

TEST REPORT

APPLICANT	: Hot Pepper, Inc.
PRODUCT NAME	: 4G Smart Phone
MODEL NAME	: H5
BRAND NAME	: Hot Pepper
FCC ID	: 2APD4-P26A
STANDARD(S)	: 47 CFR Part 15 Subpart C
TEST DATE	: 2018-04-10 to 2018-07-17
ISSUE DATE	: 2018-07-17

Tested by:

Tu Ya'nan

Tu Ya'nan (Test Engineer)

Approved by:

Tu "

Andy Yeh (Technical Director)

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

DIRECTORY

1. T	Technical Information ······	4
1.1.	Applicant and Manufacturer Information	4
1.2.	Equipment Under Test (EUT) Description	4
1.3.	Test Standards and Results	5
1.4.	Environmental Conditions	5
2. 4	7 CFR Part 15C Requirements	6
2.1.	Antenna requirement	6
2.2.	Peak Output Power ······	6
2.3.	Bandwidth	9
2.4.	Conducted Spurious Emissions and Band Edge1	8
2.5.	Power spectral density (PSD)3	1
2.6.	Restricted Frequency Bands4	0
2.7.	Conducted Emission52	2
2.8.	Radiated Emission5	5
Ann	ex A Test Uncertainty7	1
Ann	ex B Testing Laboratory Information72	2

Change History					
Issue	Date	Reason for change			
1.0	2018-07-17	First edition			

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

1. Technical Information

Note: Provide by applicant.

1.1. Applicant and Manufacturer Information

Applicant: Hot Pepper, Inc.	
Applicant Address:5151 California Ave., Suite 100, Irvine 92617, USA	
Manufacturer:	Hot Pepper, Inc.
Manufacturer Address:	5151 California Ave., Suite 100, Irvine 92617, USA

1.2. Equipment Under Test (EUT) Description

Product Name:	4G Smart Phone
Serial No:	(N/A, marked #1 by test site)
Hardware Version:	T169-LK-V1.2
Software Version:	HOTPEPPER_SW01_20180320
Modulation Type:	DSSS, OFDM
Operating Frequency Range:	802.11b/g/n-20MHz: 2.412GHz - 2.462GHz
Operating Frequency Range.	802.11n-40MHz: 2.422GHz - 2.452GHz
Channel Number:	802.11b/g/n-20MHz: 11
	802.11n-40MHz: 7
Antenna Type:	PIFA Antenna
Antenna Gain:	1.39 dBi

Note 1: The EUT is operating at 2.4GHz ISM; it supports 802.11b, 802.11g, 802.11n and they are all tested in this report.

For 802.11b/g/n-20MHz (2.4GHz band), the frequencies allocated is F (MHz) =2412+5*(n-1) (1<=n<=11). The lowest, middle, highest channel numbers of the EUT used and tested in this report are separately 1 (2412MHz), 6 (2437MHz) and 11 (2462MHz).

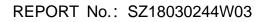
For 802.11n-40MHz, the frequencies allocated is F (MHz) = $2412+5^{*}(n-1)$ (3<=n<=9). The lowest, middle, highest channel numbers of the EUT used and tested in this report are separately 3 (2422MHz), 6 (2437MHz) and 9 (2452MHz).

Note 2: The EUT connected to the serial port of the computer with a serial communication cable, we use the dedicated software to control the EUT continuous transmission.

Note 3: For a more detailed description, please refer to Specification or User's Manual supplied by the applicant and/or manufacturer.

1.3. Test Standards and Results

The objective of the report is to perform testing according to 47 CFR Part 15 Subpart C for the EUT FCC ID Certification:


No	Identity		Document Title					
1	1 47 CFR Part 15 (10-1-15 Edition)			Radio Frequency Devices				
Test detailed items/section required by FCC rules and results are as below:								
No. Section Description				Test Date	Test Engineer	Result		
1	15.203	Antenna Requirement		N/A	N/A	PASS		
2	15.247(b)	Peak Output Power		Apr 10, 2018	Tu Ya'nan	PASS		
3	15.247(a)	Bandwidth		Apr 10, 2018	Tu Ya'nan	PASS		
4	15.247(d)	Conducted Spurious Emission and Band Edge		Apr 10, 2018	Tu Ya'nan	PASS		
5	15.247(e)	Power spectral density (PS	D)	Apr 10, 2018 Jul 17, 2018	Tu Ya'nan	PASS		
6	15.247(d)	Restricted Frequency Banc	ls	Apr 25, 2018	Wu Junke	PASS		
7	15.207	Conducted Emission		May 04, 2018	Wu Junke	PASS		
8	15.209, 15.247(d)	Radiated Emission		Apr 19, 2018	Wu Junke	PASS		
Note	Note: The tests of Conducted Emission and Radiated Emission were performed according to							
the r	method of me	easurements prescribed in Al	NSI Ce	63.10 2013 and	KDB558074 D01	v04		
(04/0	05/2017).							

1.4. Environmental Conditions

During the measurement, the environmental conditions were within the listed ranges:

Temperature (°C):	15 - 35
Relative Humidity (%):	30 -60
Atmospheric Pressure (kPa):	86-106

2. 47 CFR Part 15C Requirements

2.1. Antenna requirement

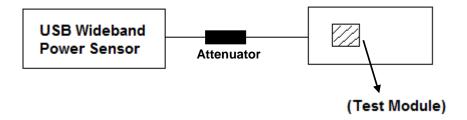
2.1.1. Applicable Standard

According to FCC 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

2.1.2. Result: Compliant

The EUT has a permanently and irreplaceable attached antenna. Please refer to the EUT internal photos.

2.2. Peak Output Power


2.2.1. Requirement

According to FCC section 15.247(b)(3), For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: The maximum peak conducted output power of the intentional radiator shall not exceed1 Watt.

2.2.2. Test Description

The measured output power was calculated by the reading of the USB Wideband Power Sensor and calibration.

A. Test Setup:

The EUT (Equipment under the test) which is coupled to the USB Wideband Power Sensor; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading.

B. Equipments List:

Please refer ANNEX A(1.5).

2.2.3. Test Result

		Measured Output Peak Power		Limit		\/o nol: of
Channel	Channel Frequency (MHz)		W	dBm	W	- Verdict
1	2412	16.67	0.04645			PASS
6	2437	17.99	0.06295	30	1	PASS
11	2462	16.06	0.04036	-		PASS

2.2.3.1 802.11b Test Mode

Channel	Frequency (MHz)	Measured Output Average Power		Verdict		
		dBm	W	dBm	W	
1	2412	14.83	0.03041			PASS
6	2437	15.39	0.03459	30	1	PASS
11	2462	14.10	0.02570			PASS

2.2.3.2 802.11g Test mode

Channel		Measured C	Output Peak Power	Limi	t	Verdict
Channel	Frequency (MHz)	dBm	W	dBm	W	verdict
1	2412	18.49	0.07063			PASS
6	2437	21.46	0.13996	30	1	PASS
11	2462	18.03	0.06353			PASS

Channel	Frequency (MHz)	Measured Output Average Power		Verdict		
		dBm	W	dBm	W	
1	2412	10.07	0.01016			PASS
6	2437	12.60	0.01820	30	1	PASS
11	2462	11.20	0.01318			PASS

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Measured Output Peak Power Limit Frequency (MHz) Channel Verdict W dBm W dBm 0.07211 1 2412 18.58 PASS 21.41 PASS 6 2437 0.13836 30 1 11 2462 18.12 0.06486 PASS

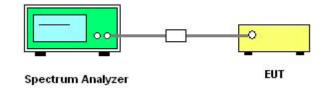
2.2.3.3 802.11n-20MHz Test mode

Channel	Frequency (MHz)	Measured Output Average Power						t	Verdict
		dBm	W	dBm	W				
1	2412	10.12	0.01028			PASS			
6	2437	12.76	0.01888	30	1	PASS			
11	2462	11.03	0.01268			PASS			

2.2.3.4 802.11n-40MHz Test mode

		Measured Output Peak Power		Limit		Vordict
Channel	Frequency (MHz)	dBm	W	dBm	W	Verdict
3	2422	19.88	0.09727			PASS
6	2437	20.48	0.11169	30	1	PASS
9	2452	19.03	0.07998			PASS

Channel	Frequency (MHz)	Measured Output Average Limit		Limit		Verdict
		dBm	W	dBm	W	
3	2422	11.77	0.01503			PASS
6	2437	11.39	0.01377	30	1	PASS
9	2452	11.02	0.01265			PASS



2.3.1. Requirement

According to FCC section 15.247(a) (2), Systems using digital modulation techniques may operate in the 902 - 928 MHz, 2400 - 2483.5 MHz, and 5725 - 5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

2.3.2. Test Description

A. Test Set:

The EUT is coupled to the Spectrum Analyzer; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading.

Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. In order to make an accurate measurement, set the span greater than RBW.

KDB 558074 Section 8.1 Option 1 was used in order to prove compliance.

B. Equipments List:

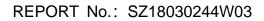
Please refer ANNEX A(1.5).

2.3.3. Test Result

2.3.3.1 802.11b Test mode

A. Test Verdict:

Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Limits(kHz)	Result
1	2412	9.079	≥500	PASS
6	2437	9.587	≥500	PASS
11	2462	9.687	≥500	PASS


B. Test Plots

(Channel 1, 2412MHz, 802.11b)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(Channel 6, 2437 MHz, 802.11b)

(Channel 11, 2462MHz, 802.11b)

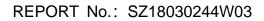
MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

2.3.3.2 802.11g Test mode

A. Test Verdict:

Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Limits (kHz)	Result
1	2412	15.10	≥500	PASS
6	2437	15.49	≥500	PASS
11	2462	15.09	≥500	PASS


B. Test Plots:

(Channel 1, 2412MHz, 802.11g)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(Channel 6, 2437MHz, 802.11g)

(Channel 11, 2462MHz, 802.11g)

MORLAB

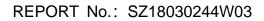
SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn

E-mail: service@morlab.cn

2.3.3.3 802.11n-20 Test mode

A. Test Verdict:

Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Limits (kHz)	Result
1	2412	15.10	≥500	PASS
6	2437	16.10	≥500	PASS
11	2462	15.07	≥500	PASS


B. Test Plots:

(Channel 1, 2412MHz, 802.11n-20)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

1	Channal	C		000	11- 20)
l	Channel	о,	2437MHz,	0UZ.	1111-20)

(Channel 11, 2462MHz, 802.11n-20)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

2.3.3.4 802.11n-40 Test mode

A. Test Verdict:

Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Limits (kHz)	Result
3	2422	32.63	≥500	PASS
6	2437	35.71	≥500	PASS
9	2452	23.87	≥500	PASS

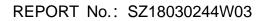
B. Test Plots:

(Channel 3, 2422Mz, 802.11n-40)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

🎉 Agilent Spectrum Analyzer - Occupied B\	V				
Center Freq 2.43700000	0 GHz Center Trig: F	Freq: 2.437000000 GHz ree Run Avg Hol	Ra d:>10/10	2:33:32 AM Apr 10, 2018 dio Std: None	Meas Setup
	#IFGain:Low #Atten	: 40 dB	Ra	dio Device: BTS	Avg/Hold Num
10 dB/div Ref 25.00 dB	m				<u>On</u> Off
Log 15.0					Avg Mode
5.00					Exp Repeat
-5.00	halog how hat half a hard had had	m postalutation	Lyber Angelankenk		
-15.0		- \			
-25.0 minut minut /				Whow many welling	
-35.0				- Anthone	
-45.0					OBWPower
-55.0					99.00 %
-65.0					55.00 78
Center 2.437 GHz				Span 60 MHz	
#Res BW 100 kHz	#	VBW 300 kHz		Sweep 5.8 ms	
Occupied Bandwid	th	Total Power	20.5 di	3m	
3	6.260 MHz				x dB
		0011/0			-6.00 dB
Transmit Freq Error	77.669 kHz	OBW Power	99.00		
x dB Bandwidth	35.71 MHz	x dB	-6.00	dB	
					More
					1 of 2
MSG			STATUS		

(Channel 6, 2437MHz, 802.11n-40)

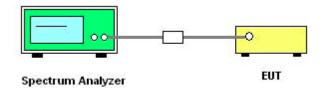


(Channel 9, 2452MHz, 802.11n-40)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

E-mail: service@morlab.cn


2.4. Conducted Spurious Emissions and Band Edge

2.4.1. Requirement

According to FCC section 15.247(c), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

2.4.2. Test Description

A. Test Set:

The EUT is coupled to the Spectrum Analyzer; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading.

Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. In order to make an accurate measurement, set the span greater than RBW.

KDB 558074 Section 11.0 was used in order to prove compliance.

B. Equipments List:

Please refer ANNEX A(1.5).

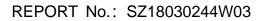
2.4.3. Test Result

2.4.3.1 802.11b Test mode

A. Test Verdict:

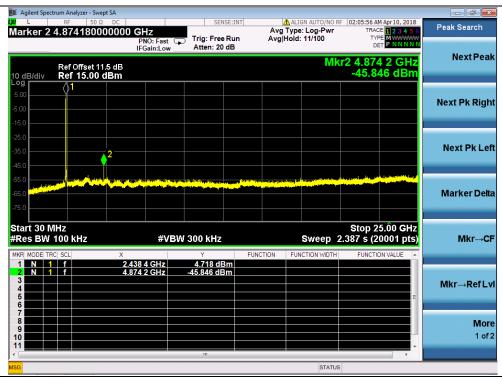
		Measured Max. Out Limit (dBm)		t (dBm)	
Channel	Frequency (MHz)	of Band Emission	Carrier	Calculated	Verdict
		(dBm)	Level	-20dBc Limit	
1	2412	-48.06	5.83	-14.17	PASS
6	2437	-45.85	4.72	-15.28	PASS
11	2462	-43.31	4.25	-15.75	PASS

B. Test Plots:


Note: The power of the Module transmitting frequency should be ignored.

Magilent Spectrum Analyzer - Swept SA				
₩ L RF 50 Ω DC Marker 2 4.824240000000		Avg Type:	10/100 TYPE	123456 MWWWWW
Ref Offset 11.5 dB 10 dB/div Ref 15.00 dBm	IFGain:Low Atten: 20		Mkr2 4.824 -48.06	
-5.00 -15.00				Next Pk Right
-25.0 -36.0 -45.0				Next Pk Left
-55.0 -65.0 -75.0				Marker Delta
Start 30 MHz #Res BW 100 kHz MKRI MODE TRCI SCLI X	#VBW 300 kHz		Stop 25. Sweep 2.387 s (20)	001 pts) Mkr→CF
1 N 1 f 2.4	410 9 GHz 5.829 dE 324 2 GHz -48.060 dE	m		Mkr→RefLvi
7				More 1 of 2
MSG			STATUS	

(Channel = 1, 30MHz to 25GHz)


SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(Band Edge @ Channel = 1)

(Channel = 6, 30MHz to 25GHz)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

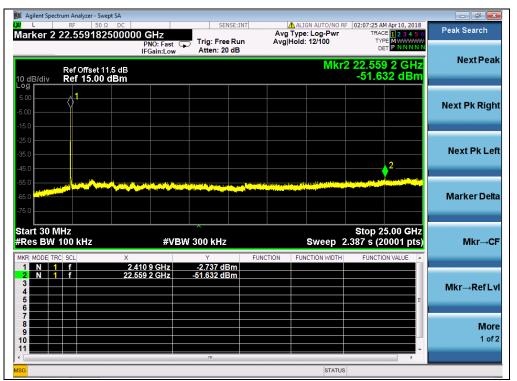
Jier Agilent Spectrum Analyzer - Swept SA					
₩ L RF 50 Ω DC Marker 2 4.924120000000	GHz	Avg Typ	e: Log-Pwr TRA	AM Apr 10, 2018 CE 1 2 3 4 5 6	Peak Search
	PNO: Fast Free IFGain:Low Atten: 20		d: 11/100		
Ref Offset 11.5 dB 10 dB/div Ref 15.00 dBm			Mkr2 4.92 -43.3	4 1 GHz 09 dBm	NextPeak
Log ↓1 5.00 ↓1 -5.00 ↓1					Next Pk Right
-25.0 -35.0 -45.0					Next Pk Left
-56 0 -66 0 -75 0		n ng ang ang ang ang ang ang ang ang ang			Marker Delta
Start 30 MHz #Res BW 100 kHz	#VBW 300 kHz	FUNCTION FU	Sweep 2.387 s (2	25.00 GHz 20001 pts)	Mkr→CF
1 N 1 f 2.4	460 8 GHz 4.253 dE 924 1 GHz -43.309 dB	lm			Mkr→RefLvl
7 8 9 10 11					More 1 of 2
K MSG	III		STATUS	•	

(Channel = 11, 30MHz to 25GHz)

(Band Edge @ Channel = 11)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

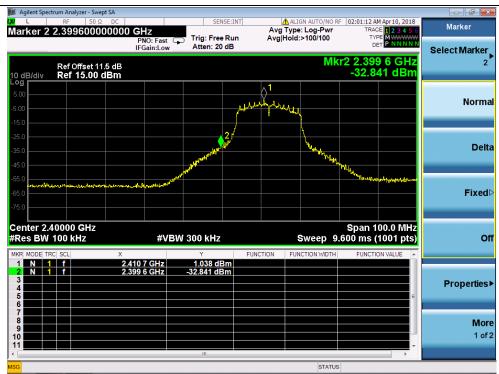

2.4.3.2 802.11g Test mode

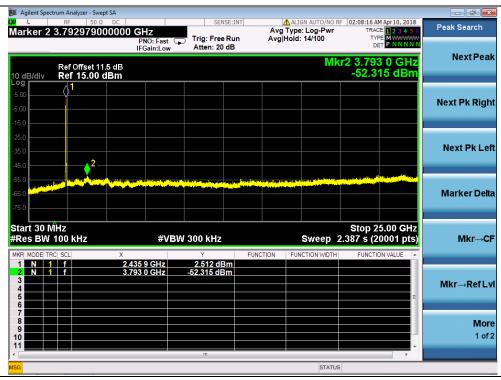
A. Test Verdict:

		Measured Max. Out	Limi		
Channel	Frequency (MHz)	of Band Emission	Carrier	Calculated	Verdict
		(dBm)	Level	-20dBc Limit	
1	2412	-51.63	-2.74	-22.74	PASS
6	2437	-52.32	2.51	-17.49	PASS
11	2462	-50.57	1.55	-18.45	PASS

B. Test Plots:

Note: The power of the Module transmitting frequency should be ignored.


(Channel = 1, 30MHz to 25GHz)


SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(Band Edge @ Channel = 1)

(Channel = 6, 30MHz to 25GHz)

MORLAB

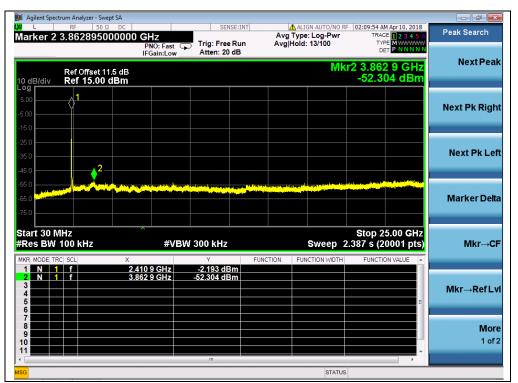
SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

🎉 Agilent Spectru	m Analyzer - Swept SA RF 50 Ω DC		oraco			5 00.00 07 M		
Marker 2 2	RF 50 Ω DC 3.78520950000		Trig: Free Ru	Avg	ALIGN AUTO/NO R Type: Log-Pwr Hold: 12/100	TRACE	1 2 3 4 5 6	Peak Search
		PNO: Fast G	Atten: 20 dE			DET	PNNNN	Next Deals
10 dB/div	Ref Offset 11.5 dB Ref 15.00 dBm				Mkr	2 23.785 -50.56	2 GHz 8 dBm	NextPeak
5.00	_ ≬ 1							Next Pk Right
-5.00								Next PK Right
-25.0								
-35.0							<u>^2</u>	Next Pk Left
-45.0		المنابعة المنابعة والمارية المنابعة المنابعة المنابعة المنابعة المنابعة المنابعة المنابعة المنابعة المنابعة ال المنابعة المنابعة الم	n a ling of the state of the state of the state	and the state of the	and the second second second second			
-65.0 de stabilit				and the second				Marker Delta
-75.0								
Start 30 MH #Res BW 1		#VB\	N 300 kHz		Sweep 2	Stop 25 2.387 s (20		Mkr→CF
MKR MODE TRC		460 8 GHz	⊻ 1.550 dBm	FUNCTION	FUNCTION WIDTH	FUNCTION	VALUE 🔺	
2 N 1 3		785 2 GHz	-50.568 dBm					Mkr→RefLvl
4 5 6							=	
7 8								More
9 10 11								1 of 2
			III					
MSG					STATUS	5		

(Channel = 11, 30MHz to 25GHz)

(Band Edge @ Channel = 11)

MORLAB

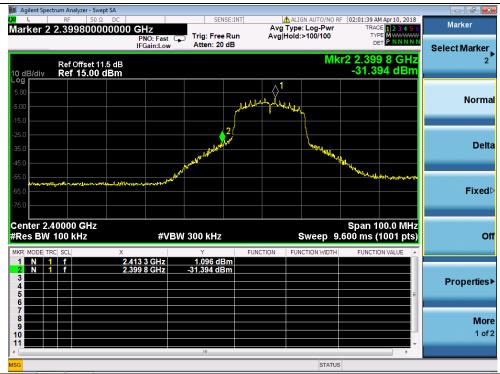

2.4.3.3 802.11n -20MHz Test mode

A. Test Verdict:

		Measured Max. Out	Limi		
Channel	Frequency (MHz)	of Band Emission	Carrier	Calculated	Verdict
		(dBm)	Level	-20dBc Limit	
1	2412	-52.30	-2.19	-22.19	PASS
6	2437	-51.31	-0.88	-20.88	PASS
11	2462	-52.81	-1.07	-21.07	PASS

B. Test Plots:

Note: The power of the Module transmitting frequency should be ignored.



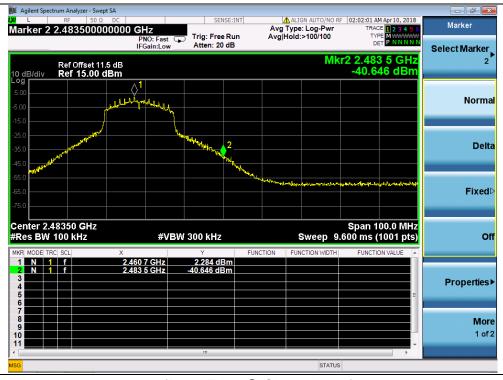
(Channel = 1, 30MHz to 25GHz)



SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(Band Edge @ Channel = 1)

(Channel = 6, 30MHz to 25GHz)


MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

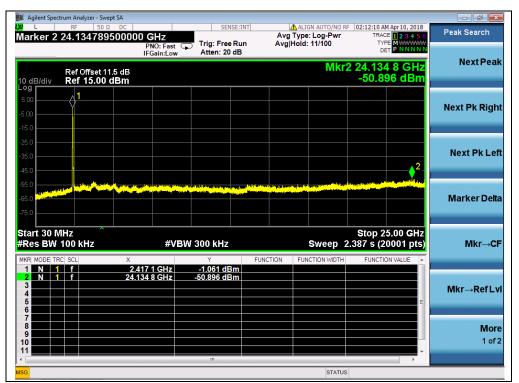
Milent Spectrum Analyzer - Swept SA					
<mark>⋈</mark> L RF 50 Ω DC Marker 2 4.922871500000	GHz	Avg T	ALIGN AUTO/NO RF ype: Log-Pwr old: 12/100	02:11:24 AM Apr 10, 2018 TRACE 1 2 3 4 5 TYPE M	6 Peak Search
	PNO: Fast Trig: Fre IFGain:Low Atten: 2		5id: 12/100	DET PNNNN	N
Ref Offset 11.5 dB 10 dB/div Ref 15.00 dBm			Mkr	2 4.922 9 GHz -52.806 dBm	Next Peak
5.00 1 -5.00					Next Pk Right
-15.0					
-25.0 -35.0					Next Pk Left
-55.0	and the state of the				
-65.0					Marker Delta
Start 30 MHz #Res BW 100 kHz	#VBW 300 kH		Sweep 2.3	Stop 25.00 GHz 387 s (20001 pts	Mkr→CF
MKR MODE TRC SCL X	462 1 GHz -1.068 d		FUNCTION WIDTH	FUNCTION VALUE	
	922 9 GHz -52.806 d	3m			Mkr→RefLvl
7 8 9 10					More 1 of 2
11				•	-
MSG			STATUS		

(Channel = 11, 30MHz to 25GHz)

(Band Edge @ Channel = 11)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China


2.4.3.4 802.11n -40MHz Test mode

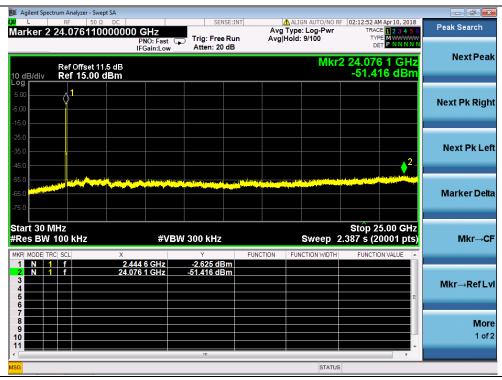
A. Test Verdict:

		Measured Max. Out	Limi		
Channel	Frequency (MHz)	of Band Emission	Carrier	Calculated	Verdict
		(dBm)	Level	-20dBc Limit	
3	2422	-50.90	-1.06	-21.06	PASS
6	2437	-51.42	-2.63	-22.63	PASS
9	2452	-51.81	-0.91	-20.91	PASS

B. Test Plots:

Note: The power of the Module transmitting frequency should be ignored.

(Channel = 3, 30MHz to 25GHz)



SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(Band Edge @ Channel = 3)

(Channel = 6, 30MHz to 25GHz)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn

E-mail: service@morlab.cn

🗾 Agilent Spectrum Analyzer - Swept SA				
Marker 2 24.087346500000 0	GHz	Avg Type: Log-Pwr	TRACE 1 2 3 4 5 6	Peak Search
	NO: Fast Trig: Free Run Gain:Low Atten: 20 dB	Avg Hold: 8/100	DET P NNNN	
Ref Offset 11.5 dB 10 dB/div Ref 15.00 dBm		Mkr	2 24.087 3 GHz -51.809 dBm	Next Peak
5.00 -5.00 -15.00				Next Pk Right
-25.0				Next Pk Left
				Marker Delta
Start 30 MHz #Res BW 100 kHz	#VBW 300 kHz	Sweep 2	Stop 25.00 GHz 2.387 s (20001 pts)	Mkr→CF
	6 GHz -0.909 dBm			Mkr→RefLvl
7 8 9 9 9 10 10 11 10 10 10 10 10 10 10 10 10 10				More 1 of 2
KSG		STATUS	•	

(Channel = 9, 30MHz to 25GHz)

(Band Edge @ Channel = 9)

MORLAB

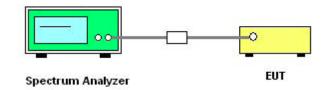
SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn

E-mail: service@morlab.cn

2.5. Power spectral density (PSD)

2.5.1. Requirement

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.


2.5.2. Test Description

A. Test procedure

The measured power spectral density was calculated by the reading of the spectrum analyzer and calibration. Following is the test procedure for PSD test:

- a) Set analyzer center frequency to channel center frequency.
- b) Set the span to 1.5 times DTS
- c) Set the RBW to 3 kHz
- d) Set the VBW to 10 kHz
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW.

B. Test Set:

The EUT is coupled to the Spectrum Analyzer; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading.

KDB 558074 Section 10.2 was used in order to prove compliance.

C. Equipments List:

Please refer ANNEX A(1.5).

2.5.3. Test Result

2.5.3.1 802.11b Test mode

A. Test Verdict:

Spectral power density (dBm/3kHz)							
Channel	Frequency	Measured PSD (dBm/3kHz)	Limit	Verdict			
	(MHz)	Weasured FSD (dBII/SKFIZ)	(dBm/3kHz)				
1	2412	-8.26	8	PASS			
6	2437	-6.27	8	PASS			
11	2462	-7.82	8	PASS			

B. Test Plots:

(Channel = 1, 802.11b)

(Channel = 6, 802.11b)

(Channel = 11, 802.11b)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

2.5.3.2 802.11g Test mode

A. Test Verdict:

Spectral power density (dBm/3kHz)							
Channel	Frequency (MHz)	Measured PSD (dBm/3kHz)	Limit (dBm/3kHz)	Verdict			
1	2412	-11.37	8	PASS			
6	2437	-10.41	8	PASS			
11	2462	-11.87	8	PASS			

B. Test Plots:

(Channel = 1, 802.11g)

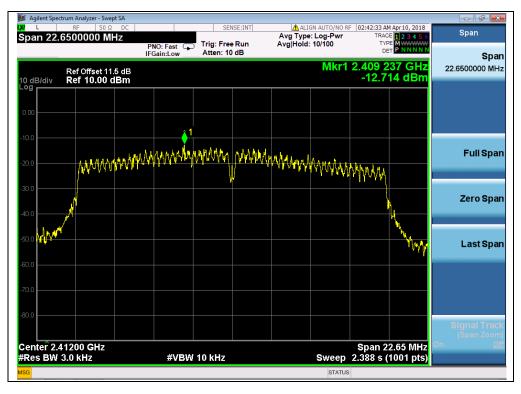
SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(Channel = 6, 802.11g)

(Channel = 11, 802.11g)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

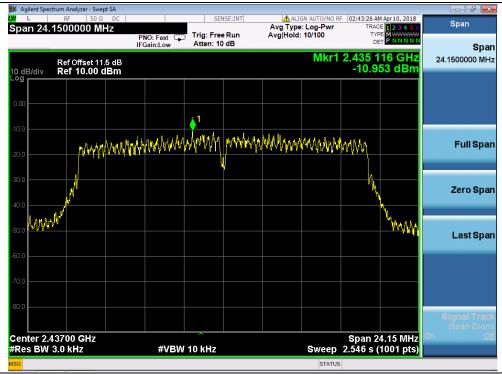


2.5.3.3 802.11n-20MHz Test mode

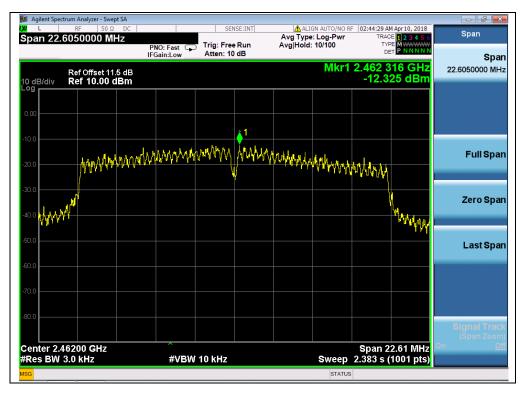
A. Test Verdict:

Spectral power density (dBm/3kHz)						
Channel	Frequency	Massurad BSD (dBm/2kHz)	Limit	Verdict		
	(MHz)	Measured PSD (dBm/3kHz)	(dBm/3kHz)			
1	2412	-12.71	8	PASS		
6	2437	-10.95	8	PASS		
11	2462	-12.33	8	PASS		

B. Test Plots:



(Channel = 1, 802.11n-20MHz)



SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(Channel = 6, 802.11n-20MHz)

(Channel = 11, 802.11n-20MHz)

MORLAB

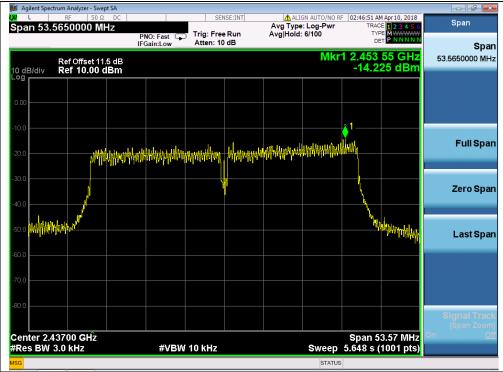
SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

2.5.3.4 802.11n-40MHz Test mode

A. Test Verdict:

	Spectral power density (dBm/3kHz)										
Channel	Frequency (MHz)	Measured PSD (dBm/3kHz)	Limit (dBm/3kHz)	Verdict							
3	2422	-14.07	8	PASS							
6	2437	-14.23	8	PASS							
9	2452	-8.87	8	PASS							

B. Test Plots:



(Channel = 3, 802.11n-40MHz)

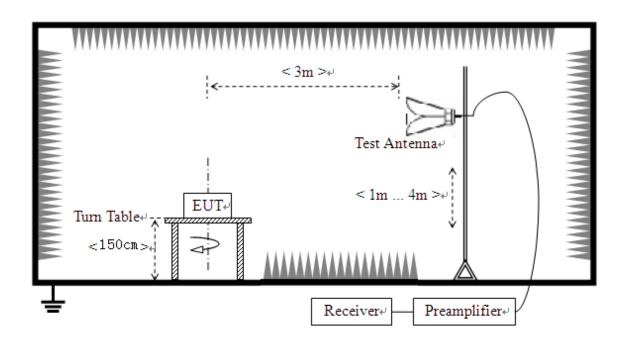
SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(Channel = 6, 802.11n-40MHz)

(Channel = 9, 802.11n-40MHz)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China


2.6. Restricted Frequency Bands

2.6.1. Requirement

According to FCC section 15.247(d), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, In addition, radiated emissions which fall in the restricted bands, as defined in 15.205(a), must also comply with the radiated emission limits specified in 15.209(a).

2.6.2. Test Description

A. Test Setup

The EUT is located in a 3m Semi-Anechoic Chamber; the antenna factors, cable loss and so on of the site as factors are calculated to correct the reading.

For the Test Antenna:

Test Antenna is 3m away from the EUT. Test Antenna height is varied from 1m to 4m above the ground to determine the maximum value of the field strength.

KDB 558074 Section 12.1 was used in order to prove compliance.

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

B. Equipments List:

Please refer ANNEX A(1.5).

2.6.3. Test Result

The lowest and highest channels are tested to verify Restricted Frequency Bands.

The measurement results are obtained as below: E $[dB\mu V/m] = U_R + A_T + A_{Factor} [dB]; A_T = L_{Cable loss} [dB] - G_{preamp} [dB]$ A_T : Total correction Factor except Antenna U_R : Receiver Reading G_{preamp} : Preamplifier Gain A_{Factor} : Antenna Factor at 3m

Note: Restricted Frequency Bands were performed when antenna was at vertical and horizontal polarity, and only the worse test condition (vertical) was recorded in this test report.

2.6.3.1 802.11b Test mode

A. Test Verdict:

Channel	Frequency	Detector	Receiver Reading	A _T	A _{Factor}	Max. Emission	Limit	Verdict
Chainie	(MHz)	PK/ AV	U _R (dBuV)	(dB)	(dB@3m)	E (dBµV/m)	(dBµV/m)	Verdiet
1	2388.37	PK	48.02	-33.63	32.56	46.95	74	Pass
1	2388.48	AV	36.15	-33.63	32.56	35.08	54	Pass
11	2484.08	PK	47.35	-33.18	32.50	46.67	74	Pass
11	2483.55	AV	35.93	-33.18	32.50	35.25	54	Pass

B. Test Plots:

Keysight Spectrum Analyzer - Swept SA A RL REPRESEL 50 Ω DU Marker 1 2.388366000000 GHz PNO: Fast C IFGain:Low 03:42:52 PM Apr 25, 2018 TRACE 1 2 3 4 5 6 TYPE MWWWW DET P P N N N N Avg Type: Voltage Avg|Hold:>100/100 Peak Search Trig: Free Run #Atten: 6 dB Next Peak Mkr1 2.388 37 GHz 48.016 dBµV 10 dB/div Ref 102.99 dBµV Next Pk Right 12 Next Pk Left Marker Delta Stop 2.41300 GHz Sweep 1.000 ms (1001 pts) Start 2.30000 GHz #VBW 3.0 MHz Res BW (CISPR) 1 MHz Mkr→CF 2.388 37 GHz 2.390 00 GHz 48.016 dBµV 47.206 dBµV N 1 f Mkr→RefLv More 1 of 2

(Channel = 1 PEAK, 802.11b)

(Channel = 1 AVG, 802.11b)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn

E-mail: service@morlab.cn

Keysight Spectrum Analyzer - Swept SA RL RF PRESEL 50 Ω DC	SENSE:IN	ALIGN OFF	04:05:55 PM Apr 25, 2018	e e e
arker 2 2.484075000000		Avg Type: Voltage Avg Hold:>100/100	TRACE 1 2 3 4 5 6 TYPE MWWWW DET P NNNNN	Peak Search
dB/div Ref 102.99 dBµV	in dum.edw	Mkr	2 2.484 075 GHz 47.345 dBµV	NextPe
9 .0 .0				Next Pk Riç
		2	Jajanapacantapagangantanastana	Next Pk L
0 0 0				Marker Do
art 2.46500 GHz s BW (CISPR) 1 MHz	#VBW 3.0 MHz	Sweep	Stop 2.50000 GHz 1.000 ms (1001 pts)	Mkr→
NODE TRC SCI X N 1 f 2.483 N 1 f 2.483	Y 500 GHz 46.255 dBμV 075 GHz 47.345 dBμV	FUNCTION FUNCTION WIDT	H FUNCTION VALUE	Mkr→Ref
				M

(Channel = 11 PEAK, 802.11b)

(Channel = 11 AVG, 802.11b)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China



2.6.3.2 802.11g Test mode

A. Test Verdict:

Channel	Frequency	Detector	Receiver Reading	A _T	A _{Factor}	Max. Emission	Limit	Verdict
Channel	(MHz)	PK/ AV	U _R (dBuV)	(dB)	(dB@3m)	E (dBµV/m)	(dBµV/m)	verdict
1	2389.16	PK	51.78	-33.63	32.56	50.71	74	Pass
1	2389.95	AV	37.63	-33.63	32.56	36.56	54	Pass
11	2484.11	PK	48.55	-33.18	32.50	47.87	74	Pass
11	2483.50	AV	37.36	-33.18	32.50	36.68	54	Pass

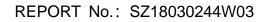
B. Test Plots:

(Channel = 1 PEAK, 802.11g)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

50 Ω DC	SENSE:I	NT	ALIGN OFF	03:49:05 PM A	pr 25, 2018	
PNO: Fas				TYPE	M WWWWW	Peak Search
.99 dBµV			Mkr			NextPo
						Next Pk Ri
				1		Next Pk L
						Marker D
MHz #	VBW 10 Hz		Sweep	Stop 2.413 12.96 s (10	00 GHz 001 pts)	Mkr–
		FUNCTION	FUNCTION WIDTH	FUNCTION	VALUE	
2.390 00 GHZ	<u>зү.ог</u> ивич				=	Mkr→Ref
						M
	8000000 GHz PN0: Fas IFGain:Lo .99 dBµV MHz # X 2.389 95 GHz	8000000 GHz PNO: Fast PNO: Fast Atten: 6 dB Trig: Free Ru Atten: 6 dB .99 dBµV Image: State	8000000 GHz PN0: Fast IFGain:Low Trig: Free Run Atten: 6 dB Avgl .99 dBµV .99 dBµV	8000000 GHz PN0: Fast IFGain:Low Trig: Free Run Atten: 6 dB Avg Type: Voltage Avg Hold: >100/100 .99 dBµV	8000000 GHz PN0: Fast IFGain:Low Trig: Free Run Atten: 6 dB Avg Type: Voltage Avg Hold: >100/100 TRACE TYPE TYPE OFT 99 dBμV 0	8000000 GHz IFGain:Low Trig: Free Run Atten: 6 dB Avg Type: Voltage AvglHold: >100/100 TRACE [] 2.3 4 3 4 Trig: Free Run Der WNNNT 99 dBμV Mkr1 2.389 95 GHz 37.627 dBμV 37.627 dBμV 1 1 1 1 1 1 MHz #VBW 10 Hz Sweep 12.96 s (1001 pts) X Y FUNCTION FUNCTION WDTH FUNCTION WDTH


(Channel = 1 AVG, 802.11g)

(Channel = 11 PEAK, 802.11g)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn E-mail: service@morlab.cn

ysight Spectrum Analyze									- F
E RF PRESEL	50 Ω DC	PNO: Fast				ALIGN OFF Type: Voltage Hold: >100/100	TRA	M Apr 25, 2018 DE 1 2 3 4 5 6 PE M W N N N N FT P N N N N N	Trace/Detecto
B/div Ref 10	2.99 dBµV	IFGain:Low	Atten: 6			Mkr2	2.483 5	00 GHz 4 dBµV	Select Tra
									ClearW
				2					Trace Aver
									Max H
rt 2.46500 GHz BW (CISPR) 1	MHz	#VB	N 10 Hz	^			4.013 s (0000 GHz 1001 pts)	Min H
MODE TRC SCL N 1 f N 1 f	× 2.483 2.483	3 500 GHz 3 500 GHz	Y 37.364 dB 37.364 dB	μV	NCTION	FUNCTION WIDTH	FUNCTI	ON VALUE	View Die
								=	View Bla Trace
									N 1
								-	

(Channel = 11 AVG, 802.11g)

2.6.3.3 802.11n-20MHz Test mode

A. Test Verdict:

Channel	Frequency	Detector	Receiver Reading	A _T	A _{Factor}	Max. Emission	Limit	Verdict
	(MHz)	PK/ AV	U _R (dBuV)	(dB)	(dB@3m)	E (dBµV/m)	(dBµV/m)	
1	2389.95	PK	51.22	-33.63	32.56	50.15	74	Pass
1	2389.55	AV	38.08	-33.63	32.56	37.01	54	Pass
11	2483.50	PK	50.92	-33.18	32.50	50.24	74	Pass
11	2483.50	AV	38.34	-33.18	32.50	37.66	54	Pass

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn

B. Test Plots:

🛿 Keysight Spectrum Analyzer - Swept SA R Avg Type: Voltage Avg|Hold:>100/100 03:52:10 PM Apr 25, 2018 TRACE 1 2 3 4 5 6 TYPE MWWWW DET P NNNN Trace/Detector Video BW 3.0 MHz PNO: Fast Trig: Free Run IFGain:Low Atten: 6 dB Select Trace Mkr1 2.389 95 GHz 51.224 dBµV Ref 102.99 dBµV I0 dB/div og **Clear Write** Trace Average Max Hold Start 2.30000 GHz Res BW (CISPR) 1 MHz Stop 2.41300 GHz 1.000 ms (1001 pts) #VBW 3.0 MHz Sweep **Min Hold** 2.389 95 GHz 2.390 00 GHz 51.224 dBµV 51.224 dBµV View Blank Trace On More 1 of 3

(Channel = 1 PEAK, 802.11n-20)

(Channel = 1 AVG, 802.11n-20)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Keysight Spectrum Analyzer - Swept SA								
RL REPRESEL 50 Ω DC		Trig: Free Ru	Av	ALIGN OFF g Type: Voltage g Hold:>100/100	TRACE	Apr 25, 2018		BW
	PNO: Fast G	Atten: 6 dB			DET	PNNNNN		Res BI
dB/div Ref 102.99 dBµ\	ſ			Mkr2	2.483 50 50.922	00 GHz 2 dBµV	<u>Auto</u>	Ma
								Video B
							Auto	3.0 MI <u>M</u> i
							VBV	V:3dB RB
0			2	hadronation		and a settled sector	Auto	10 10 M
0				handal and an and a star of the star of th		where the first of	<u>//uto</u>	
0							Spa	
0							<u>Auto</u>	
art 2.46500 GHz s BW (CISPR) 1 MHz	#\/B\A	/ 3.0 MHz		Swaan	Stop 2.50 1.000 ms (1		DD	W Contro
	# 0 15 0	Y J.O WHZ	FUNCTION	FUNCTION WIDTH			RD	
	3 500 GHz 3 500 GHz	50.922 dBµV 50.922 dBµV						

(Channel = 11 PEAK, 802.11n-20)

(Channel = 11 AVG, 802.11n-20)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

2.6.3.4 802.11n-40MHz Test mode

A. Test Verdict:

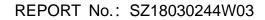
Channel	Frequency	Detector	Receiver Reading	A _T	A _{Factor}	Max. Emission	Limit	Verdict
	(MHz)	PK/ AV	U _R (dBuV)	(dB)	(dB@3m)	E (dBµV/m)	(dBµV/m)	
3	2389.06	PK	52.25	-33.63	32.56	51.18	74	Pass
3	2389.55	AV	38.66	-33.63	32.56	37.59	54	Pass
9	2483.50	PK	59.51	-33.18	32.50	58.83	74	Pass
9	2483.50	AV	45.86	-33.18	32.50	45.18	54	Pass

B. Test Plots:

(Channel = 3 PEAK, 802.11n-40)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

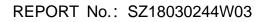
Keysight Spectrum Analy RL RF PRESEL arker 1 2.3895	50 Ω DC 48000000 C		SENSE	A	ALIGN OFF g Type: Voltage alHold: >100/100	TRA	M May 10, 2018 CE 1 2 3 4 5 6 PE M WWWWW	Peak Search
) dB/div Ref 1		PNO: Fast G	Atten: 6 dB			D 2.389 5	48 GHz 4 dBµV	NextPea
3 .0								Next Pk Rigl
3.0					<u>1</u>			Next Pk Le
3.0								Marker De
art 2.30000 GH es BW (CISPR)	1 MHz	#VB\	W 10 Hz		-	13.99 s (2200 GHz 1001 pts)	Mkr→
IR MODE TRC SCL IN 1 f IN 1 f	× 2.389 5 2.390 0	548 GHz 000 GHz	Υ 38.664 dBμ\ 38.861 dBμ\	FUNCTION	FUNCTION WIDTH	FUNCTI	ON VALUE	Mkr→RefL
								Мо


(Channel = 3 AVG, 802.11n-40)

(Channel = 9 PEAK, 802.11n-40)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China



		alyzer - Swep											
RL deo BV		L 50 Ω	DC		SE	NSE:INT	Avo	ALIGN OF Type: Voltag			M Apr 25, 201 E 1 2 3 4 5		BW
100 DV	V IO I	12		PNO: Fast IFGain:Low	Trig: Fre Atten: 6		Avg	Hold: >100/10	D	TYP		₩¥	Res B
dB/div	Ref	102.99 c	dBμV					Mk	r2 2.	483 5 45.86	00 GH 3 dBµ	Auto	1 Mł Ma
.0													Video B 10 I
.0												Auto	<u>M</u> :
- 0												VB	W:3dB RB
0						<mark>2</mark>						Auto	10 Ma
.0													
.0												Spa	
o												Auto	
art 2.46 s BW (*		Hz) 1 MHz		#VB	W 10 Hz			Swee	Sto p 4.0	op 2.50 113 s (0000 GH 1001 pts	z s) RE	3W Contro
		,	х		Y		UNCTION	FUNCTION WIE			DN VALUE		
N 1 N 1				500 GHz 500 GHz	45.863 dE 45.863 dE	μV μV							
												=	
					III						•		

(Channel = 9 AVG, 802.11n-40)

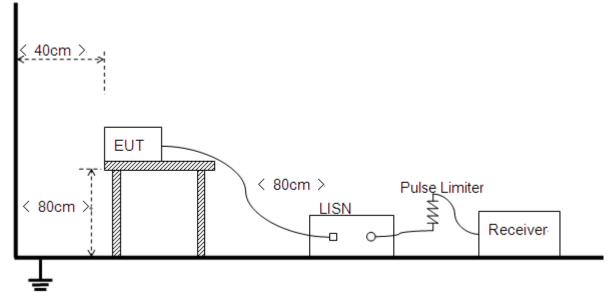
SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

2.7. Conducted Emission

2.7.1. Requirement

According to FCC section 15.207, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency within the band 150kHz to 30MHz shall not exceed the limits in the following table, as measured using a 50μ H/ 50Ω line impedance stabilization network (LISN).

Frequency range	Conducted	Limit (dBµV)
(MHz)	Quai-peak	Average
0.15 - 0.50	66 to 56	56 to 46
0.50 - 5	56	46
5 - 30	60	50


NOTE:

(a) The lower limit shall apply at the band edges.

(b) The limit decreases linearly with the logarithm of the frequency in the range 0.15 - 0.50MHz.

2.7.2. Test Description

A. Test Setup:

The Table-top EUT was placed upon a non-metallic table 0.8m above the horizontal metal reference ground plane. EUT was connected to LISN and LISN was connected to reference Ground Plane. EUT was 80cm from LISN. The set-up and test methods were according to ANSI C63.10 2013.

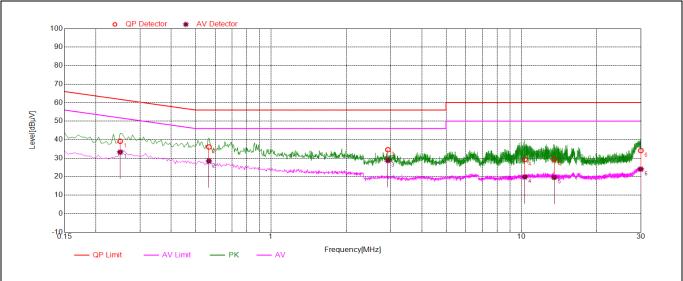
MORLAB

B. Equipments List:

Please refer ANNEX A(1.5).

2.7.3. Test Result

The maximum conducted interference is searched using Peak (PK), if the emission levels more than the AV and QP limits, and that have narrow margins from the AV and QP limits will be re-measured with AV and QP detectors. Tests for both L phase and N phase lines of the power mains connected to the EUT are performed. Refer to recorded points and plots below.


Note: Both of the test voltage AC 120V/60Hz and AC 230V/50Hz were considered and tested respectively, only the results of the worst case AC 120V/60Hz were recorded in this report.

A. Test setup:

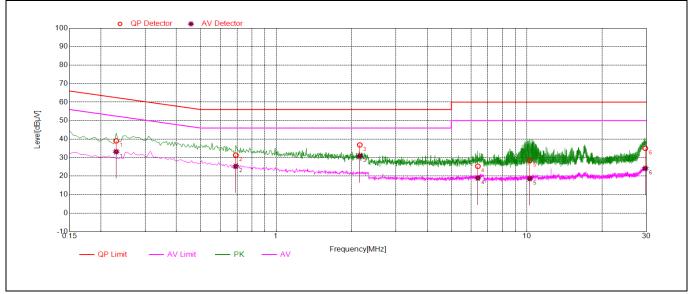
The EUT configuration of the emission tests is EUT + Link.

Note: The test voltage is AC 120V/60Hz.

B. Test Plots:

(Plot A: L Phase)

NO.	Fre.			Limit (dBµV)		Power-line	Verdict
	(MHz)	Quai-peak	Average	Quai-peak	Average		
1	0.25	39.15	33.23	61.76	51.76	Line	PASS
2	0.57	36.02	28.39	56.00	46.00		PASS
3	2.93	34.57	28.72	56.00	46.00		PASS
4	10.33	29.27	19.82	60.00	50.00		PASS
5	13.52	29.44	19.60	60.00	50.00		PASS
6	29.97	34.08	24.04	60.00	50.00		PASS


SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn E-mail: service@morlab.cn

Page 53 Of 74

(Plot B: N Phase)

NO. Fre. (MHz)	-	-		Limit (dBµV)		Power-line	Verdict
	(MHz)	Quai-peak	Average	Quai-peak	Average		
1	0.23	39.06	33.20	62.45	52.45		PASS
2	0.69	31.33	25.34	56.00	46.00		PASS
3	2.16	36.85	30.93	56.00	46.00	Noutral	PASS
4	6.38	25.32	18.93	60.00	50.00	Neutral	PASS
5	10.28	28.50	18.63	60.00	50.00		PASS
6	29.70	35.04	24.16	60.00	50.00		PASS

2.8. Radiated Emission

2.8.1. Requirement

According to FCC section 15.247(d), radiated emission outside the frequency band attenuation below the general limits specified in FCC section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in FCC section 15.205(a), must also comply with the radiated emission limits specified in FCC section 15.209(a).

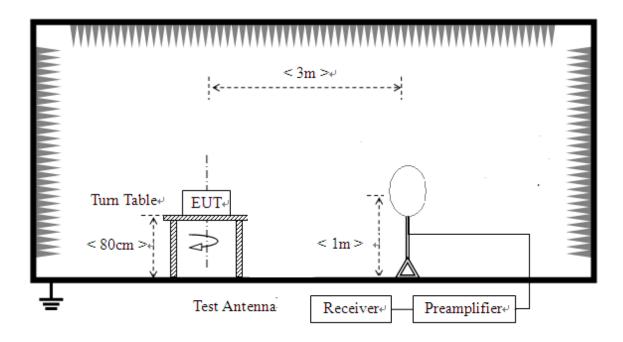
According to FCC section 15.209 (a), except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

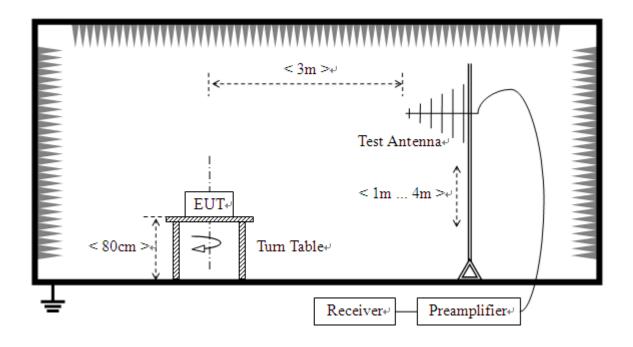
Frequency (MHz)	Field Strength (µV/m)	Measurement Distance (m)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100	3
88 - 216	150	3
216 - 960	200	3
Above 960	500	3

Note:

- For Above 1000MHz, the emission limit in this paragraph is based on measurement instrumentation employing an average detector, measurement using instrumentation with a peak detector function, corresponding to 20dB above the maximum permitted average limit.
- For above 1000MHz, limit field strength of harmonics: 54dBuV/m@3m (AV) and 74dBuV/m@3m (PK)

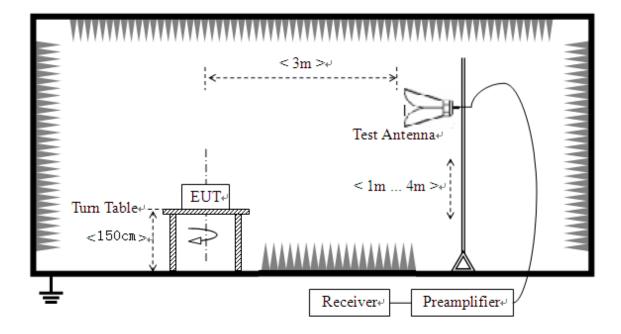
In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), also should comply with the radiated emission limits specified in Section 15.209(a)(above table)




2.8.2. Test Description

A. Test Setup:

1) For radiated emissions from 9kHz to 30MHz


2) For radiated emissions from 30MHz to1GHz

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

3) For radiated emissions above 1GHz

The RF absorbing material used on the reference ground plane and on the turntable have a maximum height (thickness) of 30 cm (12 in) and have a minimum-rated attenuation of 20 dB at all frequencies from 1 GHz to 18 GHz. Test site have a minimum area of the ground plane covered with RF absorbing material as specified in Figure 6 of ANSI C63.4: 2014.

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4dB according to the standards: ANSI C63.10 (2013). For radiated emissions below or equal to 1GHz, The EUT was set-up on insulator 80cm above the Ground Plane, For radiated emissions above 1GHz, The EUT was set-up on insulator 150cm above the Ground Plane. The set-up and test methods were according to ANSI C63.10

For the radiated emission test above 1GHz:

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

The EUT is located in a 3m Semi-Anechoic Chamber; the antenna factors, cable loss and so on of the site as factors are calculated to correct the reading

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

For the Test Antenna:

(a) In the frequency range of 9kHz to 30MHz, magnetic field is measured with Loop Test Antenna. The Test Antenna is positioned with its plane vertical at 1m distance from the EUT. The center of the Loop Test Antenna is 1m above the ground. During the measurement the Loop Test Antenna rotates about its vertical axis for maximum response at each azimuth about the EUT.

(b) In the frequency range above 30MHz, Bi-Log Test Antenna (30MHz to 1GHz) and Horn Test Antenna (above 1GHz) are used. Place the test antenna at 3m away from area of the EUT, while keeping the test antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The test antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final test antenna elevation shall be that which maximizes the emissions. The test antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. The emission levels at both horizontal and vertical polarizations should be tested.

A. Equipments List:

Please refere ANNEX A(1.5).

2.8.3. Test Result

According to ANSI C63.10, because of peak detection will yield amplitudes equal to or greater than amplitudes measured with the quasi-peak (or average) detector, the measurement data from a spectrum analyzer peak detector will represent the worst-case results, if the peak measured value complies with the quasi-peak limit, it is unnecessary to perform an quasi-peak measurement.

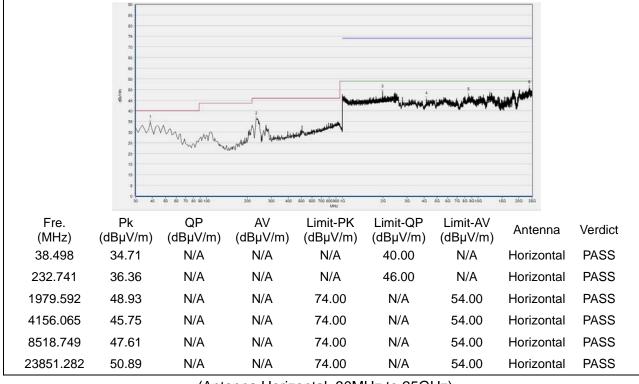
The measurement results are obtained as below:

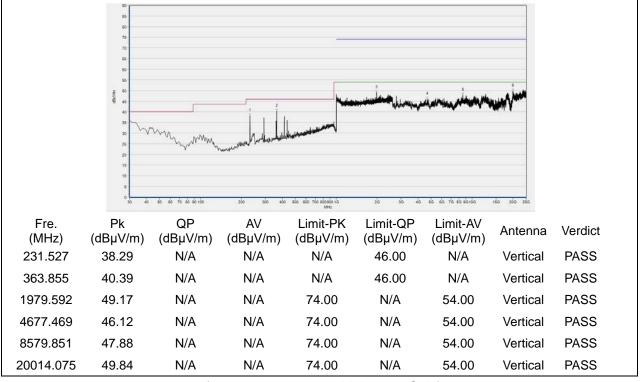
E $[dB\mu V/m] = U_R + A_T + A_{Factor} [dB]; A_T = L_{Cable loss} [dB] - G_{preamp} [dB]$ A_T: Total correction Factor except Antenna U_R: Receiver Reading G_{preamp}: Preamplifier Gain A_{Factor}: Antenna Factor at 3m

During the test, the total correction Factor A_T and A_{Factor} were built in test software.

Note1: All radiated emission tests were performed in X, Y, Z axis direction. And only the worst axis test condition was recorded in this test report.

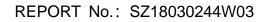
Note2: For the frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit was not recorded.


Note3: For the frequency, which started from 25GHz to 40GHz, was pre-scanned and the result which was 10dB lower than the limit was not recorded.

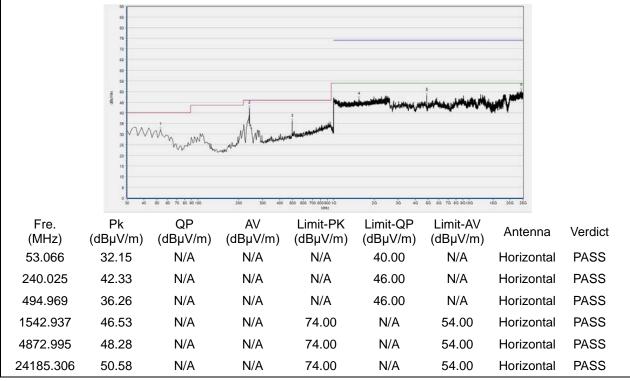


2.8.3.1 802.11b Test mode

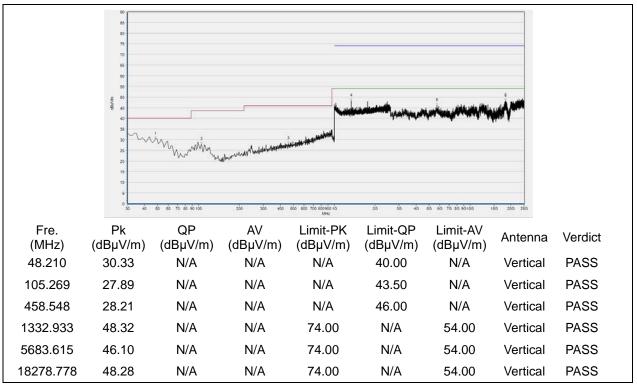
Plots for Channel = 1


(Antenna Horizontal, 30MHz to 25GHz)

(Antenna Vertical, 30MHz to 25GHz)



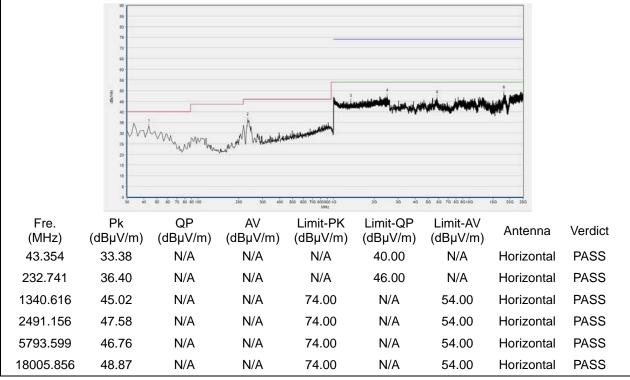
SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.cn



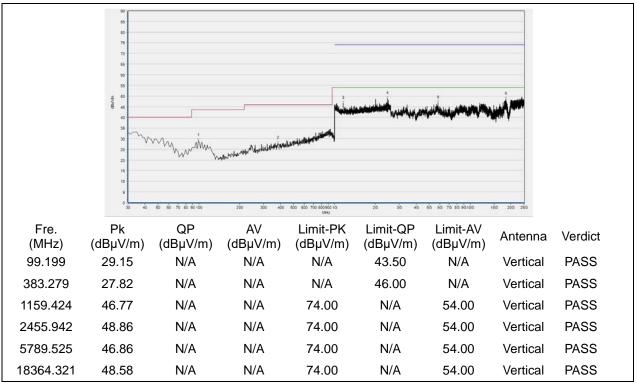
Plot for Channel = 6

(Antenna Horizontal, 30MHz to 25GHz)

(Antenna Vertical, 30MHz to 25GHz)



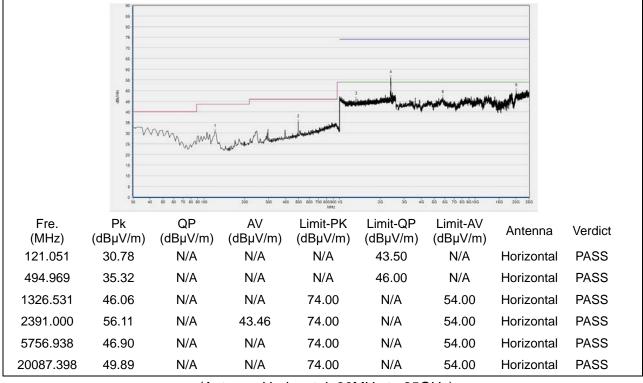
SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.cn



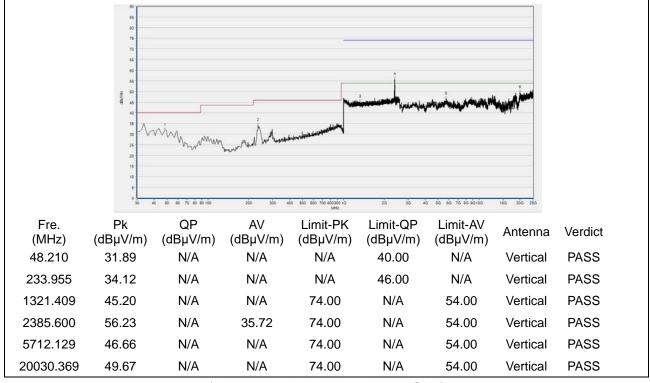
Plot for Channel = 11

(Antenna Horizontal, 30MHz to 25GHz)

(Antenna Vertical, 30MHz to 25GHz)


MORLAB

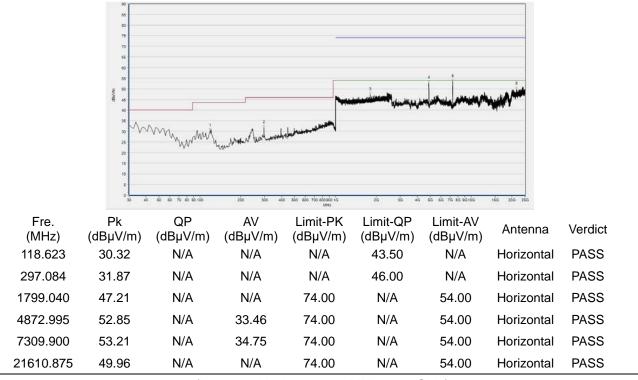
SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fa Http://www.morlab.cn E-

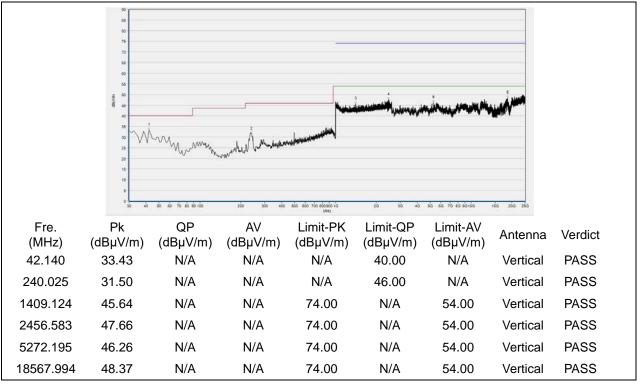


2.8.3.2 802.11g Test mode

Plots for Channel = 1

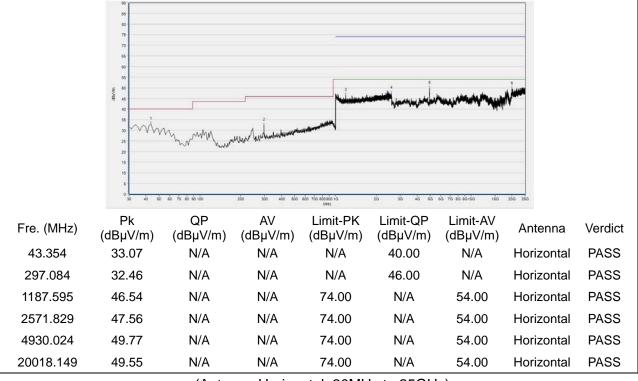
(Antenna Horizontal, 30MHz to 25GHz)

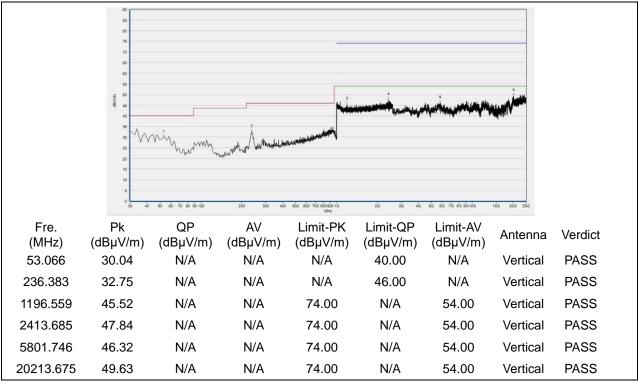

(Antenna Vertical, 30MHz to 25GHz)


SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 8 Http://www.morlab.cn E-mail

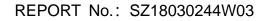
Plot for Channel = 6

(Antenna Horizontal, 30MHz to 25GHz)

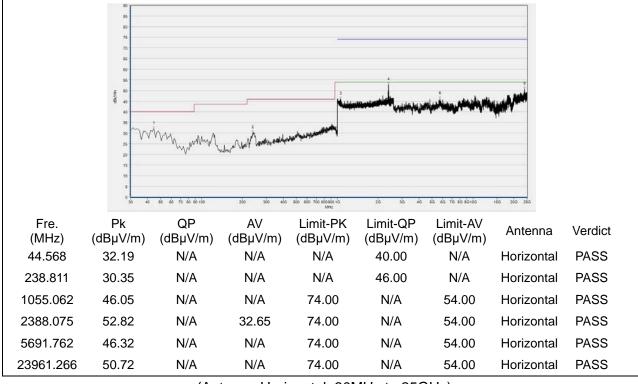

(Antenna Vertical, 30MHz to 25GHz)

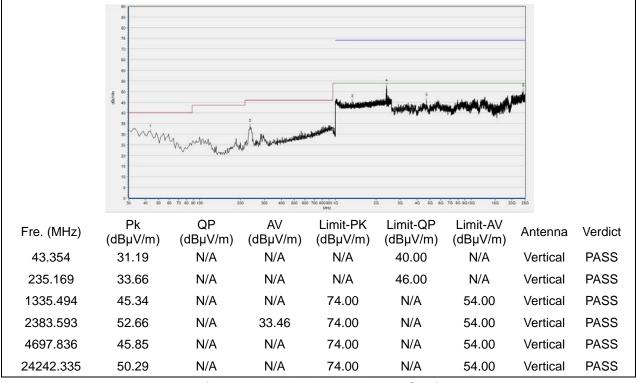

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 4 Http://www.morlab.cn E-ma

Plot for Channel = 11


(Antenna Horizontal, 30MHz to 25GHz)

(Antenna Vertical, 30MHz to 25GHz)

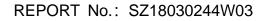

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: Http://www.morlab.cn E-ma



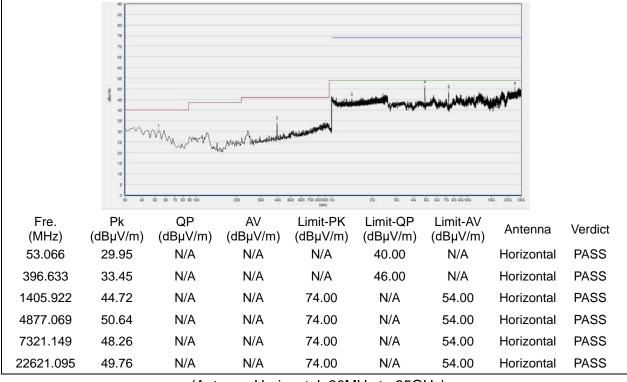
2.8.3.3 802.11n-20MHz Test mode

Plots for Channel = 1

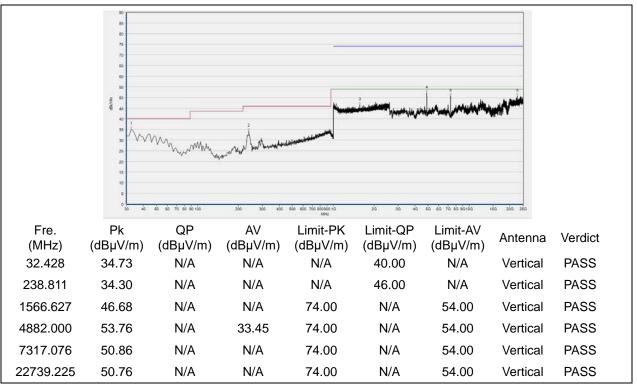
(Antenna Horizontal, 30MHz to 25GHz)



(Antenna Vertical, 30MHz to 25GHz)

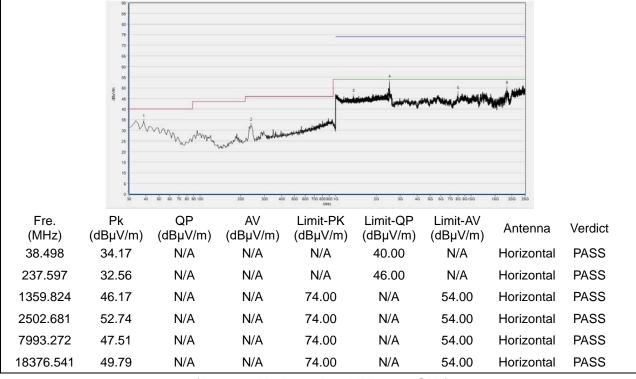

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.cn E-mail: service@morlab.cn

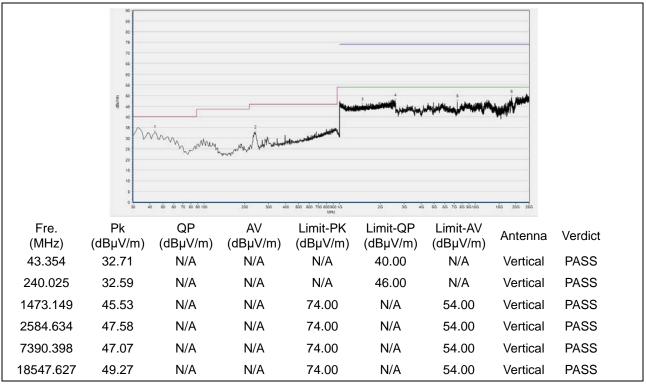
Fax: 86-755-36698525



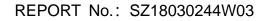
Plot for Channel = 6

(Antenna Horizontal, 30MHz to 25GHz)

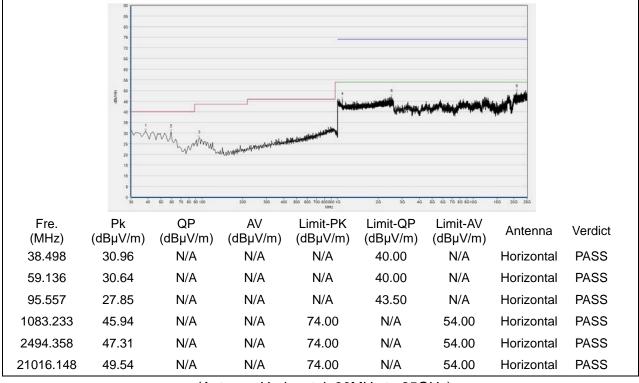

(Antenna Vertical, 30MHz to 25GHz)

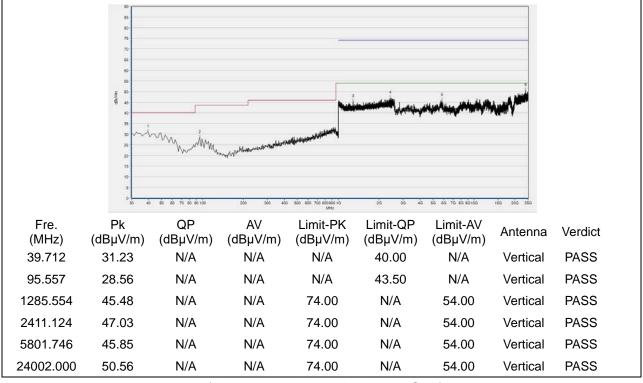

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: Http://www.morlab.cn E-ma

Plot for Channel = 11


(Antenna Horizontal, 30MHz to 25GHz)

(Antenna Vertical, 30MHz to 25GHz)

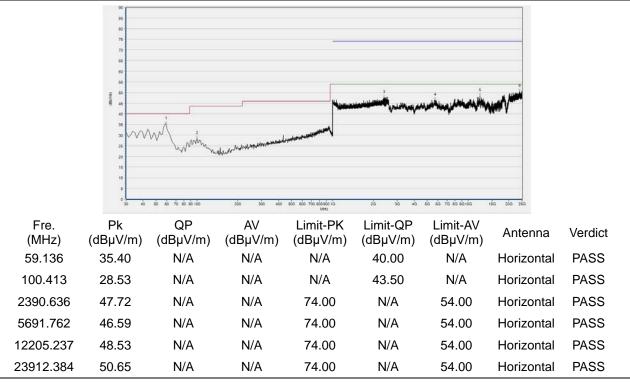

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: Http://www.morlab.cn E-ma

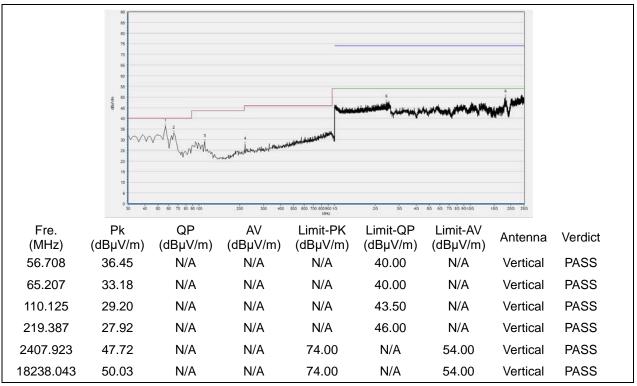


2.8.3.4 802.11n-40MHz Test mode

Plots for Channel = 3

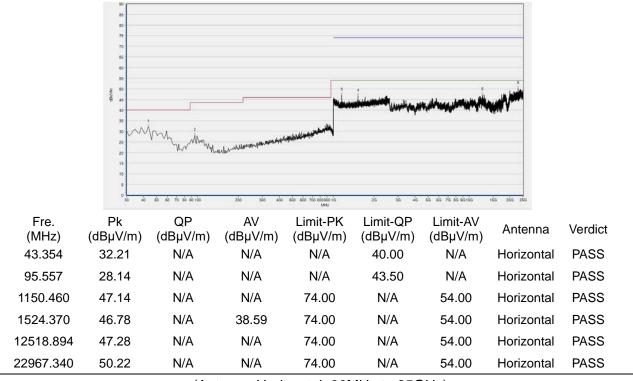
(Antenna Horizontal, 30MHz to 25GHz)

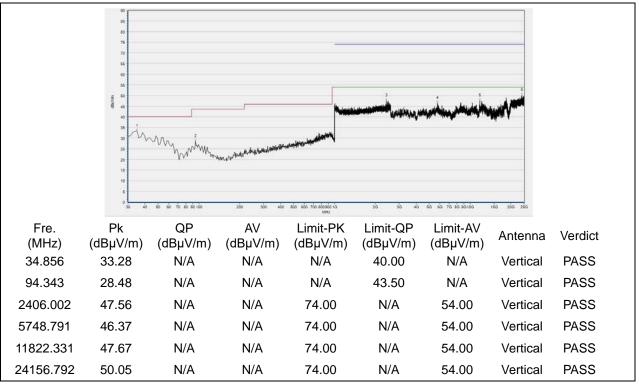

(Antenna Vertical, 30MHz to 25GHz)


SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fa Http://www.morlab.cn E-

Plots for Channel = 6

(Antenna Horizontal, 30MHz to 25GHz)


(Antenna Vertical, 30MHz to 25GHz)


SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax Http://www.morlab.cn E-m

Plots for Channel = 9

(Antenna Horizontal, 30MHz to 25GHz)

(Antenna Vertical, 30MHz to 25GHz)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 4 Http://www.morlab.cn E-ma

Annex A Test Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for test performed on the EUT as specified in CISPR 16-1-2:

Test items	Uncertainty
Peak Output Power	±2.22dB
Power spectral density (PSD)	±2.22dB
Bandwidth	±5%
Conducted Spurious Emission	±2.77 dB
Restricted Frequency Bands	±5%
Radiated Emission	±2.95dB
Conducted Emission	±2.44dB

This uncertainty represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Annex B Testing Laboratory Information

1. Identification of the Responsible Testing Laboratory

Company Name:	Shenzhen Morlab Communications Technology Co., Ltd.					
Department:	Morlab Laboratory					
Address:	FL.3, Building A, FeiYang Science Park, No.8 LongChang					
	Road, Block 67, BaoAn District, ShenZhen, GuangDong					
	Province, P. R. China					
Responsible Test Lab	Mr. Cu Fana					
Manager:	Mr. Su Feng					
Telephone:	+86 755 36698555					
Facsimile:	+86 755 36698525					

2. Identification of the Responsible Testing Location

Name:	Shenzhen Morlab Communications Technology Co., Ltd.
	Morlab Laboratory
	FL.3, Building A, FeiYang Science Park, No.8 LongChang
Address:	Road, Block 67, BaoAn District, ShenZhen, GuangDong
	Province, P. R. China

3. Facilities and Accreditations

All measurement facilities used to collect the measurement data are located at FL.3, Building A, FeiYang Science Park, Block 67, BaoAn District, Shenzhen, 518101 P. R. China. The test site is constructed in conformance with the requirements of ANSI C63.10-2013 and CISPR Publication 22; the FCC designation number is CN1192.

4. Test Equipments Utilized

4.1 Conducted Test Equipments

Equipment Name	Serial No.	Туре	Manufacturer	Cal. Date	Cal. Due
Power Splitter	NW521	1506A	Weinschel	2018.04.17	2019.04.16
Attenuator 1	(N/A.)	10dB	Resnet	2018.04.17	2019.04.16
Attenuator 2	(N/A.)	3dB	Resnet	2018.04.17	2019.04.16
EXA Signal Analzyer	MY53470836	N9010A	Agilent	2017.12.03	2018.12.02
USB Wideband Power Sensor	MY54210011	U2021XA	Agilent	2018.04.17	2019.04.16
RF cable (30MHz-26GHz)	CB01	RF01	Morlab	N/A	N/A
Coaxial cable	CB02	RF02	Morlab	N/A	N/A
SMA connector	CN01	RF03	HUBER-SUHNER	N/A	N/A

4.2 Conducted Emission Test Equipments

Equipment Name	Serial No.	Туре	Manufacturer	Cal. Date	Cal. Due
Receiver	MY56400093	N9038A	KEYSIGHT	2017.07.13	2018.07.12
LISN	812744	NSLK 8127	Schwarzbeck	2018.05.08	2019.05.07
Pulse Limiter (20dB)	9391	VTSD 9561-D	Schwarzbeck	2018.05.08	2019.05.07
Coaxial cable(BNC) (30MHz-26GHz)	CB01	EMC01	Morlab	N/A	N/A

4.3Auxiliary Test Equipment

Equipment Name	Model No.	Brand Name	Manufacturer	Cal.Date	Cal.Due Date
Computer	T430i	Think Pad	Lenovo	N/A	N/A

4.4 List of Software Used

Description	Manufacturer	Software Version
Test system	Tonscend	V2.6
Power Panel	Agilent	V3.8
MORLAB EMCR V1.2	MORLAB	V 1.0

4.5 Radiated Test Equipments

Equipment Name	Serial No.	Туре	Manufacturer	Cal. Date	Cal.Due Date
Receiver	MY54130016	N9038A	Agilent	2018.05.08	2019.05.07
Test Antenna - Bi-Log	9163-519	VULB 9163	Schwarzbeck	2018.05.08	2019.05.07
Test Antenna - Horn	9170C-531	BBHA9170	Schwarzbeck	2017.09.13	2018.09.12
Test Antenna - Loop	1519-022	FMZB1519	Schwarzbeck	2018.03.03	2019.03.02
Test Antenna - Horn	01774	BBHA 9120D	Schwarzbeck	2017.09.13	2018.09.12
Coaxial cable (N male) (9KHz-30MHz)	CB04	EMC04	Morlab	N/A	N/A
Coaxial cable (N male) (30MHz-26GHz)	CB02	EMC02	Morlab	N/A	N/A
Coaxial cable(N male) (30MHz-26GHz)	CB03	EMC03	Morlab	N/A	N/A
1-18GHz pre-Amplifier	MA02	TS-PR18	Rohde& Schwarz	2018.05.08	2019.05.07
18-26.5GHz pre-Amplifier	MA03	TS-PR18	Rohde& Schwarz	2018.05.08	2019.05.07
Anechoic Chamber	N/A	9m*6m*6m	CRT	2017.11.19	2020.11.18

_____ END OF REPORT _____

