

Global United Technology Services Co., Ltd.

Report No.:GTSL202101000039F01

TEST REPORT

Applicant: Shenzhen Golden Vision Technology Development Co., Ltd

Address of Applicant: No.6 Bao Fu Road, Bao Lai industrial Park, Shang Mu Gu

Villiage, Pinghu Street, Longgang District, Shenzhen City,

Guangdong Province, 518000, China

Manufacturer: Shenzhen Golden Vision Technology Development Co., Ltd

Address of No.6 Bao Fu Road, Bao Lai industrial Park, Shang Mu Gu Manufacturer: Villiage, Pinghu Street, Longgang District, Shenzhen City,

Guangdong Province, 518000, China

Equipment Under Test (EUT)

Flood Light **Product Name:**

Model No.: D₅

Add. Model No.: D3, D4, D6

Trade Mark: N/A

FCC ID: 2APD7-R9522D5

FCC CFR Title 47 Part 15 Subpart C Section 15.247 **Applicable standards:**

Date of sample receipt: 2020-12-23

Date of Test: 2020-12-24 to 2020-12-30

Date of report issued: 2020-12-31

PASS * Test Result:

Authorized Signature:

Robinson Luo Laboratory Manager

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	2020-12-31	Original

Prepared By:	Jamelly	Date:	2020-12-31	
	Project Engineer			
	1147			
Check By:	Lothingong Lund	Date:	2020-12-31	

Reviewer

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

3 Contents

			Page
1	COVER	PAGE	1
2	VER	SION	2
3	CON	ITENTS	3
4		T SUMMARY	
- 5		ERAL INFORMATION	
၁	GEN		
	5.1	GENERAL DESCRIPTION OF EUT	5
	5.2	TEST MODE	6
	5.3	DESCRIPTION OF SUPPORT UNITS	6
	5.4	DEVIATION FROM STANDARDS	6
	5.5	ABNORMALITIES FROM STANDARD CONDITIONS	6
	5.6	TEST FACILITY	6
	5.7	TEST LOCATION	6
	5.8	ADDITIONAL INSTRUCTIONS	6
6	TES	T INSTRUMENTS LIST	7
7	TES	T RESULTS AND MEASUREMENT DATA	9
	7.1	ANTENNA REQUIREMENT	9
	7.2	CONDUCTED EMISSIONS	10
	7.3	CONDUCTED PEAK OUTPUT POWER	
	7.4	CHANNEL BANDWIDTH & 99% OCCUPY BANDWIDTH	
	7.5	POWER SPECTRAL DENSITY	
	7.6	BAND EDGES	
	7.6.1		
	7.6.2		
	7.7	Spurious Emission	
	7.7.1		
	7.7.2	Radiated Emission Method	44
8	TES	T SETUP PHOTO	57
9	EUT	CONSTRUCTIONAL DETAILS	57

Test Summary

Test Item	Section	Result
Antenna requirement	FCC part 15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	FCC part 15.207	Pass
Conducted Peak Output Power	FCC part 15.247 (b)(3)	Pass
Channel Bandwidth & 99% OCB	FCC part 15.247 (a)(2)	Pass
Power Spectral Density	FCC part 15.247 (e)	Pass
Band Edge	FCC part 15.247(d)	Pass
Spurious Emission	FCC part 15.205/15.209	Pass

Remark: Test according to ANSI C63.10:2013 and RSS-Gen

Pass: The EUT complies with the essential requirements in the standard.

Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes
Radiated Emission	30MHz-200MHz	3.8039dB	(1)
Radiated Emission	200MHz-1GHz	3.9679dB	(1)
Radiated Emission	1GHz-18GHz	4.29dB	(1)
Radiated Emission	18GHz-40GHz	3.30dB	(1)
AC Power Line Conducted Emission	0.15MHz ~ 30MHz	3.44dB	(1)
Note (1): The measurement unce	ertainty is for coverage factor of k	=2 and a level of confidence of 9	95%.

5 General Information

5.1 General Description of EUT

Product Name:	Flood Light
Model No.:	D5
Add. Model No.:	D3, D4, D6
Hardware Version:	V1.0
Software Version:	V1.0
Test sample(s) ID:	GTSL202101000039-1
Sample(s) Status:	Engineer sample
Sample(s) Status:	Engineer sample
Channel numbers:	802.11b/802.11g /802.11n(HT20): 11
	802.11n(HT40):7
Channel separation:	5MHz
Modulation technology:	802.11b: Direct Sequence Spread Spectrum (DSSS)
	802.11g/802.11n(H20)/802.11n(HT40): Orthogonal Frequency Division Multiplexing (OFDM)
Antenna Type:	PCB Antenna
Antenna gain:	3.0dBi
Power supply:	Input: AC 120V/60Hz
Note: Models D5 and mode	els D3, D4, D6 the difference is only the appearance difference.

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Toot channel	Frequency (MHz)			
Test channel	802.11b/802.11g/802.11n(HT20)	802.11n(HT40)		
Lowest channel	2412MHz	2422MHz		
Middle channel	2437MHz	2437MHz		
Highest channel	2462MHz	2452MHz		

5.2 Test mode

Transmitting mode Keep the EUT in continuously transmitting mode

Remark: During the test, the dutycycle >98%, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Pre-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	802.11b	802.11g	802.11n(HT20)	802.11n(HT40)
Data rate	1Mbps	6Mbps	6.5Mbps	13Mbps

5.3 Description of Support Units

None.

5.4 Deviation from Standards

None.

5.5 Abnormalities from Standard Conditions

None.

5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC —Registration No.: 381383

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 381383.

• IC —Registration No.: 9079A

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A

• NVLAP (LAB CODE:600179-0)

Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP). LAB CODE:600179-0

5.7 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Tel: 0755-27798480 Fax: 0755-27798960

5.8 Additional Instructions

Test Software Version	Realtek 11n 8188F USB WLAN MP Diagnostic Program
	1.25.20170609
Power Setting	Power Setting: not applicable, test used software default power
	level.

Global United Technology Services Co., Ltd.

No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone,

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

6 Test Instruments list

Rad	Radiated Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July. 02 2020	July. 01 2025		
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A		
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June. 25 2020	June. 24 2021		
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June. 25 2020	June. 24 2021		
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	June. 25 2020	June. 24 2021		
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	June. 25 2020	June. 24 2021		
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
8	Coaxial Cable	GTS	N/A	GTS213	June. 25 2020	June. 24 2021		
9	Coaxial Cable	GTS	N/A	GTS211	June. 25 2020	June. 24 2021		
10	Coaxial cable	GTS	N/A	GTS210	June. 25 2020	June. 24 2021		
11	Coaxial Cable	GTS	N/A	GTS212	June. 25 2020	June. 24 2021		
12	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June. 25 2020	June. 24 2021		
13	Amplifier(2GHz-20GHz)	HP	84722A	GTS206	June. 25 2020	June. 24 2021		
14	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June. 25 2020	June. 24 2021		
15	Band filter	Amindeon	82346	GTS219	June. 25 2020	June. 24 2021		
16	Power Meter	Anritsu	ML2495A	GTS540	June. 25 2020	June. 24 2021		
17	Power Sensor	Anritsu	MA2411B	GTS541	June. 25 2020	June. 24 2021		
18	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	June. 25 2020	June. 24 2021		
19	Splitter	Agilent	11636B	GTS237	June. 25 2020	June. 24 2021		
20	Loop Antenna	ZHINAN	ZN30900A	GTS534	June. 25 2020	June. 24 2021		
21	Breitband hornantenne	SCHWARZBECK	BBHA 9170	GTS579	Oct. 18 2020	Oct. 17 2021		
22	Amplifier	TDK	PA-02-02	GTS574	Oct. 18 2020	Oct. 17 2021		
23	Amplifier	TDK	PA-02-03	GTS576	Oct. 18 2020	Oct. 17 2021		
24	PSA Series Spectrum Analyzer	Rohde & Schwarz	FSP	GTS578	June. 25 2020	June. 24 2021		

Con	Conducted Emission							
ltem	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May.15 2019	May.14 2022		
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 25 2020	June. 24 2021		
3	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June. 25 2020	June. 24 2021		
4	ENV216 2-L-V- NETZNACHB.DE	ROHDE&SCHWARZ	ENV216	GTS226	June. 25 2020	June. 24 2021		
5	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A		
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
7	Thermo meter	KTJ	TA328	GTS233	June. 25 2020	June. 24 2021		
8	Absorbing clamp	Elektronik- Feinmechanik	MDS21	GTS229	June. 25 2020	June. 24 2021		
9	ISN	SCHWARZBECK	NTFM 8158	GTD565	June. 25 2020	June. 24 2021		

RF C	Conducted Test:					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	June. 25 2020	June. 24 2021
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 25 2020	June. 24 2021
3	Spectrum Analyzer	Agilent	E4440A	GTS533	June. 25 2020	June. 24 2021
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	June. 25 2020	June. 24 2021
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	June. 25 2020	June. 24 2021
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	June. 25 2020	June. 24 2021
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	June. 25 2020	June. 24 2021
8	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	June. 25 2020	June. 24 2021

Gen	eral used equipment:					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	Humidity/ Temperature Indicator	KTJ	TA328	GTS243	June. 25 2020	June. 24 2021
2	Barometer	ChangChun	DYM3	GTS255	June. 25 2020	June. 24 2021

7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

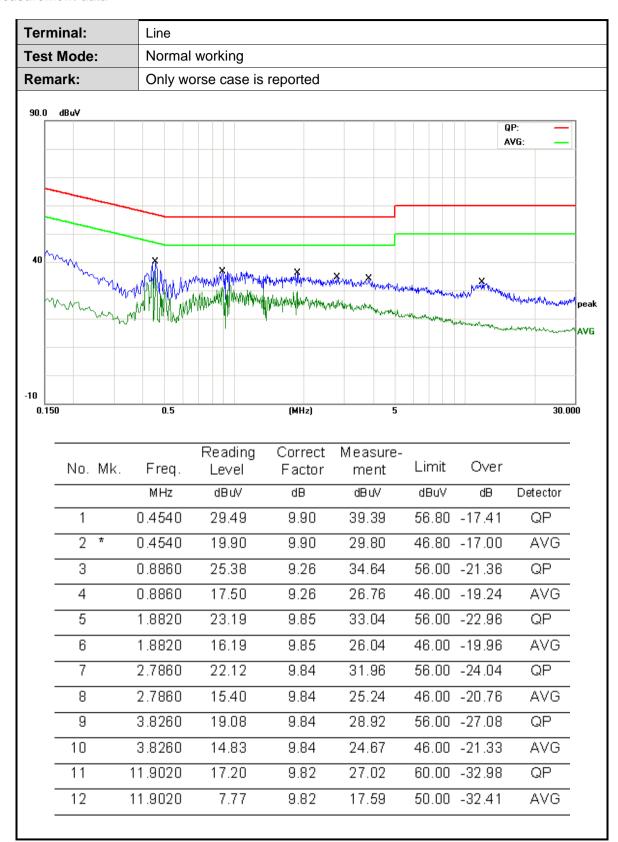
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

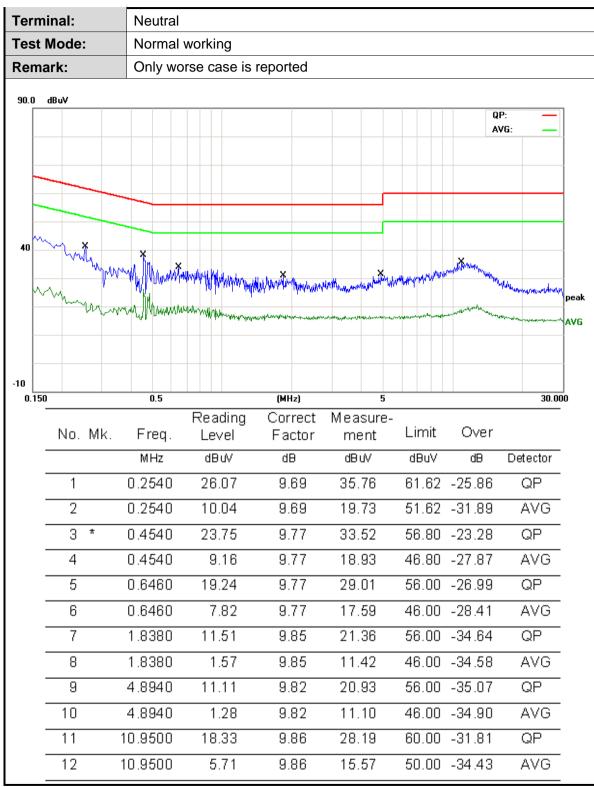
(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

EUT Antenna:

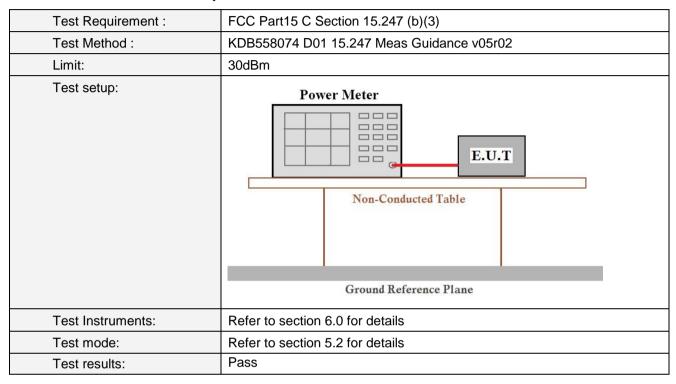
The antennas are PCB antenna, the best case gain of the antennas are 3.0dBi, reference to the appendix II for details



7.2 Conducted Emissions


Test Requirement:	FCC Part15 C Section 15.207			
Test Method:	ANSI C63.10:2013			
Test Frequency Range:	150KHz to 30MHz			
Receiver setup:	RBW=9KHz, VBW=30KHz, Sv	weep time=auto		
Limit:	(MII)	Limit	(dBuV)	
	Frequency range (MHz)	Quasi-peak		rage
	0.15-0.5	66 to 56*	+	o 46*
	0.5-5	56		.6
	5-30	60	5	50
Test setup:	* Decreases with the logarithm			
·	Reference Plane LISN 40cm 80cm 40cm 80cm Equipment E.U.T Test table/Insulation plane Remark: E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m	Filter — AC po		
Test procedure:	 The E.U.T and simulators a line impedance stabilization 50ohm/50uH coupling impedance. The peripheral devices are LISN that provides a 50ohn termination. (Please refer to photographs). Both sides of A.C. line are dinterference. In order to find positions of equipment and according to ANSI C63.10:2 	n network (L.I.S.N.). Tedance for the measuralso connected to the n/50uH coupling important the block diagram of the checked for maximum difference call of the interface call	This provides uring equipm e main power edance with of the test seem conducted sion, the relables must be	ent. er through a 500hm tup and ative e changed
Test Instruments:	Refer to section 6.0 for details	·		
Test mode:	Refer to section 5.2 for details	· · · · · · · · · · · · · · · · · · ·		
Test environment:	Temp.: 20.2 °C Hum	nid.: 45%	Press.:	1010mbar
Test voltage:	AC 120V, 60Hz	<u>.</u>		-
Test results:	Pass			

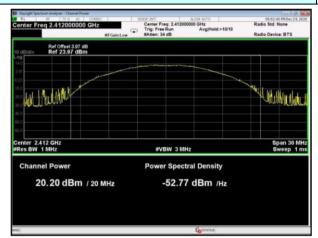
Measurement data

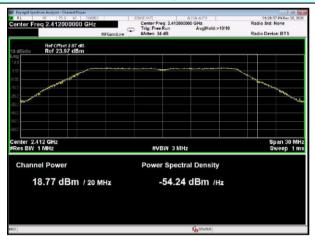

Notes:

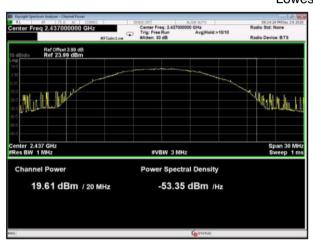
- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Emission Level= Read Level+ Correct Factor

4. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

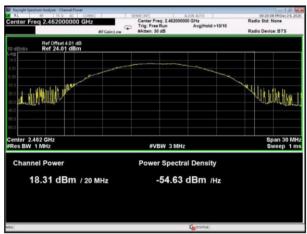
7.3 Conducted Peak Output Power


Measurement Data


Test CH		Peak Outp	ut Power (dBm)		Limit(dBm)	Result
1631 011	802.11b	802.11g	802.11n(HT20)	802.11n(HT40)	Limit(abin)	Nesuit
Lowest	20.20	18.77	19.15	18.63		
Middle	19.61	18.33	18.38	18.18	30.00	Pass
Highest	18.31	16.96	17.15	17.42		

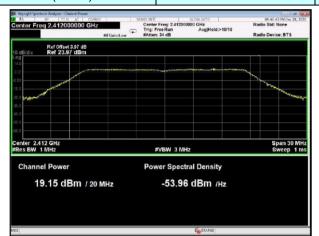

Test plot as follows:

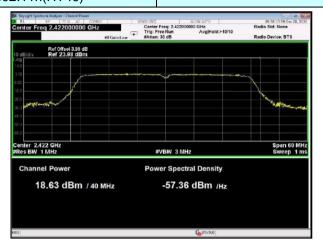
802.11b 802.11g

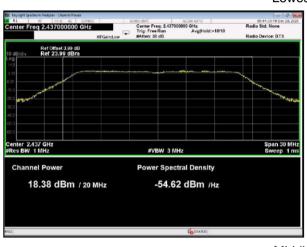


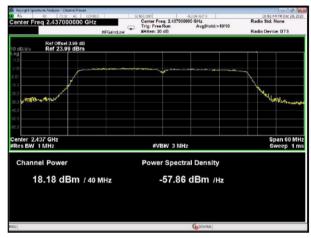
Lowest channel

Middle channel




Highest channel


802.11n(HT20)



802.11n(HT40)

Lowest channel

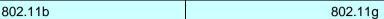
Middle channel

Highest channel

7.4 Channel Bandwidth & 99% Occupy Bandwidth

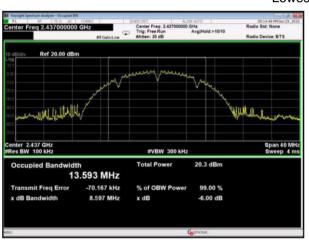
Test Requirement :	FCC Part15 C Section 15.247 (a)(2)
Test Method :	KDB558074 D01 15.247 Meas Guidance v05r02
Limit:	>500KHz
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

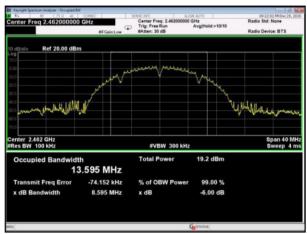
Measurement Data


Test CH		Channel E	Bandwidth (MHz)		Limit(KHz)	Result
1631 011	802.11b	802.11g	802.11n(HT20)	802.11n(HT40)	Liiiii((Ki iZ)	Nesuit
Lowest	9.059	16.33	17.33	35.03		
Middle	8.597	16.18	17.31	35.13	>500	Pass
Highest	8.595	16.37	17.31	35.14		

Test CH		99% Occupy Bar	ndwidth (MHz)		Result
Test CH	802.11b	802.11g 802.11n(HT20) 802.11n(HT40)	Result		
Lowest	13.661	16.561	17.691	35.877	
Middle	13.593	16.591	17.697	35.823	Pass
Highest	13.595	16.583	17.693	35.863	

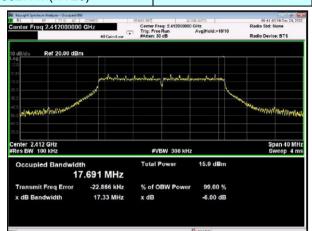

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 16 of 57

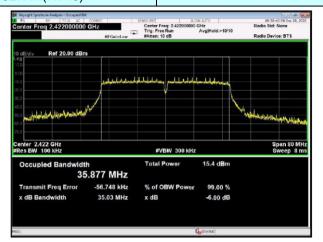

Test plot as follows:

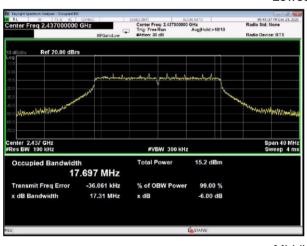


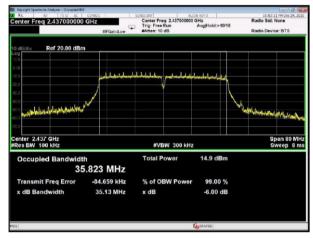
Lowest channel

Middle channel

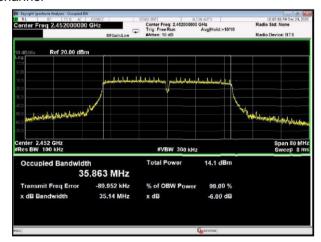



Highest channel


802.11n(HT20)



802.11n(HT40)


Lowest channel

Middle channel

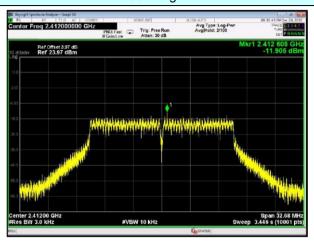


Highest channel

7.5 Power Spectral Density

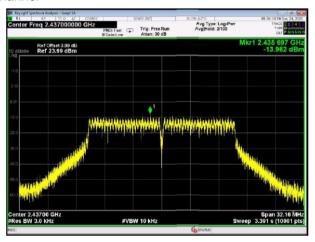
Measurement Data

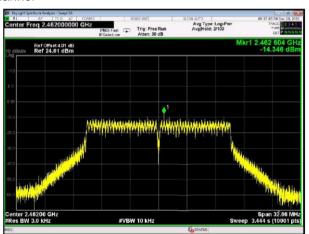
Test CH		Power Spectra	al Density (dBm/3kl	⊣z)	Limit	Result
1631 011	802.11b	802.11g	802.11n(HT20)	802.11n(HT40)	(dBm/3kHz)	Nesult
Lowest	-0.742	-11.905	-13.432	-16.903		
Middle	-7.979	-13.962	-14.332	-17.084	8.00	Pass
Highest	-6.695	-14.346	-14.797	-17.952		



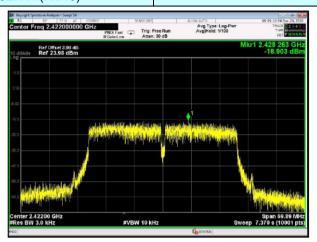
Test plot as follows:

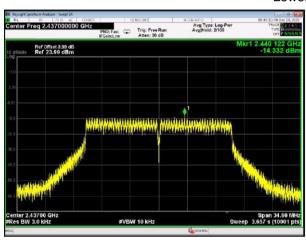
802.11b

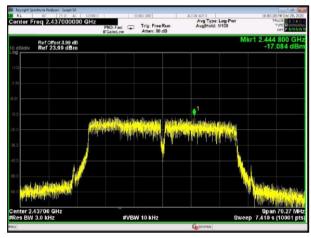

802.11g


Lowest channel

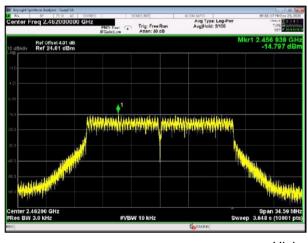
Middle channel

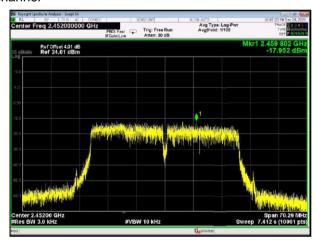

Highest channel


802.11n(HT20)


| Center Freq 2.41200000 GHz | FR0.1 set | Trig. Free Run Atten: 30 dB | Mkr1 2.415 (2.7 10) | Mkr2 2.515 (2.7 10) | Mkr2 2.415 (2.7

802.11n(HT40)




Lowest channel

Middle channel

Highest channel

7.6 Band edges

7.6.1 Conducted Emission Method

Test Degridenment	FOO Dorto O Continue of DAZ (d)
Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	KDB558074 D01 15.247 Meas Guidance v05r02
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

Test plot as follows:

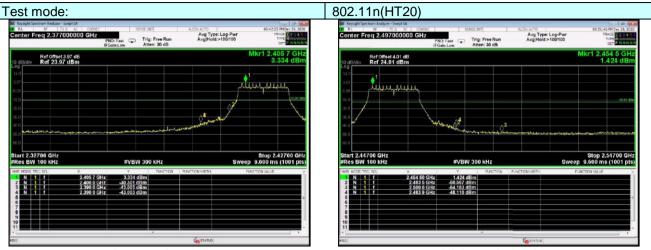
Test mode:

802.11b

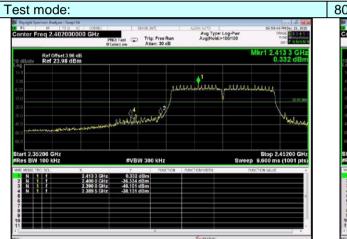
Lowest channel

Highest channel

Test mode:


802.11g

Lowest channel


Highest channel

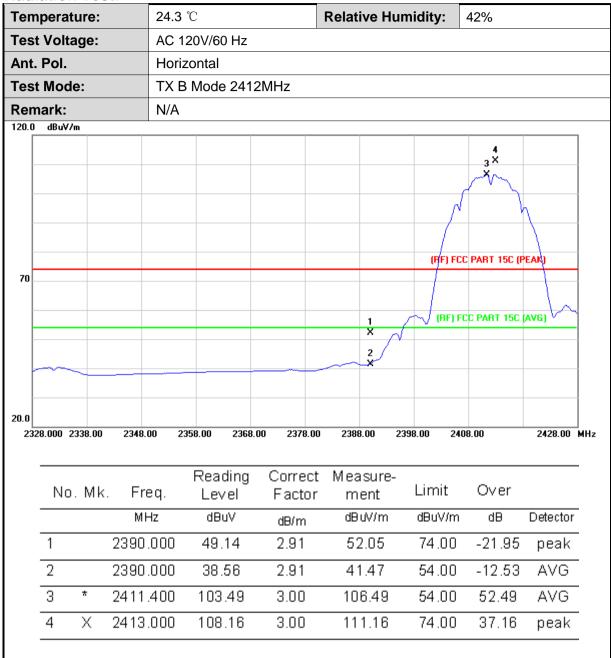


Lowest channel

Highest channel

Lowest channel

Highest channel



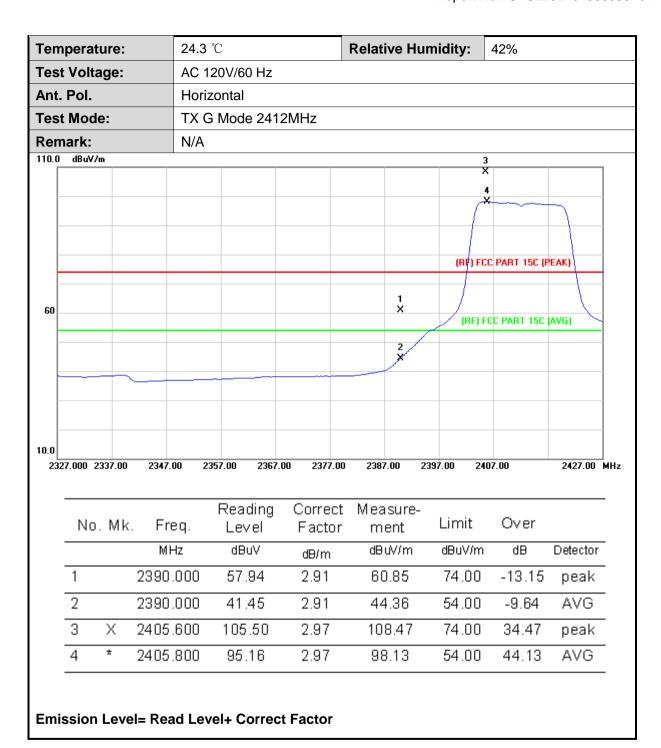
7.6.2 Radiated Emission Method

Test Requirement:	FCC Part15 C S	Section 15.209	and 15.20		
Test Method:	ANSI C63.10: 2				
Test Frequency Range:		t bands were	tested, only	the worst b	and's (2310MHz to
Test site:	Measurement D				
Receiver setup:	Frequency Detector		RBW	VBW	Value
·		Peak	1MHz	3MHz	Peak
	Above 1GHz	Average	1MHz	3MHz	Average
Limit:	Freque		Limit (dBuV/	/m @3m)	Value
	Above 1	GHz	54.0		Average
	7 13 0 1 0 1	· · · _	74.0	0	Peak
Test setup:	Tum Table <150cm >4	< 3m	Test Antenna	?	
Test Procedure:	the ground at determine the 2. The EUT was antenna, white tower. 3. The antenna ground to dethorizontal an measuremer 4. For each sus and then the and the rotate the maximum 5. The test-recesspecified Ballow in the EUT would have a substituted by the EUT would have a substituted	t a 3 meter came position of the set 3 meters and the set 3 meters are the management of the set 3 meters are the management of the set 3 meters are the management of the set 3 meters are the set 3	aber. The take highest race away from the don the top of from one maximum value izations of the control of the	ole was rotadiation. The interference of a variable of the field of the field of the antenna and the field of the emission one using peported in a med in X, Y, tis worse categorial in the emission one can be carried in a med in X, Y, tis worse categorial in a field in the emission one using peported in a med in X, Y, tis worse categorial in a field in X, Y, tis worse categorial and the field in X, Y, tis worse categorial in a field in X, Y, tis worse categorial and the field in X, Y, tis worse categorial in a field in X, Y, tis worse categorial and the field in X, Y, tis worse categorial in the field in X, Y, tis worse categorial and the field in X, Y, tis worse categorial in X, Y, tis w	re-height antenna remeters above the listrength. Both are set to make the ed to its worst case neter to 4 meters degrees to find anction and liodB lower than the le peak values of list that did not have leak, quasi-peak or
Test Instruments:	Refer to section				
Test mode:	Refer to section				
Test results:	Pass				

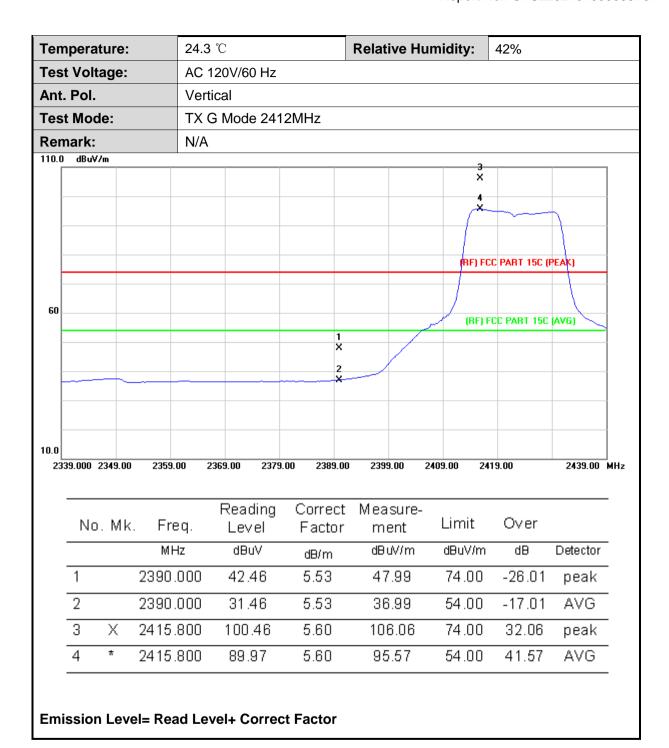
Radiation Test:

Emission Level= Read Level+ Correct Factor

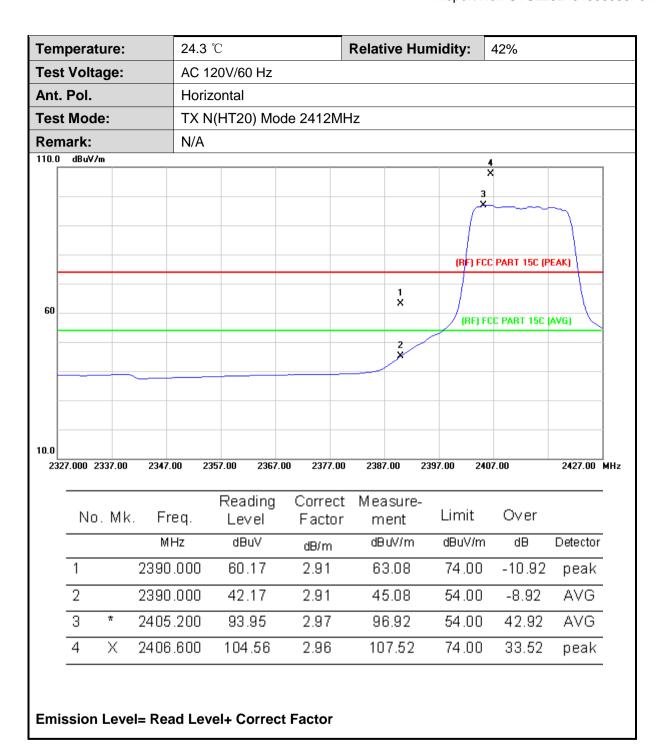
empera	ature:	24.3	$^{\circ}$		Relative Hu	midity:	42%			
est Vol	tage:	AC 1	AC 120V/60 Hz Vertical							
nt. Pol		Verti								
est Mo	de:	TX B	Mode 2412	2MHz						
Remark:										
D.O dBu\	//m									
							4			
							3 X			
							}	\		
						(05) 56	CC PART 15C (F			
, ₀						(RF) FC	L PART TOUTE	EANJ		
					1	(RF) F	CC PART 15C	(AVG)		
					×	\bigwedge		· ·		
					2 X					
.0										
2328.000	2338.00	2348.00 23	358.00 2368 .	00 2378.00	2388.00 2	2398.00 24	08.00	2428.00		
	o. Mk	_	Reading	Correct		Limit	Over			
N.I.		E 40 04		Loctor			OVE			
_N	U. IVIK	<u> </u>	Level	Factor	ment					
N	U. IVIN	MHz	dBuV	dB/m	dBuV/m	dBuV/m		Detector		
	U. WIK	<u> </u>				dBuV/m 74.00	dB -23.29	Detector peak		
1 2	J. WIK	MHz	dBuV	dB/m	dBuV/m					
1	*	MHz 2390.000	dBuV 45.18	dB/m 5.53	dBuV/m 50.71	74.00	-23.29	peak		



st Voltage it. Pol. st Mode: emark:	e:									
st Mode: emark:		Horiza		AC 120V/60 Hz						
mark:		HOHZO	Horizontal							
		TXBI	TX B Mode 2462MHz							
.O dBuV/m		N/A								
	*	2 *		3 X			CC PART 15C (I			
) 2441.000 2451	.00 2461.	00 247	1.00 2481	1.00 2491.0	0 2501.00	2511.00 25	521.00	2541.00		
No. M	1k. Fr	eq.	Reading Level	Correct Factor		e- Limit	Over			
	Mi	⊣z	dBuV	dB/m	dBuV/m	n dBuV/m	dB	Detector		
1 *	2461	.200	101.76	3.28	105.04	54.00	51.04	AVG		
2 X	2463	.000	106.34	3.28	109.62	74.00	35.62	peak		
3	2483	.500	46.97	3.40	50.37	74.00	-23.63	peak		
4	2483	.500	35.79	3.40	39.19	54.00	-14.81	AVG		



emperatur	e:	24.3 °C	C		Relati	ive Hur	midity:	42%		
est Voltage	e:	AC 12	0V/60 Hz							
nt. Pol.		Vertic	Vertical							
est Mode:		TXBI	TX B Mode 2462MHz							
emark:		N/A								
0.0 dBuV/m										
	1 X	2 ×					(RF) F(CC PART 15C (P	EAK)	
70										
			1				(DE)	FCC PART 15C	(AVC)	
				3 X			(NF)	FUL PART TOU	AVG)	
			/	4						
				×						
_										
n i		52.00 247	2.00 2482	2.00 2492.0	00 2502	2.00 25	512.00 25	522.00	2542.00 M	
.0 2442.000 2452	2.00 246									
		Freq.	Reading Level	Correc Facto		sure- ent	Limit	Over		
2442.000 2452	Mk. F	Freq.		'	r m		Limit dBuV/m		Detector	
2442.000 2452	Mk. F	•	Level	Facto	r m	ent		n dB	Detector AVG	
No. 1	Mk. F 1 246	MHz	Level dBuV	Facto dB/m	r m dB 10	ent uv/m	dBuV/m	n dB 49.63		
No. 1	Mk. F 1 246 X 246	MHz 31.200	Level dBuV 97.93	Facto dB/m 5.70	r m dB 10	ent uv/m 3.63	dBuV/m 54.00	dB 49.63 34.27	AVG	



120V/60 Hz rizontal G Mode 246	i2MHz				
G Mode 246	32MHz				
	62MHz				
\			·		
\neg					
			(RF) FC	C PART 15C (F	PEAK)
	4 ×				
			(RF) F	CC PART 15C	(AVG)
	3 X				
			-		
2472.00 2482	.00 2492.00	2502.00 25	512.00 257	22.00	2542.00
Reading Level	Correct Factor	Measure- ment	Limit	Over	
dBu∀	dB/m	dBuV/m	dBuV/m	dΒ	Detector
92.30	3.27	95.57	54.00	41.57	AVG
102.97	3.29	106.26	74.00	32.26	peak
39.83	3.40	43.23	54.00	-10.77	AVG
					peak
	2472.00 2482 Reading Level dBuV 92.30 102.97 39.83	2472.00 2482.00 2492.00 Reading Correct Factor dBuV dB/m 92.30 3.27 102.97 3.29 39.83 3.40	2472.00 2482.00 2492.00 2502.00 25 Reading Correct Measure- Level Factor ment dBuV dB/m dBuV/m 92.30 3.27 95.57 102.97 3.29 106.26 39.83 3.40 43.23	2472.00 2482.00 2492.00 2502.00 2512.00 252 Reading Correct Measure- Level Factor ment Limit dBuV dB/m dBuV/m dBuV/m 92.30 3.27 95.57 54.00 102.97 3.29 106.26 74.00 39.83 3.40 43.23 54.00	2472.00 2482.00 2492.00 2502.00 2512.00 2522.00 Reading Correct Measure- Level Factor ment Limit Over dBuV dB/m dBuV/m dBuV/m dB 92.30 3.27 95.57 54.00 41.57 102.97 3.29 106.26 74.00 32.26

Temper	emperature:		24.3 °C	C		Relativ	e Hu	midity:	42%	
Test Voltage:		AC 120V/60 Hz								
Ant. Po	l		Vertical							
Test Mo	ode:		TX G	Mode 246	62MHz					
Remark			N/A							
120.0 dB:	uV/m									
		1								
		×								
		2 X	\neg							
								(RF) FC	C PART 15C (P	PEAK)
70										
				X 3						
/								(RF) F	CC PART 15C	(AVG)
				4 ×						
2446 000	0 2456.00	2466.	NN 247	6.00 2486	5.00 2496.00	2506.0	חר פו	516.00 252	26.00	2546.00
2440.000	0 2430.00	2400.	00 247	0.00 2400	2430.00	2300.0	JU 2.	310.00 232	.0.00	2340.00
_	No. Mk	. Fr	eq.	Reading Level	Correct Factor			Limit	Over	
		MI	Hz	dBuV	dB/m	dBư	V/m	dBuV/m	dB	Detector
1	Х	2463.600		99.53	5.70	105	.23	74.00	31.23	peak
	*	2464	.000	89.03	5.71	94.	74	54.00	40.74	AVG
2		0.400	500	55.37	5.75	61.	12	74.00	-12.88	peak
3		2483	.000							

emperature:		24.3	$^{\circ}$		Relative Hui	midity:	42%			
Test Voltage:		AC 1	AC 120V/60 Hz							
nt. Pol		Verti	Vertical							
st Mo	de:	TX N	TX N(HT20) Mode 2412MHz							
emark		N/A								
).O dBu ¹	V/m									
							3			
							X			
							4 ×			
						+/		1		
						(RF) FC	C PART 15C (P	EAK)		
0							,	,		
					1					
					×	(RF) F	FCC PART 15C (AVG)			
					2					
0										
2329.000	2339.00	2349.00 23	359.00 2369.0	00 2379.00	2389.00 23	399.00 240	9.00	2429.00		
— N	o. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector		
		2390.000	51.13	5.53	56.66	74.00	-17.34	peak		
1			25.00	5.53	41.49	54.00	-12.51	AVG		
1 2		2390.000	35.96							
	X	2390.000 2409.000	99.04	5.58	104.62	74.00	30.62	peak		

emperature: est Voltage:		24.3 °C	<u> </u>		Relative Hu	umidity:	42%		
		AC 12	AC 120V/60 Hz						
nt. Pol.		Horizontal							
est Mode:		TX N(HT20) Mo	ode 2462N	lHz				
emark:		N/A							
0.0 dBuV/m									
	2 X								
	1								
			\			(RF) F	CC PART 15C (I	PEAK)	
				3					
				x		(DE)	FCC PART 15C	(AVC)	
						(nr)	rec PART 150	Avaj	
				4 X					
2441.000 2451	.00 2461.	.00 247	1.00 2481	.00 2491.0	0 2501.00	2511.00 25	521.00	2541.00	
No. M	1k. Fr	eq.	Reading Level	Correct Factor		Limit	Over		
	MH	Hz	dBuV	dB/m	dBuV/m	dBuV/m	dΒ	Detector	
1 *	2455	.200	91.20	3.25	94.45	54.00	40.45	AVG	
	2458	.600	102.24	3.25	105.49	74.00	31.49	peak	
2 X			50.00	2.40	62.49	74.00	-11.51	peak	
2 X	2483	.500	59.09	3.40	02.40				

ture:	24.3 °	C		Relati	ve Hu	midity:	42%	
age:	AC 12	20V/60 Hz						
	Vertic	al						
le:	TX N	(HT20) Mc	de 2462N	1Hz				
	N/A							
/m								
	1 X							
	2							
						(BE) ECC	PART 150 (F	PEAKI
						(III) T CC	J AIT 13C (I	LAKI
			3					
			^			(RF) FC	CC PART 15C	(AVG)
			4					
			×					
2448.00	2458.00 24	58.00 247 8	.00 2488.0	0 2498	.00 2!	508.00 251	8.00	2538.00
). Mk.	Freq.	Reading Level				Limit	Over	
	MHz	dBuV	dB/m	dB	uV/m	dBuV/m	dΒ	Detector
Χ	2463.800	98.01	5.70	10	3.71	74.00	29.71	peak
*	2465.000	87.41	5.71	93	3.12	54.00	39.12	AVG
	2400.000							
	2483.500	54.78	5.75	60).53	74.00	-13.47	peak
	age: /m 2448.00	age: AC 12	AC 120V/60 Hz Vertical Ie: TX N(HT20) Mc N/A /m 1	AC 120V/60 Hz Vertical Ie: TX N(HT20) Mode 2462M N/A /m 1	AC 120V/60 Hz Vertical TX N(HT20) Mode 2462MHz N/A N/A 2 2 3 X 2448.00 2458.00 2468.00 2478.00 2488.00 2498 D. Mk. Freq. Level Factor m MHz dBuV dB/m dB	AC 120V/60 Hz Vertical Ie: TX N(HT20) Mode 2462MHz N/A /m 1	AC 120V/60 Hz Vertical IE: TX N(HT20) Mode 2462MHz N/A /m (RF) FC 2488.00 2458.00 2468.00 2498.00 2498.00 2508.00 251 Reading Correct Measure- D. Mk. Freq. Level Factor ment Limit MHz dBuV dB/m dBuV/m dBuV/m	AC 120V/60 Hz Vertical IE: TX N(HT20) Mode 2462MHz N/A /m (RF) FCC PART 15C (F 3

Cilipoit	ture:	24.3	C		Relat	ive Hu	midity:	42%	
est Vol	tage:	AC 12	20V/60 Hz						
nt. Pol.		Horiz	ontal						
est Mo	de:	TX N	(HT40) Mo	de 2422N	1Hz				
emark:		N/A							
20.0 dBu\	7/m								
						3			
						×			
						4 ×	+		
							(RF) FC	C PART 15C (F	PEAK)
70				1					
				×	\mathcal{N}_{-}		(DE) F	OC DIDT 150	<u> </u>
				2 X	<i>)</i>		(RF) F	CC PART 15C	(AVG)
.0 2346.000	2356.00	2366.00 23	76.00 2386.	00 2396.0	0 2400	6.00 2	416.00 24	26.00	2446.00
			Reading	Correc	t Mea	asure-			
							Limit	Over	
N	o. Mk	. Freq.	Level	Facto	r m	ent			
N	o. Mk	. Freq.		Facto dB/m		ent uv/m	dBuV/m		Detector
	o. Mk	<u>'</u>	Level		dB				Detector peak
_	o. Mk	M Hz	Level dBuV	dB/m	dB 60	uV/m	dBuV/m	dВ	
1	x. Mk	MHz 2390.000	Level dBuV 57.62	dB/m 5.53	dB 6: 5(uV/m 3.15	dBuV/m 74.00	dB -10.85	peak

empe	erature:	24.3	$^{\circ}$		Relati	ve Hur	midity:	42%		
est V	oltage:	AC 1	20V/60 Hz							
Ant. P	ol.	Verti	cal							
Test M	lode:	TX N	I(HT40) Mo	de 2422MI	Hz					
Remar		N/A								
20.0 d	BuV/m									7
						3 X				
						4				
					-+		(RF) FC	C PART 15C (F	PEAK)	
70										
				1.						
-				×	/ 		(RF) F	CC PART 15C	(AVG) ∨\	4
				2 X						
_										
0.0 2345.0	00 2355.00	2365.00 23	375.00 238 5 .	00 2395.00	2405.	NN 24	15.00 24	25.00	2445.00	_ MH
2343.0	00 2333.00	2303.00	2303.	2333.00	2403.	00 2-	713.00 24	23.00	2443.00	
	No. Mk	. Freq.	Reading Level	Correct Factor	Mea: me		Limit	Over		_
_		MHz	dBuV	dB/m	dB∪	M/m	dBuV/m	dΒ	Detector	_
		2390.000	51.58	5.53	57	.11	74.00	-16.89	peak	_
1				5.53	44	.44	54.00	-9.56	AVG	_
$\frac{1}{2}$		2390.000	38.91	0.00						_
	!	2390.000 2409.000	38.91 95.71	5.58	101	.29	74.00	27.29	peak	

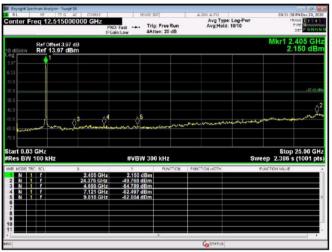
emper	ature:		24.3	°C		Relativ	∕e Hu	midity:	42%	
est Vo	tage:		AC 12	20V/60 Hz						
nt. Pol	•		Horiz	ontal						
est Mo	de:		TX N	(HT40) Mc	ode 2452N	1Hz				
Remark			N/A							
20.0 dBu	V/m									
		1								
		×								
		2 X								
				V						
					1			(RF) FC	C PART 15C (F	PEAK)
70										-
	\mathcal{A}						3 X			
	_لــ						4	(RF) F	CC PART 15C	(AVG)
							×			
								_		
).0										
2420.000	2430.00	2440.	.00 24	50.00 2460	.00 2470.0	0 2480.0	00 2	2490.00 25	00.00	2520.00
— N	o. Mk	Fr	 еq.	Reading Level	Correc Factor			Limit	Over	
			Hz	dBuV	dB/m	dBu		dBuV/m	dB	Detector
1	Х	2436	.400	99.13	5.64	104	.77	74.00	30.77	peak
	*	2438	.000	88.67	5.65	94.	32	54.00	40.32	AVG
2			500	54.35	5.75	60.	10	74.00	-13.90	peak
3		2483	.500	04.00						

ltage:		AC 1	20V/60 Hz						
			20 0/00 112						
I.		Verti	cal						
ode:		TX N	(HT40) M	ode 2452	MHz				
		N/A							
uV/m									
	1 X								
	2								
	<u> </u>		V						
							(RF) FC	C PART 15C (P	EAK)
\bot						3 X	(DE) E	CC DART 1EC	aver
www.					-/	4	(RF) FI	L PART 15C	АУБЈ
						×			
								+	
0 2430.00	2440.	00 24	50.00 24 6	0.00 2470	.00 24	30.00 24	490.00 250	00.00	2520.00
No. Mk	. Fr	eq.	Reading Level				Limit	Over	
	M	Hz	dBu∀	dB/m	d	BuV/m	dBuV/m	dΒ	Detector
Х	2437	.800	94.77	5.65	1	00.42	74.00	26.42	peak
*	2438	.000	84.53	5.65	9	10.18	54.00	36.18	AVG
	2483	.500	53.19	5.75	5	8.94	74.00	-15.06	peak
	2483	.500	40.14	5.75	4	5.89	54.00	-8.11	AVG
	0 2430.00 No. Mk	K: UV/m 1 X 2 X No. Mk. Fr MI X 2437 * 2438 2483	K: N/A 1 x 2 x 0 2430.00 2440.00 24 No. Mk. Freq. MHz X 2437.800 * 2438.000 2483.500	k: N/A uV/n 1 x 2 x No. Mk. Freq. Reading Hz dBuV X 2437.800 94.77 * 2438.000 84.53 2483.500 53.19	k: N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	Reading Correct Me No. Mk. Freq. Level Factor n MHz dBuV dB/m * 2438.000 84.53 5.65 8 2483.500 53.19 5.75 5	Reading Correct Measure-No. Mk. Freq. Level Factor ment MHz dBuV dB/m dBuV/m X 2437.800 94.77 5.65 100.42 * 2438.000 84.53 5.65 90.18 2483.500 53.19 5.75 58.94	READING CORRECT MEASURE—Limit MHz dBuV dB/m dBuV/m X 2437.800 94.77 5.65 100.42 74.00 2483.500 53.19 5.75 58.94 74.00	K: N/A 1

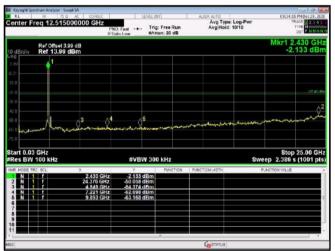
7.7 Spurious Emission

7.7.1 Conducted Emission Method

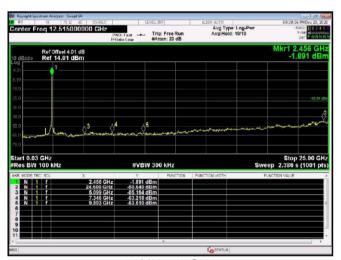
Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	KDB558074 D01 15.247 Meas Guidance v05r02
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass


Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 42 of 57

Test plot as follows:


802.11b(Only worse case is reported)

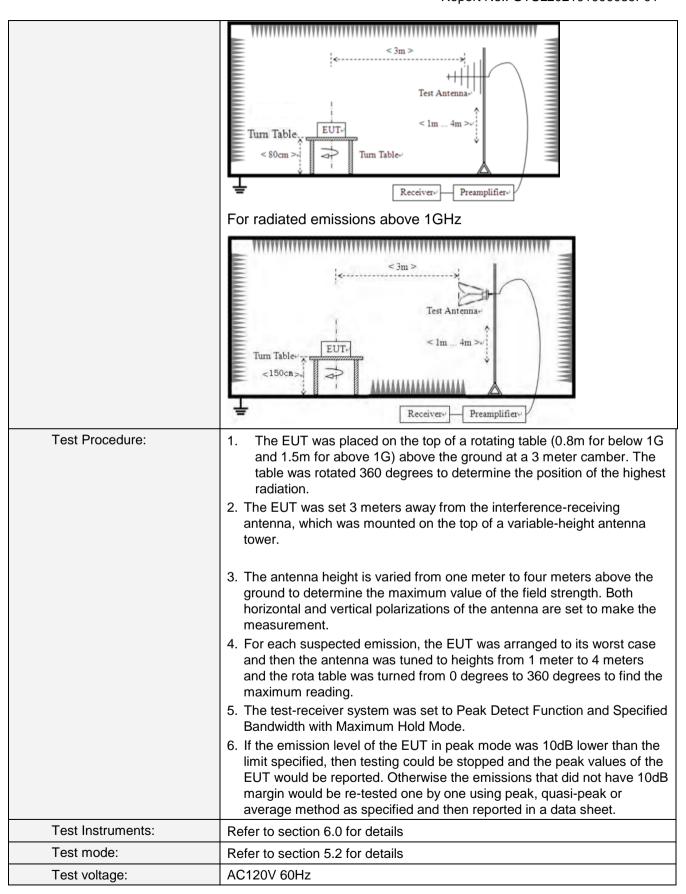
Lowest channel


30MHz~25GHz

Middle channel

30MHz~25GHz

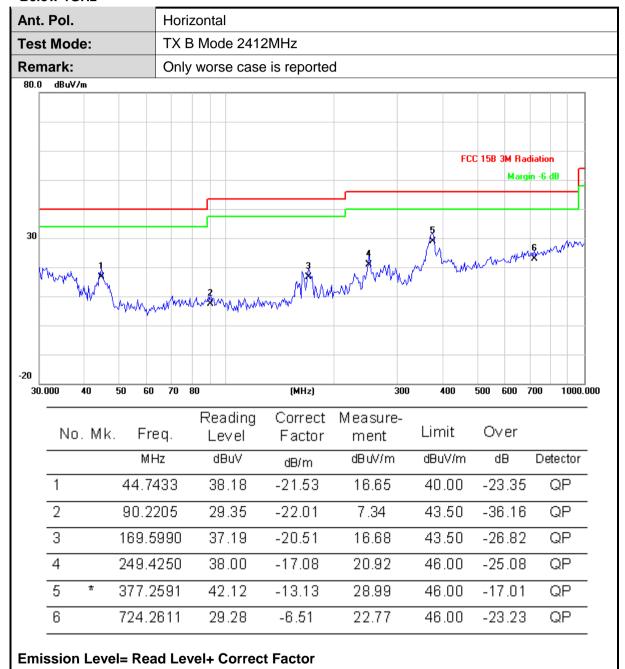
Highest channel


30MHz~25GHz

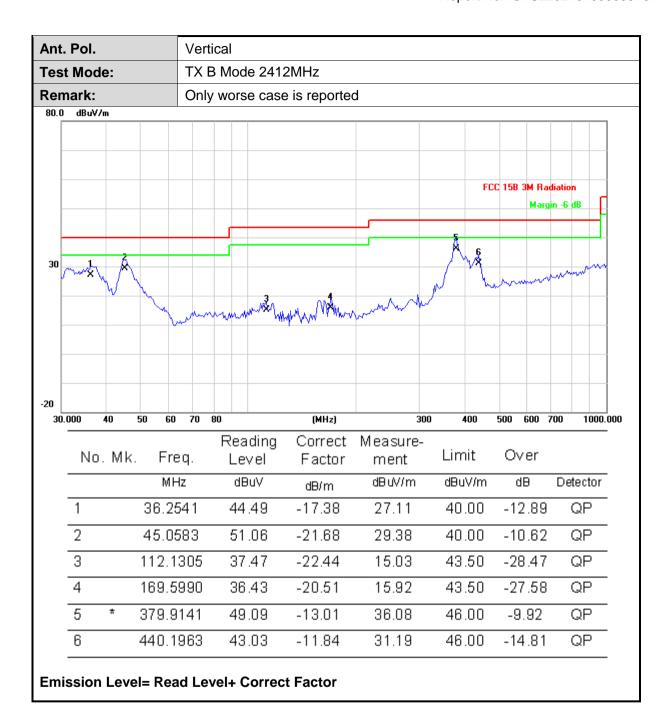
7.7.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section	on 15	5.209					
Test Method:	ANSI C63.10: 2013							
Test Frequency Range:	9kHz to 25GHz							
Test site:	Measurement Distar	nce: 3	3m					
Receiver setup:	Frequency		Detector	RB\	Ν	VBW	'	Value
	9KHz-150KHz	Qι	uasi-peak	2001	Ηz	600Hz	Z	Quasi-peak
	150KHz-30MHz	Qı	ıasi-peak	9KF	Ιz	30KH:	z	Quasi-peak
	30MHz-1GHz	Qι	uasi-peak	100K	Hz	300KH	lz	Quasi-peak
	Above 1GHz		Peak	1MF	Ηz	3MHz	<u> </u>	Peak
	Above 1G112		Peak	1MF	Ηz	10Hz	-	Average
Limit:	Frequency		Limit (u\	//m)	٧	'alue	N	Measurement Distance
	0.009MHz-0.490M	lHz	2400/F(k	(Hz)		QP		300m
	0.490MHz-1.705M	lHz	24000/F(KHz)		QP		300m
	1.705MHz-30MH	lz	30			QP		30m
	30MHz-88MHz		100			QP		
	88MHz-216MHz	<u>z</u>	150			QP		
	216MHz-960MH	Z	200			QP		3m
	960MHz-1GHz		500			QP		0
	Above 1GHz		500			erage		
	7.00.0		5000)	F	Peak		
Test setup:	For radiated emiss	sions	from 9kH	z to 30	MH	Z		
	Tum Table EUT-	NAMES OF THE PERSON OF THE PER	n Table√	lm Receiver	1GH	z		

Test environment:	Temp.:	23.6 °C	Humid.:	49%	Press.:	1012mbar
Test voltage:	AC 120V, 6	0Hz				
Test results:	Pass					



Measurement data:


■ 9kHz~30MHz

The emission from 9 kHz to 30MHz was pre-tested and found the result was 20dB lower than the limit, and according to 15.31(o) & RSS-Gen 6.13, the test result no need to reported.

■ Below 1GHz

■ Above 1GHz

Ant.	Pol.			Hori	zontal					
Test	Mod	de:		TX E	3 Mode 241	2MHz				
	No	. Mk	. Fre	:q.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MH	lz	dBuV	dB/m	dBuV/m	dBuV/m	dΒ	Detector
	1	*	4823.9	922	34.73	15.65	50.38	54.00	-3.62	AVG
	2		4824.	198	45.96	15.65	61.61	74.00	-12.39	peak

Ant.	Pol.		Vert	ical					
Γest	Mod	e:	TXI	3 Mode 2412	2MHz				
	No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dΒ	Detector
	1	*	4823.922	34.08	15.65	49.73	54.00	-4.27	AVG
	2		4823.994	46.20	15.65	61.85	74.00	-12.15	peak

	Mode:	TX	B Mode 243					
	No M		Reading	^				
1	INO. IVI	1k. Freq.	Level	Correct Factor	Measure- ment	Limit	Over	
1		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dΒ	Detector
'	1	4873.730	44.93	15.88	60.81	74.00	-13.19	peak
2		4874.078	33.19	15.88	49.07	54.00	-4.93	AVG

Ant. Pol.	Vertical
Test Mode:	TX B Mode 2437MHz

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	d₿	Detector
1		4874.156	43.37	15.88	59.25	74.00	-14.75	peak
2	*	4874.156	31.48	15.88	47.36	54.00	-6.64	AVG

Ant.	Ant. Pol.			Horiz	zontal									
Test	Mod	e:		TX E	TX B Mode 2462MHz									
,	No. Mk.		Freq. Ecycl Factor Mich.	Limit	Over									
			МН	Z	dBuV	dB/m	dBuV/m	dBuV/m	dΒ	Detector				
,	1		4923.	736	43.80	16.10	59.90	74.00	-14.10	peak				
,	2	*	4923.9	922	30.35	16.10	46.45	54.00	-7.55	AVG				
	_													

Ant.	Pol.		Verti	cal							
Test	Mod	le:	TX E	TX B Mode 2462MHz							
			. Freq.	Reading Correct req. Level Factor		Measure- ment	Limit	Over			
			MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dΒ	Detector		
	1		4923.814	44.02	16.10	60.12	74.00	-13.88	peak		
	2	*	4923.922	29.93	16.10	46.03	54.00	-7.97	AVG		

Ant.	Pol.		Hor	izontal								
Test	est Mode:			TX G Mode 2412MHz								
			. Freq.	Reading Correct Freq. Level Factor			Limit	Over				
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dΒ	Detector			
	1		4822.602	43.63	15.65	59.28	74.00	-14.72	peak			
	2	*	4823.766	29.14	15.65	44.79	54.00	-9.21	AVG			

Ant. Pol.	Vertical
Test Mode:	TX G Mode 2412MHz

1 4823.394 43.48 15.65 59.13 74.00 -14.87 pe	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dΒ	Detector
2 * 4823.766 29.12 15.65 44.77 54.00 -9.23 A	1		4823.394	43.48	15.65	59.13	74.00	-14.87	peak
	2	*	4823.766	29.12	15.65	44.77	54.00	-9.23	AVG

	Ant. Pol.			Horiz	zontal								
Test	Mod	le:		TX C	X G Mode 2437MHz								
	No	. Mk	:. Fre	eq.	Reading Level	Correct Factor	Measure- ment	Limit	Over				
			MH	Нz	dBuV	dB/m	dB uV/m	dBuV/m	dΒ	Detector			
	1		4874.	.726	43.42	15.88	59.30	74.00	-14.70	peak			
	2	*	4875.	.182	28.85	15.89	44.74	54.00	-9.26	AVG			

Ant.	Ant. Pol.			Verti	cal							
Test	Test Mode:			TX C	TX G Mode 2437MHz							
	No	. Mk	c. Fre	eq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
,			ME	łz	dBuV	dB/m	dB úV/m	dBuV/m	dΒ	Detector		
,	1		4872.	890	42.93	15.87	58.80	74.00	-15.20	peak		
	2	*	4874.	234	28.79	15.88	44.67	54.00	-9.33	AVG		

Ant.	nt. Pol.			zontal								
Test	est Mode:			TX G Mode 2462MHz								
,	—— No	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over				
		14110	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector			
,	1	*	4923.922	30.33	16.10	46.43	54.00	-7.57	AVG			
	2		4924.036	44.34	16.10	60.44	74.00	-13.56	peak			

Ant.	t. Pol.		Verti	cal								
Test	t Mode:		TX C	X G Mode 2462MHz								
	No. Mk.		. Freq.	Reading req. Level	Correct Factor	Measure- ment	Limit	Over				
			MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dΒ	Detector			
	1	*	4925.026	28.59	16.12	44.71	54.00	-9.29	AVG			
	2		4925.104	43.06	16.12	59.18	74.00	-14.82	peak			

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Ant.	Pol.		Hor	izontal					
Test	Mod	e:	TX	N(HT20) Mod	le 2412MH				
	— No	o. Mk. Freq.		Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dΒ	Detector
	1		4822.608	44.18	15.65	59.83	74.00	-14.17	peak
	2	*	4824.078	29.18	15.65	44.83	54.00	-9.17	AVG

Ant.	t. Pol.		Verti	cal					
Test	Mode) :	TX N	N(HT20) Mod	de 2412MF				
			. Freq.	Reading Level	Measure- ment	Limit	Over		
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
	1	*	4823.766	28.84	15.65	44.49	54.00	-9.51	AVG
	2		4824.624	42.89	15.65	58.54	74.00	-15.46	peak

Ant.	Pol.		H	lorizontal							
Test	Мо	de:	Т	TX N(HT20) Mode 2437MHz							
	No. Mk.		. Freq	Reading Level	Correct Factor	Measure- ment	Limit	Over			
			MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dΒ	Detector		
	1		4872.98	32 42.93	15.87	58.80	74.00	-15.20	peak		
	2	*	4875.50	00 28.84	15.89	44.73	54.00	-9.27	AVG		

Ant.	Pol.			Verti	cal								
Test	Mod	le:		TX N	TX N(HT20) Mode 2437MHz								
	No. Mk. Fi		. Fre	∋q.	Reading Level	~		Limit	Limit Over				
			MH	Hz	dBuV	dB/m	dBuV/m	dBuV/m	dΒ	Detector			
	1		4873	.214	42.81	15.87	58.68	74.00	-15.32	peak			
	2	*	4875	.182	28.75	15.89	44.64	54.00	-9.36	AVG			

Ant.	nt. Pol.			zontal								
Test	Mod	le:	1 XT	TX N(HT20) Mode 2462MHz								
	No. Mk.		. Freq.	Reading eq. Level	Correct Factor	Measure- ment	Limit	Over				
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dΒ	Detector			
	1	*	4923.922	30.27	16.10	46.37	54.00	-7.63	AVG			
	2		4924.288	44.30	16.10	60.40	74.00	-13.60	peak			

Ant	Pol.		Vei	rtical						
Tes	Test Mode:			TX N(HT20) Mode 2462MHz						
	No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dΒ	Detector	
	1	*	4924.102	28.82	16.10	44.92	54.00	-9.08	AVG	
	2		4924.624	42.95	16.10	59.05	74.00	-14.95	peak	

Ant.	Ant. Pol.			zontal								
Test	Mod	e:	TX N	TX N(HT40) Mode 2422MHz								
	No. Mk.		. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over				
			MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dΒ	Detector			
	1	*	4842.974	28.69	15.74	44.43	54.00	-9.57	AVG			
	2		4844.210	43.09	15.75	58.84	74.00	-15.16	peak			

Ant.	Pol.		Vert	ical							
Test	Mod	le:	TX N	TX N(HT40) Mode 2422MHz							
	No	o. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
			MHz	dBuV	dB/m	dB dV/m	dBuV/m	dΒ	Detector		
	1	*	4842.662	28.61	15.73	44.34	54.00	-9.66	AVG		
	2 4		4844.522	42.84	15.75	58.59	74.00	-15.41	peak		

Ant.	nt. Pol.			zontal								
Test	Mode	e:	TX N	TX N(HT40) Mode 2437MHz								
	No. Mk.		. Freq.	Reading	Correct Factor	Measure- ment	Limit	Over				
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dΒ	Detector			
	1	*	4874.390	28.86	15.88	44.74	54.00	-9.26	AVG			
	2 4	4874.726	43.39	15.88	59.27	74.00	-14.73	peak				

Ant.	Pol.			Verti	cal						
Test	Mode	:		TX N	X N(HT40) Mode 2437MHz						
			. Fre	eq.	_	Correct Factor	Measure- ment	Limit	Over		-
			MH	łz	dBuV	dB/m	dBuV/m	dBuV/m	dΒ	Detector	_
	1	*	4874.	714	28.77	15.88	44.65	54.00	-9.35	AVG	
	2		4874.	834	43.08	15.88	58.96	74.00	-15.04	peak	_

Ant.	nt. Pol.			zontal					
Test	Mod	e:	TXI	N(HT40) Mod	de 2452MH	Ηz			
	No. Mk.		. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dΒ	Detector
	1	*	4902.500	28.74	16.01	44.75	54.00	-9.25	AVG
	2		4905.218	43.30	16.02	59.32	74.00	-14.68	peak

Ant.	Pol.		Vert	ical							
Test	Mod	e:	1 XT	TX N(HT40) Mode 2452MHz							
			. Freq.	_	Correct Factor	Measure- ment	Limit	Over			
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dΒ	Detector		
	1		4904.546	42.67	16.02	58.69	74.00	-15.31	peak		
	2	*	4905.344	28.69	16.02	44.71	54.00	-9.29	AVG		

Remark:

- 1.No report for the emission which more than 10 dB below the prescribed limit.
- 2.Emission Level= Read Level+ Correct Factor

Global United Technology Services Co., Ltd.

No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone,

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

8 Test Setup Photo

Reference to the appendix I for details.

9 EUT Constructional Details

Reference to the appendix II&III for details.

-----End-----