

FCC VERIFICATION TEST REPORT

for

2.4GHz Digital Headphone

Model: DH1300, DH1310, DH1300J, DH1300G, DH1300R

Brand: **ARKON**[®]

Test Report Number:

C180111Z08-F

Issued for:

ARKON ELECTRONICS(HUIZHOU)CO.,LIMITED
NO.4 Taihao Road,High-tech Industrial Park,Sandong Town,
Huicheng District, Huizhou, Guangdong, China

Issued by:

Compliance Certification Services (Shenzhen) Inc.
No.10-1, Mingkeda Logistics Park, No.18, Huanguan South Rd.,
Guan Lan Town, Baoan District, Shenzhen, China

TEL: 86-755-28055000

FAX: 86-755-28055221

E-Mail: service@ccssz.com

Issued Date: February 5, 2018

中国认可
国际互认
检测
TESTING
CNAS L4818

Certificate Number: 2861.01

Note: This report shall not be reproduced except in full, without the written approval of Compliance Certification Services (Shenzhen) Inc. This document may be altered or revised by Compliance Certification Services (Shenzhen) Inc. personnel only, and shall be noted in the revision section of the document. The client should not use it to claim product endorsement by TAF, A2LA, NIST or any government agencies. The test results of this report relate only to the tested sample identified in this report.

Revision History

Rev.	Issue Date	Revisions	Effect Page	Revised By
00	July 27, 2015	Initial Issue	ALL	Amzula Chen
01	February 5, 2018	Update Report	ALL	Anna Liu

Rev.01: C180111Z08-F

Note: 1. This report updated the product's name, the applicant, the manufacturer and the standard. And added three models: DH1300J, DH1300G and DH1300R. After reassessment, Conducted Emission and Radiated emissions were re-tested.

2. The other information, please refer to report: C150720Z01-F and this report.

TABLE OF CONTENTS

1	TEST RESULT CERTIFICATION.....	4
2	EUT DESCRIPTION	5
3	TEST METHODOLOGY	6
3.1.	DECISION OF FINAL TEST MODE	6
3.2.	EUT SYSTEM OPERATION	6
4	SETUP OF EQUIPMENT UNDER TEST.....	7
4.1.	DESCRIPTION OF SUPPORT UNITS.....	7
4.2.	CONFIGURATION OF SYSTEM UNDER TEST	7
5	FACILITIES AND ACCREDITATIONS	8
5.1.	FACILITIES	8
5.2.	ACCREDITATIONS.....	8
5.3.	MEASUREMENT UNCERTAINTY	8
6	CONDUCTED EMISSION MEASUREMENT	9
6.1.	LIMITS OF CONDUCTED EMISSION MEASUREMENT	9
6.2.	TEST INSTRUMENTS	9
6.3.	TEST PROCEDURES.....	10
6.4.	TEST SETUP	11
6.5.	DATA SAMPLE	11
6.6.	TEST RESULTS.....	12
7	RADIATED EMISSION MEASUREMENT.....	14
7.1.	LIMITS OF RADIATED EMISSION MEASUREMENT	14
7.2.	TEST INSTRUMENTS	16
7.3.	TEST PROCEDURES.....	17
7.4.	TEST SETUP	18
7.5.	DATA SAMPLE	19
7.6.	TEST RESULTS.....	20
8	PHOTOGRAPHS OF THE TEST CONFIGURATION	25

1 TEST RESULT CERTIFICATION

Product	2.4GHz Digital Headphone
Model	DH1300, DH1310, DH1300J, DH1300G, DH1300R
Brand	ARKON®
Applicant	ARKON ELECTRONICS(HUIZHOU)CO.,LIMITED NO.4 Taihao Road,High-tech Industrial Park,Sandong Town,Huicheng District, Huizhou, Guangdong, China
Manufacture	ARKON ELECTRONICS(HUIZHOU)CO.,LIMITED NO.4 Taihao Road,High-tech Industrial Park,Sandong Town,Huicheng District, Huizhou, Guangdong, China
Tested	July 20~July 27, 2015 & January 11~ February 4, 2018
Test Voltage	DC3.7V

EMISSION			
Standard	Item	Result	Remarks
FCC 47 CFR Part 15 Subpart B ANSI C63.4:2014	Conducted (Mains Port)	PASS	Meet Class B limit
	Radiated	PASS	Meet Class B limit

Note: 1. The statements of test result on the above are decided by the request of test standard only; the measurement uncertainties are not factored into this compliance determination.
2. The information of measurement uncertainty is available upon the customer's request.

Deviation from Applicable Standard
None

The above equipment has been tested by Compliance Certification Services (Shenzhen) Inc., and found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Approved by:

Paul Pan
Supervisor of EMC Dept.
Compliance Certification Service (Shenzhen) Inc.

Reviewed by:

Nancy Fu
Supervisor of Report Dept.
Compliance Certification Service (Shenzhen) Inc.

2 EUT DESCRIPTION

Product	2.4GHz Digital Headphone
Model	DH1300, DH1310, DH1300J, DH1300G, DH1300R
Brand	ARKON[®]
Applicant	ARKON ELECTRONICS(HUIZHOU)CO.,LIMITED
Housing material	Plastic
EUT Type	<input type="checkbox"/> Engineering Sample, <input checked="" type="checkbox"/> Product Sample, <input type="checkbox"/> Mass Product Sample.
Identify Number	C180111Z08-F
Received Date	July 20, 2015 & January 11, 2018
Power Supply	DC3.7V supplied by the battery
Battery Model No.	3.7Vdc,350mAh
EUT Max. Operating Frequency	2480MHz

I/O PORT

I/O PORT TYPES	Q'TY	TESTED WITH
1. Aux in Port	1	Ipod

3 TEST METHODOLOGY

3.1. DECISION OF FINAL TEST MODE

The EUT was tested together with the above additional components, and a configuration, which produced the worst emission levels, was selected and recorded in this report.

Pre-Test Mode		
Emission	Conducted Emission	Mode 1: DC Charge (DH1300) Mode 2: DC Charge (DH1300G) Mode 3: DC Charge (DH1300J)
	Radiated Emission (Below 1GHz)	Mode 1: TX CH Low Mode 2: TX CH Mid Mode 3: TX CH High
	Radiated Emission (Above 1GHz)	Mode 1: TX CH Low Mode 2: TX CH Mid Mode 3: TX CH High

After the preliminary scan, the following test mode was found to produce the highest emission level.

Final Test Mode		
Emission	Conducted Emission	Mode 2
	Radiated Emission (Below 1GHz)	Mode 1
	Radiated Emission (Above 1GHz)	Mode 1

Then, the above highest emission mode of the configuration of the EUT and cable was chosen for all final test items.

3.2. EUT SYSTEM OPERATION

- 1 Set up the EUT and the auxiliary equipments.
- 2 Turn on the EUT and insert the AUX cable connect with Ipod and connect with the DVD with Fiber .
- 3 change the mode make the EUT work on one of the Signal in.
- 4 Make sure the EUT work normally during the test.

4 SETUP OF EQUIPMENT UNDER TEST

4.1. DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

No.	Equipment	Model No.	Serial No.	FCC ID	Brand	Data Cable	Power Cord
1.	Ipod	A1285	YM91546Y3QY	DoC	Apple	Unshielded 1.90m	N/A
2	DVD	DV-410V	1HKD004627CN	DoC	Pioneer	Unshielded:0. 1.50m	Shielded 1.80m (AC Cable)
3	Headset	N/A	N/A	DoC	N/A	Unshielded: 0.80m	N/A
4	2.4GHz Digital Headphone (Transmitter)	DH1300	N/A	2AOZHD H1301G-001T	ARKON	N/A	N/A

Note: Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

4.2. CONFIGURATION OF SYSTEM UNDER TEST

Setup Diagram

See test photographs attached in Appendix 1 for the actual connections between EUT and support equipment.

5 FACILITIES AND ACCREDITATIONS

5.1. FACILITIES

All measurement facilities used to collect the measurement data are located at **No.10-1, Mingkeda Logistics Park, No.18, Huanguan South Rd., Guan Lan Town, Baoan District, Shenzhen, China**

Center Testing International(CTI).,Ltd

Bldg.C,Hongwei Industrial Zone,Baoan 70 District,SZ

The sites are constructed in conformance with the requirements of ANSI C63.4 and CISPR 22. All receiving equipment conforms to CISPR 16-1-1, CISPR 16-1-2, CISPR 16-1-3, CISPR 16-1-4, CISPR 16-1-5.

5.2. ACCREDITATIONS

Our laboratories are accredited and approved by the following approval agencies according to ISO/IEC 17025.

China	CNAS
USA	A2LA

The measuring facility of laboratories has been authorized or registered by the following approval agencies.

Canada	Industry Canada
Japan	VCCI(C-4815,R-4320,T-2317, G-10624)
USA	FCC

Copies of granted accreditation certificates are available for downloading from our web site, <http://www.ccssz.com>

5.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Uncertainty
Conducted Emissions	9kHz~30MHz	+/-3.2886dB
Radiated emissions(3m)	30 MHz ~200 MHz	+/-3.8925dB
	200 MHz ~1000 MHz	+/-3.8750dB
	1GHz ~8GHz	+/-5.3115dB
	8GHz~18GHz	+/-5.3496dB

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Consistent with industry standard determining compliance with the limits shall be base on the results of the compliance measurement. Consequently the measure emissions being less than the maximum allowed emission result in this be a compliant test or passing test.

The acceptable measurement uncertainty value without requiring revision of the compliance statement is base on conducted and radiated emissions being less than U_{CISPR} which is 3.6dB and 5.2dB respectively. CCS values (called U_{Lab} in CISPR 16-4-2) is less than U_{CISPR} as shown in the table above. Therefore, MU need not be considered for compliance.

6 CONDUCTED EMISSION MEASUREMENT

6.1. LIMITS OF CONDUCTED EMISSION MEASUREMENT

FREQUENCY (MHz)	Class A (dBuV)		Class B (dBuV)	
	Quasi-peak	Average	Quasi-peak	Average
0.15 - 0.5	79	66	66 - 56	56 - 46
0.50 - 5.0	73	60	56	46
5.0 - 30.0	73	60	60	50

NOTE:

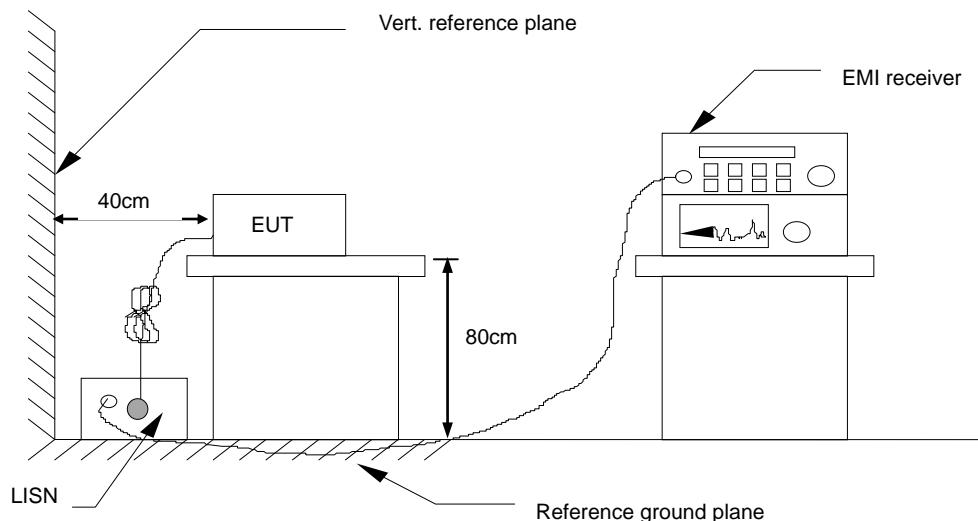
- (1) The lower limit shall apply at the transition frequencies.
- (2) The limit decreases in line with the logarithm of the frequency in the range 0.15 to 0.50 MHz.
- (3) All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

6.2. TEST INSTRUMENTS

Conducted Emission Test Site					
Name of Equipment	Manufacturer	Model Number	Serial Number	Last Calibration	Due Calibration
EMI TEST RECEIVER	ROHDE&SCHWARZ	ESCI	100783	02/11/2017	02/10/2018
LISN(EUT)	ROHDE&SCHWARZ	ENV216	101543-WX	02/11/2017	02/10/2018
LISN	EMCO	3825/2	8901-1459	02/12/2017	02/11/2018
Temp. / Humidity Meter	VICTOR	HTC-1	N/A	02/15/2017	02/14/2018
Test S/W	FARAD	EZ-EMC/ CCS-3A1-CE			

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
2. N.C.R = No Calibration Request.

6.3. TEST PROCEDURES (please refer to measurement standard or CCS SOP PA-031)


Procedure of Preliminary Test

- The EUT and Support equipment, if needed, was set up as per the test configuration to simulate typical usage per the user's manual. When the EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.4 (see Test Facility for the dimensions of the ground plane used). When the EUT is a floor standing equipment, it is placed on the ground plane, which has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane.
- All I/O cables were positioned to simulate typical actual usage as per ANSI C63.4.
- The test equipment EUT received battery.
- All support equipment power received from a second LISN.
- The EUT test program was started. Emissions were measured on each current carrying line of the EUT using an EMI Test Receiver connected to the LISN powering the EUT.
- The Receiver scanned from 150kHz to 30MHz for emissions in each of the test modes.
- During the above scans, the emissions were maximized by cable manipulation.
- The test mode(s) described in Item 3.1 were scanned during the preliminary test.
- After the preliminary scan, we found the test mode described in Item 3.1 producing the highest emission level.
- The EUT configuration and worse cable configuration of the above highest emission levels were recorded for reference of the final test.

Procedure of Final Test

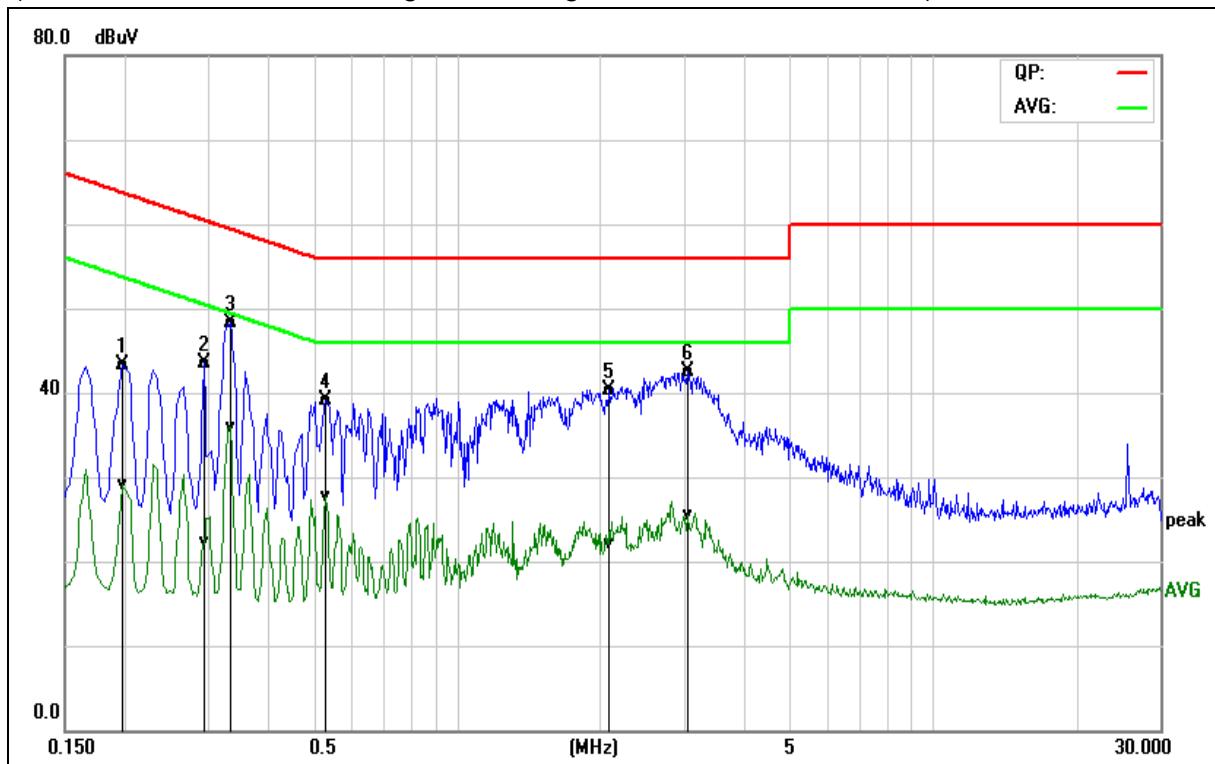
- EUT and support equipment were set up on the test bench as per the configuration with highest emission level in the preliminary test.
- A scan was taken on both power lines, Line 1 and Line 2, recording at least the six highest emissions. Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit.
- The test data of the worst-case condition(s) was recorded.
- For details, please refer to measurement standard or CCS SOP PA-031

6.4. TEST SETUP

- For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

6.5. DATA SAMPLE

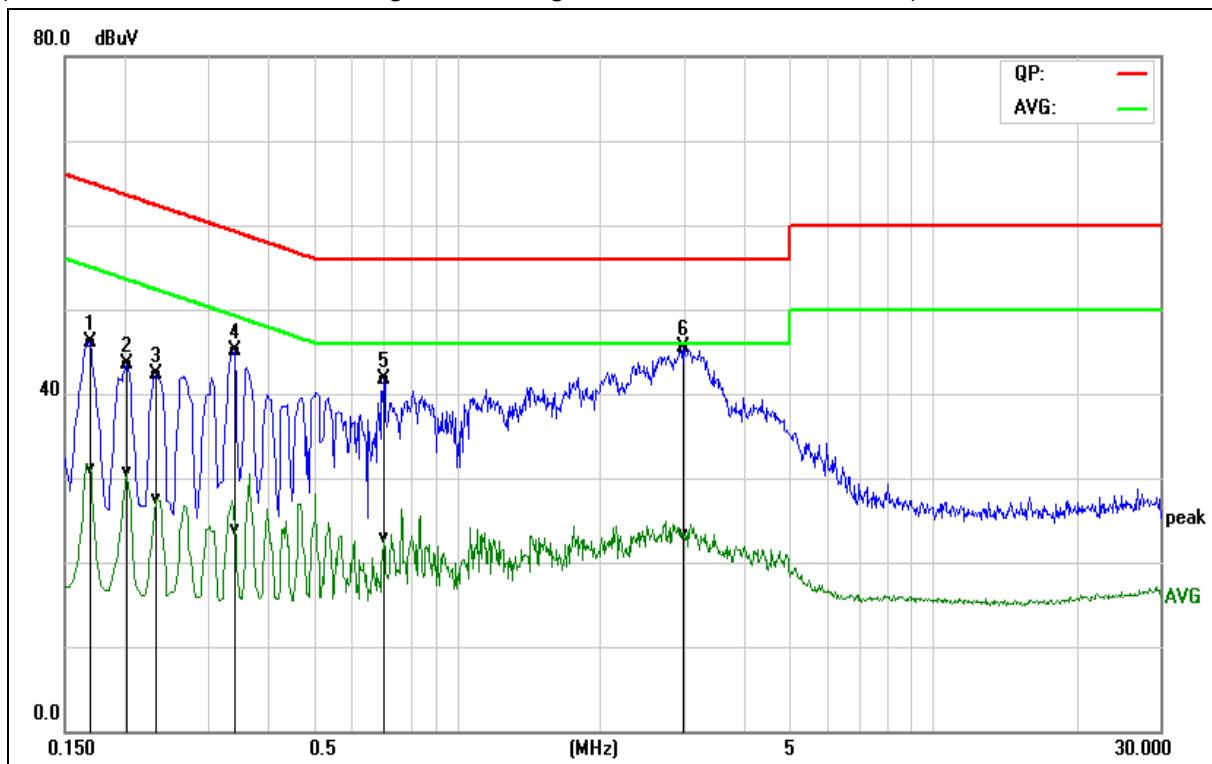
Frequency (MHz)	QuasiPeak Reading (dBuV)	Average Reading (dBuV)	Correction Factor (dB)	QuasiPeak Result (dBuV)	Average Result (dBuV)	QuasiPeak Limit (dBuV)	Average Limit (dBuV)	QuasiPeak Margin (dB)	Average Margin (dB)	Remark (Pass/Fail)
X.XXXX	45.51	42.77	0.31	45.82	43.08	62.74	52.74	-16.92	-9.66	Pass


Factor = Insertion loss of LISN + Cable Loss
Result = Quasi-peak Reading/ Average Reading + Factor
Limit = Limit stated in standard
Margin = Result (dBuV) – Limit (dBuV)

6.6. TEST RESULTS

Model No.	DH1300G	RBW,VBW	9 kHz
Environmental Conditions	26°C, 60% RH	Test Mode	Mode 2
Tested By	Karl Li	Line	L1
Tested Date	January 22, 2018	Test Voltage	AC 120V/60Hz

(The chart below shows the highest readings taken from the final data.)


Frequency (MHz)	QuasiPeak Reading (dBuV)	Average Reading (dBuV)	Correction Factor (dB)	QuasiPeak Result (dBuV)	Average Result (dBuV)	QuasiPeak Limit (dBuV)	Average Limit (dBuV)	QuasiPeak Margin (dB)	Average Margin (dB)	Remark (Pass/Fail)
0.1980	23.62	9.42	19.64	43.26	29.06	63.69	53.69	-20.43	-24.63	Pass
0.2940	23.87	2.60	19.61	43.48	22.21	60.41	50.41	-16.93	-28.20	Pass
0.3339	28.69	16.33	19.60	48.29	35.93	59.35	49.35	-11.06	-13.42	Pass
0.5299	19.49	8.20	19.54	39.03	27.74	56.00	46.00	-16.97	-18.26	Pass
2.0900	20.62	2.43	19.72	40.34	22.15	56.00	46.00	-15.66	-23.85	Pass
3.0540	22.76	5.79	19.72	42.48	25.51	56.00	46.00	-13.52	-20.49	Pass

REMARKS: L = Line One (Live Line)

Model No.	DH1300G	RBW,VBW	9 kHz
Environmental Conditions	26°C, 60% RH	Test Mode	Mode 2
Tested By	Karl Li	Line	N
Tested Date	January 22, 2018	Test Voltage	AC 120V/60Hz

(The chart below shows the highest readings taken from the final data.)

Frequency (MHz)	QuasiPeak Reading (dBuV)	Average Reading (dBuV)	Correction Factor (dB)	QuasiPeak Result (dBuV)	Average Result (dBuV)	QuasiPeak Limit (dBuV)	Average Limit (dBuV)	QuasiPeak Margin (dB)	Average Margin (dB)	Remark (Pass/Fail)
0.1700	26.61	11.61	19.53	46.14	31.14	64.96	54.96	-18.82	-23.82	Pass
0.2020	24.05	11.08	19.54	43.59	30.62	63.52	53.53	-19.93	-22.91	Pass
0.2340	22.71	8.01	19.54	42.25	27.55	62.30	52.31	-20.05	-24.76	Pass
0.3420	25.62	4.38	19.53	45.15	23.91	59.15	49.15	-14.00	-25.24	Pass
0.7019	22.09	3.22	19.61	41.70	22.83	56.00	46.00	-14.30	-23.17	Pass
3.0059	25.69	3.65	19.75	45.44	23.40	56.00	46.00	-10.56	-22.60	Pass

REMARKS: N = Line Two (Neutral Line)

7 RADIATED EMISSION MEASUREMENT

7.1. LIMITS OF RADIATED EMISSION MEASUREMENT

Below 1GHz

FREQUENCY (MHz)	dBuV/m (At 10m)		dBuV/m (At 3m)	
	Class A		Class B	
30 ~ 88	39.00		40.00	
88 ~ 216	43.50		43.50	
216 ~ 960	46.40		46.00	
960 ~ 1000	49.50		54.00	

NOTE:

- (1) The lower limit shall apply at the transition frequencies.
- (2) Emission level (dBuV/m) = 20 log Emission level (uV/m).

Above 1GHz

Frequency (MHz)	Class A (dBuV/m)		Class B (dBuV/m)	
	Average	Peak	Average	Peak
Above 1000	60	80	54	74

Notes:

- (1) The lower limit shall apply at the transition frequencies.
- (2) Emission level (dBuV/m) = 20 log Emission level (uV/m).
- (3) All emanation from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

According to FCC Part 15.33 (b), for an unintentional radiator, including a digital device, the spectrum shall be investigated from the lowest radio frequency signal generated or used in the device, without going below the lowest frequency for which a radiated emission limit is specified, up to the frequency shown in the following table:

Highest frequency generated or used in the device or in which the device operated or tunes (MHz)	Upper frequency of measurement range (MHz)
Below 1.705	30
1.705-108	1000
108-500	2000
500-1000	5000
Above 1000	5 th harmonic of the highest frequency or 40GHz, whichever is lower

15.38 (b) (11)Third Edition of the International Special Committee on Radio Interference (CISPR), Pub. 22, "Information Technology Equipment – Radio Disturbance Characteristics – Limits and Methods of Measurement," 1997, IBR approved for § 15.109.

Below 1GHz

FREQUENCY (MHz)	dBuV/m (At 10m)	
	Class A	Class B
30 ~ 230	40	30
230 ~ 1000	47	37

Above 1GHz

Frequency (GHZ)	Class A (dBuV/m) (At 3m)		Class B (dBuV/m) (At 3m)	
	Average	Peak	Average	Peak
1~3	56	76	50	70
3~6	60	80	54	74

Notes: (1) The lower limit shall apply at the transition frequencies.

(2) Emission level (dBuV/m) = 20 log Emission level (uV/m).

(3) All emanation from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

According to CISPR22 clause 6.3, the measurement frequency range shown in the following table:

Highest frequency generated or used in the device or on which the device operates or tunes (MHz)	Upper frequency of measurement range (MHz)
Less than 108	1000
108-500	2000
500-1000	5000
Above 1000	5 times of the highest frequency or 6GHz, whichever is less

7.2. TEST INSTRUMENTS

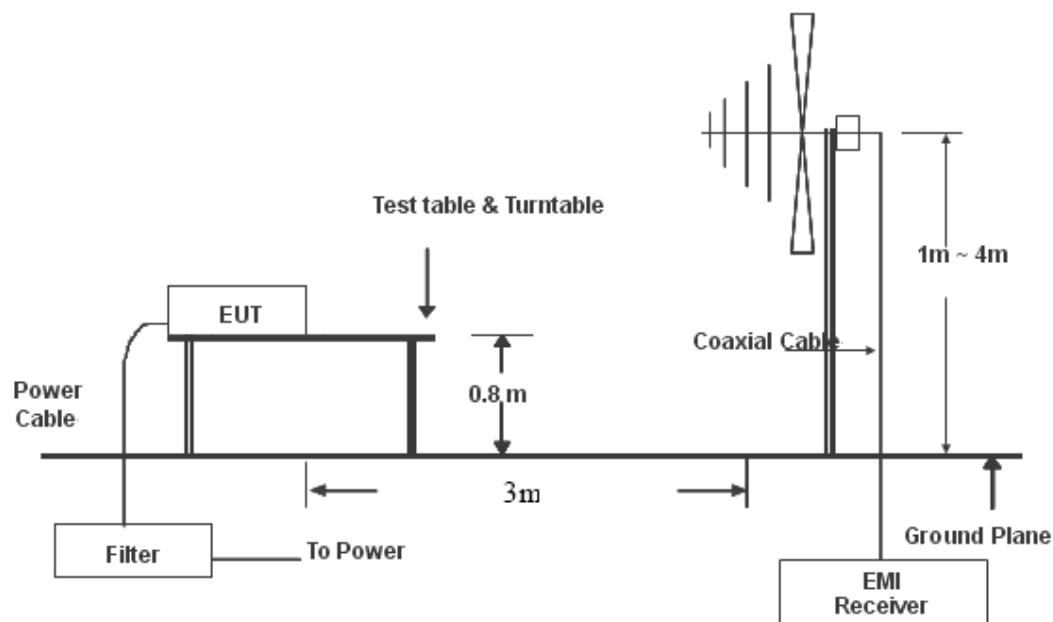
Radiated Emission Test Site 966 (2)					
Name of Equipment	Manufacturer	Model Number	Serial Number	Last Calibration	Due Calibration
PSA Series Spectrum Analyzer	Agilent	N9010A	MY55370330	02/17/2017	02/16/2018
High Noise Amplifier	Agilent	8449B	3008A01838	02/11/2017	02/10/2018
Horn Antenna	SCHWARZBECK	BBHA9120	D286	02/12/2017	02/11/2018
Board-Band Horn Antenna	Schwarzbeck	BBHA 9170	9170-497	02/11/2017	02/10/2018
Turn Table	N/A	N/A	N/A	N.C.R	N.C.R
Controller	Sunol Sciences	SC104V	022310-1	N.C.R	N.C.R
Controller	CT	N/A	N/A	N.C.R	N.C.R
Antenna Tower	SUNOL	TLT2	N/A	N.C.R	N.C.R
Temp. / Humidity Meter	Anymetre	JR913	N/A	02/15/2017	02/14/2018
Test S/W	FARAD	LZ-RF / CCS-SZ-3A2			

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

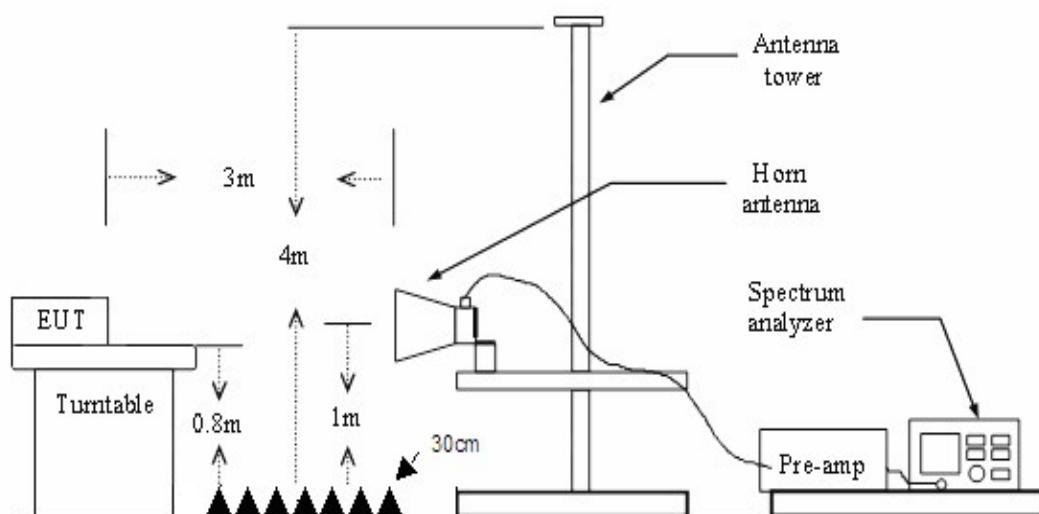
2. N.C.R = No Calibration Request.

7.3. TEST PROCEDURES (please refer to measurement standard or CCS SOP PA-031)

Procedure of Preliminary Test


- The equipment was set up as per the test configuration to simulate typical usage per the user's manual. When the EUT is a tabletop system, a wooden turntable with a height of 0.8 meters is used which is placed on the ground plane. When the EUT is a floor standing equipment, it is placed on the ground plane which has a non-conductive covering to insulate the EUT from the ground plane.
- Support equipment, if needed, was placed as per ANSI C63.4.
- All I/O cables were positioned to simulate typical usage as per ANSI C63.4.
- The test equipment EUT received battery.
- The antenna was placed at 10 meter away from the EUT as stated in ANSI C63.4. The antenna connected to the Spectrum Analyzer via a cable and at times a pre-amplifier would be used.
- The Analyzer / Receiver quickly scanned from 30MHz to 40GHz. The EUT test program was started. Emissions were scanned and measured rotating the EUT to 360 degrees and positioning the antenna 1 to 4 meters above the ground plane, in both the vertical and the horizontal polarization, to maximize the emission reading level.
- The test mode(s) described in Item 3.1 were scanned during the preliminary test:
- After the preliminary scan, we found the test mode described in Item 3.1 producing the highest emission level.
- The worst configuration of EUT and cable of the above highest emission level were recorded for reference of the final test.

Procedure of Final Test


- EUT and support equipment were set up on the turntable as per the configuration with highest emission level in the preliminary test.
- The Analyzer / Receiver scanned from 30MHz to 40GHz. Emissions were scanned and measured rotating the EUT to 360 degrees, varying cable placement and positioning the antenna 1 or 1 to 4 meters above the ground plane, in both the vertical and the horizontal polarization, to maximize the emission reading level.
- Recording at least the six highest emissions. Emission frequency, amplitude, antenna position, polarization and turntable position were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit and only Q.P. (For Below 1GHz) or Peak/Average (For Above 1GHz) reading is presented.
- The test data of the worst-case condition(s) was recorded.

7.4. TEST SETUP

Below 1GHz

Above 1GHz

- For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

7.5. DATA SAMPLE

Below 1GHz

Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
XXX.XXXX	33.15	-15.84	17.31	40.00	-22.69	QP

Frequency (MHz) = Emission frequency in MHz
 Reading (dBuV) = Uncorrected Analyzer / Receiver reading
 Correct Factor (dB/m) = Antenna factor + Cable loss – Amplifier gain
 Result (dBuV/m) = Reading (dBuV) + Corr. Factor (dB/m)
 Limit (dBuV/m) = Limit stated in standard
 Margin (dB) = Result (dBuV/m) – Limit (dBuV/m)
 QP = Quasi-peak Reading

Above 1GHz

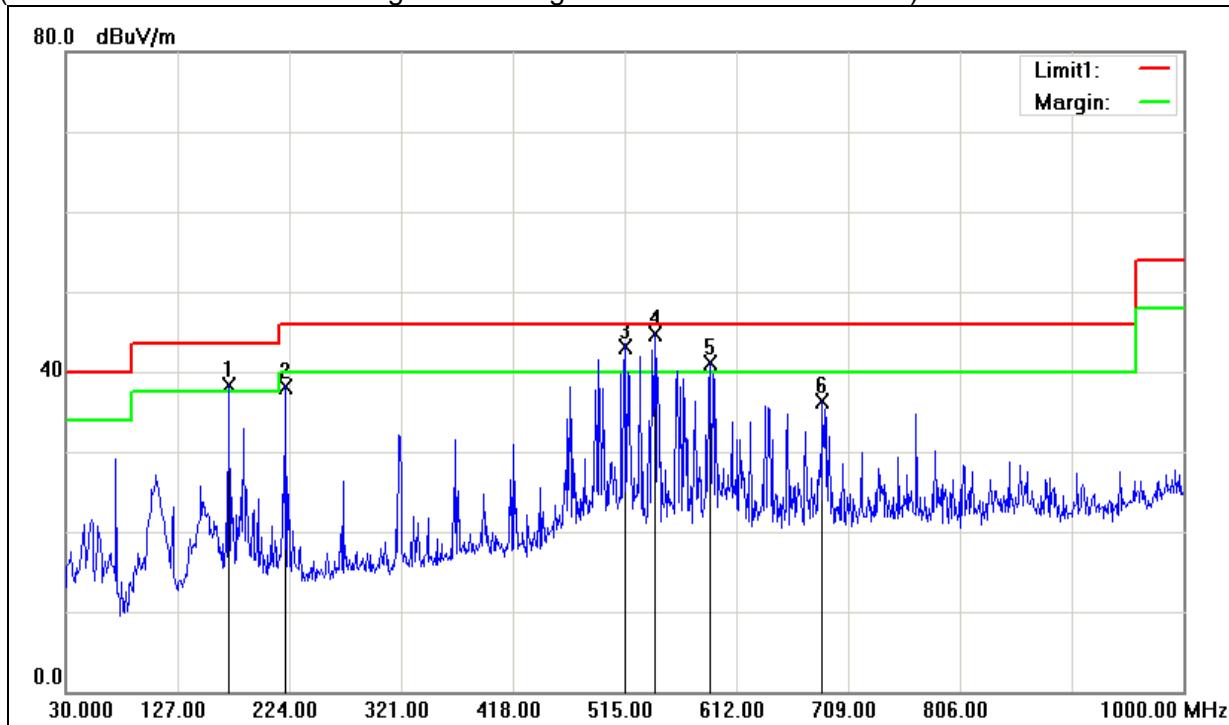
Frequency (MHz)	Reading (dBuV)	Correction Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
XXXX.XXXX	62.09	-11.42	50.67	74.00	-23.33	Peak
XXXX.XXXX	49.78	-11.42	38.36	54.00	-15.64	AVG

Frequency (MHz) = Emission frequency in MHz
 Reading (dBuV) = Uncorrected Analyzer / Receiver reading
 Correction Factor (dB/m) = Antenna factor + Cable loss – Amplifier gain
 Result (dBuV/m) = Reading (dBuV) + Correction Factor (dB/m)
 Limit (dBuV/m) = Limit stated in standard
 Margin (dB) = Result (dBuV/m) – Limit (dBuV/m)
 Peak = Peak Reading
 AVG = Average Reading

Calculation Formula

$$\text{Margin (dB)} = \text{Result (dBuV/m)} - \text{Limits (dBuV/m)}$$

$$\text{Result (dBuV/m)} = \text{Reading (dBuV)} + \text{Correction Factor (dB/m)}$$

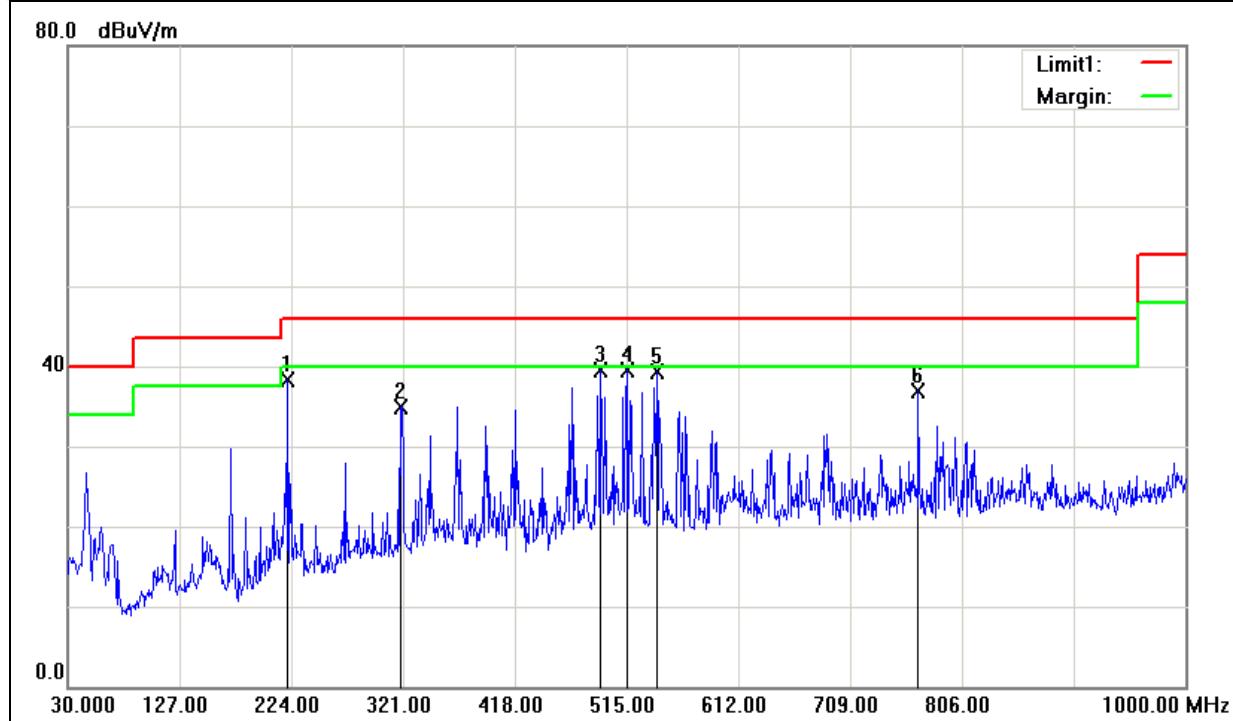


7.6. TEST RESULTS

Below 1GHz

Model No.	DH1300G	Test Mode	Mode 1
Environmental Conditions	22°C, 50% RH	RBW,VBW	120 kHz
Antenna Pole	Vertical	Antenna Distance	3m
Detector Function	Quasi-peak	Tested By	David Dong
Tested date	January 17, 2018	Test Voltage	AC 120V/60Hz

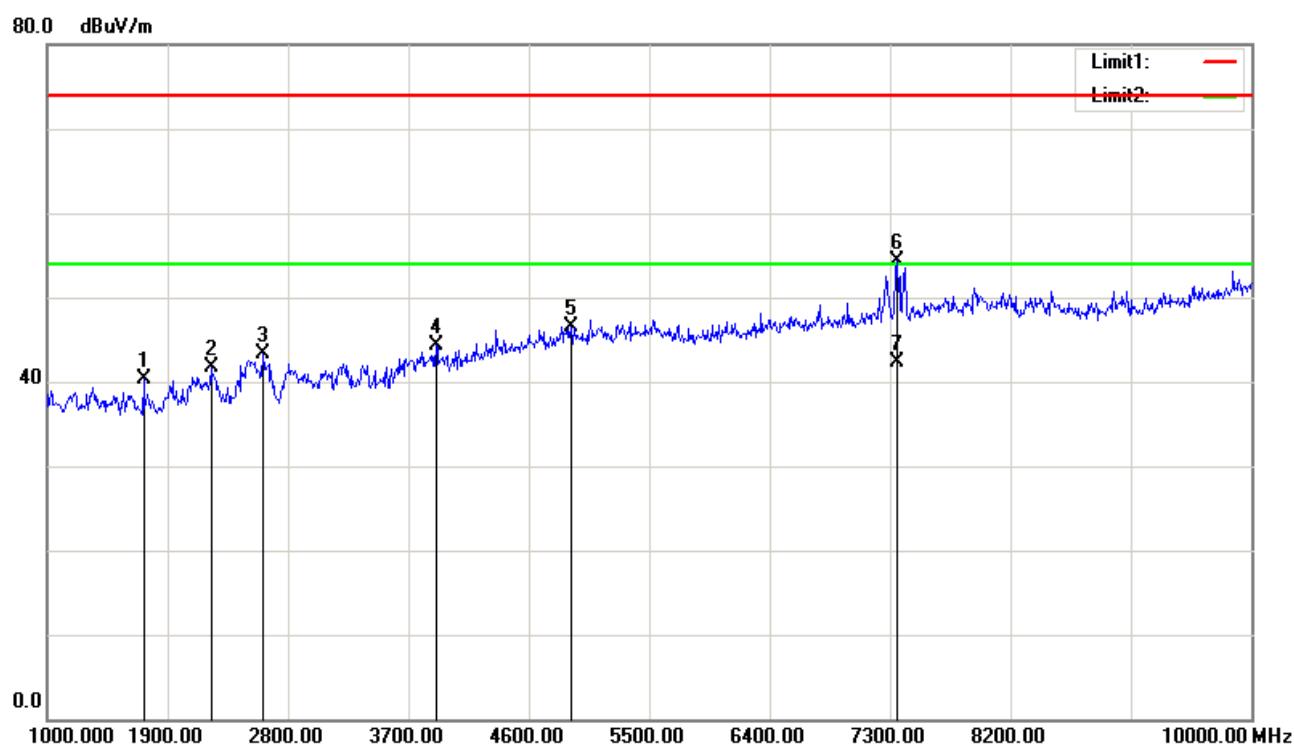
(The chart below shows the highest readings taken from the final data.)


Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
171.6200	51.30	-12.92	38.38	43.50	-5.12	QP
221.0900	48.99	-10.79	38.20	46.00	-7.80	QP
515.9700	49.97	-6.77	43.20	46.00	-2.80	QP
541.1900	51.22	-6.42	44.80	46.00	-1.20	QP
589.6900	47.38	-6.19	41.19	46.00	-4.81	QP
686.6900	40.92	-4.66	36.26	46.00	-9.74	QP

REMARKS: 1. QP= Quasi-peak Reading
2. The other emission levels were very low against the limit.

Model No.	DH1300G	Test Mode	Mode 1
Environmental Conditions	22°C, 50% RH	RBW,VBW	120 kHz
Antenna Pole	Horizontal	Antenna Distance	3m
Detector Function	Quasi-peak	Tested By	David Dong
Tested date	January 17, 2018	Test Voltage	AC 120V/60Hz

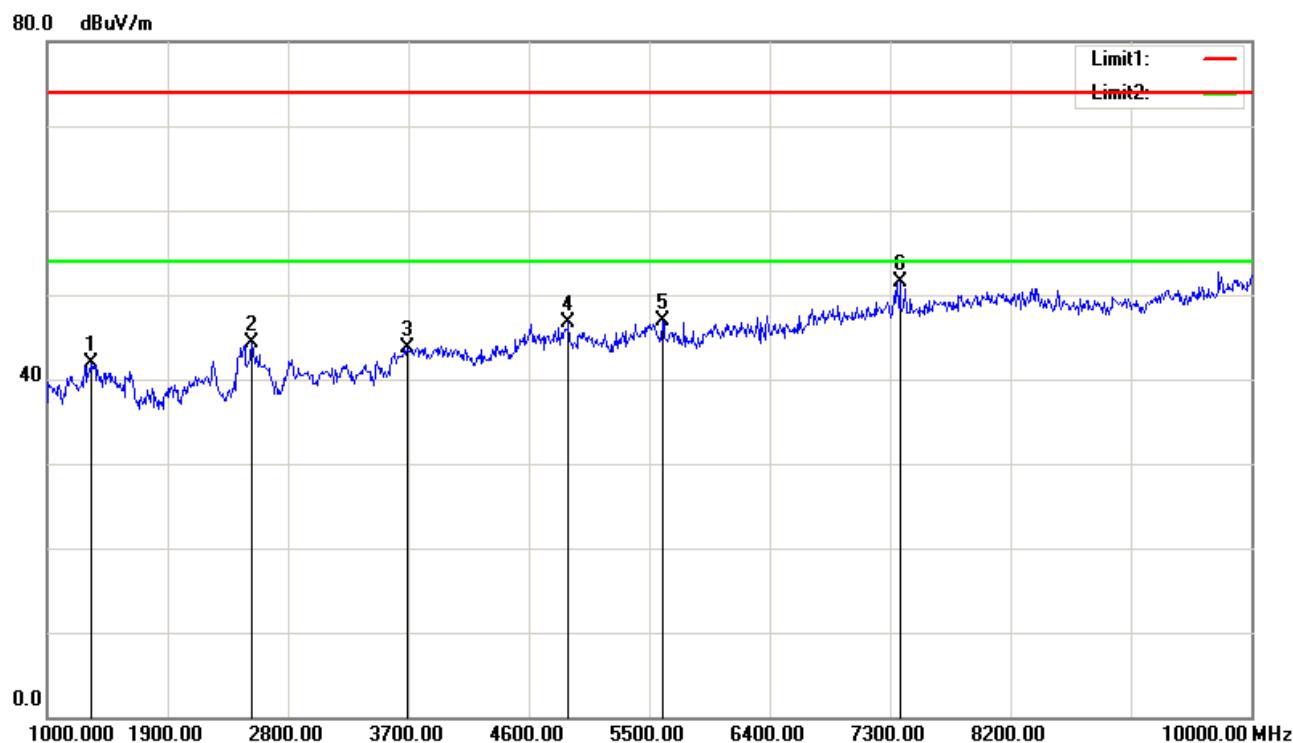
(The chart below shows the highest readings taken from the final data.)


Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
221.0900	49.04	-10.79	38.25	46.00	-7.75	QP
319.0600	44.75	-9.89	34.86	46.00	-11.14	QP
491.7200	46.63	-7.06	39.57	46.00	-6.43	QP
515.9700	46.33	-6.77	39.56	46.00	-6.44	QP
541.1900	45.66	-6.42	39.24	46.00	-6.76	QP
768.1700	40.58	-3.59	36.99	46.00	-9.01	QP

REMARKS: 1. QP= Quasi-peak Reading
2. The other emission levels were very low against the limit.

Above 1GHz

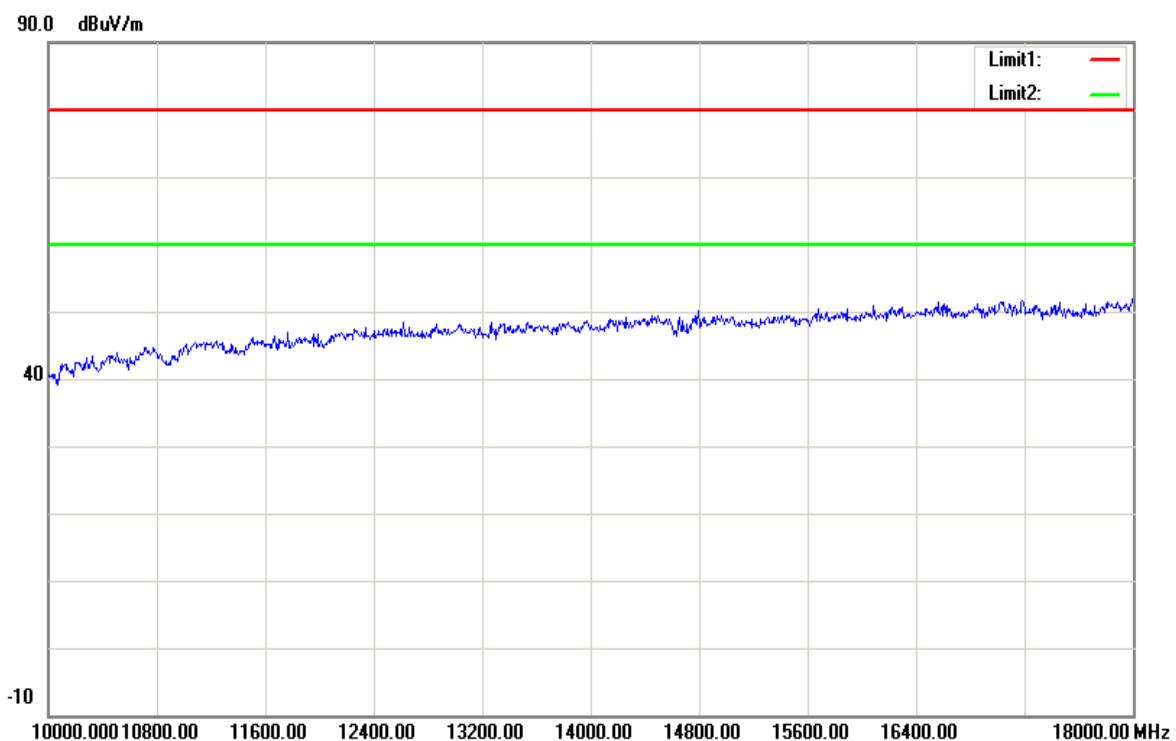
Model No.	DH1300G	Test Mode	Mode 1
Environmental Conditions	26°C, 50% RH	RBW,VBW	1MHz
Antenna Pole	Vertical	Antenna Distance	3m
Detector Function	Peak/Average	Tested By	Karl Li
Tested date	January 17, 2018	Test Voltage	AC 120V/60Hz



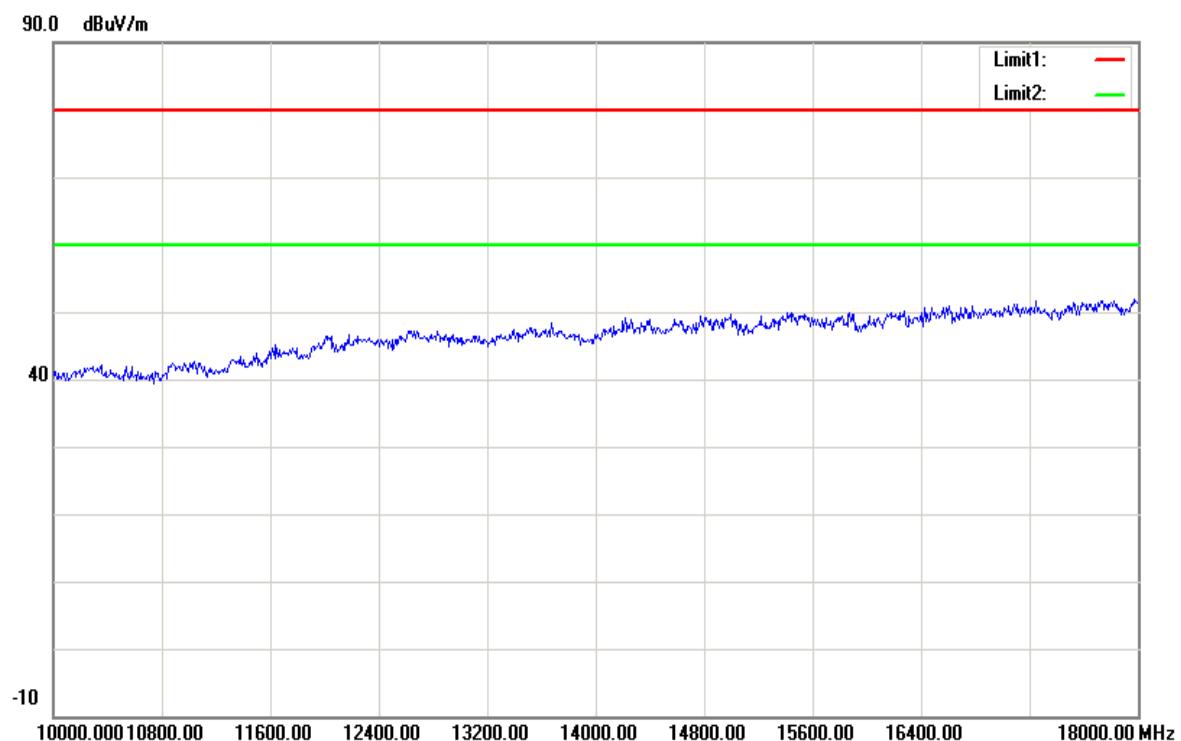
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
1720.000	46.71	-6.44	40.27	74.00	-33.73	peak
2224.000	45.44	-3.77	41.67	74.00	-32.33	peak
2611.000	45.41	-2.06	43.35	74.00	-30.65	peak
3907.000	43.14	1.20	44.34	74.00	-29.66	peak
4915.000	41.89	4.70	46.59	74.00	-27.41	peak
7354.000	45.97	8.39	54.36	74.00	-19.64	peak
7354.000	33.91	8.39	42.30	54.00	-11.70	AVG

REMARKS: 1. Peak= Peak Reading; AVG = Average Reading.
2. The other emission levels were very low against the limit.

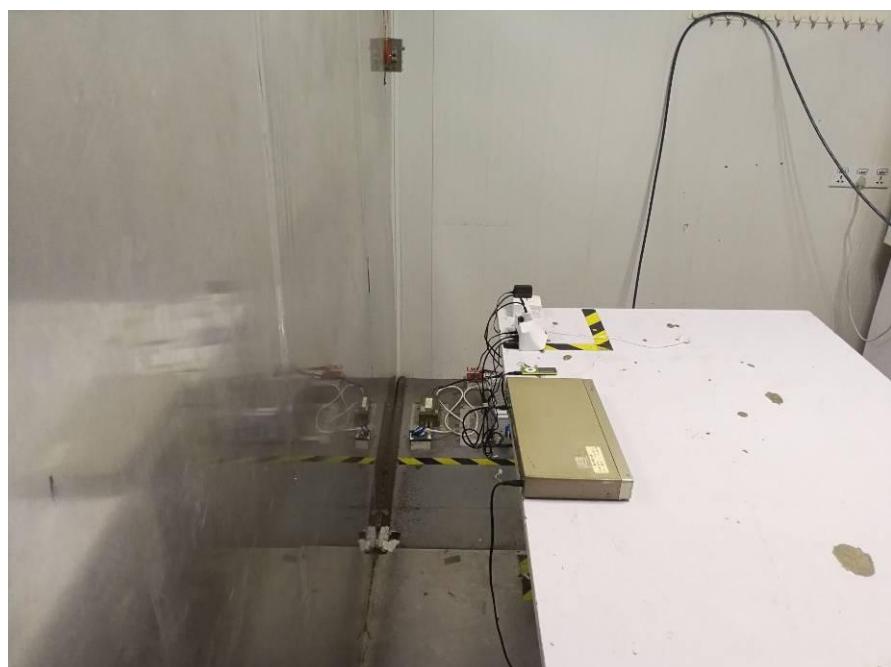
Model No.	DH1300G	Test Mode	Mode 1
Environmental Conditions	26°C, 50% RH	RBW,VBW	1MHz
Antenna Pole	Horizontal	Antenna Distance	3m
Detector Function	Peak/Average	Tested By	Fade Zhong
Tested date	January 17, 2018	Test Voltage	AC 120V/60Hz



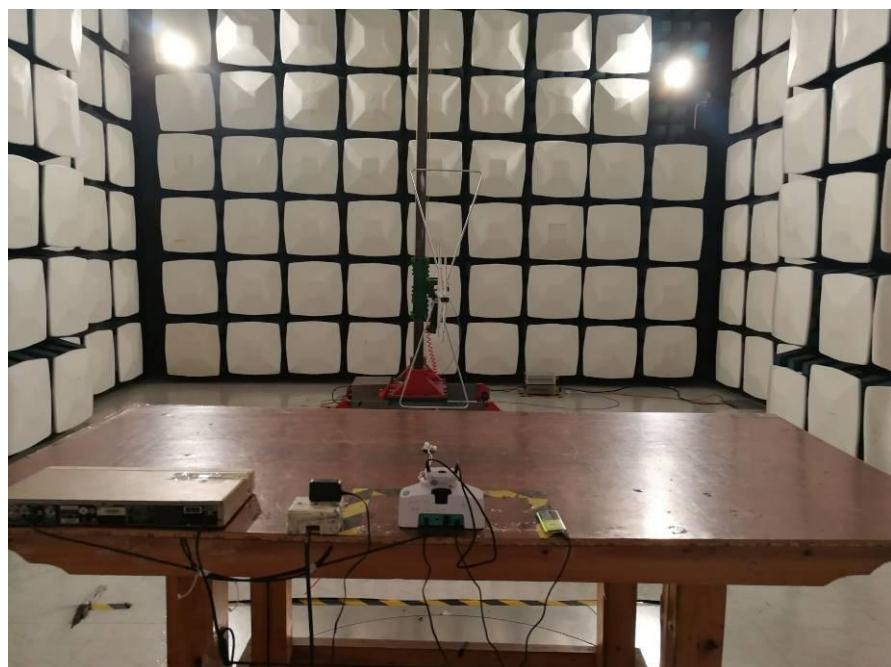
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
1333.000	49.29	-7.30	41.99	74.00	-32.01	peak
2530.000	46.46	-2.21	44.25	74.00	-29.75	peak
3691.000	43.51	0.29	43.80	74.00	-30.20	peak
4897.000	42.07	4.64	46.71	74.00	-27.29	peak
5599.000	40.91	5.91	46.82	74.00	-27.18	peak
7372.000	43.16	8.43	51.59	74.00	-22.41	peak


REMARKS: 1. Peak= Peak Reading; AVG = Average Reading.
2. The other emission levels were very low against the limit.

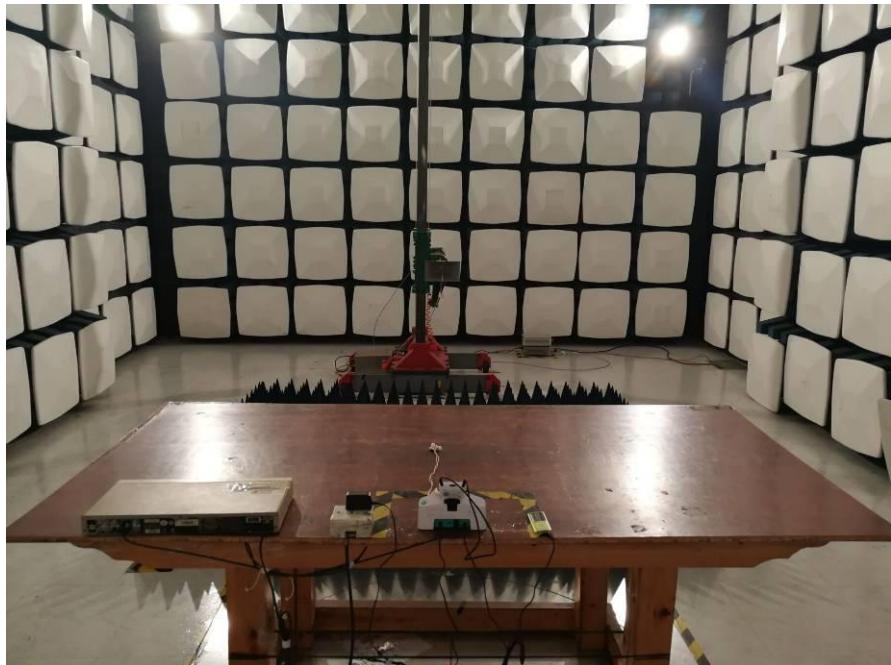
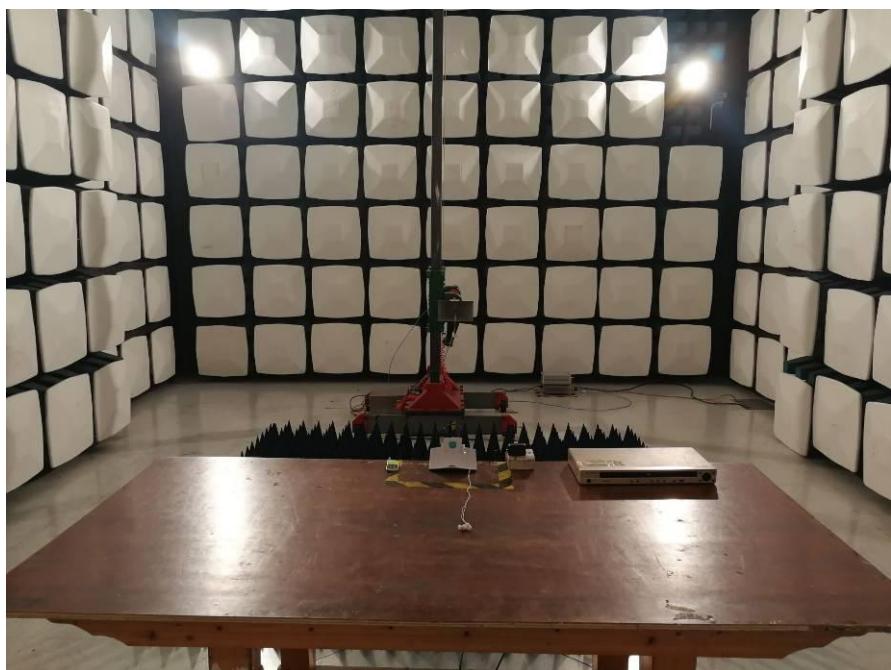
Vertical



Horizontal


8 PHOTOGRAPHS OF THE TEST CONFIGURATION

CONDUCTED EMISSION TEST

**RADIATED EMISSION TEST
Below 1GHz**

Above 1GHz

