

Product : Nano G5
Trade mark : W-DMX

Model/Type reference : A40890G5-SPI

Serial Number : N/A

Report Number : EED32J00133501 FCC ID : 2APCT-DMXG5SB

Date of Issue : Mar. 15, 2018

Test Standards : 47 CFR Part 15 Subpart C

Test result : PASS

Prepared for:

Wireless Solution Sweden Sales AB Stureparksvagen 7, 451 55 Uddevalla, Sweden

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Report Seal

Tested By:

Tom-chen

Tom chen (Test Project)

Reviewed by:

Date:

Kevin yang (Reviewer)

Mar. 15, 2018

Kevin lan (Project Engineer)

rteviiridir (r roject Engineer)

Sheek Luo (Lab supervisor)

Check No.: 2448724758

2 Version

Version No.	Date	Description	
00	Mar. 15, 2018	Original	
			-3

Report No.: EEED32J00133501 Page 3 of 50

3 Test Summary

rest Summary		700		
Test Item	Test Requirement	Test method	Result	
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS	
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	ANSI C63.10-2013	PASS	
Conducted Peak Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(1)	ANSI C63.10-2013	PASS	
20dB Occupied Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS	
Carrier Frequencies Separation	47 CFR Part 15 Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS	
Hopping Channel Number	47 CFR Part 15 Subpart C Section 15.247 (b)	ANSI C63.10-2013	PASS	
Dwell Time	47 CFR Part 15 Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS	
Pseudorandom Frequency Hopping Sequence	47 CFR Part 15 Subpart C Section 15.247(b)(4)&TCB Exclusion List (7 July 2002)	ANSI C63.10-2013	PASS	
RF Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS	
Radiated Spurious emissions	47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	
1647	16%	USA TO J	10.0	

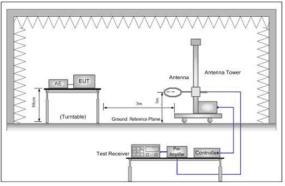
Remark:

The tested sample(s) and the sample information are provided by the client.

Page 4 of 50

4 Content

1 COVER PAGE							
3 TEST SUMMARY	1 C	OVER PAGE					1
### ### ### ### ### ### ### ### ### ##	2 V	ERSION					2
5 TEST REQUIREMENT 5 5.1 TEST SETUP. 5 5.2 TEST ENVIRONMENT. 5 5.3 TEST CONDITION. 6 6 GENERAL INFORMATION 6 6.1 CLIENT INFORMATION 6 6.2 GENERAL DESCRIPTION OF EUT. 6 6.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD. 6 6.4 DESCRIPTION OF SUPPORT UNITS. 7 6.5 TEST LOCATION. 7 6.6 DEVIATION FROM STANDARDS. 7 6.7 ABNORMALITIES FROM STANDARD CONDITIONS. 7 6.8 OTHER INFORMATION REQUESTED BY THE CUSTOMER. 7 6.9 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2). 7 7 EQUIPMENT LIST. 8 8 RADIO TECHNICAL REQUIREMENTS SPECIFICATION. 10 Appendix A): 20dB Occupied Bandwidth. 11 Appendix D): Hopping Channel Number. 15 Appendix D): Hopping Channel Number. 16 Appendix B): Band-edge for RF Conducted Emissions. 20 Appendix G): RF Conducted Peak Output Power. 18 Appendix G): RF Conducted Spurious Emissions. 22 Appendix H): Pseudorandom Frequency Hopping Sequence. 26 Appendix J): Antenn	3 TI	EST SUMMARY		•••••	•••••		3
5.1 TEST SETUP. 5.1.1 For Radiated Emissions test setup. 5.2 TEST ENVIRONMENT. 5.3 TEST CONDITION. 6 GENERAL INFORMATION. 6.1 CLIENT INFORMATION. 6.2 GENERAL DESCRIPTION OF EUT. 6.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD. 6.4 DESCRIPTION OF SUPPORT UNITS. 6.5 TEST LOCATION. 6.6 DEVIATION FROM STANDARDS. 6.7 ABNORMALITIES FROM STANDARD CONDITIONS. 6.7 ABNORMALITIES FROM STANDARD CONDITIONS. 6.8 OTHER INFORMATION REQUESTED BY THE CUSTOMER 6.9 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2). 7 EQUIPMENT LIST. 8 RADIO TECHNICAL REQUIREMENTS SPECIFICATION. 10 Appendix A): 20dB Occupied Bandwidth. 11 Appendix B): Carrier Frequency Separation. 12 Appendix C): Dwell Time. 13 Appendix C): Dwell Time. 14 Appendix F): Band-edge for RF Conducted Emissions. 15 Appendix F): Band-edge for RF Conducted Emissions. 16 Appendix G): RF Conducted Spurious Emissions. 17 Appendix J): AC Power Line Conducted Emissions. 18 Appendix J): AC Power Line Conducted Emissions. 29 Appendix J): AC Power Line Conducted Emission. 20 Appendix J): AC Power Line Conducted Emission. 20 Appendix J): AC Power Line Conducted Emission. 21 Appendix J): AC Power Line Conducted Emission. 22 Appendix J): AC Power Line Conducted Emission. 29 Appendix J): AC Power Line Conducted Emission. 20 Appendix J): AC Power Line Conducted Emission. 20 Appendix J): AC Power Line Conducted Emission. 21 Appendix J): AC Power Line Conducted Emission. 22 Appendix J): AC Power Line Conducted Emission. 29 Appendix J): AC Power Line Conducted Emission. 20 Appendix J): AC Power Line Conducted Emission. 20 Appendix J): AC Power Line Conducted Emission. 30 Appendix J): Radiated Spurious Emissions. 31 Appendix J): Radiated Spurious Emissions. 32 Appendix J): Radiated Spurious Emissions. 33 Appendix J): Radiated Spurious Emissions. 34 Appendix J): Radiated Spurious Emissions.	4 C	ONTENT	•••••			•••••	4
5.1.1 For Radiated Emissions test setup	5 TI	EST REQUIREMENT					5
6.1 CLIENT INFORMATION 6.2 GENERAL DESCRIPTION OF EUT 6.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD 6.4 DESCRIPTION OF SUPPORT UNITS 7.5 TEST LOCATION 7.6.5 TEST LOCATION 7.6.6 DEVIATION FROM STANDARDS 7.7 ABNORMALITIES FROM STANDARD CONDITIONS 7.7 6.9 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2) 7.7 EQUIPMENT LIST 8 RADIO TECHNICAL REQUIREMENTS SPECIFICATION 10 Appendix A): 20dB Occupied Bandwidth 11 Appendix B): Carrier Frequency Separation 12 Appendix C): Dwell Time 15 Appendix C): Dwell Time 16 Appendix D): Hopping Channel Number 17 Appendix D): Hopping Channel Number 18 Appendix C): Dwell Time 19 Appendix C): Dsand-edge for RF Conducted Emissions 20 Appendix G): RF Conducted Spurious Emissions 21 Appendix G): RF Conducted Spurious Emissions 22 Appendix I): Antenna Requirement 23 Appendix I): Antenna Requirement 24 Appendix J): AC Power Line Conducted Emission 25 Appendix J): AC Power Line Conducted Emission 26 Appendix N): Restricted bands around fundamental frequency (Radiated) 36 PHOTOGRAPHS OF TEST SETUP	5	5.1.1 For Radiated Em	nissions test setu	p			5
6.2 GENERAL DESCRIPTION OF EUT. 6.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD. 6.4 DESCRIPTION OF SUPPORT UNITS. 7.5 EST LOCATION 7.6.5 TEST LOCATION 7.6.6 DEVIATION FROM STANDARDS 7.7 ABNORMALITIES FROM STANDARD CONDITIONS 7.6.8 OTHER INFORMATION REQUESTED BY THE CUSTOMER 7.6.9 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2) 7.7 EQUIPMENT LIST	6 G	ENERAL INFORMATIO	N				е
8 RADIO TECHNICAL REQUIREMENTS SPECIFICATION	6 6 6 6	5.2 GENERAL DESCRIPTIO 5.3 PRODUCT SPECIFICATION OF SUPPOSE SET LOCATION 5.5 TEST LOCATION 5.6 DEVIATION FROM STAN 5.7 ABNORMALITIES FROM 5.8 OTHER INFORMATION I	N OF EUT ON SUBJECTIVE TO SUBJECTIVE T	O THIS STANDARD DITIONS			6 7 7 7
8 RADIO TECHNICAL REQUIREMENTS SPECIFICATION			and the second	O ***			
Appendix B): Carrier Frequency Separation							
		Appendix B): Carrier F Appendix C): Dwell Tii Appendix D): Hopping Appendix E): Conduct Appendix F): Band-ed Appendix G): RF Cond Appendix H): Pseudor Appendix I): Antenna I Appendix J): AC Powe Appendix k): Restricte	requency Separame Channel Numbered Peak Output Ingerfor RF Conducted Spurious andom Frequence Requirementer Line Conducted bands around in	ationererererer	(Radiated)		
PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS43	PH	OTOGRAPHS OF TEST	SETUP				41
	PHO	OTOGRAPHS OF EUT	CONSTRUCTION	NAL DETAILS			43


Report No.: EEED32J00133501 Page 5 of 50

5 Test Requirement

5.1 Test setup

5.1.1 For Radiated Emissions test setup

Radiated Emissions setup:

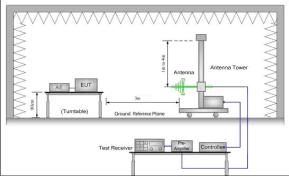


Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

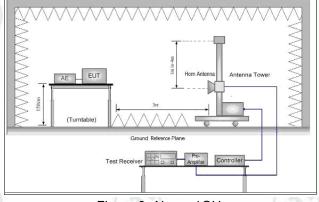


Figure 3. Above 1GHz

5.2 Test Environment

Operating Environment:						
Temperature:	23.5 °C	1				
Humidity:	55 % RH					
Atmospheric Pressure:	1010mbar					

5.3 Test Condition

	Test Mode	Tx/Rx	RF Channel			
1		TX/RX	Low(L)	Middle(M)	High(H)	
	GFSK	2403MHz ~2478 MHz	Channel 1	Channel 38	Channel76	
			2403MHz	2440MHz	2478MHz	

Report No.: EEED32J00133501 Page 6 of 50

6 General Information

6.1 Client Information

Applicant:	Wireless Solution Sweden Sales AB	
Address of Applicant:	Stureparksvagen 7, 451 55 Uddevalla, Sweden	
Manufacturer:	Wireless Solution Sweden Sales AB	
Address of Manufacturer: Stureparksvagen 7, 451 55 Uddevalla, Sweden		
Factory:	Orbit One	
Address of Factory:	Fridhemsvagen 15, Box 73, 372 38 Ronneby	

6.2 General Description of EUT

Product Name:	Nano G5	(3)	(3)	
Model No.(EUT):	A40890G5-SPI	(6,2)	(6,2)	
Test Model No.:	A40890G5-SPI			
Trade mark:	W-DMX			
EUT Supports Radios application:	2403MHz~2478MHz			(3)
Power Supply:	DC 5V			0
Sample Received Date:	Dec 4, 2017			
Sample tested Date:	Dec 4, 2017 to Mar. 12, 2018	}		

6.3 Product Specification subjective to this standard

Operation Frequency:	2403MHz~2478MHz			
Modulation Technique:	Frequency Hopping Sp	oread Spectrum(FHSS	5)	
Modulation Type:	GFSK			
Number of Channel:	76			
Test Power Grade:	N/A)	(5)	(6)
Test Software of EUT:	N/A			
Antenna Type:	Dipole Antenna			
Antenna Gain:	3dBi		73	
Test Voltage:	DC 5V	(65)	(6))
Operation Fraguency co.	ob of observal			f

Operation Frequency each of channel

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz
6	2408MHz	26	2428MHz	46	2448MHz	66	2468MHz
7	2409MHz	27	2429MHz	47	2449MHz	67	2469MHz
8	2410MHz	28	2430MHz	48	2450MHz	68	2470MHz
9	2411MHz	29	2431MHz	49	2451MHz	69	2471MHz
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz

Report No.: EEED32J00133501 Page 7 of 50

12	2414MHz	32	2434MHz	52	2454MHz	72	2474MHz
13	2415MHz	33	2435MHz	53	2455MHz	73	2475MHz
14	2416MHz	34	2436MHz	54	2456MHz	74	2476MHz
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz
17	2419MHz	37	2439MHz	57	2459MHz		
18	2420MHz	38	2440MHz	58	2460MHz		6.
19	2421MHz	39	2441MHz	59	2461MHz		
20	2422MHz	40	2442MHz	60	2462MHz		
	13 14 15 16 17 18 19	13 2415MHz 14 2416MHz 15 2417MHz 16 2418MHz 17 2419MHz 18 2420MHz 19 2421MHz	13 2415MHz 33 14 2416MHz 34 15 2417MHz 35 16 2418MHz 36 17 2419MHz 37 18 2420MHz 38 19 2421MHz 39	13 2415MHz 33 2435MHz 14 2416MHz 34 2436MHz 15 2417MHz 35 2437MHz 16 2418MHz 36 2438MHz 17 2419MHz 37 2439MHz 18 2420MHz 38 2440MHz 19 2421MHz 39 2441MHz	13 2415MHz 33 2435MHz 53 14 2416MHz 34 2436MHz 54 15 2417MHz 35 2437MHz 55 16 2418MHz 36 2438MHz 56 17 2419MHz 37 2439MHz 57 18 2420MHz 38 2440MHz 58 19 2421MHz 39 2441MHz 59	13 2415MHz 33 2435MHz 53 2455MHz 14 2416MHz 34 2436MHz 54 2456MHz 15 2417MHz 35 2437MHz 55 2457MHz 16 2418MHz 36 2438MHz 56 2458MHz 17 2419MHz 37 2439MHz 57 2459MHz 18 2420MHz 38 2440MHz 58 2460MHz 19 2421MHz 39 2441MHz 59 2461MHz	13 2415MHz 33 2435MHz 53 2455MHz 73 14 2416MHz 34 2436MHz 54 2456MHz 74 15 2417MHz 35 2437MHz 55 2457MHz 75 16 2418MHz 36 2438MHz 56 2458MHz 76 17 2419MHz 37 2439MHz 57 2459MHz 18 2420MHz 38 2440MHz 58 2460MHz 19 2421MHz 39 2441MHz 59 2461MHz

6.4 Description of Support Units

The EUT has been tested independently.

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd.

Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China 518101

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

6.6 Deviation from Standards

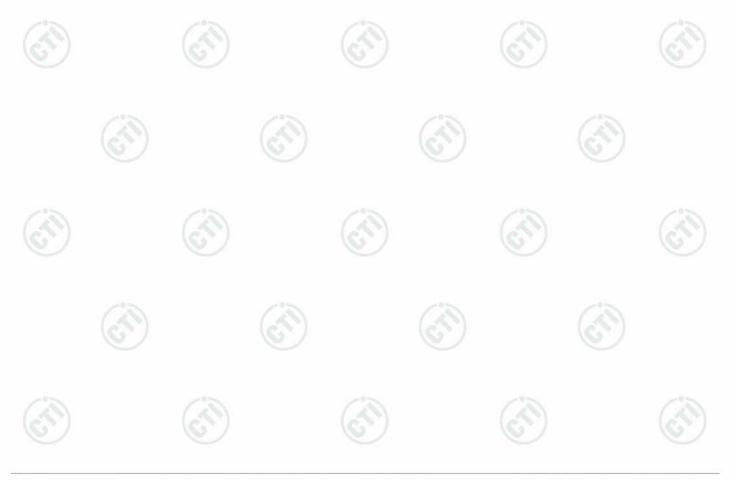
None

6.7 Abnormalities from Standard Conditions

6.8 Other Information Requested by the CustomerNone.

6.9 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE newer conducted	0.31dB (30MHz-1GHz)
2	RF power, conducted	0.57dB (1GHz-18GHz)
3	Padiated Spurious emission tost	4.5dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.8dB (1GHz-12.75GHz)
4	Conduction emission	3.6dB (9kHz to 150kHz)
4	Conduction emission	3.2dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	2.8%
7	DC power voltages	0.025%



Report No.: EEED32J00133501 Page 8 of 50

7 Equipment List

		RF test sys	tem		
Equipment	Manufacturer	urer Mode No. S		Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Signal Generator	Keysight	E8257D	MY53401106	03-14-2017	03-13-2018
Spectrum Analyzer	Keysight	N9010A	MY54510339	03-14-2017	03-13-2018
Signal Generator	Keysight	N5182B	MY53051549	03-14-2017	03-13-2018
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398- 002		01-10-2018	01-09-2019
DC Power	Keysight	E3642A	MY54426035	03-14-2017	03-13-2018
power meter & power sensor	R&S	OSP120	101374	03-14-2017	03-13-2018
RF control unit	JS Tonscend	JS0806-2	2015860006	03-14-2017	03-13-2018
Temperature / Humidity Indicator	Defu	TH128		07-08-2017	07-07-2018

	On destand distant on a Treat							
Conducted disturbance Test								
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)			
Receiver	R&S	ESCI	100009	06-14-2017	06-13-2018			
Temperature/ Humidity Indicator	TAYLOR	1451	1905	05-08-2017	05-07-2018			
LISN	schwarzbeck	NNLK8121	8121-529	06-13-2017	06-12-2018			

Page 9 of 50

	31	/I Semi/full-anec	hoic Chamber		
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber&Accessory Equipment	TDK	SAC-3		06-04-2016	06-03-2019
Spectrum Analyzer	Agilent	E4443A	MY45300910	11-16-2017	11-15-2018
Receiver	R&S	ESCI	100435	06-14-2017	06-13-2018
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-618	08-15-2017	08-14-2018
Horn Antenna	ETS-LINGREN	3117	00057407	07-20-2017	07-18-2018
Spectrum Analyzer	R&S	FSP40	100416	06-13-2017	06-12-208
Microwave Preamplifier	JS Tonscend	EMC051845SE	980380	01-19-2018	01-18-2019
Loop Antenna	ETS-LINDGREN	6502	00071730	06-22-2017	06-21-2019
Horn Antenna	ETS-LINGREN	3117	00057407	07-20-2017	07-18-2018
Double ridge horn antenna	A.H.SYSTEMS	SAS-574	6042	06-30-2015	06-28-2018
Pre-amplifier	A.H.SYSTEMS	PAP-1840-60	6041	06-30-2015	06-28-2018
Temperature/ Humidity Indicator	TAYLOR	1451	1905	05-08-2017	05-07-2018
Cable line	Fulai(7M)	SF106	5219/6A	01-11-2017	01-10-2018
Cable line	Fulai(7M)	SF106	5219/6A	01-09-2018	01-08-2019
Cable line	Fulai(6M)	SF106	5220/6A	01-11-2017	01-10-2018
Cable line	Fulai(6M)	SF106	5220/6A	01-09-2018	01-08-2019
Cable line	Fulai(3M)	SF106	5216/6A	01-11-2017	01-10-2018
Cable line	Fulai(3M)	SF106	5216/6A	01-09-2018	01-08-2019
Cable line	Fulai(3M)	SF106	5217/6A	01-11-2017	01-10-2018
Cable line	Fulai(3M)	SF106	5217/6A	01-09-2018	01-08-2019
band rejection filter	Sinoscite	FL5CX01CA09 CL12-0395-001	(42)	11-06-2017	11-05-2018
band rejection filter	Sinoscite	FL5CX01CA08 CL12-0393-001		11-06-2017	11-05-2018
band rejection filter	Sinoscite	FL5CX02CA04 CL12-0396-002		11-06-2017	11-05-2018
band rejection filter	Sinoscite	FL5CX02CA03 CL12-0394-001		11-06-2017	11-05-2018

Report No.: EEED32J00133501 Page 10 of 50

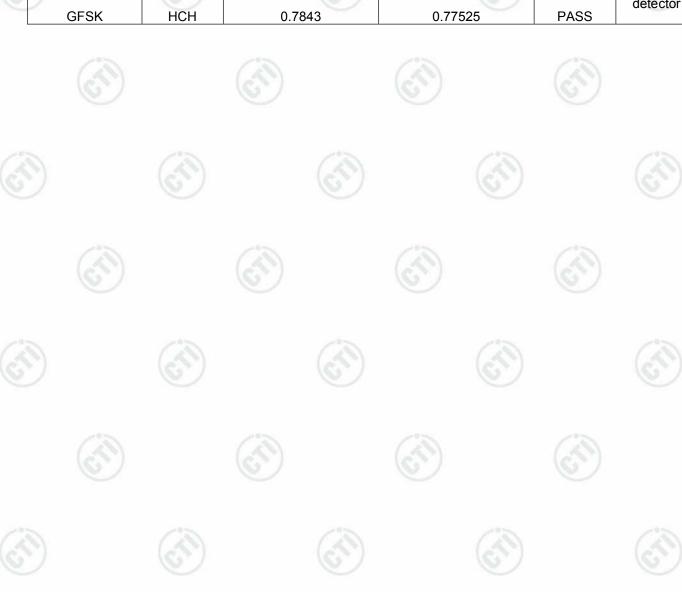
8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

est Results List.	/ C4*	(00)		1624.
Test requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(1)	ANSI 63.10	20dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (a)(1)	ANSI 63.10	Carrier Frequencies Separation	PASS	Appendix B)
Part15C Section 15.247 (a)(1)	ANSI 63.10	Dwell Time	PASS	Appendix C)
Part15C Section 15.247 (b)	ANSI 63.10	Hopping Channel Number	PASS	Appendix D)
Part15C Section 15.247 (b)(1)	ANSI 63.10	Conducted Peak Output Power	PASS	Appendix E)
Part15C Section 15.247(d)	ANSI 63.10	Band-edge for RF Conducted Emissions	PASS	Appendix F)
Part15C Section 15.247(d)	ANSI 63.10	RF Conducted Spurious Emissions	PASS	Appendix G)
Part15C Section 15.247 (a)(1)	ANSI 63.10	Pseudorandom Frequency Hopping Sequence	PASS	Appendix H)
Part15C Section 15.203/15.247 (c)	ANSI 63.10	Antenna Requirement	PASS	Appendix I)
Part15C Section 15.207	ANSI 63.10	AC Power Line Conducted Emission	N/A	Appendix J)
Part15C Section 15.205/15.209	ANSI 63.10	Restricted bands around fundamental frequency (Radiated) Emission)	PASS	Appendix K)
Part15C Section 15.205/15.209	ANSI 63.10	Radiated Spurious Emissions	PASS	Appendix L)

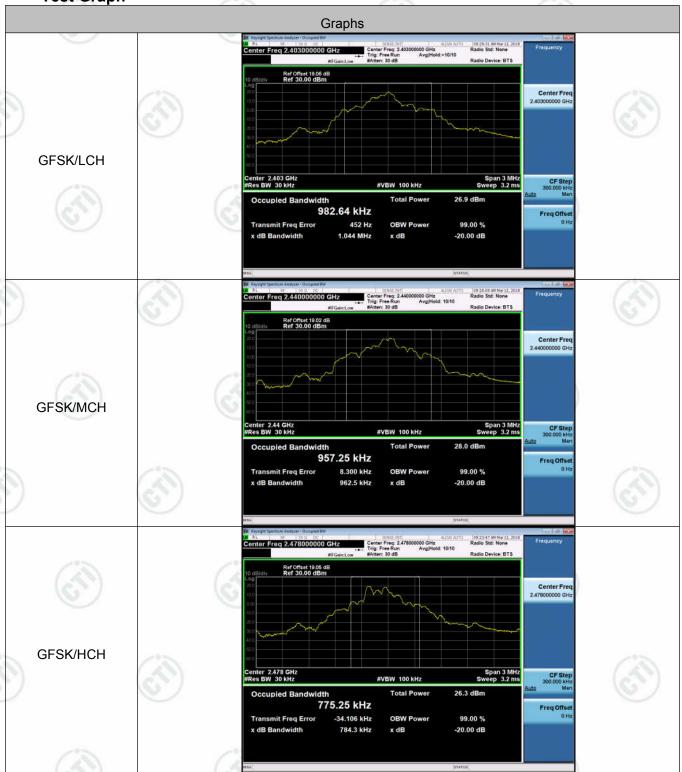


Report No.: EEED32J00133501 Page 11 of 50

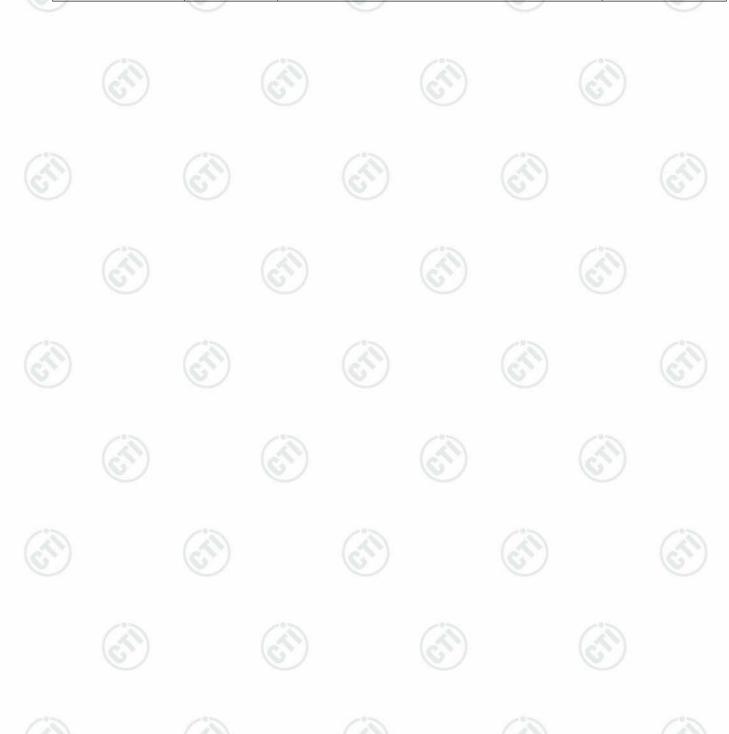
Appendix A): 20dB Occupied Bandwidth

Test Result

	Mode	Channel.	20dB Bandwidth [MHz]	99% OBW [MHz]	Verdict	Remark
1	GFSK	LCH	1.0440	0.98264	PASS	6.3
1	GFSK	MCH	0.9625	0.95725	PASS	Peak
	GFSK	нсн	0.7843	0.77525	PASS	detector



 $Hot line; 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0$



Report No.: EEED32J00133501 Page 13 of 50

Appendix B): Carrier Frequency Separation

Result Table

1000			
Mode	Channel.	Carrier Frequency Separation [MHz]	Verdict
GFSK	LCH	1.008	PASS
GFSK	MCH	0.980	PASS
GFSK	НСН	1.000	PASS

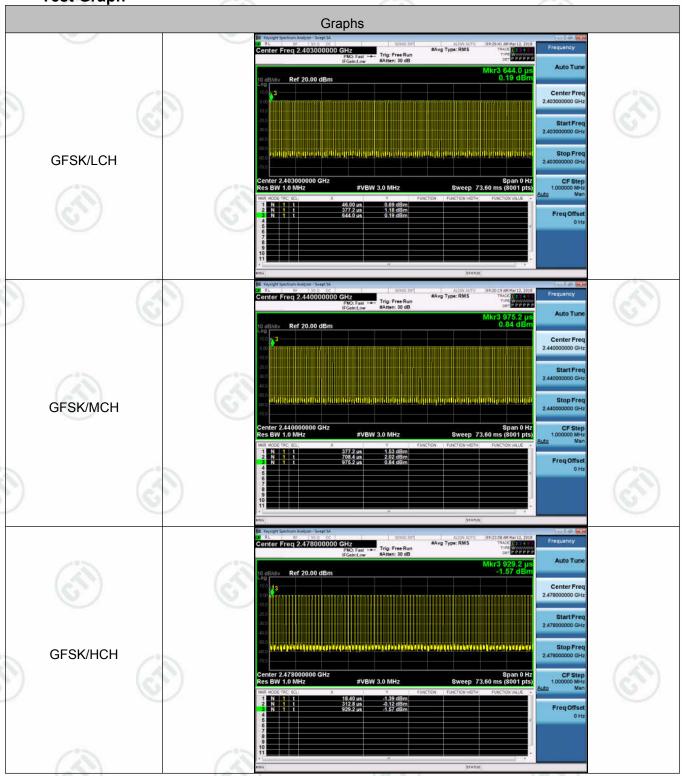
Page 14 of 50



Report No.: EEED32J00133501 Page 15 of 50

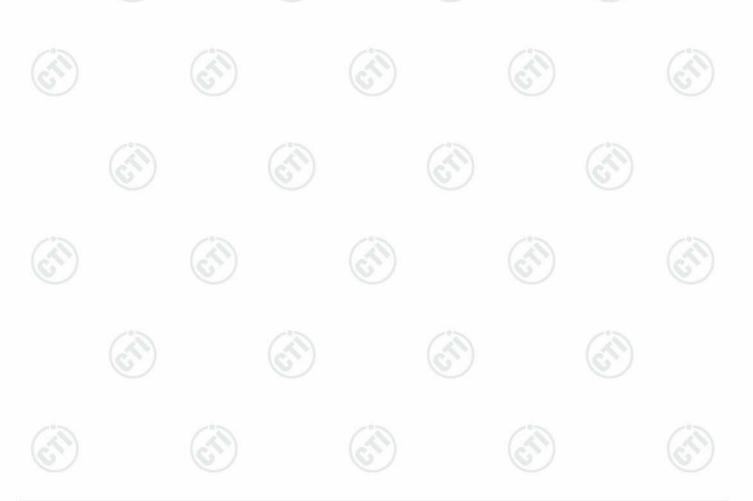
Appendix C): Dwell Time

Result Table


_			A SEC AN INC. AND				
	Mode	Channel	Burst Width [ms/hop/ch]	Total Hops[hop*ch]	Dwell Time[s]	Duty Cycle [%]	Verdict
	GFSK	LCH	0.3312	106.7	0.035	0.55	PASS
E	GFSK	MCH	0.3312	106.7	0.035	0.55	PASS
	GFSK	НСН	0.2944	106.7	0.031	0.32	PASS

Report No.: EEED32J00133501 Page 16 of 50

Test Graph

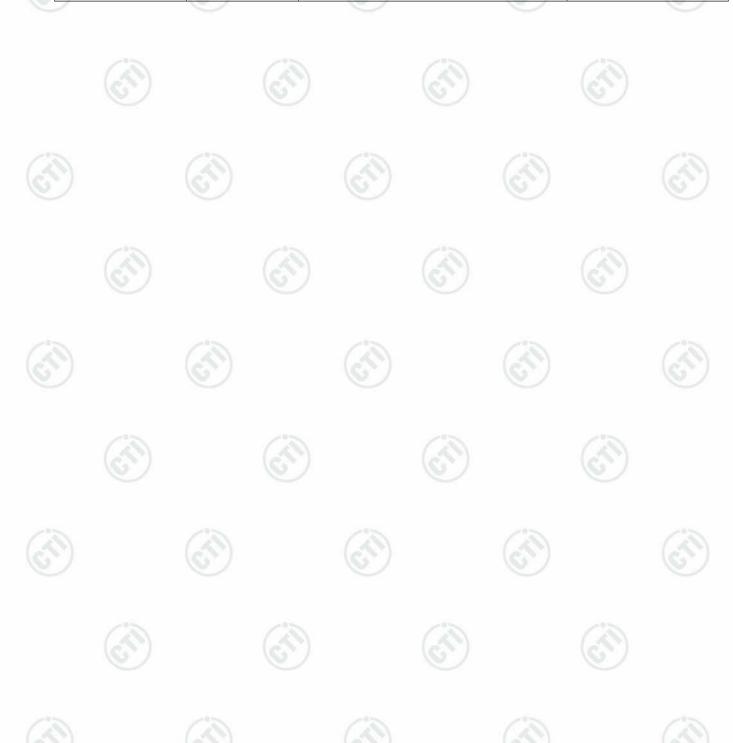

Report No.: EEED32J00133501 Page 17 of 50

Appendix D): Hopping Channel Number

Result Table

Mode	Channel.	Number of Hopping Channel	Verdict
GFSK	Нор	76	PASS

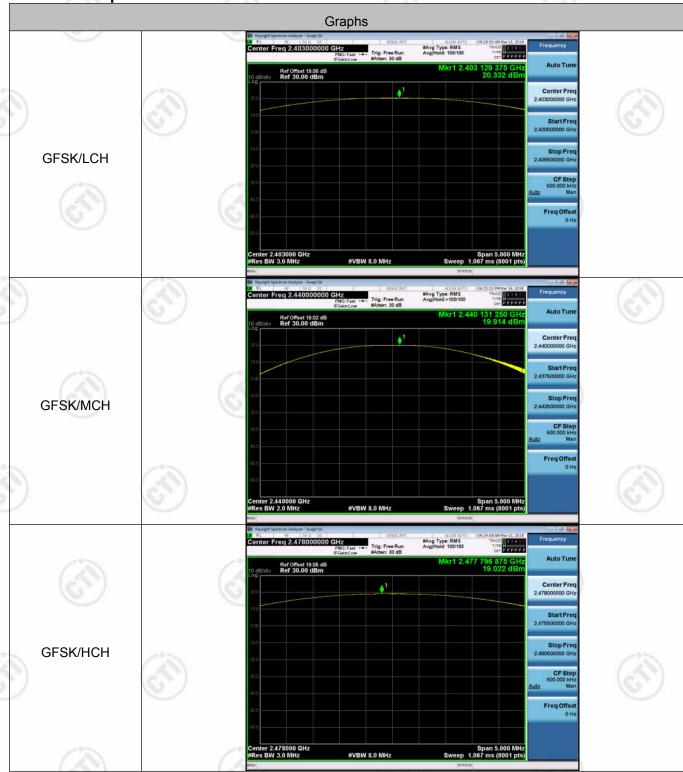
Graphs



Report No.: EEED32J00133501 Page 18 of 50

Appendix E): Conducted Peak Output Power

Result Table

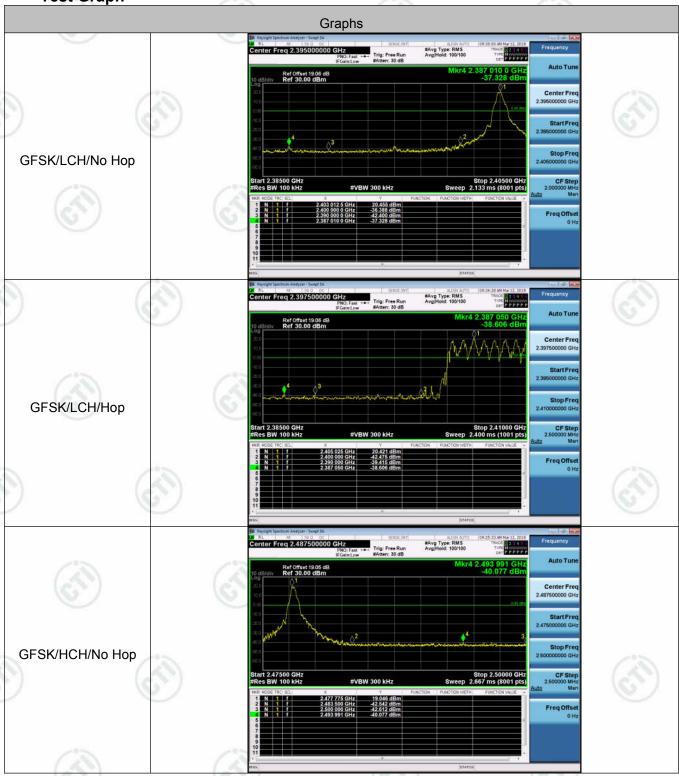

	2.00		10.0
Mode	Channel.	Maximum Peak Output Power [dBm]	Verdict
GFSK	LCH	20.332	PASS
GFSK	MCH	19.914	PASS
GFSK	НСН	19.022	PASS

Report No.: EEED32J00133501 Page 20 of 50

Appendix F): Band-edge for RF Conducted Emissions

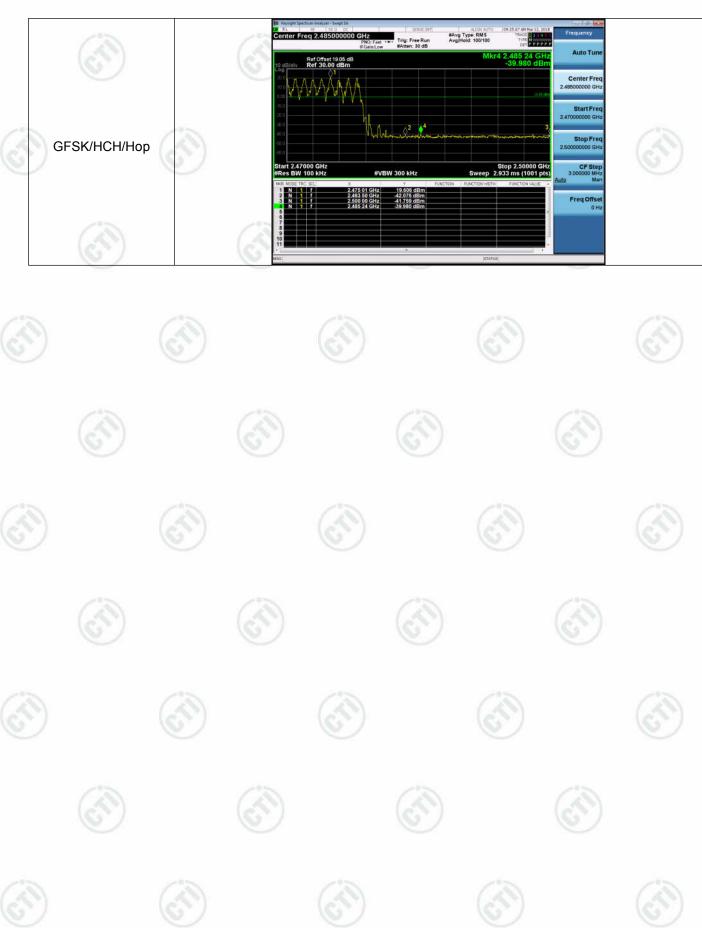
Result Table

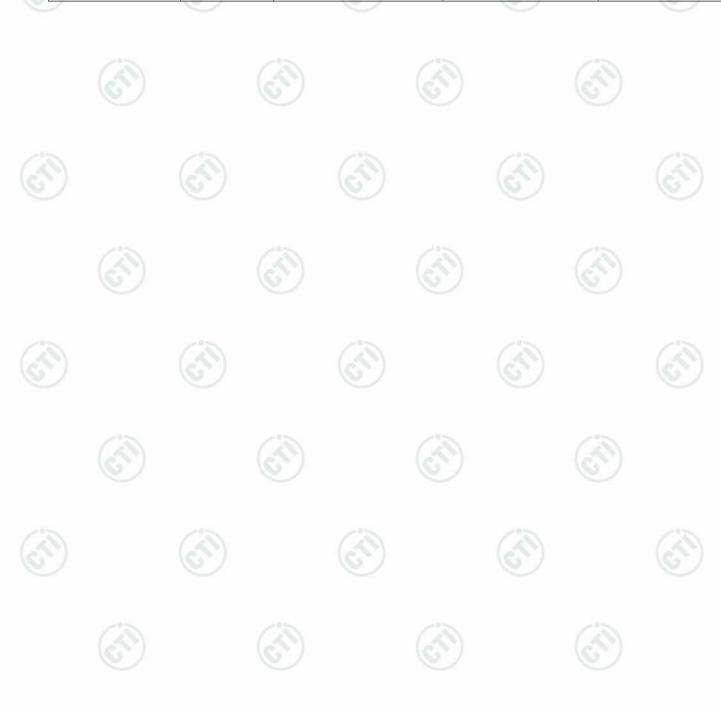
. toodit i				A SECTION OF THE PROPERTY OF T			
Mode	Channel	Carrier Frequency [MHz]	Carrier Power [dBm]	Frequency Hopping	Max Spurious Level [dBm]	Limit [dBm]	Verdict
05014		2403	20.455	Off	-37.328	0.45	PASS
GFSK	LCH		20.421	On	-38.606	0.42	PASS
OFOK	11011	0.470	19.046	Off	-40.077	-0.95	PASS
GFSK	HCH	2478	19.606	On	-39.980	-0.39	PASS



 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0755-33$

Page 21 of 50





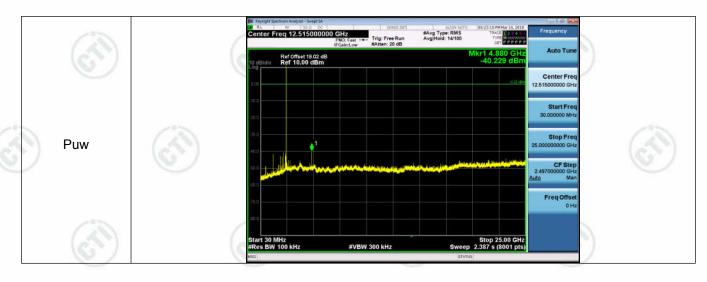
Report No.: EEED32J00133501 Page 23 of 50

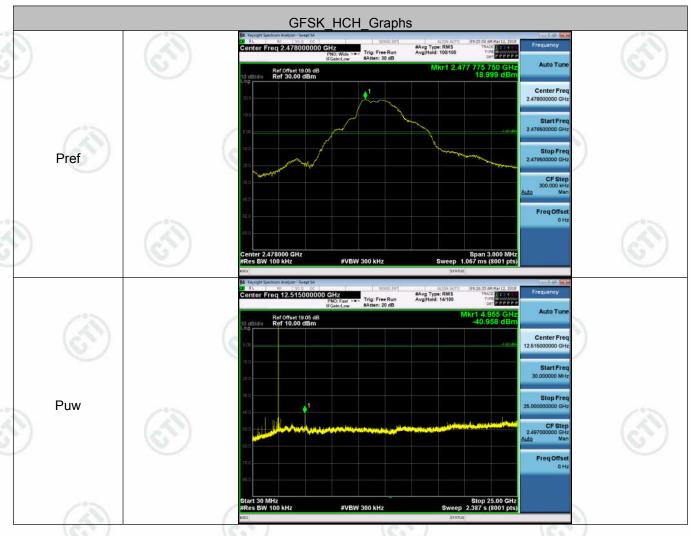
Appendix G): RF Conducted Spurious Emissions

Result Table

Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
GFSK	LCH	20.212	<limit< td=""><td>PASS</td></limit<>	PASS
GFSK	MCH	19.785	<limit< td=""><td>PASS</td></limit<>	PASS
GFSK	нсн	18.999	<limit< td=""><td>PASS</td></limit<>	PASS







Appendix H): Pseudorandom Frequency Hopping Sequence

Test Requirement:

47 CFR Part 15C Section 15.247 (a)(1) requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence

This transmitter device is frequency hopping device, and complies with FCC part 15.247 rule.

This device uses a propriety radio (W-DMX) which operates in 2400-2483.5 MHz band. The used radio technology called frequency-hopping spread spectrum, which chops up the data being sent and transmits chunks of it on up to 76 bands (1 MHz each; centered from 2403 to 2478 MHz) in the range 2400-2483.5 MHz. The transmitter switches hop frequencies 1661 times per second to assure a high degree of data security. All receivers connected to a transmitter are synchronized to the frequency-hopping channel for the transmitter. The frequency hopping sequence is sent to the receivers during linking and the phase of the hopping sequence (the frequency to hop at a specific time) is determined by the transmitter's internal clock. Therefore, all connected receivers must know the frequency hopping sequence and synchronize their clocks with the transmitters clock.

Adaptive Frequency Hopping (AFH) was introduced to provide an effective way for the radio system to counteract normal interference. AFH identifies "bad" channels, where either other wireless devices are interfering with the radio signal, or where the W-DMX signal is interfering with another device. The AFH-enabled W-DMX transmitter will then communicate with the receivers to share details of any identified "bad" channels. The transmitter will then switch to a subset of the original frequency hopping signal where the "bad" signal are avoided.

EUT Pseudorandom Frequency Hopping Sequence

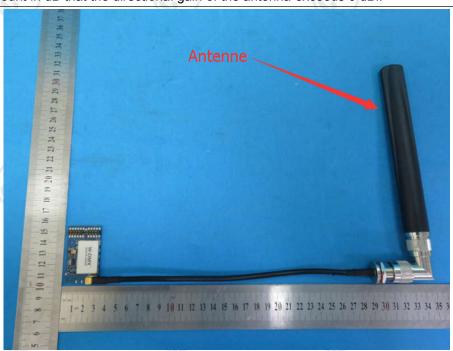
Pseudorandom Frequency Hopping Sequence Table as below:

Channel: 13, 29, 62, 21, 51, 76, 11, 39, 60, 22, 49, 74, 7, 30, 69, 16, 52, 10, 41, 63, 18, 55, 3, 31, 68, 17, 45,1, 32, 65, 25, 50, 72, 2, 35, 58, 24, 53, 5, 34, 57, 20, 44, 71, 9, 36, 66, 23, 43, 73, 4, 38, 64, 27, 48, 75, 12, 40, 61, 26, 46,6, 37, 59, 19, 47, 8, 33, 67, 15, 54, 13, 29, 62, ...

The device does not have the ability to be coordinated with other FHSS systems in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitters.

Report No.: EEED32J00133501 Page 27 of 50

Appendix I): Antenna Requirement


15.203 requirement:

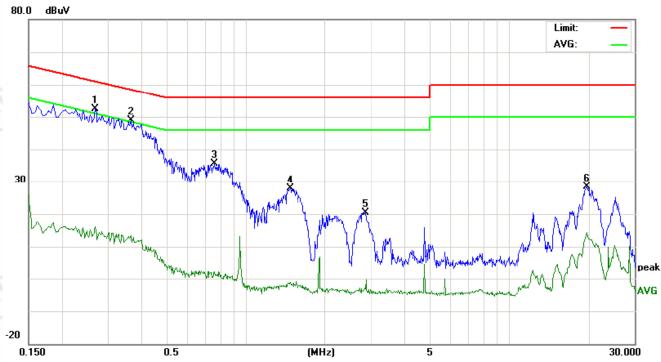
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

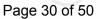
The antenna is Dipole antenna and no consideration of replacement. The best case gain of the antenna is 3dBi.

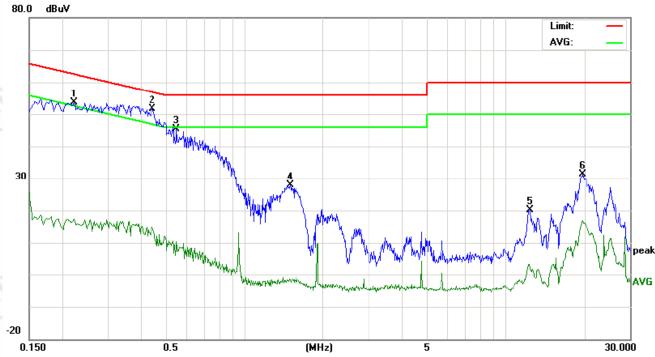
Report No.: EEED32J00133501 Page 28 of 50

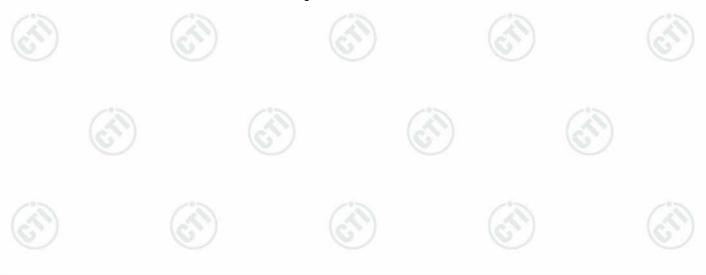

Appendix J)	: AC	Power Line Condu	ucted Emission	1	
Test Procedure:	3	Test frequency range: 150KH)The mains terminal disturbate 2) The EUT was connected to Stabilization Network) who power cables of all other which was bonded to the for the unit being measur multiple power cables to a exceeded. 3) The tabletop EUT was plate reference plane. And for the horizontal ground reference. 3) The test was performed we EUT shall be 0.4 m from the reference plane was bond 1 was placed 0.8 m from ground reference plane plane. This distance was All other units of the EUT LISN 2.	ance voltage test was on AC power source thruich provides a 50Ω/50 units of the EUT were ground reference planemed. A multiple socket of a single LISN provided to the vertical ground reference plane, with a vertical ground reference to the horizontal ground re	ough a LISN 1 (Line µH + 5Ω linear impronnected to a sect in the same way a putlet strip was used the rating of the LISI ic table 0.8m abovement, the EUT was preference plane. The rence plane. The vertical reference plane in top of the ground into the LISN 1 are put into the	e Impedance Tedance. Toond LISN is the LISN id to connot was not elected on the erear of the trical ground. The LIST bonded to and referend the EL
Limit:	5	of the interface cables mu conducted measurement.	ist be changed accordir		
Jilliu.			Limit (c	· · · · · · · · · · · · · · · · · · ·	\neg
		Frequency range (MHz)	Quasi-peak	Average	
		0.15-0.5	66 to 56*	56 to 46*	
	(25)	0.5-5	56	46	(2)
	100	5-30	60	50	100
		The limit decreases linearly MHz to 0.50 MHz. NOTE: The lower limit is app	y with the logarithm of	the frequency in the	_ e range 0
(S)		OTE. The lower limit is app	bilicable at the transition	nequency	
	vas perfo	ormed on the live and neutra easurement were performed			mission w

Page 29 of 50

No.	Freq.		ding_Le dBuV)	vel	Correct Factor	M	leasuren (dBu∀)		Lin (dB			rgin dB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.2700	42.71	38.23	6.49	9.76	52.47	47.99	16.25	61.12	51.12	-13.13	-34.87	Р	
2	0.3660	39.09	35.29	3.66	9.76	48.85	45.05	13.42	58.59	48.59	-13.54	-35.17	Р	
3	0.7620	25.86	20.67	-7.73	9.74	35.60	30.41	2.01	56.00	46.00	-25.59	-43.99	Р	
4	1.4780	18.23	14.33	-10.9	9.72	27.95	24.05	-1.23	56.00	46.00	-31.95	-47.23	Р	
5	2.8540	10.66	7.11	-12.7	9.69	20.35	16.80	-3.05	56.00	46.00	-39.20	-49.05	Р	
6	19.8420	18.29	13.55	4.39	10.06	28.35	23.61	14.45	60.00	50.00	-36.39	-35.55	Р	




 $Hot line; 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0$



No. Freq.		Reading_Level (dBuV)		Correct Measurement Factor (dBuV)			Limit (dBuV)		Margin (dB)					
140.	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.2220			7.59	9.73	53.59	48.18	17.32					P	
2	0.4460	41.89	36.21	5.13	9.73	51.62	45.94	14.86	56.95	46.95	-11.01	-32.09	Р	
3	0.5500	35.55	29.54	0.57	9.73	45.28	39.27	10.30	56.00	46.00	-16.73	-35.70	Р	
4	1.4980	18.09	14.32	-11.4	9.72	27.81	24.04	-1.70	56.00	46.00	-31.96	-47.70	Р	
5	12.4860	10.30	6.98	-7.85	9.90	20.20	16.88	2.05	60.00	50.00	-43.12	-47.95	Р	
6	19.6500	21.20	16.47	6.91	10.06	31.26	26.53	16.97	60.00	50.00	-33.47	-33.03	Р	

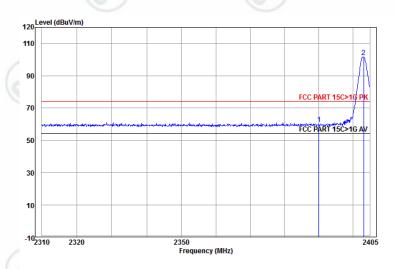
Notes:

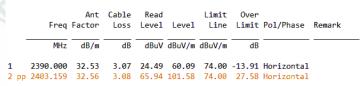
- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Report No.: EEED32J00133501 Page 31 of 50

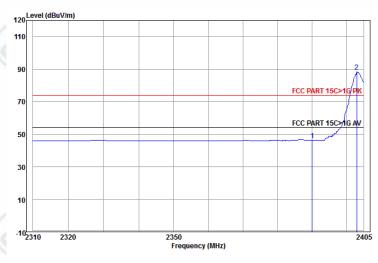
Appendix k): Restricted bands around fundamental frequency (Radiated)

(Itaulaleu)			26.76	1		630	_
Receiver Setup:		Frequency	Detector	RBW	VBW	Remark	
		30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
		4011	Peak	1MHz	3MHz	Peak	- 0.5
		Above 1GHz	Peak	1MHz	10Hz	Average	
est Procedure:	Bel	ow 1GHz test proced	ure as below:	6			6
	a. b. c. d. e. f.	The EUT was placed at a 3 meter semi-and determine the position. The EUT was set 3 m was mounted on the total The antenna height is determine the maximum polarizations of the arrivations of the antenna was tuned table was turned from The test-receiver syst Bandwidth with Maxim Place a marker at the frequency to show compands. Save the spector lowest and highestove 1GHz test process of fully Anechoic Chair meter (Above 18GHz b. Test the EUT in the The radiation measure Transmitting mode, and the positions of the semi-arrivations of the positions of the semi-arrivations of the process of the semi-arrivations of the semi-arrivations of the arrivations of	on the top of a roschoic camber. The choic camber. The of the highest rate eters away from op of a variable-rowaried from one am value of the finitenna are set to mission, the EUT of to heights from 0 degrees to 360 em was set to Penum Hold Mode. end of the restrict empliance. Also material trum analyzer plots the channel laure as below: The lowest channel is ements are performed.	ne table was adiation. the interfer neight ante meter to foeld strengti make the r was arrar 1 meter to 0 degrees to eak Detect cted band of easure any ot. Repeat e, change f e form table meter and the Highe rmed in X,	rence-receinna tower. Four meters h. Both hor measurement ged to its to find the Function a closest to the y emissions for each por table is 1.5 st channel Y, Z axis p	above the gro- rizontal and ve- ent. worst case an and the rotata maximum rea and Specified the transmit in the restrict ower and mode. Anechoic Char to 1.5 is meter).	whice bund ertical d the ble ding.
imit:	j.	Repeat above proced				- 1.60 mm	
mint.		Frequency	Limit (dBµV		-	mark	
		30MHz-88MHz	40.0)	Quasi-pe	eak Value	
		88MHz-216MHz	43.5	5	Quasi-pe	eak Value	
		216MHz-960MHz	46.0)	Quasi-pe	eak Value	
	/ 2	960MHz-1GHz	54.0) /	Quasi-pe	eak Value	
	1.43	()	54.0	54.0 Average V		ge Value	
	100	Above 1GHz	S. /				



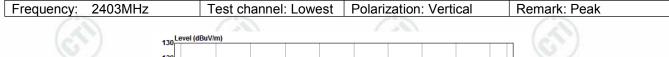


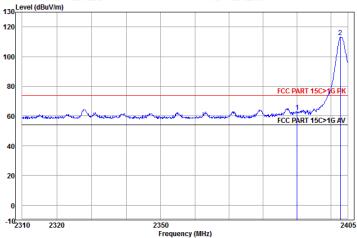
Page 32 of 50

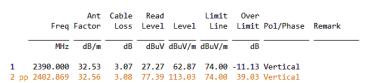

Test plot as follows:

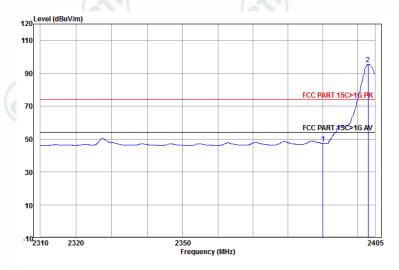
Frequency: 2403MHz Test channel: Lowest Polarization: Horizontal Remark: Peak

Frequency: 2403MHz Test channel: Lowest Polarization: Horizontal Remark: Average



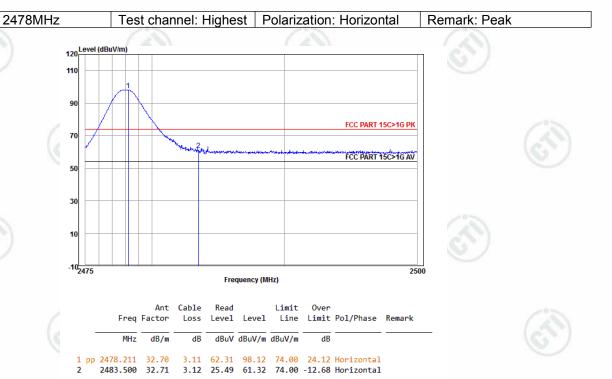

	Freq					Limit Line		Pol/Phase	Remark
	MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1 2 pp								Horizontal Horizontal	




Page 33 of 50

Frequency: 2403MHz Test channel: Lowest Polarization: Vertical Remark: Average

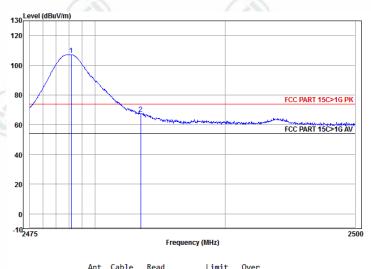
Freq					Limit Line		Pol/Phase	Remark
MHz	dB/m	dB	dBuV	dBu V/m	dBuV/m	dB		
							Vertical Vertical	

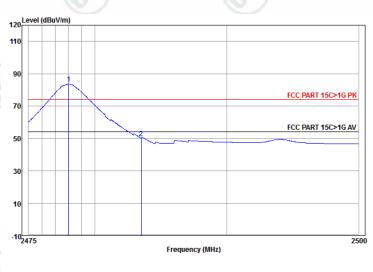


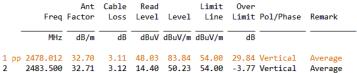
Frequency:

Report No.: EEED32J00133501

Page 34 of 50


Frequency: 2478MHz Test channel: Highest Polarization: Horizontal Remark: Average


Report No.: EEED32J00133501 Page 35 of 50


Frequency: 2478MHz Test channel: Highest Polarization: Vertical Remark: Peak

	Freq					Line		Pol/Phase	Remark	
_	MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB			
								Vertical Vertical		

Frequency: 2478MHz Test channel: Highest Polarization: Vertical Remark: Average

Note: The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier.

The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Report No.: EEED32J00133501 Page 36 of 50

Appendix L): Radiated Spurious Emissions

Receiver Setup:

Frequency	Detector	RBW	VBW	Remark
0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak
Above 10Uz	Peak	1MHz	3MHz	Peak
Above 1GHz	Peak	1MHz	10Hz	Average

Test Procedure:

Below 1GHz test procedure as below:

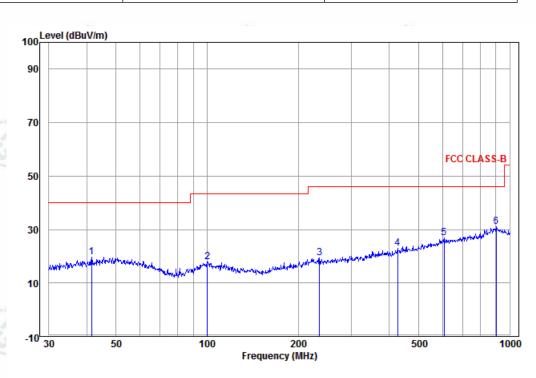
- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- j. Repeat above procedures until all frequencies measured was complete.

Limit:

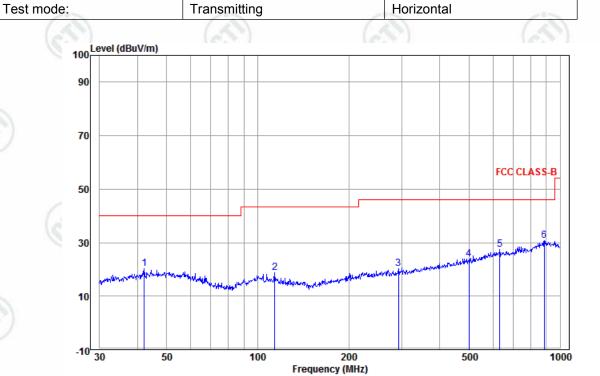
Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)	
0.009MHz-0.490MHz	2400/F(kHz)	-	-	300	
0.490MHz-1.705MHz	24000/F(kHz)	-	-05	30	
1.705MHz-30MHz	30	- (<u> </u>	30	
30MHz-88MHz	100	40.0	Quasi-peak	3	
88MHz-216MHz	150	43.5	Quasi-peak	3	
216MHz-960MHz	200	46.0	Quasi-peak	3	
960MHz-1GHz	500	54.0	Quasi-peak	3	
Above 1GHz	500	54.0	Average	3	


Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Report No.: EEED32J00133501 Page 37 of 50

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

30MHz~1GHz (QP)	(6)	
Test mode:	Transmitting	Vertical


		Ant	Cable	Read		Limit	0ver		
	Freq	Factor	Loss	Level	Level	Line	Limit	Pol/Phase	Remark
-									
	MHz	dB/m	ав	aBuv	aBuv/m	dBuV/m	dB		
1	41.567	13.94	0.06	5.55	19.55	40.00	-20.45	Vertical	
2	100.229							Vertical	
3	234.991	12.29	1.27	5.69	19.25	46.00	-26.75	Vertical	
4	426.521	15.75	1.40	5.70	22.85	46.00	-23.15	Vertical	
5	607.787	18.73	1.83	6.20	26.76	46.00	-19.24	Vertical	
6 nn	903.309	22.09	2.48	6.40	30.97	46.00	-15.03	Vertical	

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Page 38 of 50

	Freq		Cable Loss	Read Level		Limit Line		Pol/Phase	Remark
-	MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1	42.154	13.99	0.06	6.07	20.12	40.00	-19.88	Horizontal	
2	113.714	11.33	0.60	6.87	18.80	43.50	-24.70	Horizontal	
3	292.058	13.28	1.11	5.75	20.14	46.00	-25.86	Horizontal	
4	499.425	16.89	1.52	5.57	23.98	46.00	-22.02	Horizontal	
5	631.688	18.83	1.83	6.78	27.44	46.00	-18.56	Horizontal	
6 pp	887.610	21.91	2.48	6.41	30.80	46.00	-15.20	Horizontal	

Transmitter Emission above 1GHz

Worse case mode: GFSK			Test char	nnel:	Lowest	Remark: Peak			
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1179.935	30.18	1.83	44.41	48.81	36.41	74.00	-37.59	Pass	* H
1577.198	31.01	2.38	43.91	47.92	37.40	74.00	-36.60	Pass	(TH)
4806.000	34.69	5.98	44.60	49.49	45.56	74.00	-28.44	Pass	Ĥ
5821.207	35.77	7.26	44.52	49.17	47.68	74.00	-26.32	Pass	Н
7209.000	36.42	6.97	44.78	48.15	46.76	74.00	-27.24	Pass	Н
9612.000	37.89	6.98	45.58	45.89	45.18	74.00	-28.82	Pass	Н
1270.334	30.39	1.97	44.29	48.27	36.34	74.00	-37.66	Pass	V
1791.273	31.38	2.63	43.69	48.52	38.84	74.00	-35.16	Pass	V
4806.000	34.69	5.98	44.60	52.29	48.36	74.00	-25.64	Pass	V
6577.752	36.20	7.29	44.56	49.09	48.02	74.00	-25.98	Pass	V
7209.000	36.42	6.97	44.78	48.16	46.77	74.00	-27.23	Pass	V
9612.000	37.89	6.98	45.58	45.71	45.00	74.00	-29.00	Pass	V

Worse case	mode:	GFSK		Test char	nnel:	Middle	Remark: Po	Remark: Peak	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1267.104	30.38	1.96	44.29	47.97	36.02	74.00	-37.98	Pass	ьН
1814.218	31.42	2.65	43.67	48.18	38.58	74.00	-35.42	Pass	H
4880.000	34.85	6.13	44.60	47.57	43.95	74.00	-30.05	Pass	€ H
5821.207	35.77	7.26	44.52	50.34	48.85	74.00	-25.15	Pass	Н
7320.000	36.43	6.85	44.87	46.82	45.23	74.00	-28.77	Pass	Н
9760.000	38.05	7.12	45.55	47.17	46.79	74.00	-27.21	Pass	Н
1170.959	30.16	1.81	44.43	48.49	36.03	74.00	-37.97	Pass	V
1732.967	31.29	2.57	43.75	48.08	38.19	74.00	-35.81	Pass	V
4880.000	34.85	6.13	44.60	47.85	44.23	74.00	-29.77	Pass	V
5806.408	35.76	7.25	44.52	48.88	47.37	74.00	-26.63	Pass	V
7320.000	36.43	6.85	44.87	46.94	45.35	74.00	-28.65	Pass	V
9760.000	38.05	7.12	45.55	46.99	46.61	74.00	-27.39	Pass	V

Page	10	~£	$E \cap$
P200	40	m	วเม

Worse case	mode:	GFSK		Test chan	nel:	Highest	Remark: Peak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1299.773	30.46	2.01	44.25	49.03	37.25	74.00	-36.75	Pass	Н
1755.164	31.32	2.59	43.73	48.33	38.51	74.00	-35.49	Pass	- H
4956.000	35.01	6.28	44.60	48.15	44.84	74.00	-29.16	Pass	(H)
5986.509	35.89	7.43	44.50	48.76	47.58	74.00	-26.42	Pass	H
7434.000	36.45	6.74	44.96	45.73	43.96	74.00	-30.04	Pass	Н
9912.000	38.21	7.25	45.52	46.76	46.70	74.00	-27.30	Pass	Н
1273.572	30.40	1.97	44.28	48.53	36.62	74.00	-37.38	Pass	V
1805.005	31.40	2.64	43.68	48.49	38.85	74.00	-35.15	Pass	V
4956.000	35.01	6.28	44.60	46.23	42.92	74.00	-31.08	Pass	V
6172.197	35.99	7.39	44.52	48.84	47.70	74.00	-26.30	Pass	V
7434.000	36.45	6.74	44.96	47.87	46.10	74.00	-27.90	Pass	V
9912.000	38.21	7.25	45.52	47.97	47.91	74.00	-26.09	Pass	V

Note:

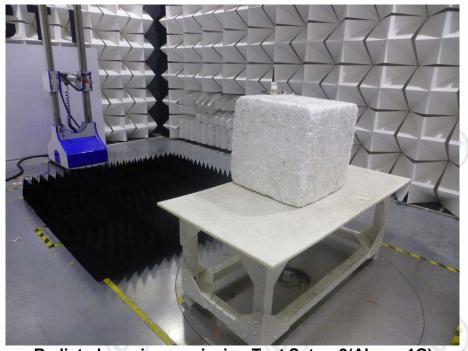
1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com


Report No.: EEED32J00133501 Page 41 of 50

PHOTOGRAPHS OF TEST SETUP

Test model No.: A40890G5-SPI

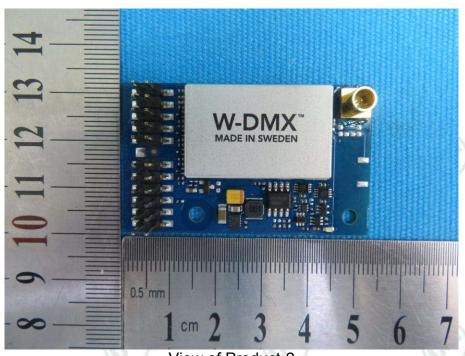
Radiated spurious emission Test Setup-1(Below 1G)

Radiated spurious emission Test Setup-2(Above 1G)

Radiated spurious emission Test Setup for close-up

Conducted emission Test Setup



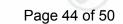

Report No.: EEED32J00133501 Page 43 of 50

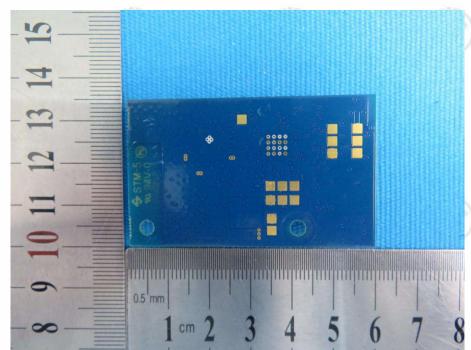
PHOTOGRAPHS OF EUT Constructional Details

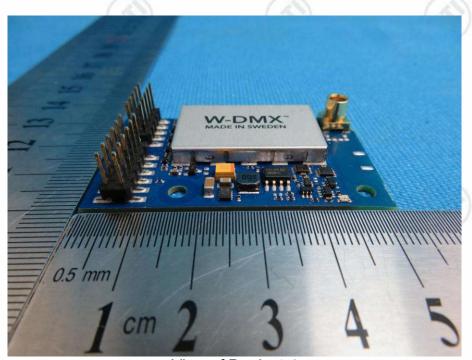
Test model No.: A40890G5-SPI

View of Product-1

View of Product-2

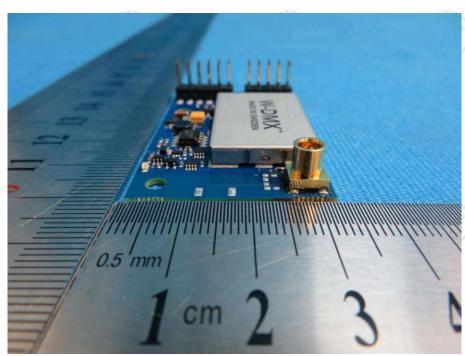


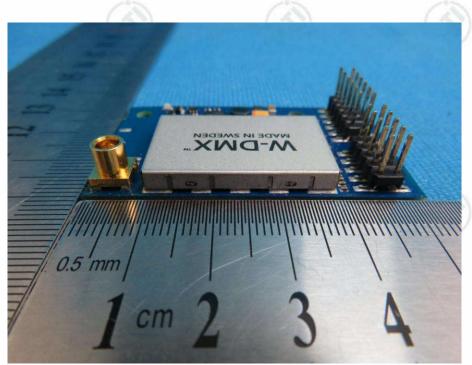




View of Product-3

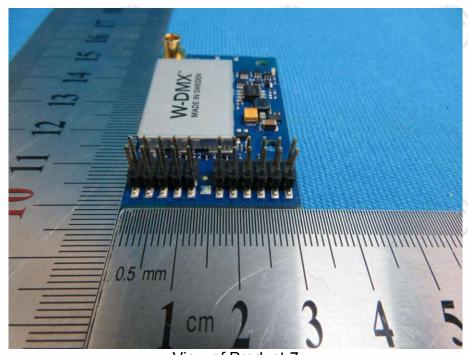
View of Product-4



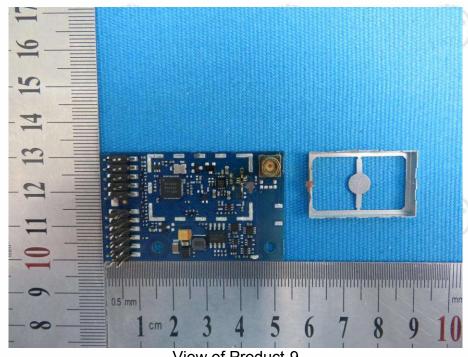


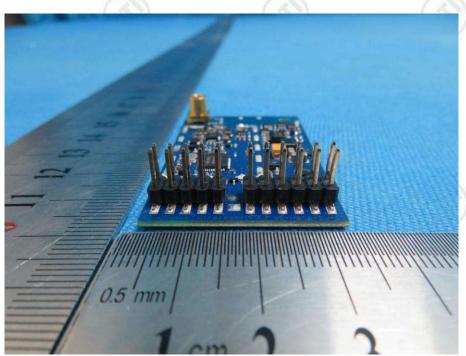
View of Product-5

View of Product-6

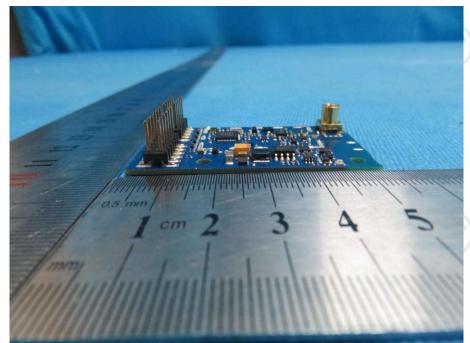


View of Product-7



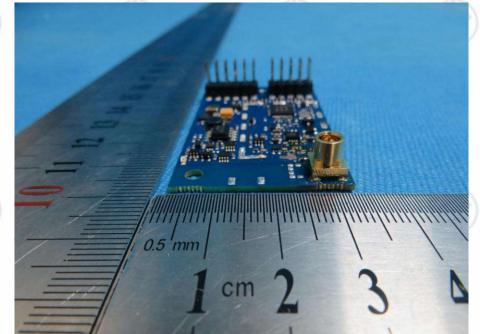


View of Product-10

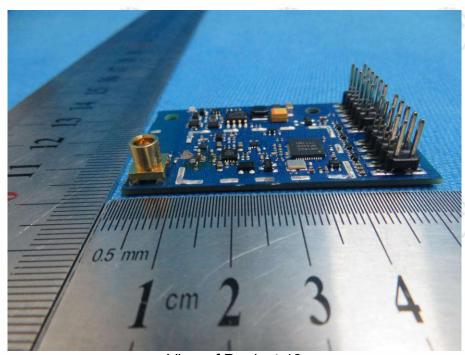


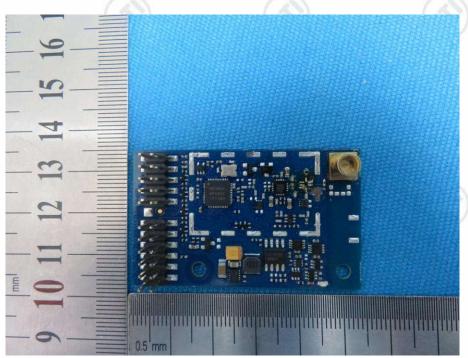
Page 48 of 50

View of Product-11



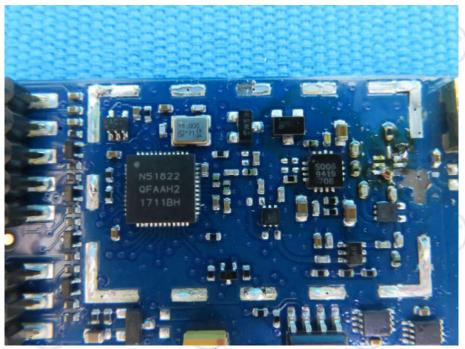
View of Product-12





View of Product-13

View of Product-14



View of Product-15

*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

