

Shenzhen Toby Technology Co., Ltd.

Report No.: TB-FCC158871 Page: 1 of 46

FCC Radio Test Report FCC ID: 2APCO-S02C915

Original Grant

Report No.	-	TB-FCC158871	
Applicant	1	V-chip Microsystems, Inc.	
Equipment Under Test (EUT)			
EUT Name	÷	Ultra-Low Power Long Ranger RF Module	
Model No.		VT-S02C-915	
Serial Model No.	(N/A	
Brand Name		10 ALC	
Receipt Date		2018-03-14	
Test Date	:	2018-03-15 to 2018-03-28	
Issue Date	:	2018-03-29	
Standards	:	FCC Part 15: 2016, Subpart C(15.247)	
Test Method		ANSI C63.10: 2013	
Conclusions	3	PASS	
		In the configuration tested, the EUT complied with the standards specified above,	

Test/Witness Engineer

Approved& Authorized

WAN SU foughtin.

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1.0

Contents

CONT	[ENTS	2
1.	GENERAL INFORMATION ABOUT EUT	4
	1.1 Client Information	5
	1.2 General Description of EUT (Equipment Under Test)	
	1.3 Block Diagram Showing the Configuration of System Tested	
	1.4 Description of Support Units	6
	1.5 Description of Test Mode	7
	1.6 Description of Test Software Setting	8
	1.7 Measurement Uncertainty	8
	1.8 Test Facility	9
2.	TEST SUMMARY	10
3.	TEST EQUIPMENT	11
4.	CONDUCTED EMISSION TEST	12
	4.1 Test Standard and Limit	12
	4.2 Test Setup	
	4.3 Test Procedure	
	4.4 EUT Operating Mode	13
	4.5 Test Da5ta	13
5.	RADIATED EMISSION TEST	14
	5.1 Test Standard and Limit	14
	5.2 Test Setup	
	5.3 Test Procedure	
	5.4 EUT Operating Condition	17
	5.5 Test Data	17
6.	RESTRICTED BANDS REQUIREMENT	18
	6.1 Test Standard and Limit	18
	6.2 Test Setup	18
	6.3 Test Procedure	
	6.4 EUT Operating Condition	
	6.5 Test Data	19
7.	BANDWIDTH TEST	20
	7.1 Test Standard and Limit	20
	7.2 Test Setup	
	7.3 Test Procedure	
	7.4 EUT Operating Condition	20
	7.5 Test Data	
8.	PEAK OUTPUT POWER TEST	21
	8.1 Test Standard and Limit	21
	8.2 Test Setup	

	8.3 Test Procedure	21
	8.4 EUT Operating Condition	21
	8.5 Test Data	21
9.	POWER SPECTRAL DENSITY TEST	
	9.1 Test Standard and Limit	
	9.2 Test Setup	
	9.3 Test Procedure	
	9.4 EUT Operating Condition	
	9.5 Test Data	
10.	ANTENNA REQUIREMENT	23
	10.1 Standard Requirement	23
	10.2 Antenna Connected Construction	23
	10.3 Result.	23
ATTA	ACHMENT A CONDUCTED EMISSION TEST DATA	24
ATTA	ACHMENT B RADIATED EMISSION TEST DATA	
ATTA	ACHMENT C RESTRICTED BANDS REQUIREMENT TEST DATA	
	ACHMENT D BANDWIDTH TEST DATA	
ATTA	ACHMENT E PEAK OUTPUT POWER TEST DATA	43
ATTA	ACHMENT F POWER SPECTRAL DENSITY TEST DATA	45

Report No.: TB-FCC158871 Page: 4 of 46

Revision History

Report No.	Version	Description	Issued Date
TB-FCC158871	Rev.01	Initial issue of report	2018-03-29
on BY		TOPS TO THE TOP TO	mOB1
nal -	1000		100
MUBB		Line and the second	TODA
		A COMPANY	
103			003
and a	(TOD)		000
A DUD		TOBI TOBI	TUD!
Dill a	all all	TEB LE TOBU	I FOR CONTRACT
	N Com		The state
and the second	100	BI ROD ROD	
3		ROBE ROBE	A L

1. General Information about EUT

1.1 Client Information

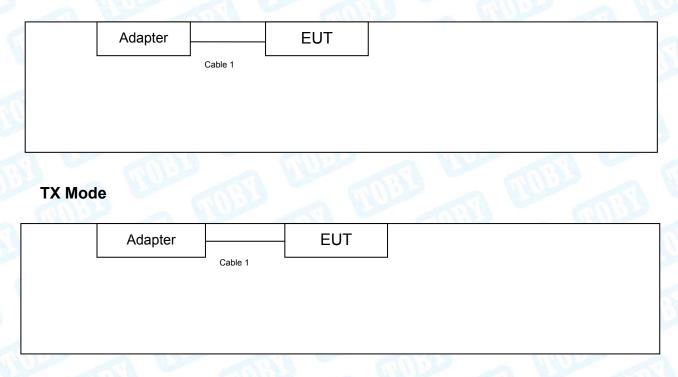
Applicant	1	V-chip Microsystems, Inc.
Address		6floor, Longtang Building, NanShan Cloud Valley Innovation Industrial Park, No.1183, LiuXian Road, NanShan District, ShenZhen, China
Manufacturer		V-chip Microsystems, Inc.
Address	B	6floor, Longtang Building, NanShan Cloud Valley Innovation Industrial Park, No.1183, LiuXian Road, NanShan District, ShenZhen, China

1.2 General Description of EUT (Equipment Under Test)

EUT Name	UT Name : Ultra-Low Power Long Range RF Module		
Models No.		VT-S02C-915	and a function
- AUDA		Operation Frequency:	904MHz~920MHz
		Number of Channel:	18 channels see note(3)
Product Description	2	RF Output Power:	9.456dBm Conducted Power
	5	Antenna Gain:	2.5dBi Internal Antenna
	1	Modulation Type:	2-GFSK
	2	Bit Rate of Transmitter:	50kbps
Power Supply		DC Voltage supplied by Host System	
Power Rating	:	DC 3.3V by Host Syster	n
Connecting : Please refer to the User's Manual I/O Port(S) :		's Manual	

Note:

This Test Report is FCC Part 15.247 for 902-928MHz, the test procedure follows the FCC KDB 558074 D01 DTS Means Guidance v04.


- (1) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.
- (2) Antenna information provided by the applicant.
- (3) Channel List:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	904	07	910	14	917
01	905	08	911	15	918
02	906	09	912	16	919
03	907	10	913	17	920
04	902	11	914		
05	908	12	915		
06	909	13	916		

1.3 Block Diagram Showing the Configuration of System Tested

Normal Mode

1.4 Description of Support Units

	Equipment Information				
	Name	Model	S/N	Manufacturer	Used "√"
	PCB Board			V-CHIP	\checkmark
2	AC/DC Adapter	A16-502000		AOHAI	\checkmark
	AC/DC AdapterInput:AC100-240V 50/60Hz 0.5A Output:5V/2A				
		Ca	ble Information		

Number	Shielded Type	Ferrite Core	Length	Note
Cable 1	YES	NO	0.6 M	6055

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

For C	Conducted Test
Final Test Mode	Description
Mode 1	Normal Mode + TX Mode

For Radiated Test		
Final Test Mode	Description	
Mode 2	TX Mode	
Mode 3	TX Mode (Channel 00/08/17)	

Note:

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate.

According to ANSI C63.10 standards, the measurements are performed at the highest, middle, lowest available channels, and the worst case data rate as follows:

TX Mode: 2-GFSK Modulation Transmitting mode.

- (2) During the testing procedure, the continuously transmitting with the maximum power mode was programmed by the customer.
- (3) The EUT is considered a portable unit; in normal use it was positioned on X-plane. The worst case was found positioned on X-plane. Therefore only the test data of this X-plane was used for radiated emission measurement test.

1.6 Description of Test Software Setting

During testing channel& Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of RF setting.

Test Software Version		exe	
Frequency	904 MHz	911MHz	920 MHz
2-GFSK	DEF	DEF	DEF

1.7 Measurement Uncertainty

The reported uncertainty of measurement y \pm U, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty (U _{Lab})
	Level Accuracy:	
Conducted Emission	9kHz~150kHz	±3.42 dB
	150kHz to 30MHz	±3.42 dB
Radiated Emission	Level Accuracy:	±4.60 dB
Radiated Emission	9kHz to 30 MHz	±4.00 dB
Radiated Emission	Level Accuracy:	±4.40 dB
Radiated Emission	30MHz to 1000 MHz	±4.40 dB
Dedicted Enviroing	Level Accuracy:	
Radiated Emission	Above 1000MHz	±4.20 dB

Report No.: TB-FCC158871 Page: 9 of 46

1.8 Test Facility

The testing was performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at:1A/F., Bldg.6, Yusheng Industrial Zone, The National Road No.107 Xixiang Section 467, Xixiang, Bao'an, Shenzhen, Guangdong, China.

At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01.

IC Registration No.: (11950A-1)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A-1.

TOBY

Report No.: TB-FCC158871 10 of 46 Page:

2. Test Summary

Standard Section				
FCC	IC	Test Item	Judgment	Remark
15.203		Antenna Requirement	PASS	N/A
15.207(a)	RSS-GEN 7.2.4	Conducted Emission	PASS	N/A
15.205&15.247(d)	RSS-GEN 7.2.2	Band-Edge & Unwanted Emissions into Restricted Frequency	PASS	N/A
15.247(a)(2)	RSS 247 5.2 (1)	6dB Bandwidth	PASS	N/A
15.247(b)(3)	RSS 247 5.4 (4)	Conducted Max Output Power	PASS	N/A
15.247(e)	RSS 247 5.2 (2)	Power Spectral Density	PASS	N/A
15.205, 15.209&15.247(d)	RSS 247 5.5	Transmitter Radiated Spurious &Unwanted Emissions into Restricted Frequency	PASS	N/A

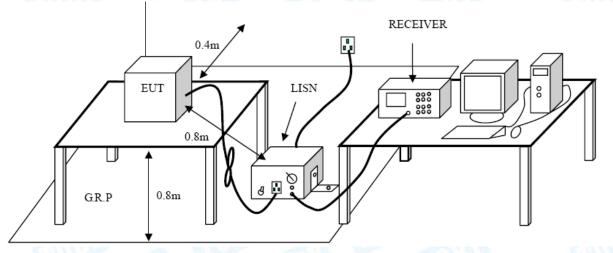
3. Test Equipment

Conducted Emiss	ion Test			-	-
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
EMI Test Receiver	Rohde & Schwarz	ESCI	100321	Jul. 20, 2017	Jul. 19, 2018
RF Switching Unit	Compliance Direction Systems Inc	RSU-A4	34403	Jul. 20, 2017	Jul. 19, 2018
AMN	SCHWARZBECK	NNBL 8226-2	8226-2/164	Jul. 20, 2017	Jul. 19, 2018
LISN	Rohde & Schwarz	ENV216	101131	Jul. 20, 2017	Jul. 19, 2018
Radiation Emissio	on Test		-	-	
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 20, 2017	Jul. 19, 2018
EMI Test Receiver	Rohde & Schwarz	ESPI	100010/007	Jul. 20, 2017	Jul. 19, 2018
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Mar.16, 2018	Mar.15, 2019
Bilog Antenna	ETS-LINDGREN	3142E	00117542	Mar.16, 2018	Mar.15, 2019
Horn Antenna	ETS-LINDGREN	3117	00143207	Mar.16, 2018	Mar.15, 2019
Horn Antenna	ETS-LINDGREN	3117	00143209	Mar.16, 2018	Mar.15, 2019
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Jul. 03, 2017	Jul. 02, 2018
Pre-amplifier	Sonoma	310N	185903	Mar.17, 2018	Mar.16, 2019
Pre-amplifier	HP	8449B	3008A00849	Mar.17, 2018	Mar.16, 2019
Cable	HUBER+SUHNER	100	SUCOFLEX	Mar.17, 2018	Mar.16, 2019
Positioning Controller	ETS-LINDGREN	2090	N/A	N/A	N/A
Antenna Conducte	ed Emission				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
SpectrumAnalyzer	Agilent	E4407B	MY45106456	Jul. 20, 2017	Jul. 19, 2018
SpectrumAnalyzer	Rohde & Schwarz	ESCI	100010/007	Jul. 20, 2017	Jul. 19, 2018
MXA Signal Analyzer	Agilent	N9020A	MY49100060	Oct. 26, 2017	Oct. 25, 2018
Vector Signal Generator	Agilent	N5182A	MY50141294	Oct. 26, 2017	Oct. 25, 2018
Analog Signal Generator	Agilent	N5181A	MY50141953	Oct. 26, 2017	Oct. 25, 2018
	DARE !! Instruments	RadiPowerRPR3006W	17100015SNO26	Oct. 26, 2017	Oct. 25, 2018
	DARE!! Instruments	RadiPowerRPR3006W	17100015SNO29	Oct. 26, 2017	Oct. 25, 2018
RF Power Sensor	DARE!! Instruments	RadiPowerRPR3006W	17100015SNO31	Oct. 26, 2017	Oct. 25, 2018
	DARE!! Instruments	RadiPowerRPR3006W	17100015SNO33	Oct. 26, 2017	Oct. 25, 2018

4. Conducted Emission Test

- 4.1 Test Standard and Limit
 - 4.1.1Test Standard FCC Part 15.207
 - 4.1.2 Test Limit

Fraguanay	Maximum RF Line Voltage (dBμV)	
Frequency	Quasi-peak Level	Average Level
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *
500kHz~5MHz	56	46
5MHz~30MHz	60	50


Notes:

(1) *Decreasing linearly with logarithm of the frequency.

(2) The lower limit shall apply at the transition frequencies.

(3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

4.2 Test Setup

4.3 Test Procedure

The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.

Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

LISN at least 80 cm from nearest part of EUT chassis.

The bandwidth of EMI test receiver is set at 9 kHz, and the test frequency band is from 0.15MHz to 30MHz.

4.4 EUT Operating Mode

Please refer to the description of test mode.

4.5 Test Data

Please refer to the Attachment A.

5. Radiated Emission Test

- 5.1 Test Standard and Limit
 - 5.1.1 Test Standard
 - FCC Part 15.247(d)
 - 5.1.2 Test Limit

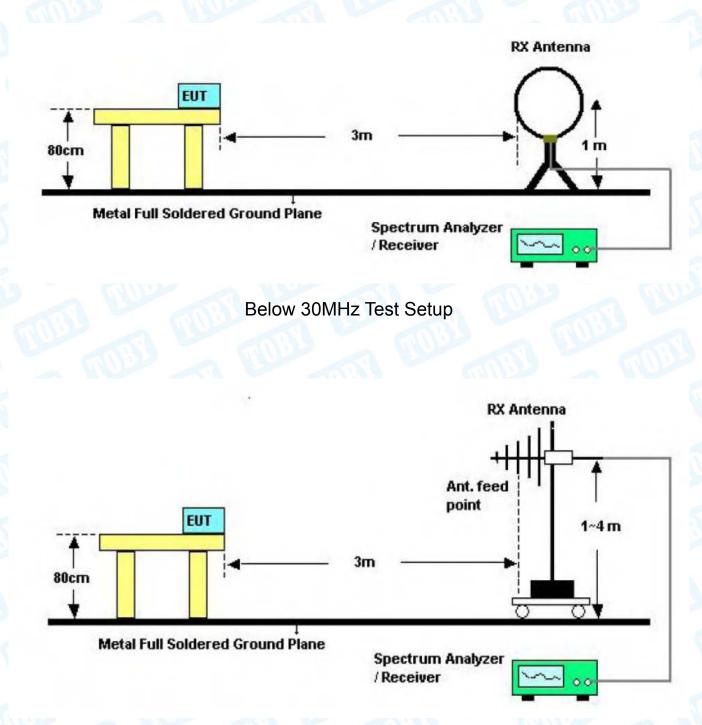
Radiated Emission Limits (9kHz~1000MHz)

Frequency (MHz	Field Strength (microvolt/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

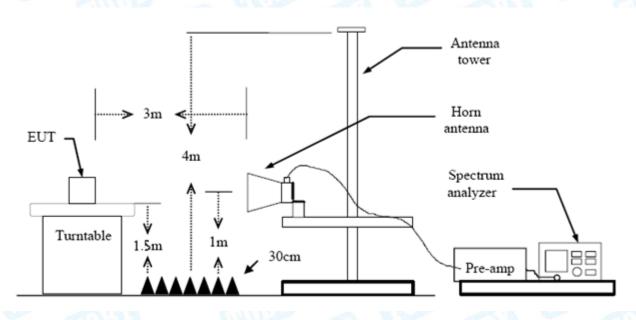
Radiated Emission Limit (Above 1000MHz)

Frequency	Distance Meters(at 3m)	
(MHz)	Peak (dBuV/m)	Average (dBuV/m)
Above 1000	74	54

Note:


(1) The tighter limit applies at the band edges.

(2) Emission Level (dBuV/m)=20log Emission Level (uV/m)


Report No.: TB-FCC158871 Page: 15 of 46

5.2 Test Setup

Below 1000MHz Test Setup

Above 1GHz Test Setup

5.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

Report No.: TB-FCC158871 Page: 17 of 46

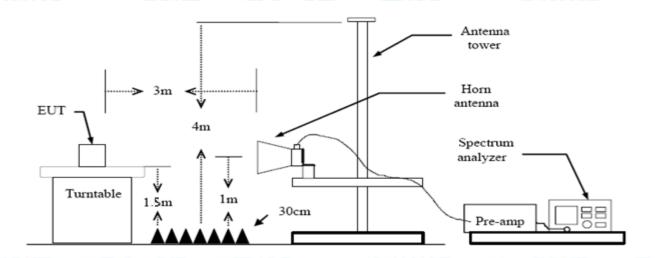
5.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

5.5 Test Data

Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.

Please refer to the Attachment B.



6. Restricted Bands Requirement

- 6.1 Test Standard and Limit
 - 6.1.1 Test Standard
 - FCC Part 15.247(d) FCC Part 15.205
 - 6.1.2 Test Limit

Restricted Frequency Band (MHz)	Distance Meters(at 3m)		
	Peak (dBuV/m)	Average (dBuV/m)	
802 ~902	74	54	
928~1028	74	54	

6.2 Test Setup

6.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector

Report No.: TB-FCC158871 Page: 19 of 46

mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.

- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

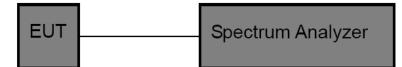
6.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

6.5 Test Data

Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values. Please refer to the Attachment C.

TB-RF-074-1.0



7. Bandwidth Test

- 7.1 Test Standard and Limit
 - 7.1.1 Test Standard
 - FCC Part 15.247 (a)(2)
 - 7.1.2 Test Limit

FCC Part 15 Subpart C(15.247)/RSS-247			
Test Item	Limit	Frequency Range(MHz)	
Bandwidth	>=500 KHz (6dB bandwidth)	902~928	

7.2 Test Setup

7.3 Test Procedure

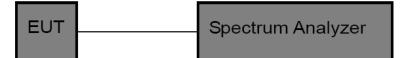
- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) The bandwidth is measured at an amplitude level reduced 6dB from the reference level. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency. Once the reference level is established, the equipment is conditioned with typical modulating signal to produce the worst –case (i.e the widest) bandwidth.
- (3)Measure the channel separation the spectrum analyzer was set to Resolution Bandwidth:100 kHz, and Video Bandwidth:300 kHz, Detector: Peak, Sweep Time set auto.

7.4 EUT Operating Condition

The EUT was set to continuously transmitting in each mode and low, middle and high channel for the test.

7.5 Test Data

Please refer to the Attachment D.



8. Peak Output Power Test

- 8.1 Test Standard and Limit
 - 8.1.1 Test Standard
 - FCC Part 15.247 (b)(3)
 - 8.1.2 Test Limit

FCC Part 15 Subpart C(15.247)/RSS-247			
Test Item Limit Frequency Range(MH			
Peak Output Power	1 Watt or 30 dBm	902~928	

8.2 Test Setup

8.3 Test Procedure

The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement is according to section 9.1.1 of KDB 558074 D01 DTS Meas Guidance v04.

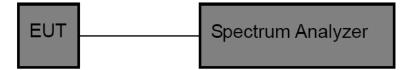
- (1) Set the RBW≥DTS Bandwidth
- (2) Set VBW≥3*RBW
- (3) Set Span≥3*RBW
- (4) Sweep time=auto
- (5) Detector= peak
- (6) Trace mode= maxhold.
- (7) Allow trace to fully stabilize, and then use peak marker function to determine the peak amplitude level.

8.4 EUT Operating Condition

The EUT was set to continuously transmitting in the max power during the test.

8.5 Test Data

Please refer to the Attachment E.



9. Power Spectral Density Test

- 9.1 Test Standard and Limit
 - 9.1.1 Test Standard
 - FCC Part 15.247 (e)
 - 9.1.2 Test Limit

FCC Part 15 Subpart C(15.247)			
Test Item Limit Frequency Range(MHz			
Power Spectral Density	8dBm(in any 3 kHz)	902~928	

9.2 Test Setup

9.3 Test Procedure

The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement according to section 10.2 of KDB 558074 D01 DTS Meas Guidance v04.

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Set analyser center frequency to DTS channel center frequency.
- (3) Set the span to 1.5 times the DTS bandwidth.
- (4) Set the RBW to: 3 kHz
- (5) Set the VBW to: 10 kHz
- (6) Detector: peak
- (7) Sweep time: auto
- (8) Allow trace to fully stabilize. Then use the peak marker function to determine the maximum amplitude level.

9.4 EUT Operating Condition

The EUT was set to continuously transmitting in each mode and low, Middle and high channel for the test.

9.5 Test Data

Please refer to the Attachment F.

10. Antenna Requirement

10.1 Standard Requirement

10.1.1 Standard

FCC Part 15.203

10.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

10.2 Antenna Connected Construction

The directional gains of the antenna used for transmitting is 2.5dBi, and the antenna de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

10.3 Result

The EUT antenna is a Internal Antenna. It complies with the standard requirement.

Antenna Type		
Permanent attached antenna		
Unique connector antenna		
Professional installation antenna	a Dur	

Attachment A-- Conducted Emission Test Data

Temperature:	25 ℃	Tan	Re	lative Humid	lity: 5	55%	
Fest Voltage:	AC 12	20V/60 Hz			G	261	
Ferminal:	Line		MUP				1192
fest Mode:	TX M	ode 904 MHz	z	(MA)			
Remark:	Only	worse case is	s reported				
80.0 dBuV	i		ĺ				
						OP: AVG:	
40 							
MANANAN	h. A Jak						
, AAAAAAA	Mr. MIL	M. XX	Mu. WA.	M. M. M. A. M.		A	
	- VIA II 197	APPROVED A DATE OF A DE LA DECIMIENTA	PM LLP R P A	The Manual Ann	MANA MAL	start	Murridal pea
Antabalaat	a. Wallatte	and the A Madaland.	White Marine M	V V V V VVV	a la mila da da	A	
MAMM		100000 And sound	Marc and Com		MAANAA	A	AVI
0.0		WWWWWWWWWWW			www.www	mmund	AVI
0.0 0.150	0.5	VANDAYAN YA DAMAMAYA VANDAYAN YANGA MAMAYA	(MHz)	5	y where	Ammedia	
0.150		Reading	Correct	Measure-	·····	Ammedia	With the state of
	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	30.000
0.150 No. Mk.	Freq. MHz	Reading Level dBuV	Correct Factor dB	Measure- ment dBuV	dBuV	dB	30.000 Detector
0.150 No. Mk. 1 0	Freq. MHz .1580	Reading Level dBuV 25.17	Correct Factor dB 9.58	Measure- ment dBuV 34.75	dBuV 65.56	dB -30.81	30.000 Detector
0.150 No. Mk. 1 0 2 0	Freq. MHz	Reading Level dBuV	Correct Factor dB	Measure- ment dBuV	dBuV	dB -30.81 -37.76	30.000 Detector
0.150 No. Mk. 1 0 2 0	Freq. MHz .1580	Reading Level dBuV 25.17	Correct Factor dB 9.58	Measure- ment dBuV 34.75	dBuV 65.56	dB -30.81	30.000 Detector
0.150 No. Mk. 1 0 2 0 3 0	Freq. MHz .1580 .1580	Reading Level dBuV 25.17 8.22	Correct Factor dB 9.58 9.58	Measure- ment dBuV 34.75 17.80	dBuV 65.56 55.56	dB -30.81 -37.76 -31.55	Detector QP AVC QP
0.150 No. Mk. 1 0 2 0 3 0 4 0	Freq. MHz .1580 .1580 .1860	Reading Level dBuV 25.17 8.22 23.08	Correct Factor dB 9.58 9.58 9.58	Measure- ment dBuV 34.75 17.80 32.66	dBuV 65.56 55.56 64.21 54.21	dB -30.81 -37.76 -31.55	Detector QP AVC QP
0.150 No. Mk. 1 0 2 0 3 0 4 0 5 * 0	Freq. MHz .1580 .1580 .1860 .1860	Reading Level dBuV 25.17 8.22 23.08 7.14	Correct Factor dB 9.58 9.58 9.58 9.58 9.58	Measure- ment dBuV 34.75 17.80 32.66 16.72	dBuV 65.56 55.56 64.21 54.21 56.30	dB -30.81 -37.76 -31.55 -37.49	Detector QP AVC QP AVC
0.150 No. Mk. 1 0 2 0 3 0 4 0 5 * 0 6 0	Freq. MHz .1580 .1580 .1860 .1860 .1860 .4820	Reading Level dBuV 25.17 8.22 23.08 7.14 17.68	Correct Factor dB 9.58 9.58 9.58 9.58 9.58 9.58 9.60	Measure- ment dBuV 34.75 17.80 32.66 16.72 27.28	dBuV 65.56 55.56 64.21 54.21 56.30 46.30	dB -30.81 -37.76 -31.55 -37.49 -29.02	Detector QP AVC QP AVC
0.150 No. Mk. 1 0 2 0 3 0 4 0 5 * 0 6 0 7 0	Freq. MHz .1580 .1580 .1860 .1860 .4820 .4820	Reading Level dBuV 25.17 8.22 23.08 7.14 17.68 5.94	Correct Factor dB 9.58 9.58 9.58 9.58 9.58 9.58 9.60 9.60	Measure- ment dBuV 34.75 17.80 32.66 16.72 27.28 15.54	dBuV 65.56 64.21 54.21 56.30 46.30 56.00	dB -30.81 -37.76 -31.55 -37.49 -29.02 -30.76	Detector QP AVC QP AVC QP AVC QP
0.150 No. Mk. 1 0 2 0 3 0 4 0 5 * 0 6 0 7 0 8 0	Freq. MHz .1580 .1580 .1860 .1860 .1860 .4820 .4820 .4820	Reading Level dBuV 25.17 8.22 23.08 7.14 17.68 5.94 10.35	Correct Factor dB 9.58 9.58 9.58 9.58 9.58 9.60 9.60 9.60 9.61	Measure- ment dBuV 34.75 17.80 32.66 16.72 27.28 15.54 19.96	dBuV 65.56 64.21 54.21 56.30 46.30 56.00	dB -30.81 -37.76 -31.55 -37.49 -29.02 -30.76 -36.04 -33.96	Detector QP AVC QP AVC QP AVC QP
0.150 No. Mk. 1 0 2 0 3 0 4 0 5 * 0 6 0 7 0 8 0 9 0	Freq. MHz .1580 .1580 .1860 .1860 .4820 .4820 .4820 .7460	Reading Level dBuV 25.17 8.22 23.08 7.14 17.68 5.94 10.35 2.43	Correct Factor dB 9.58 9.58 9.58 9.58 9.60 9.60 9.61 9.61	Measure- ment dBuV 34.75 17.80 32.66 16.72 27.28 15.54 19.96 12.04	dBuV 65.56 55.56 64.21 54.21 56.30 46.30 56.00 46.00	dB -30.81 -37.76 -31.55 -37.49 -29.02 -30.76 -36.04 -33.96	30.000 30.000 Detector QP AVG QP AVG QP AVG QP AVG
0.150 No. Mk. 1 0 2 0 3 0 4 0 5 * 0 6 0 7 0 8 0 9 0 10 0	Freq. MHz .1580 .1580 .1860 .1860 .4820 .4820 .4820 .7460 .7460 .8580	Reading Level dBuV 25.17 8.22 23.08 7.14 17.68 5.94 10.35 2.43 9.44	Correct Factor dB 9.58 9.58 9.58 9.58 9.60 9.60 9.61 9.61 9.60	Measure- ment dBuV 34.75 17.80 32.66 16.72 27.28 15.54 19.96 12.04 19.04	dBuV 65.56 64.21 54.21 56.30 46.30 56.00 46.00 46.00	dB -30.81 -37.76 -31.55 -37.49 -29.02 -30.76 -36.04 -33.96 -36.96	Detector QP AVG QP AVG QP AVG QP AVG

Femperatu	r e: 25 °	°C		Relative Hu	umidity:	55%	
Fest Voltag	e: AC	120V/60 Hz		1991	22		1 Mar
Ferminal:	Ne	utral	-		a	661	
Fest Mode:	TX	Mode 904 M	1Hz			0	
Remark:	On	ly worse case	e is reported	MUD	2		L'US
80.0 dBuV						QP:	
						AVG:	
40							
144							
- WAM	MARA ANY						
	" WANNA	Milli Man	M. M. M	MANAN			
Baderd	aa Maddala	ANNAN, KULTURI IN TURI	a nh MMLa Tables . J	/ V V V / V	man	ndwww.wardahar	how pe
— ENV 18 AAA	UAN, MARAN	1					·
AN M	WWWW AND A	Mark Mark Mark And	ANA INTERNATIONAL CONTRACT	MANN	mm	MANAMA	t l
0.0			MM THE MAN PARTY CONTINUES		www	AMMM maker	human
0.0	0.		(MHz)	5	www.	MMManusker	t l
0.150		Reading	Correct	Measure-	Limit	WWWWWWWW	human
	Freq.			Measure- ment	Limit		30.000
0.150 No. Mk.	Freq. MHz	Reading Level dBuV	Correct Factor dB	Measure- ment dBuV	Limit dBuV	dB	30.000 Detecto
0.150 No. Mk. 1	Freq. MHz 0.1700	Reading Level dBuV 24.29	Correct Factor dB 9.64	Measure- ment dBuV 33.93	Limit dBuV 64.96	dB -31.03	30.000 Detecto
0.150 No. Mk. 1 2	Freq. MHz 0.1700 0.1700	Reading Level dBuV 24.29 7.10	Correct Factor dB 9.64 9.64	Measure- ment dBuV 33.93 16.74	Limit dBuV 64.96 54.96	dB -31.03 -38.22	30.000 Detecto QP AV(
0.150 No. Mk. 1 2 3	Freq. MHz 0.1700 0.1700 0.1860	Reading Level dBuV 24.29 7.10 23.05	Correct Factor dB 9.64 9.64 9.65	Measure- ment dBuV 33.93 16.74 32.70	Limit dBuV 64.96 54.96 64.21	dB -31.03 -38.22 -31.51	30.000 Detecto QP AV(QP
0.150 No. Mk. 1 2 3 4	Freq. MHz 0.1700 0.1700 0.1860 0.1860	Reading Level dBuV 24.29 7.10 23.05 6.03	Correct Factor dB 9.64 9.64 9.65 9.65	Measure- ment dBuV 33.93 16.74 32.70 15.68	Limit dBuV 64.96 54.96 64.21 54.21	dB -31.03 -38.22 -31.51 -38.53	Detecto QP AV(QP
0.150 No. Mk. 1 2 3 4 5	Freq. MHz 0.1700 0.1700 0.1860 0.1860 0.4820	Reading Level dBuV 24.29 7.10 23.05 6.03 18.38	Correct Factor dB 9.64 9.64 9.65 9.65 9.58	Measure- ment dBuV 33.93 16.74 32.70 15.68 27.96	Limit dBuV 64.96 54.96 64.21 54.21 56.30	dB -31.03 -38.22 -31.51 -38.53 -28.34	Detecto QP AV(QP AV(QP
0.150 No. Mk. 1 2 3 4	Freq. MHz 0.1700 0.1700 0.1860 0.1860	Reading Level dBuV 24.29 7.10 23.05 6.03 18.38	Correct Factor dB 9.64 9.64 9.65 9.65	Measure- ment dBuV 33.93 16.74 32.70 15.68 27.96	Limit dBuV 64.96 54.96 64.21 54.21 56.30	dB -31.03 -38.22 -31.51 -38.53	Detecto QP AV(QP AV(QP
0.150 No. Mk. 1 2 3 4 5	Freq. MHz 0.1700 0.1700 0.1860 0.1860 0.4820	Reading Level dBuV 24.29 7.10 23.05 6.03 18.38 15.25	Correct Factor dB 9.64 9.64 9.65 9.65 9.58	Measure- ment dBuV 33.93 16.74 32.70 15.68 27.96	Limit dBuV 64.96 54.96 64.21 54.21 56.30 46.30	dB -31.03 -38.22 -31.51 -38.53 -28.34	Detecto QP AV(QP AV(QP AV(
0.150 No. Mk. 1 2 3 4 5 6 *	Freq. MHz 0.1700 0.1700 0.1860 0.1860 0.4820 0.4820	Reading Level dBuV 24.29 7.10 23.05 6.03 18.38 15.25 12.02	Correct Factor dB 9.64 9.64 9.65 9.65 9.58 9.58	Measure- ment dBuV 33.93 16.74 32.70 15.68 27.96 24.83	Limit dBuV 64.96 54.96 64.21 54.21 56.30 46.30 56.00	dB -31.03 -38.22 -31.51 -38.53 -28.34 -21.47	Detecto QP AV(QP AV(QP AV(QP
0.150 No. Mk. 1 2 3 4 5 6 * 7	Freq. MHz 0.1700 0.1700 0.1860 0.1860 0.4820 0.4820 0.7019	Reading Level dBuV 24.29 7.10 23.05 6.03 18.38 15.25 12.02 -0.07	Correct Factor dB 9.64 9.64 9.65 9.65 9.58 9.58 9.59	Measure- ment dBuV 33.93 16.74 32.70 15.68 27.96 24.83 21.61 9.52	Limit dBuV 64.96 54.96 64.21 54.21 56.30 46.30 56.00 46.00	dB -31.03 -38.22 -31.51 -38.53 -28.34 -21.47 -34.39	Detecto QP AV(QP AV(QP AV(QP AV(QP
0.150 No. Mk. 1 2 3 4 5 6 * 7 8	Freq. MHz 0.1700 0.1700 0.1860 0.1860 0.4820 0.4820 0.7019 0.7019	Reading Level dBuV 24.29 7.10 23.05 6.03 18.38 15.25 12.02 -0.07 10.55	Correct Factor dB 9.64 9.65 9.65 9.58 9.58 9.59 9.59	Measure- ment dBuV 33.93 16.74 32.70 15.68 27.96 24.83 21.61 9.52	Limit dBuV 64.96 54.96 64.21 54.21 56.30 46.30 56.00 46.00	dB -31.03 -38.22 -31.51 -38.53 -28.34 -21.47 -34.39 -36.48	Detecto QP AVC QP AVC QP AVC QP AVC QP
0.150 No. Mk. 1 2 3 4 5 6 * 7 8 9	Freq. MHz 0.1700 0.1700 0.1860 0.1860 0.4820 0.4820 0.7019 0.7019 1.2620	Reading Level dBuV 24.29 7.10 23.05 6.03 18.38 15.25 12.02 -0.07 10.55 -0.77	Correct Factor dB 9.64 9.65 9.65 9.58 9.58 9.58 9.59 9.59 9.59 9.60	Measure- ment dBuV 33.93 16.74 32.70 15.68 27.96 24.83 21.61 9.52 20.15	Limit dBuV 64.96 54.96 64.21 54.21 56.30 46.30 56.00 46.00 46.00	dB -31.03 -38.22 -31.51 -38.53 -28.34 -21.47 -34.39 -36.48 -35.85	AVC QP AVC QP AVC QP AVC QP AVC QP AVC

[emperature:	25 ℃			Relative Hui	midity:	55%	
Fest Voltage:	AC 2	240V/60 Hz		117			A Providence
Ferminal:	Line		-	112	In	660	
Fest Mode:	TX M	Node 904 MH	z				AR!
Remark:	Only	worse case i	is reported	MIP	2.5	2	1 al
80.0 dBuV						QP: AVG:	
40 MMMMMM	× ×						
0.0 0.150		1 ¹¹¹ 11111111111111111111111111111111	(MHz)	5 S		mm	30.000
o.o	asymyddin do	5 Reading Level	(MHz) Correct Factor		Limit	WWWW VVVVIII Over	Warning AV
0.0 0.150	Мурину/МЦК, Ан о.	Reading	Correct	Measure-	Limit dBuV	Wywyw Vrwww Over dB	Warania AV
0.0 0.150 No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment			30.000
0.0 0.150 No. Mk.	Freq.	Reading Level dBuV	Correct Factor dB	Measure- ment dBuV	dBuV	dB	30.000 Detector
0.0 0.150 No. Mk. 1 (0 2 (0	Freq. MHz 0.1580	Reading Level dBuV 21.46	Correct Factor dB 9.58	Measure- ment dBuV 31.04	dBuV 65.56	dB -34.52 -42.58	Detector QP
0.0 0.150 No. Mk. 1 (0 2 (0 3 (0)	Freq. MHz 0.1580 0.1580	Reading Level dBuV 21.46 3.40	Correct Factor dB 9.58 9.58	Measure- ment dBuV 31.04 12.98	dBuV 65.56 55.56 57.57	dB -34.52 -42.58	Detector QP AVG QP
0.0 0.150 No. Mk. 1 2 3 4	Freq. MHz 0.1580 0.1580 0.4140	Reading Level dBuV 21.46 3.40 16.65	Correct Factor dB 9.58 9.58 9.60	Measure- ment dBuV 31.04 12.98 26.25	dBuV 65.56 55.56 57.57 47.57	dB -34.52 -42.58 -31.32	Detector QP AVG QP
0.0 0.150 No. Mk. 1 (0 2 (0 3 (0 4 (0 5 * (0)	Freq. MHz 0.1580 0.1580 0.4140 0.4140	Reading Level dBuV 21.46 3.40 16.65 5.74	Correct Factor dB 9.58 9.58 9.60 9.60	Measure- ment dBuV 31.04 12.98 26.25 15.34	dBuV 65.56 55.56 57.57 47.57 56.10	dB -34.52 -42.58 -31.32 -32.23	Detector QP AVG QP AVG QP
0.0 0.150 No. Mk. 1 (0 2 (0 3 (0 4 (0 5 * (0 6 (0)	Freq. MHz 0.1580 0.1580 0.4140 0.4140 0.4940	Reading Level dBuV 21.46 3.40 16.65 5.74 16.84	Correct Factor dB 9.58 9.58 9.60 9.60 9.60	Measure- ment dBuV 31.04 12.98 26.25 15.34 26.44	dBuV 65.56 55.56 57.57 47.57 56.10 46.10	dB -34.52 -42.58 -31.32 -32.23 -29.66	Detector QP AVG QP AVG QP
No. Mk. 1 (2 (3 (4 (5 * (6 (7 (Freq. MHz 0.1580 0.4140 0.4140 0.4940 0.4940	Reading Level dBuV 21.46 3.40 16.65 5.74 16.84 5.64	Correct Factor dB 9.58 9.58 9.60 9.60 9.60 9.60	Measure- ment dBuV 31.04 12.98 26.25 15.34 26.44 15.24	dBuV 65.56 55.56 57.57 47.57 56.10 46.10 56.00	dB -34.52 -42.58 -31.32 -32.23 -29.66 -30.86	Detector QP AVG QP AVG QP AVG
No. Mk. 1 (1) 2 (1) 3 (1) 4 (1) 5 * (1) 6 (1) 7 (2) 8 (1) 1 (1)	Freq. Freq. MHz 0.1580 0.1580 0.4140 0.4140 0.4940 0.4940 1.3580	Reading Level dBuV 21.46 3.40 16.65 5.74 16.84 5.64 12.34	Correct Factor dB 9.58 9.58 9.60 9.60 9.60 9.60 9.60	Measure- ment dBuV 31.04 12.98 26.25 15.34 26.44 15.24 21.94	dBuV 65.56 55.56 57.57 47.57 56.10 46.10 56.00 46.00	dB -34.52 -42.58 -31.32 -32.23 -29.66 -30.86 -34.06	Detector QP AVG QP AVG QP AVG QP

10.82

1.00

9.66

9.66

20.48

10.66

3.3740

3.3740

11

12

QP

AVG

56.00 -35.52

46.00 -35.34

Temperature:	25℃	Relative Humidity:	55%
Fest Voltage:	AC 240V/60 Hz	RULE	
Terminal:	Neutral		139
Test Mode:	TX Mode 904 MHz		
Remark:	Only worse case is reported		2 119
0.0			

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1		0.1556	23.15	9.64	32.79	65.69	-32.90	QP
2		0.1556	4.58	9.64	14.22	55.69	-41.47	AVG
3		0.2860	16.51	9.58	26.09	60.64	-34.55	QP
4		0.2860	4.92	9.58	14.50	50.64	-36.14	AVG
5		0.4140	16.07	9.58	25.65	57.57	-31.92	QP
6		0.4140	9.71	9.58	19.29	47.57	-28.28	AVG
7		0.4900	17.52	9.58	27.10	56.17	-29.07	QP
8	*	0.4900	14.37	9.58	23.95	46.17	-22.22	AVG
9		1.3340	9.84	9.60	19.44	56.00	-36.56	QP
10		1.3340	1.86	9.60	11.46	46.00	-34.54	AVG
11		2.4580	9.91	9.64	19.55	56.00	-36.45	QP
12		2.4580	3.05	9.64	12.69	46.00	-33.31	AVG

Attachment B-- Radiated Emission Test Data

9 KHz~30 MHz

From 9 KHz to 30 MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB Below the permissible value has no need to be reported.

30MHz~1GHz

Temperature:	25℃		Relative Hum	aidity:	55%	
-	AC 120/60Hz			nunty.	5570	
Test Voltage: Ant. Pol.	Horizontal		AND P			-
	TX Mode 904 I					
Test Mode:				-		
Remark:	Only worse cas	se is reported	(1) (P.S.)		N. W. S.	
90.0 dBuV/m					ISC 3M Radiation Margin -6	5 X
-10 30.000 40 50		(MHz)	300		9//19/1	1000.000
No. Mk. F	Readii req. Leve		Measure- ment	Limit	Over	
N	MHz dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1 44.	9006 49.16	6 -21.66	27.50	40.00	-12.50	QP
2 62.4	4314 51.31	-23.72	27.59	40.00	-12.41	QP
3 ! 68.	1514 58.89	-23.22	35.67	40.00	-4.33	QP
4 119	.4361 54.56	6 -21.85	32.71	43.50	-10.79	QP
5 830	.4002 39.36	6 -5.09	34.27	46.00	-11.73	QP
6 * 903	.3094 84.16	6 -3.63	80.53	Fundamen	tal Frequency	QP

*:Maximum data x:Over limit !:over margin

Temperature:	25 ℃		Re	lative Humio	dity:	55%	
Test Voltage:	AC 120	/60Hz		199 2		-	The second
Ant. Pol.	Vertica		-		117	132	
Test Mode:	TX Mod	de 904 MHz	alle			-	\mathbb{Z}
Remark:	Only w	orse case is	reported	m l b	2	2 1	
90.0 dBuV/m							
40	3 2 ¥ 4	unhaybaha A	, WMM MUL	hurren	5 Munit	5C 3M Radiation Margin -6	
30.000 40 50	60 70	80	(MHz)	300	400 5	00 600 700	1000.000
No. Mk. F	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detecto
1 45	2166	54.00	21.70	20.04	40.00	7 70	

NO). MK	. Freq.	Level	Factor	ment	LIMIL	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		45.2166	54.00	-21.79	32.21	40.00	-7.79	QP
2		63.0916	55.13	-23.66	31.47	40.00	-8.53	QP
3	ļ	68.1514	59.20	-23.22	35.98	40.00	-4.02	QP
4		167.8243	51.72	-20.28	31.44	43.50	-12.06	QP
5		492.4685	45.48	-10.80	34.68	46.00	-11.32	QP
6	*	903.3094	84.14	-3.63	80.51	Fundament	al Frequency	QP

^{*:}Maximum data x:Over limit !:over margin

TOBY

Above 1GHz

emp	perature:	25 ℃			Relative	Humidity:	55%				
est	Voltage:	AC 120	/60Hz								
nt.	Pol.	Horizor	ntal	1155	55						
est	Mode:	TX Mod	de 904 Mi	Ηz	-01	88					
lem	ark:		ort for the bed limit.	emission	which more	than 10 dB	an 10 dB below the				
100.0	dBu¥/m										
_											
						(RF) FCC	PART 15C (PEAK)				
							PART 15C (AVG)				
50	1 X					(NF) FCL	PART ISC (AVG)				
	2 X										
0.0											
100	00.000 1900.00	2800.00 3	700.00 460	0.00 5500.	DO 6400.00	7300.00 8200	.00 10000.00				

No	. Mk.	Freq.			Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		1807.364	52.96	-3.37	49.59	74.00	-24.41	peak
2	*	1808.052	45.13	-3.37	41.76	54.00	-12.24	AVG

empera	ture:	25 ℃		Relative Humid	ity: 55%					
est Volt	age:	AC 120	/60Hz	AUD -						
nt. Pol.		Vertical			Can se					
est Mod	le:	TX Mod	n which more than 10 dB below the							
Remark: No re								rt for the emis ed limit.	sion which more than	
100.0 dBu ³	//m									
					(RF) FCC PART 15C (PEAK)					
	1				(RF) FCC PART 15C (AVG)					
50	x 2 X									
0.0										

No	. Mk.	Freq.			Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		1807.680	53.19	-3.37	49.82	74.00	-24.18	peak
2	*	1808.052	45.18	-3.37	41.81	54.00	-12.19	AVG

Temperature:	25 ℃	Relative Humidity:55%							
Fest Voltage:	AC 120/60Hz								
Ant. Pol.	Horizontal	any any							
Test Mode:	TX Mode 911 MHz								
Remark:	No report for the emi prescribed limit.	No report for the emission which more than 10 dB below the prescribed limit.							
100.0 dBuV/m									
		(RF) FCC PART 15C (PEAK)							
		(RF) FCC PART 15C (AVG)							
50									
1 X									
2									
×									
0.0									

No	. Mk.	Freq.			Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		1821.000	41.72	-3.36	38.36	74.00	-35.64	peak
2	*	1821.000	31.58	-3.36	28.22	54.00	-25.78	AVG

ſempe	erature:	25 ℃		Relative	Humidity:	55%
lest V	oltage:	AC 12	0/60Hz		UP	
Ant. P	ol.	Vertica			GU	139
lest M	lode:	TX Mo	de 911 MHz		30	and a
Remai	'k:		ort for the em bed limit.	ission which more	e than 10 dB	below the
100.0	dBu∀/m					
					(RF) FCC	PART 15C (PEAK)
					(RF) FC	PART 15C (AVG)
50	2					
	x					
	1 ×					
0.0						
	000 1900.00	2800.00	3700.00 4600.00	5500.00 6400.00	7300.00 8200	.00 10000.00 k

No	. Mk.	Freq.			Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	1821.632	31.58	-3.36	28.22	54.00	-25.78	AVG
2		1821.860	46.47	-3.36	43.11	74.00	-30.89	peak

Cemperature:	25℃		Relative Humid	i ty: 55%
Fest Voltage:	AC 120	/60Hz	ALL	
Ant. Pol.	Horizor	ital		
Fest Mode:	TX Mod	le 920 MHz		
Remark:		ort for the emis	sion which more than 10) dB below the
100.0 dBuV/m				
			(R	F) FCC PART 15C (PEAK)
			(i	RF) FCC PART 15C (AVG)
502				
×				
1				
×				
0.0				

N	lo. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	1839.210	31.35	-3.36	27.99	54.00	-26.01	AVG
2		1840.144	46.14	-3.36	42.78	74.00	-31.22	peak

Tem	perature:	25 ℃	Relative Humidity: 55%						
Test	Voltage:	AC 120/60Hz							
Ant.	Pol.	Vertical	any any						
Test	Mode:	TX Mode 920 MHz							
Rem	ark:	No report for the en prescribed limit.	No report for the emission which more than 10 dB below the prescribed limit.						
100.0	dBuV/m								
[
			(RF) FCC PART 15C (PEAK)						
			(RF) FCC PART 15C (AVG)						
50									
	2 X								
	1								
	×								
0.0									

N	o. M	lk.	Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	1	839.948	31.34	-3.36	27.98	54.00	-26.02	AVG
2		1	840.286	45.53	-3.36	42.17	74.00	-31.83	peak

Attachment C-- Restricted Bands Requirement Test Data

Temperatu	re: 25℃			Relative Hur	nidity:	55%	
Test Voltag	je: AC 120)/60Hz			aU		5
Ant. Pol.	Horizo	ntal		- AL		19 -	SV2
Test Mode	: TX Mo	de 904 MHz			-		
Remark:	N/A		and		AT A PARTY		
100.0 dBuV/m							
						× 3	
						ŇΛ	
					(RF) FCC I	PART 15C (PEAK)
					(RF) FCC	PART 15C (AVG]
50							
							<u>д </u>
						×	+
		-		and marked	man,	2	
0.0							
885.800 88	7.80 889.80	891.80 893	3.80 895.80	D 897.80 (899.80 901.8	40 91	05.80
		Reading	Correct	Measure			
No. Mk.	Freq.	Level	Factor	ment	Limit	Over	
	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Dete
1	902.0000	34.51	-3.65	30.86	74.00	-43.14	pe
2	902.0000	24.48	-3.65	20.83	54.00	-33.17	A١
3 *	903.7600	91.85	-3.63	88.22	Fundamental	Frequency	A١
0	000.1000	01.00	0.00	00.22			

emperature:	25 ℃		Relative Humidity	: 55%
est Voltage:	AC 120	/60Hz	AUP -	
Ant. Pol.	Vertical			Can 13 S
est Mode:	TX Mod	le 904 MHz		
Remark:	N/A		adim -	
100.0 dBuV/m	1			3
				× 4
				Λ.Ϋ́
			(RF) FCC PART 15C (PEAK)
				(RF) FCC PART 15C (AVG)
50				
				n n
				m X
		And the second		
0.0 885.400 887.40	889.40	891.40 893.40	895.40 897.40 899.40	901.40 905.40

No	. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		902.0000	34.46	-3.65	30.81	Fundamental	Freauencv	peak
2		902.0000	26.14	-3.65	22.49	Fundamental	Frequency	AVG
3	Х	904.2600	101.42	-3.63	97.79	74.00	23.79	peak
4	*	904.2600	93.61	-3.63	89.98	54.00	35.98	AVG

Tem	peratu	re:	25 ℃				Relativ	e Humidity:	55%	65	
Test	Voltag	je:	AC	120/60	lz			NULLE A	-	V	20
Ant.	Pol.		Hori	zontal	100	-	1.12	61	200		
Test	Mode	:	TX	Node 92	20 MH:	z			-	62	
Rem	nark:		N/A	60	8.8		1100	00		1 yes	
100.0	dBuV/m	2									
-	1	× ^									
-		4						(RF) FC	C PART 15C (P	EAK)	
-											
50								(RF) F	CC PART 15C	AVG)	_
		m									
r	m	\square	۹			3 ×					_
-			Y.	~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	4 ****		man management			-
0.0											
91	8.200 92	0.20 9	922.20	924.20	926.2	0 928.20	930.20	932.20 934	.20	938.20	MHz
				Read	ing	Correct	Measu				
N	o. Mk	Fre	eq.	Leve	el	Factor	ment	Limit	Over		
		MH	lz	dBu	V	dB/m	dBuV/r	n dBuV/n	n dB	Dete	ector
1	*	919.7	600	93.0	2	-3.44	89.58	Fundamen	tal Frequenc	y A'	VG
	Х	920.2	400	100.4	43	-3.44	96.99	Fundamen	tal Frequenc	ev pe	eak
2		020.2	100								
2 3		928.0		31.6	51	-3.39	28.22	2 74.00	-45.7	8 pe	eak

Tompor	oturo	25 ℃			Polotivo	Llum	aidituu	55%	-	
Temper					Relative	e num	naity:	55%		
Test Vo			20/60Hz	0.0	-	1111				
Ant. Po		Vertic			2.1		5	102		<u>.</u>
Test Mo	ode:	TX M	ode 920 MH	z				- 6		
Remark	(:	N/A	all			115	2		200	
100.0 dB	uV/m 2									-
50		h		3 3 × 4 ×				PART 15C (PEA		
0.0										
918.200	920.20	922.20	924.20 926	20 928.20) 930.20) 9:	32.20 934.	20	938.20	MHz
No.	Mk.	Freq.	Reading Level	Correct Factor			Limit	Over		
		MHz	dBuV	dB/m	dBu	V/m	dBuV/n	n dB	Dete	ctor
1 *	919	9.7600	93.02	-3.44	89	.58	Fundament	al Frequency	A٧	/G
2)	X 920	0.2400	100.43	-3.44	96.	.99	Fundament	al Frequency	pe	ak
3	928	B.0000	31.61	-3.39	28	.22	74.00	-45.78	pe	ak

23.35

-3.39

19.96

54.00

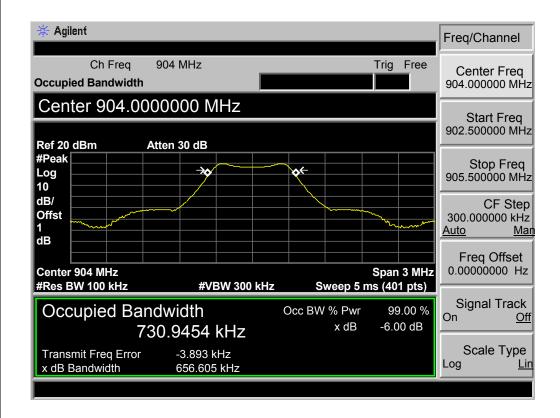
928.0000

4

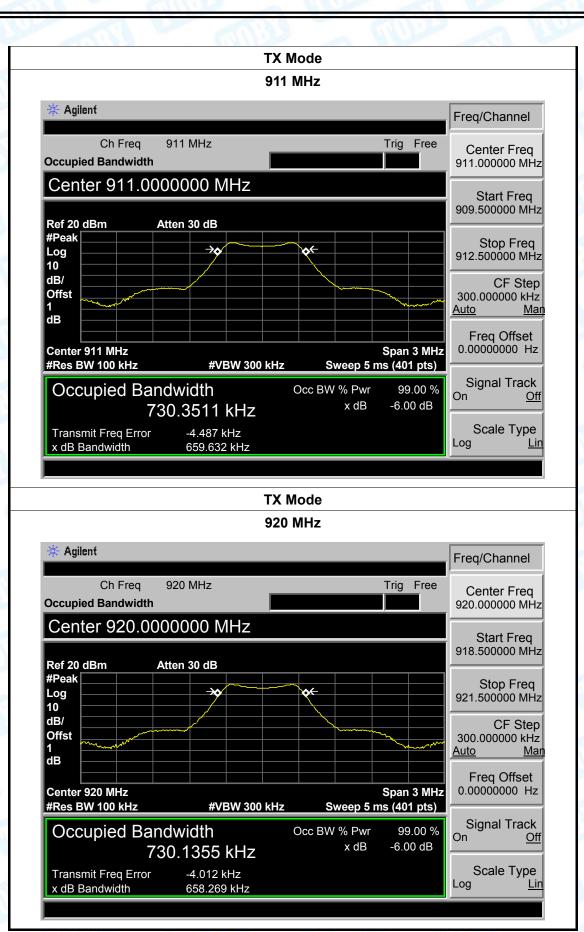
AVG

-34.04

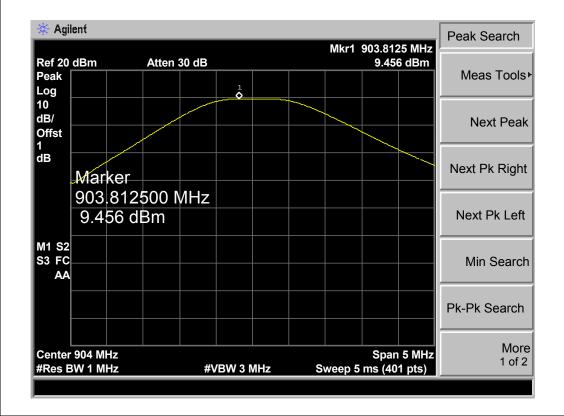
(2) Conducted Test

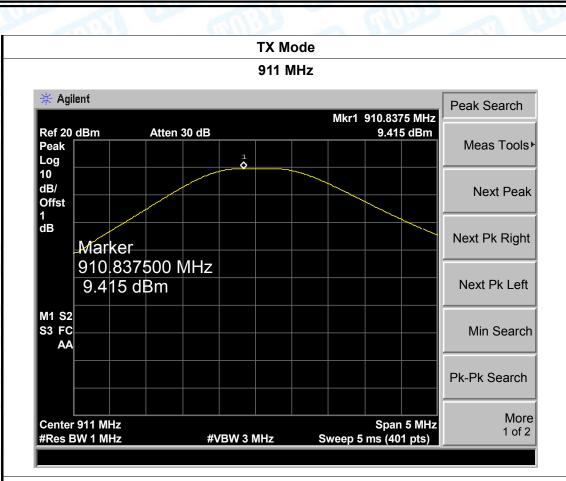

erature	:	25° ℃				F	elative	e Hum	hidity	: 55%	6
Voltage:		AC 120/60Hz						ank	19		
Mode:		TX Mode 904 MHz / TX Mode 920 MHz									
ark:		The B	EUT is	s prog	gramed	in cor	ntinuou	sly tra	insmit	ting mo	ode
🔆 Agi	lent									D.4 la	
			Mkr1 903.75 MHz				Marker				
Ref 20 Peak	dBm		Atten 3	0 dB				9.74	4 dBm		Marker
Log										<u>1 2</u>	<u>3 4</u>
10 dB/											Normal
Offst	Mar			41.1							
dB		.7500		1HZ							Delta
DI -10.3	9.7	44 dE		~~~~ ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		••••••••		¢	\$h		Deita
dBm											elta Pair
										(Trac Ref	king Ref) <u>Delta</u>
	858 M				W 200 LH	-		Span 1		0	pan Pair
#Res E Marke		race	Туре	#VB	W 300 kH X Axi	s	eep 10.36	Amplit	ude	Span	<u>Center</u>
1		(1) (1) (1)	Freq Freq		903.75 N 902.00 N	/Hz		9.744 d -47.46 d	Bm		
3		(1)	Freq		888.00 N	/Hz		-47.73 d	Bm		Off
											Oli
											More 1 of 2
											More
											More
× Agi	lent										More
			Atten 3	0 dB			Mk	r1 919.	75 MHz		More 1 of 2
Ref 20 Peak	dBm		Atten 3	0 dB			Mk	r1 919.			More 1 of 2
Ref 20			Atten 3	0 dB			Mk	r1 919.	75 MHz	Select	More 1 of 2 rker Marker
Ref 20 Peak Log 10 dB/	dBm		Atten 3	0 dB			Mk	r1 919.	75 MHz	Select	More 1 of 2 rker Marker
Ref 20 Peak Log 10 dB/ Offst 1	dBm ↓ Mar	ker					Mk	r1 919.	75 MHz	Select	More 1 of 2 Irker Marker <u>3 4</u>
Ref 20 Peak Log 10 dB/ Offst 1 dB	dBm ⇒ Mar 919	ker .7500	000 N				Mk	r1 919.	75 MHz	Select	More 1 of 2 Irker Marker <u>3 4</u>
Ref 20 Peak Log 10 dB/ Offst 1 dB DI -10.5	dBm ⇒ Mar 919	ker	000 N				Mk	r1 919.	75 MHz	Select <u>1</u> 2	More 1 of 2 rker Marker <u>3 4</u> Normal Delta
Ref 20 Peak Log 10 dB/ Offst 1 dB DI	dBm ⇒ Mar 919	ker .7500	000 N				Mk	r1 919.	75 MHz	Select <u>1</u> 2	More 1 of 2 rker Marker $\underline{3}$ $\underline{4}$ Normal Delta elta Pair
Ref 20 Peak Log 10 dB/ Offst 1 dB DI -10.5 dBm	dBm ♪ Mar 919 9,5	ker .7500 47 dE	000 N				Mk	r1 919. 9.54	75 MHz 7 dBm	Select <u>1</u> 2 D (Trac Ref	More 1 of 2 rker Marker <u>3 4</u> Normal Delta
Ref 20 Peak Log 10 dB/ Offst 1 dB DI -10.5 dBm Center	dBm ⇒ Mar 919	ker .7500 4⁄7 dE	000 N	1Hz	→ → → ₩ 300 kH		Mk	r1 919. 9.54	75 MHz 7 dBm 00 MHz	Select <u>1</u> 2 D (Trac Ref	More 1 of 2 rker <u>3 4</u> Normal Delta elta Pair cking Ref) <u>Delta</u> pan Pair
Ref 20 Peak Log 10 dB/ Offst 1 dB DI -10.5 dBm Center #Res E	dBm → Mar 919 9,5 - 966.5 3W 100 ar	ker .7500 47 dE MHz kHz race	000 M 3m _{Type}	1Hz	W 300 kH X Axia	z Sw		rr1 919. 9.54	75 MHz 7 dBm 00 MHz 1 pts) ude	Select <u>1</u> 2 D (Trac Ref	More 1 of 2 Irker Marker <u>3 4</u> Normal Delta Lelta Pair cking Ref) <u>Delta</u>
Ref 20 Peak Log 10 dB/ Offst 1 dB DI -10.5 dBm Center #Res E Marke 1 2	dBm	ker .7500 47 dE MHz kHz ^{race} (1) (1)	000 M 3m ^{Type} ^{Freq} Freq	1Hz	W 300 kH X Axii 919.75 M 928.00 M	z Sw SAHz		r1 919. 9.54 5 Span 1 6 ms (40 9.547 d -46.91 d	75 MHz 7 dBm 00 MHz 1 pts) ude Bm Bm	Select <u>1</u> 2 D (Trac Ref	More 1 of 2 rker Marker <u>3 4</u> Normal Delta elta Pair cking Ref) <u>Delta</u> pan Pair <u>Center</u>
Ref 20 Peak Log 10 dB/ Offst 1 dB DI -10.5 dBm Center #Res E	dBm	ker .7500 47 dE MHz kHz race	000 N 3m _{Type} _{Freq}	1Hz	W 300 kH X Axis 919.75 M	z Sw SAHz		r1 919. 9.54 9.54 5 ms (40 9.547 0 5 ms (40	75 MHz 7 dBm 00 MHz 1 pts) ude Bm Bm	Select <u>1</u> 2 D (Trac Ref	More 1 of 2 rker <u>3 4</u> Normal Delta elta Pair cking Ref) <u>Delta</u> pan Pair
Ref 20 Peak Log 10 dB/ Offst 1 dB DI -10.5 dBm Center #Res E Marke 1 2	dBm	ker .7500 47 dE MHz kHz ^{race} (1) (1)	000 M 3m ^{Type} ^{Freq} Freq	1Hz	W 300 kH X Axii 919.75 M 928.00 M	z Sw SAHz		r1 919. 9.54 5 Span 1 6 ms (40 9.547 d -46.91 d	75 MHz 7 dBm 00 MHz 1 pts) ude Bm Bm	Select <u>1</u> 2 D (Trac Ref	More 1 of 2 rker Marker <u>3 4</u> Normal Delta elta Pair cking Ref) <u>Delta</u> pan Pair <u>Center</u>

Attachment D-- Bandwidth Test Data


TOBY

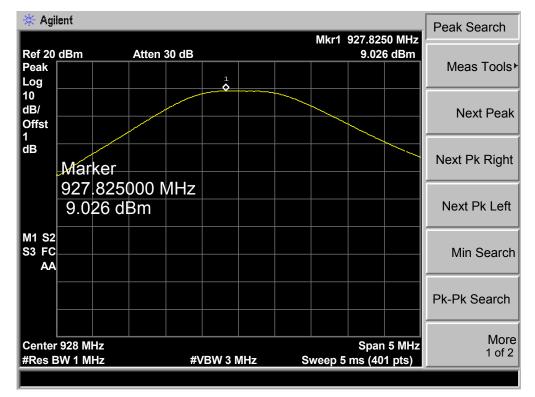
Temperature: 25°C			Relative Humidity:	55%			
Test Voltage:	AC 1	AC 120/60Hz					
Test Mode:	TX N	lode					
Channel frequency		6dB Bandwidth 99% Bandwidth		Limit			
(MHz)		(kHz)	(kHz)	(kHz)			
904 911 920		656.605	730.9454				
		659.632	730.3511	>=500			
		658.269	730.1355				
		TX M	lode				



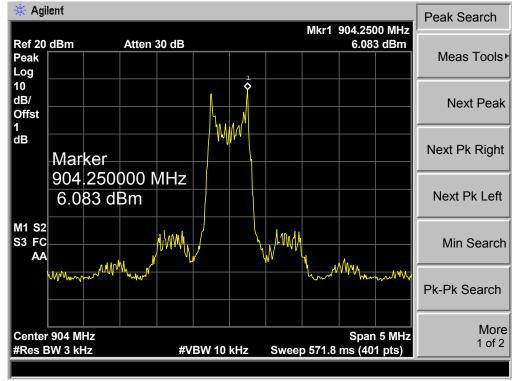

Attachment E-- Peak Output Power Test Data

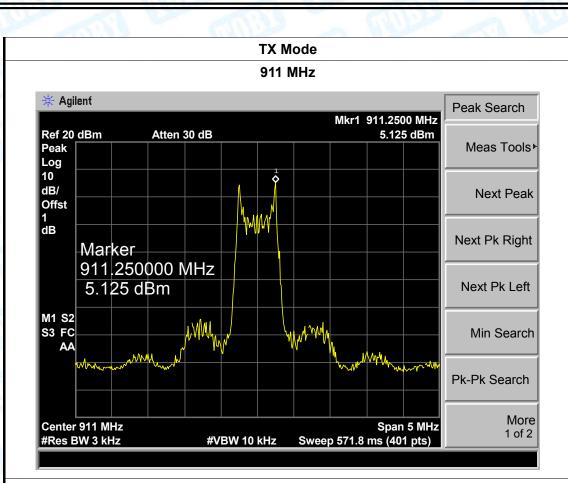
TOBY

Temperature:	25 ℃	Relative Hu	nidity:	55%			
Test Voltage:	AC 120/60	AC 120/60Hz					
Test Mode:	TX Mode	TUP -					
Channel frequer	ncy (MHz)	Test Result (dBm)		Limit (dBm)			
904		9.456					
911		9.415		30			
920		9.026					
		TX Mode					
		904 MHz					



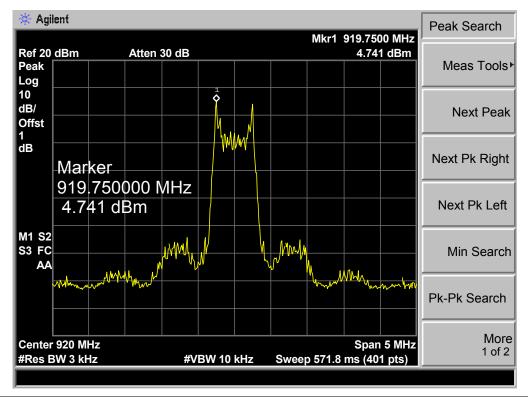
TX Mode


928 MHz


Attachment F-- Power Spectral Density Test Data

TOBY

Temperature:25℃		Relativ	55%		
Test Voltage:	AC 120/6	OHz		232	
Test Mode:	TX Mode	The second se			100
Channel Frequency		Power Density	Lim	nit	Result
(MHz)		(dBm)	(dBi	(dBm)	
904		6.083			
911		5.125	8	8	
920		4.741			
		TX Mode	k		
		904 MHz			



TX Mode

-----END OF REPORT-----