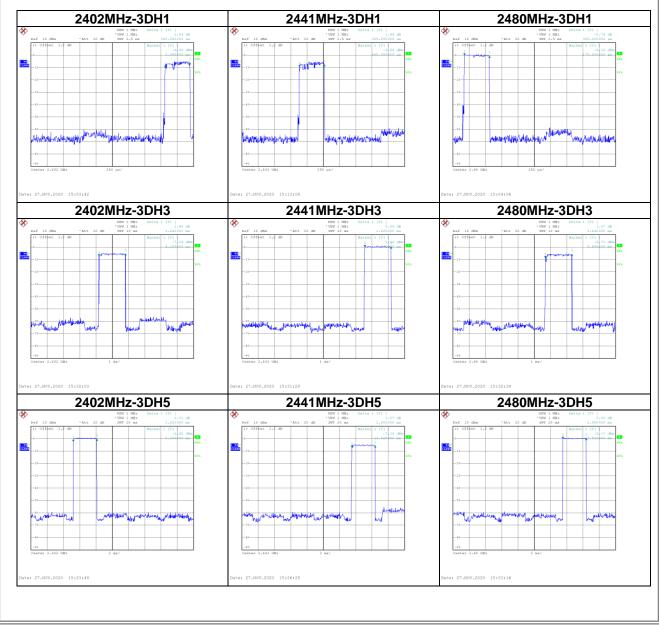
	Test Mo				3Mbps					Test D					/12/17	
IE	est Frequ				30MHz 2°C				P	olariza			-		rtical 8%	
20.0 d	Temp BuV/m)		2	2.0					Hum	l.			0	8%	
20.0 u	DUY/III									1						
10																
00																
o 🔔																
0																
0																
0																
		1 Ž														
0		X														
o																
o 📃																
0																-
0																
.0																
	00 3550.0	0 6100.0	0 865	0.00	11200	.00	1375	0.00	163	00.00	1885	50.00	2140	0.00	26500.0)0 MH
No.	Mk.	Freq.		ading	Cor			easure		Limit		Ove				
		1		evel	Fac			ment								
		MHz	dl	BuV	d	В	dE	3uV/m	1	dBuV/	m	dE	3	Detector	Comm	nent
1		4960.00		8.78	-9.			54.29		74.00		-19.		peak		
2	*	4960.00	0 57	7.27	-9.	49	4	7.78		54.00)	-6.2	22	AVG		

T	Test Mo		_		3Mbps) 80MHz				Test Da olariza				/12/17 zontal
Te	est Frequ Temp				2°C				Hum.				2011.ai 8%
120.0 d	IBuV/m	,		2	20				Tiuin.	•		0	0 70
10													
00				_									
io 📃													
80													
'0 🕅													
50													
		1											
50		2 X											
80													
20													
0.0	00 2550 (0 6100.0	00 00	50.00	11200.00	107	50.00	100	00.00	10050.0	0 21	400.00	26500.00 MH
No.	00 3550.0 Mk.	Freq.		50.00 odipa	Correc		easure		00.00 Limit	18850.0	Dver	400.00	26300.00 MF
INO.	IVIK.	rieq.		ading evel	Factor		ment	-	LIIIII	C	Jvei		
		MHz		BuV	dB		BuV/m		dBuV/r	n	dB	Detector	Comment
1		4960.00		3.76	-9.49		54.27		74.00		9.73	peak	
2	*	4960.00		7.66	-9.49		48.17		54.00		5.83	AVG	

APPENDIX D NUMBER OF HOPPING CHANNEL



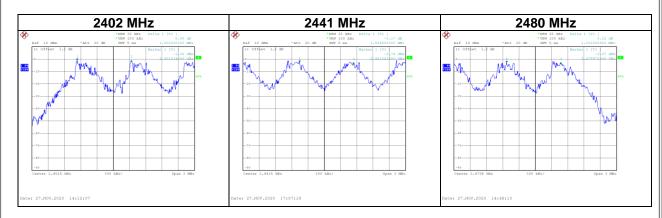
APPENDIX E AVERAGE TIME OF OCCUPANCY



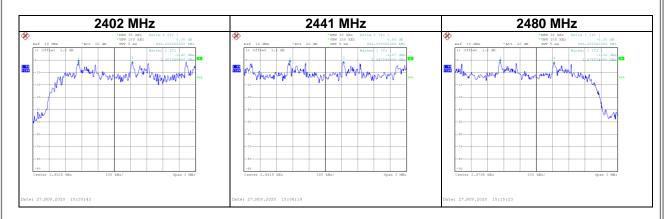
Test Mode :	1Mbps				
Data Packet	Frequency (MHz)	Pulse Duration (ms)	Dwell Time (s)	Limits (s)	Test Result
DH5	2402 MHz	2.8800	0.3072	0.4000	Pass
DH3	2402 MHz	1.6400	0.2624	0.4000	Pass
DH1	2402 MHz	0.3800	0.1216	0.4000	Pass
DH5	2441 MHz	2.8800	0.3072	0.4000	Pass
DH3	2441 MHz	1.6200	0.2592	0.4000	Pass
DH1	2441 MHz	0.3800	0.1216	0.4000	Pass
DH5	2480 MHz	2.8800	0.3072	0.4000	Pass
DH3	2480 MHz	1.6400	0.2624	0.4000	Pass
DH1	2480 MHz	0.3800	0.1216	0.4000	Pass

Project No.: 2011T130

Test Mode :	3Mbps				
Data Packet	Frequency	Pulse Duration(ms)	Dwell Time(s)	Limits(s)	Test Result
3DH5	2402 MHz	2.9200	0.3115	0.4000	Pass
3DH3	2402 MHz	1.6400	0.2624	0.4000	Pass
3DH1	2402 MHz	0.3800	0.1216	0.4000	Pass
3DH5	2441 MHz	2.8800	0.3072	0.4000	Pass
3DH3	2441 MHz	1.6200	0.2592	0.4000	Pass
3DH1	2441 MHz	0.3850	0.1232	0.4000	Pass
3DH5	2480 MHz	2.8800	0.3072	0.4000	Pass
3DH3	2480 MHz	1.6400	0.2624	0.4000	Pass
3DH1	2480 MHz	0.3850	0.1232	0.4000	Pass


3โI

APPENDIX F HOPPING CHANNEL SEPARATION MEASUREMENT

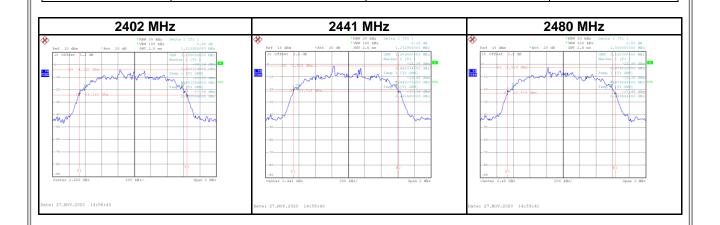

Test Mode :	Hopping on _1Mbps		
Frequency (MHz)	Channel Separation (MHz)	2/3 of 20dB Bandwidth (MHz)	Test Result
2402	1.002	0.629	Pass
2441	1.005	0.627	Pass
2480	1.002	0.619	Pass

Test Mode :

Hopping on _3Mbps


Frequency (MHz)	Channel Separation (MHz)	2/3 of 20dB Bandwidth (MHz)	Test Result
2402	0.996	0.876	Pass
2441	0.996	0.849	Pass
2480	0.996	0.867	Pass

APPENDIX G BANDWIDTH


Test Mode :	1Mbps				
Frequency (MHz)		Bandwidth (MHz)	99% Occup (MH:		Test Result
2402	(0.944	0.84	8	Pass
2441	2441 0.940		0.85	6	Pass
2480		0.928	0.856		Pass
2402 MHz	z	2441 N	MHz	2	480 MHz
	No.4 1 - - NO - <tr< td=""><td>Int 10 dim *Att 20 dim *est 30 Int 10 dim *Att 20 dim *est 30 Int 0 office 1.2 dim - - Int 0 office 1.2</td><td>0 kHz 0.09 dB</td><td>ter 10 dim *Att 20 tr 0 dim *1,2 di ter 1,2 di ter 1,2 dim ter 1,2 dim</td><td>* 1994 20 Mar 2014 1 (211) * 1994 20 Mar 2014 20 - 0-74 dB 1997 2-0 Mar 2014 20 Mar 2014</td></tr<>	Int 10 dim *Att 20 dim *est 30 Int 10 dim *Att 20 dim *est 30 Int 0 office 1.2 dim - - Int 0 office 1.2	0 kHz 0.09 dB	ter 10 dim *Att 20 tr 0 dim *1,2 di ter 1,2 di ter 1,2 dim ter 1,2 dim	* 1994 20 Mar 2014 1 (211) * 1994 20 Mar 2014 20 - 0-74 dB 1997 2-0 Mar 2014 20 Mar 2014

Test Mode :	3Mbps		
Frequency (MHz)	20dB Bandwidth (MHz)	99% Occupied BW (MHz)	Test Result
2402	1.314	1.200	Pass
2441	1.273	1.204	Pass

1.192

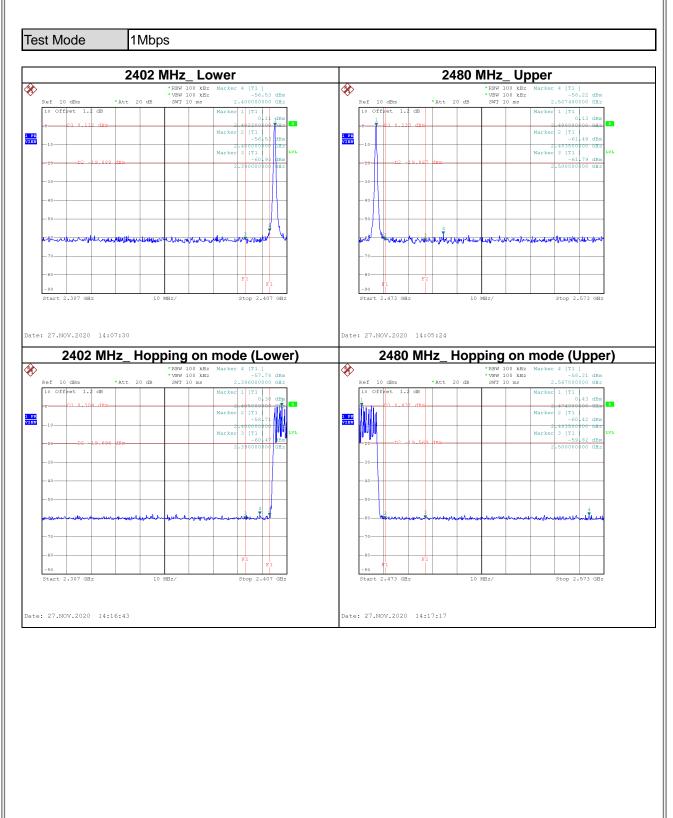
1.300

2480

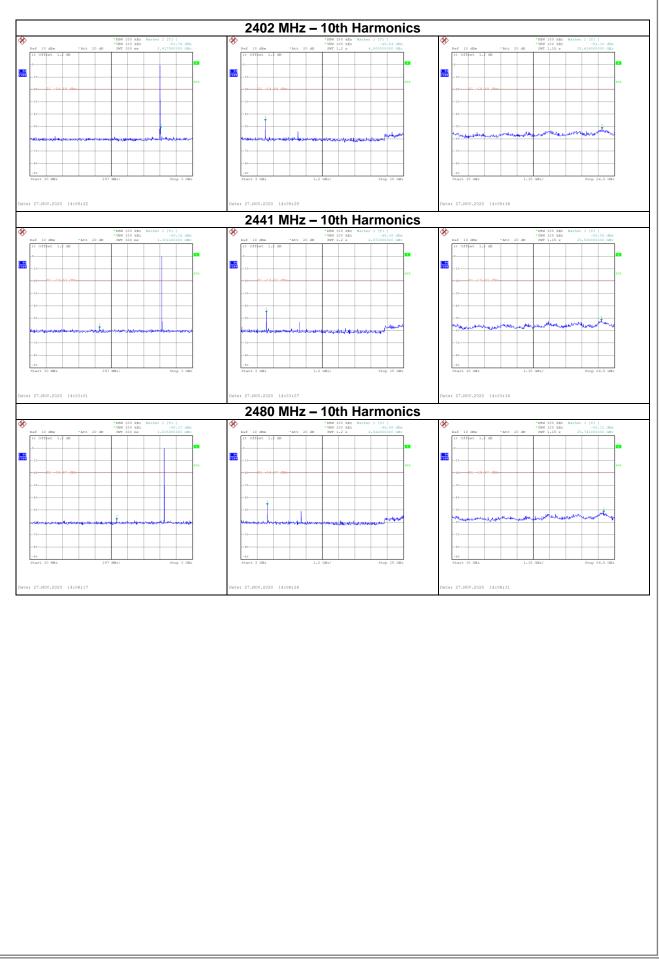
Pass

APPENDIX H OUTPUT POWER

BIL



Test Mode :	1Mbps		Testeo	d Date	2020/11/27
Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Max. Limit (dBm)	Max. Limit (W)	Test Result
2402	0.70	0.0012	21.00	0.1250	Pass
2441	0.74	0.0012	21.00	0.1250	Pass
2480	0.65	0.0012	21.00	0.1250	Pass
Test Mode :	2Mbps		Testeo	d Date	2020/11/27
Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Max. Limit (dBm)	Max. Limit (W)	Test Result
2402	1.47	0.0014	21.00	0.1250	Pass
2441	1.58	0.0014	21.00	0.1250	Pass
2480	1.38	0.0014	21.00	0.1250	Pass
Test Mode :	3Mbps		Testeo	d Date	2020/11/27
Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Max. Limit (dBm)	Max. Limit (W)	Test Result
2402	1.72	0.0015	21.00	0.1250	Pass
2441	1.61	0.0014	21.00	0.1250	Pass
2480	1.40	0.0014	21.00	0.1250	Pass



APPENDIX I ANTENNA CONDUCTED SPURIOUS EMISSION

