

Anova Applied Electronics, Inc.

RF TEST REPORT

Report Type:

FCC Part 15.247 & ISED RSS-247 RF report

Model:

AN525-10

REPORT NUMBER:

220801257SHA-002

ISSUE DATE:

December 23, 2022

DOCUMENT CONTROL NUMBER:

TTRF15.247-03_V1 © 2018 Intertek

Intertek Testing Services Shanghai Building No.86, 1198 Qinzhou Road (North) Caohejing Development Zone Shanghai 200233, China

Telephone: 86 21 6127 8200

www.intertek.com

Report no.: 220801257SHA-002

Applicant: Anova Applied Electronics, Inc.

667 Howard Street, San Francisco, CA94105

Manufacturer: Anova Applied Electronics, Inc.

667 Howard Street, San Francisco, CA94105

Factory: Flextronics Manufacturing (Zhuhai) Co., Ltd.

Flextronics Zhuhai Industrial Park, Xin Qing Science & Technology

Industrial Park, B15 Jing An Doumen, Zhuhai 519180, P.R.C

FCC ID: 2APBOAN525 IC: 23717-AN525

SUMMARY:

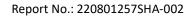
The equipment complies with the requirements according to the following standard(s) or Specification:

47CFR Part 15 (2020): Radio Frequency Devices (Subpart C)

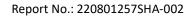
ANSI C63.10 (2013): American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices

RSS-247 Issue 2 (February 2017): Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices

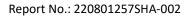
RSS-Gen Issue 5 (March 2019) Amendment 1: General Requirements for Compliance of Radio Apparatus


PREPARED BY:	REVIEWED BY:	
Zrie.li	JK:W	
Project Engineer	Reviewer	
Eric Li	Wakeyou Wang	

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

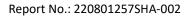

Content

RE	REVISION HISTORY5			
М	EASU	JREMENT RESULT SUMMARY	6	
1	G	GENERAL INFORMATION	7	
	1.1	DESCRIPTION OF EQUIPMENT UNDER TEST (EUT)		
	1.2	TECHNICAL SPECIFICATION		
	1.3	DESCRIPTION OF TEST FACILITY		
2	T	EST SPECIFICATIONS	g	
	2.1	STANDARDS OR SPECIFICATION	C	
	2.2	Mode of operation during the test		
	2.3	TEST SOFTWARE LIST		
	2.4	TEST PERIPHERALS LIST	10	
	2.5	TEST ENVIRONMENT CONDITION:	10	
	2.6	INSTRUMENT LIST	11	
	2.7	MEASUREMENT UNCERTAINTY	13	
3	N	MINIMUM 6DB BANDWIDTH	14	
	3.1	LIMIT	14	
	3.2	Measurement Procedure	14	
	3.3	TEST CONFIGURATION		
	3.4	TEST RESULTS OF MINIMUM 6DB BANDWIDTH	14	
4	N	MAXIMUM CONDUCTED OUTPUT POWER AND E.I.R.P	15	
	4.1	LIMIT	15	
	4.2	Measurement Procedure		
	4.3	TEST CONFIGURATION		
	4.4	TEST RESULTS OF MAXIMUM CONDUCTED OUTPUT POWER	16	
5	P	POWER SPECTRUM DENSITY	17	
	5.1	LIMIT	17	
	5.2	Measurement Procedure	17	
	5.3	TEST CONFIGURATION		
	5.4	TEST RESULTS OF POWER SPECTRUM DENSITY	18	
6	El	MISSION OUTSIDE THE FREQUENCY BAND	19	
		LIMIT		
	6.2	Measurement Procedure		
	6.3	TEST CONFIGURATION		
	6.4	THE RESULTS OF EMISSION OUTSIDE THE FREQUENCY BAND		
7	R	RADIATED EMISSIONS IN RESTRICTED FREQUENCY BANDS	21	
	7.1	LIMIT		
	7.2	Measurement Procedure		
	7.3	TEST CONFIGURATION		
	7.4	TEST RESULTS OF RADIATED EMISSIONS	25	
8	P	POWER LINE CONDUCTED EMISSION	29	
	8.1	LIMIT		
	8.2	TEST CONFIGURATION		
	8.3 8.4	MEASUREMENT PROCEDURE		
	X 4	LEVERENTIES OF POWER LINE CONDUCTED EMISSION	31	


9	OCCUPIED BANDWIDTH		33
	9.1	LIMIT	33
		Measurement Procedure	
	9.3	TEST CONFIGURATION	33
	9.4	THE RESULTS OF OCCUPIED BANDWIDTH	33
10) A	NTENNA REQUIREMENT	34
ΔΙ	PDFNI	DIX Δ· TEST RESUITS	31

Revision History

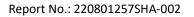
Report No.	Version	Description	Issued Date
220801257SHA-002	Rev. 01	Initial issue of report	December 23, 2022



Measurement result summary

TEST ITEM	FCC REFERANCE	IC REFERANCE	RESULT
Minimum 6dB Bandwidth	15.247(a)(2)	RSS-247 Issue 2 Clause 5.2	Pass
Maximum conducted output power and e.i.r.p.	15.247(b)(3)	RSS-247 Issue 2 Clause 5.4	Pass
Power spectrum density	15.247(e)	RSS-247 Issue 2 Clause 5.2	Pass
Emission outside the frequency band	15.247(d)	RSS-247 Issue 2 Clause 5.5	Pass
Radiated Emissions in restricted frequency bands	15.247(d), 15.205&15.209	RSS-Gen Issue 5 Clause 8.9&8.10	Pass
Power line conducted emission	15.207(a)	RSS-Gen Issue 5 Clause 8.8	Pass
Occupied bandwidth	-	RSS-Gen Issue 5 Clause 6.6	Tested
Antenna requirement	15.203	-	Pass

Notes: 1: NA =Not Applicable

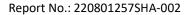

1 GENERAL INFORMATION

1.1 Description of Equipment Under Test (EUT)

Product name:	Sous Vide Immersion Circulator	
Type/Model:	AN525-10	
Description of EUT: EUT is a Sous Vide Immersion Circulator with BLE and WIFI function of EUT: there is one model. We tested it and listed the worst results in treport.		
Rating:	120V AC, 60Hz, 1100W	
EUT type:	☐ Tabletop ☐ Floor standing	
Software Version:	/	
Hardware Version: /		
Sample Identification No.:	0221028-11-003	
Sample received date:	October 28, 2022	
Date of test:	November 6, 2022~ November 17, 2022	

1.2 Technical Specification

Frequency Band:	2400MHz ~ 2483.5MHz
Support Standards:	IEEE 802.11b, IEEE 802.11g, IEEE 802.11n-HT20, IEEE 802.11n-HT40
	IEEE 802.11b: DSSS (CCK, DQPSK, DBPSK)
	IEEE 802.11g: OFDM (64-QAM, 16-QAM, QPSK, BPSK)
	IEEE 802.11n-HT20: OFDM (64-QAM, 16-QAM, QPSK, BPSK)
Type of Modulation:	IEEE 802.11n-HT40: OFDM (64-QAM, 16-QAM, QPSK, BPSK)
	11 Channels for 802.11b, 802.11g and 802.11n(HT20)
Channel Number:	7 Channels for 802.11n(HT40)
Channel Separation:	5 MHz
Antenna:	PCB Antenna, gain is 2.24dBi



1.3 Description of Test Facility

Intertek Testing Services Shanghai
Building 86, No. 1198 Qinzhou Road (North), Shanghai 200233, P.R. China
86 21 61278200
86 21 54262353

	The test facility is recognized,	CNAS Accreditation Lab Registration No. CNAS L0139
certified, or accredited by these Designation Number: CN0175		
	organizations:	IC Registration Lab CAB identifier.: CN0014
VCCI Registration Lab Member No: 3598		VCCI Registration Lab Member No: 3598 (Registration No.: R-14243, G-10845, C-14723, T-12252)
		A2LA Accreditation Lab Certificate Number: 3309.02

2 TEST SPECIFICATIONS

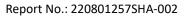
2.1 Standards or specification

47CFR Part 15 (2020) ANSI C63.10 (2013) KDB 558074 (v05r02) RSS-247 Issue 2 (February 2017) RSS-Gen Issue 5 (March 2019) Amendment 1

2.2 Mode of operation during the test

While testing transmitting mode of EUT, the internal modulation and continuously transmission was applied.

Software name	Manufacturer	Version	Supplied by
AmebaD_mptool	/	V2.3	Client


The lowest, middle and highest channel were tested as representatives.

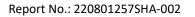
Frequency Band (MHz)	Mode	Lowest (MHz)	Middle (MHz)	Highest (MHz)
	802.11b	2412	2437	2462
2400-2483.5	802.11g	2412	2437	2462
2400-2483.5	802.11n(HT20)	2412	2437	2462
	802.11n(HT40)	2422	2437	2452

Data rate and Power setting:

The pre-scan for the conducted power with all rates in each modulation and bands was used, and the worst case was found and used in all test cases. After this pre-scan, we choose the following table of the data rata as the worst case.

Frequency Band (MHz)	Mode	Worst case data rate	Power Setting
	802.11b	1Mbps	CH1=98, CH6=97, CH11=97
2400 2402 5	802.11g	6Mbps	CH1=98, CH6=97, CH11=97
2400-2483.5	802.11n(HT20)	MCS0	CH1=98, CH6=97, CH11=97
	802.11n(HT40)	MCS0	CH3= 85, CH6=82, CH9=83

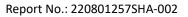
2.3 Test software list

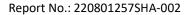

Test Items	Software	Manufacturer	Version
Conducted emission	ESxS-K1	R&S	V2.1.0
Radiated emission	ES-K1	R&S	V1.71

2.4 Test peripherals list

Item No.	Name	Band and Model	Description
1	Laptop computer	DELL 5480	-

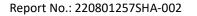
2.5 Test environment condition:


Test items	Temperature	Humidity
Minimum 6dB Bandwidth		
Maximum conducted output power and e.i.r.p.		
Power spectrum density	22°C	52%RH
Emission outside the frequency band		
Occupied bandwidth		
Radiated Emissions in restricted frequency bands	23°C	52%RH
Power line conducted emission	22°C	52%RH


2.6 Instrument list

	ted Emission/Disturband				5
Used	Equipment	Manufacturer	Туре	Internal no.	Due date
	Test Receiver	R&S	ESCS 30	EC 2107	2023-07-09
\boxtimes	A.M.N.	R&S	ESH2-Z5	EC 3119	2023-11-09
	A.M.N.	R&S	ENV 216	EC 3393	2023-07-09
	A.M.N.	R&S	ENV4200	EC 3558	2023-06-09
Radiate	d Emission				
Used	Equipment	Manufacturer	Туре	Internal no.	Due date
	Test Receiver	R&S	ESIB 26	EC 3045	2023-10-19
	Bilog Antenna	TESEQ	CBL 6112B	EC 6411	2023-08-06
\boxtimes	TRILOG broadband Antenna	Schwarzbeck	VULB9168	EC6402	2023-01-17
	Pre-amplifier	R&S	AFS42-00101800- 25-S-42	EC5262	2023-06-09
	Pre-amplifier	tonscend	tap01018050	EC 6432-1	2022-12-26
	Horn antenna	tonscend	bha9120d	EC 6432-2	2023-01-09
\boxtimes	Horn antenna	ETS	3117	EC 4792-1	2023-08-28
	Horn antenna	ETS	3116C	EC 5955	2023-06-17
\boxtimes	Horn antenna	TOYO	HAP18-26W	EC 4792-3	2023-07-08
	Active loop antenna	Schwarzbeck	FMZB1519	EC 5345	2023-04-24
RF test					
Used	Equipment	Manufacturer	Туре	Internal no.	Due date
	PXA Signal Analyzer	Keysight	N9030A	EC 5338	2023-03-14
	Power sensor	Agilent	U2021XA	EC 5338-1	2023-03-14
	Vector Signal Generator	Agilent	N5182B	EC 5175	2023-03-14
	MXG Analog Signal Generator	Agilent	N5181A	EC 5338-2	2023-03-14
	Mobile Test System	Litepoint	Iqxel	EC 5176	2023-01-11
	Test Receiver	R&S	ESCI 7	EC 4501	2022-12-09
	Climate chamber	GWS	MT3065	EC 6021	2023-03-06
\boxtimes	Spectrum Analyzer	Keysight	N9030b	EC 6078	2023-06-09
	Signal generator	Agilent	N5182A	Ec6172	2023-08-19
	Signal generator	Agilent	N5181A	Ec6171	2023-08-19
Tet Site		<u> </u>			

-	. 201 1121 0111							
Used	Equipment	Manufacturer	Туре	Internal no.	Due date			
\boxtimes	Shielded room	Zhongyu	1	EC 2838	2023-01-11			
	Shielded room	Zhongyu	1	EC 2839	2023-01-11			
\boxtimes	Semi-anechoic chamber	Albatross project	-	EC 3048	2023-08-22			
\boxtimes	Fully-anechoic chamber	Albatross project	-	EC 3047	2023-08-22			
Addition	nal instrument							
Used	Equipment	Manufacturer	Туре	Internal no.	Due date			
	Thermo-Hygrograph	ZJ1-2A	S.M.I.F.	EC 3783	2023-03-24			
	Thermo-Hygrograph	ZJ1-2A	S.M.I.F.	EC 5198	2023-03-08			
\boxtimes	Thermo-Hygrograph	ZJ1-2A	S.M.I.F.	EC 3442	2023-01-03			
	Thermo-Hygrograph	ZJ1-2A	S.M.I.F.	EC 5844	2023-03-08			
	Pressure meter	YM3	Shanghai Mengde	EC 3320	2023-07-22			



2.7 Measurement uncertainty

The measurement uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Test item	Measurement uncertainty	
Maximum peak output power	$\pm0.74 ext{dB}$	
Radiated Emissions in restricted frequency bands below 1GHz	± 4.90dB	
Radiated Emissions in restricted frequency bands above 1GHz	± 5.02dB	
Emission outside the frequency band	± 2.89dB	
Power line conducted emission	± 3.19dB	

3 Minimum 6dB bandwidth

Test result: Pass

3.1 Limit

For systems using digital modulation techniques that may operate in the 902 - 928 MHz, 2400 - 2483.5 MHz and 5725 - 5850 MHz bands, the minimum 6 dB bandwidth shall be at least 500 kHz.

3.2 Measurement Procedure

The EUT was tested according to Subclause 11.8 of ANSI C63.10.

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) \geq 3 × RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

3.3 Test Configuration

3.4 Test Results of Minimum 6dB bandwidth

Please refer to Appendix A

TEST REPORT

4 Maximum conducted output power and e.i.r.p.

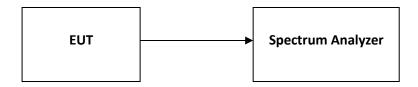
Test result: Pass

4.1 Limit

For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 W. (The e.i.r.p. shall not exceed 4 W)

If the transmitting antenna of directional gain greater than 6dBi is used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi. If there have a beam forming type, the limit should be the minimum of 30dBm and 30+ (6 –antenna gain-beam forming gain).

4.2 Measurement Procedure


The EUT was tested according to Subclause 11.9.2.2 of ANSI C63.10.

- a) Measure the duty cycle, x, of the transmitter output signal as described in Section 6.0.
- b) Set span to at least 1.5 x OBW.
- c) Set RBW = 1 % to 5 % of the OBW, not to exceed 1 MHz.
- d) Set VBW \geq 3 x RBW.
- e) Number of points in sweep ≥ 2 x span / RBW. (This gives bin-to-bin spacing \leq RBW/2, so that narrowband signals are not lost between frequency bins.)
- f) Sweep time = auto.
- g) Detector = RMS (i.e., power averaging), if available. Otherwise, use sample detector mode.
- h) Do not use sweep triggering. Allow the sweep to "free run".
- i) Trace average at least 100 traces in power averaging (i.e., RMS) mode; however, the number of traces to be averaged shall be increased above 100 as needed such that the average accurately represents the true average over the on and off periods of the transmitter.
- j) Compute power by integrating the spectrum across the OBW of the signal using the instrument's band power measurement function with band limits set equal to the OBW band edges. If the instrument does not have a band power function, sum the spectrum levels (in power units) at intervals equal to the RBW extending across the entire OBW of the spectrum.
- k) Add $10 \log (1/x)$, where x is the duty cycle, to the measured power in order to compute the average power during the actual transmission times (because the measurement represents an average over both the on- and off-times of the transmission). For example, add $10 \log (1/0.25) = 6 dB$ if the duty cycle is 25 %.

TEST REPORT

4.3 Test Configuration

4.4 Test Results of Maximum conducted output power

Please refer to Appendix A

TEST REPORT

5 Power spectrum density

Test result: Pass

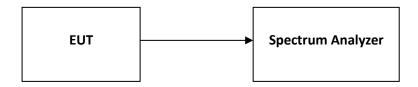
5.1 Limit

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3 kHz band during any time interval of continuous transmission.

If the transmitting antenna of directional gain greater than 6dBi is used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi. If there have a beam forming type, the limit should be the minimum of 8dBm/MHz and 8+ (6 –antenna gain-beam forming gain).

5.2 Measurement Procedure

The EUT was tested according to Subclause 11.10 of ANSI C63.10.


This procedure is applicable when the EUT cannot be configured to transmit continuously (i.e., duty cycle < 98 %), and when sweep triggering/signal gating cannot be used to measure only when the EUT is transmitting at its maximum power control level, and when the transmission duty cycle is constant (i.e., duty cycle variations are less than ± 2 %):

- a) Measure the duty cycle (x) of the transmitter output signal as described in Section 6.0.
- b) Set instrument center frequency to DTS channel center frequency.
- c) Set span to at least 1.5 x OBW.
- d) Set RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- e) Set VBW ≥3 x RBW.
- f) Detector = power averaging (RMS) or sample detector (when RMS not available).
- g) Ensure that the number of measurement points in the sweep $\geq 2 \times \text{span/RBW}$.
- h) Sweep time = auto couple.
- i) Do not use sweep triggering. Allow sweep to "free run".
- j) Employ trace averaging (RMS) mode over a minimum of 100 traces.
- k) Use the peak marker function to determine the maximum amplitude level.
- I) Add 10 log (1/x), where x is the duty cycle measured in step (a, to the measured PSD to compute the average PSD during the actual transmission time.
- m) If resultant value exceeds the limit, then reduce RBW (no less than 3 kHz) and repeat (note that this may require zooming in on the emission of interest and reducing the span in order to meet the minimum measurement point requirement as the RBW is reduced).

TEST REPORT

5.3 Test Configuration

5.4 Test Results of Power spectrum density

Please refer to Appendix A

TEST REPORT

6 Emission outside the frequency band

Test result: Pass

6.1 Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power.

6.2 Measurement Procedure

The EUT was tested according to Subclause 11.11 of ANSI C63.10.

Reference level measurement

Establish a reference level by using the following procedure:

- a) Set instrument center frequency to DTS channel center frequency.
- b) Set the span to \geq 1.5 times the DTS bandwidth.
- c) Set the RBW = 100 kHz.
- d) Set the VBW \geq 3 x RBW.
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum PSD level.

Emission level measurement

- a) Set the center frequency and span to encompass frequency range to be measured.
- b) Set the RBW = 100 kHz.
- c) Set the VBW \geq 3 x RBW.
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use the peak marker function to determine the maximum amplitude level.

Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) are attenuated by at least the minimum requirements specified in 11.1 a) or 11.1 b). Report the three highest emissions relative to the limit.

TEST REPORT

6.3 Test Configuration

6.4 The results of Emission outside the frequency band

Please refer to Appendix A

TEST REPORT

7 Radiated Emissions in restricted frequency bands

Test result: Pass

7.1 Limit

The radiated emissions which fall in the restricted bands, must also comply with the radiated emission limits specified showed as below:

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

7.2 Measurement Procedure

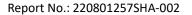
The EUT was tested according to Subclause 11.12 of ANSI C63.10.

For Radiated emission below 30MHz:

- a) The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meters chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b) The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c) Both X and Y axes of the antenna are set to make the measurement.
- d) For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e) The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

NOTE:

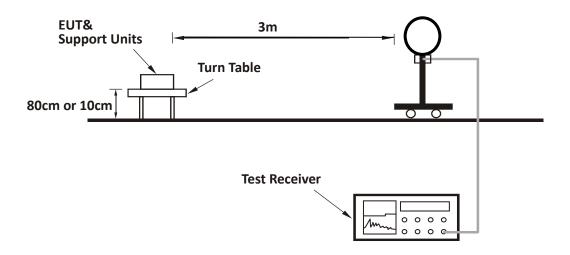
1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

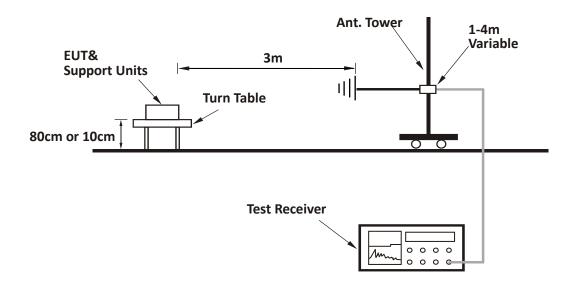

TEST REPORT

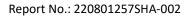
For Radiated emission above 30MHz:

- a) The EUT was placed on the top of a rotating table 0.8 meters (for 30MHz ~ 1GHz) / 1.5 meters (for above 1GHz) or 0.1 meters (for floor-standing device) above the ground at 3 meters chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b) The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c) The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d) For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e) The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f) The test-receiver system was set to peak and average detector function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

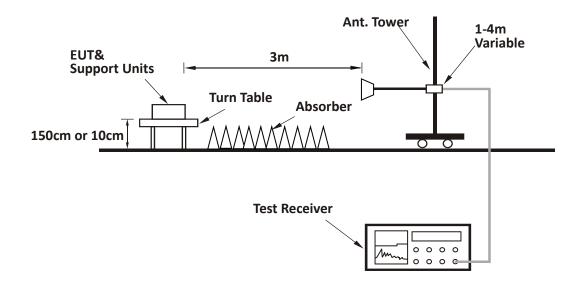
Note:

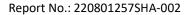

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is ≥ 1/T (Duty cycle < 98%) or 3 x RBW (Duty cycle ≥ 98%) for Average detection (AV) at frequency above 1GHz.
- 4. All modes of operation were investigated and the worst-case emissions were reported.



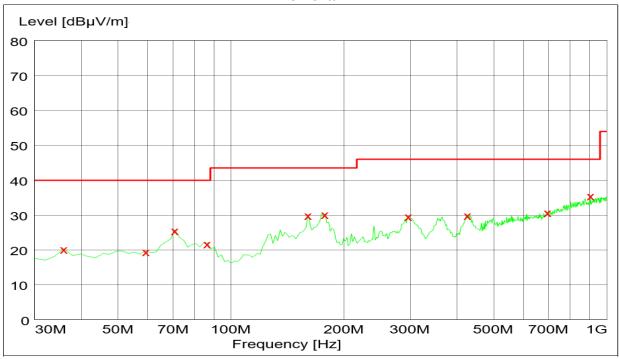

7.3 Test Configuration

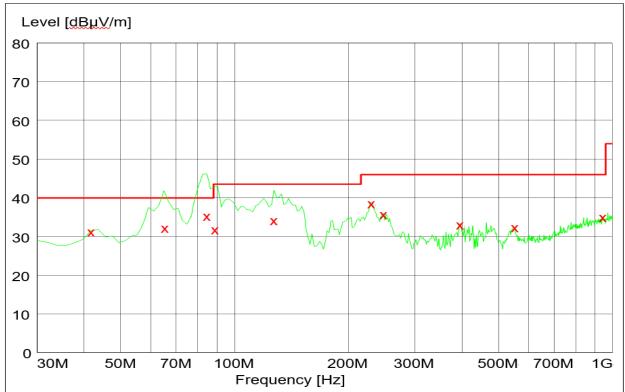
For Radiated emission below 30MHz:

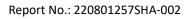

For Radiated emission 30MHz to 1GHz:



For Radiated emission above 1GHz:

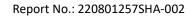



7.4 Test Results of Radiated Emissions


The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

Vertical

Test data below 1GHz


Antenna	Frequency (MHz)	Corrected Reading (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
Н	70.82	25.80	40.00	14.20	PK
Н	160.24	30.20	43.50	13.30	PK
Н	177.74	30.40	43.50	13.10	PK
Н	426.55	30.10	46.00	15.90	PK
Н	694.81	31.00	46.00	15.00	PK
Н	902.81	35.70	46.00	10.30	PK
V	41.66	31.50	40.00	8.50	PK
V	65.31	22.60	40.00	17.40	QP
V	84.43	35.60	40.00	4.40	QP
V	88.77	21.90	40.00	18.10	QP
V	127.19	34.40	43.50	9.10	QP
V	230.22	38.80	46.00	7.20	PK

Test result above 1GHz:

The emission was conducted from 1GHz to 25GHz

802.11b

СН	Antenna	Frequency (MHz)	Corrected Reading (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
	Н	2390.00	50.60	74.00	23.40	PK
L	V	2390.00	51.30	74.00	22.70	PK
	V	4824.00	44.70	74.00	29.30	PK
М	V	4874.00	44.10	74.00	29.90	PK
	Н	2483.50	50.70	74.00	23.30	PK
Н	V	2483.50	51.70	74.00	22.30	PK
	V	4924.00	44.50	74.00	29.50	PK

802.11g

СН	Antenna	Frequency (MHz)	Corrected Reading (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
	V	2390.00	52.50	74.00	21.50	PK
L	V	4824.00	44.90	74.00	29.10	PK
М	V	4874.00	45.00	74.00	29.00	PK
Н	V	2483.50	53.40	74.00	20.60	PK
	V	4924.00	45.20	74.00	28.80	PK

802.11n(HT20)

СН	Antenna	Frequency (MHz)	Corrected Reading (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
	V	2390.00	54.60	74.00	19.40	PK
	V	2390.00	45.90	54.00	8.10	AV
	V	4824.00	45.40	74.00	28.60	PK
М	V	4874.00	46.70	74.00	27.30	PK
	V	2483.50	55.70	74.00	18.30	PK
Н	V	2483.50	46.60	54.00	7.40	AV
	V	4924.00	46.20	74.00	27.80	PK

802.11n(HT40)

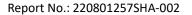
СН	Antenna	Frequency (MHz)	Corrected Reading (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
	V	2390.00	56.10	74.00	17.90	PK
	V	2390.00	47.40	54.00	6.60	AV
	V	4844.00	45.80	74.00	28.20	PK
М	V	4874.00	46.30	74.00	27.70	PK
	V	2483.50	57.20	74.00	16.80	PK
Н	V	2483.50	48.90	54.00	5.10	AV
	V	4904.00	46.50	74.00	27.50	PK

TEST REPORT

Remark: 1. Correct Factor = Antenna Factor + Cable Loss (+ Amplifier, for higher than 1GHz), the value was added to Original Receiver Reading by the software automatically.

- 2. Corrected Reading = Original Receiver Reading + Correct Factor
- 3. Margin = Limit Corrected Reading
- 4. If the PK Corrected Reading is lower than AV limit, the AV test can be elided.

Example: Assuming Antenna Factor = 30.20dB/m, Cable Loss = 2.00dB,

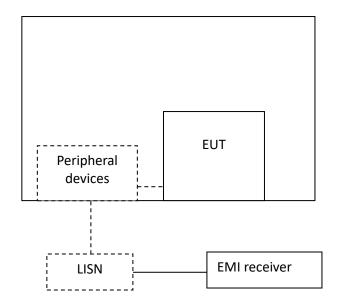

Gain of Preamplifier = 32.00dB, Original Receiver Reading = 10.00dBuV,

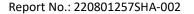
Limit = 40.00dBuV/m.

Then Correct Factor = 30.20 + 2.00 - 32.00 = 0.20dB/m;

Corrected Reading = 10dBuV + 0.20dB/m = 10.20dBuV/m;

Margin = 40.00dBuV/m - 10.20dBuV/m = 29.80dB.

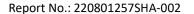

8 Power line conducted emission


Test result: Pass

8.1 Limit

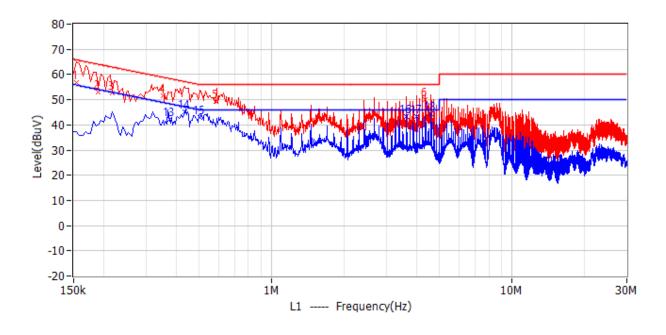
Frequency of Emission (MHz)	Conducted Limit (dBuV)			
rrequericy of Entission (MHZ)	QP	AV		
0.15-0.5	66 to 56*	56 to 46 *		
0.5-5	56	46		
5-30	60	50		

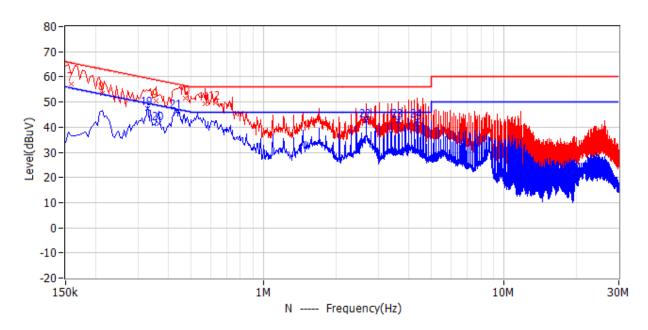
8.2 Test Configuration

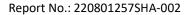


8.3 Measurement Procedure

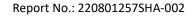
Measured levels of ac power-line conducted emission shall be the emission voltages from the voltage probe, where permitted, or across the 50 Ω LISN port (to which the EUT is connected), where permitted, terminated into a 50 Ω measuring instrument. All emission voltage and current measurements shall be made on each current-carrying conductor at the plug end of the EUT power cord by the use of mating plugs and receptacles on the LISN, if used. Equipment shall be tested with power cords that are normally supplied or recommended by the manufacturer and that have electrical and shielding characteristics that are the same as those cords normally supplied or recommended by the manufacturer. For those measurements using a LISN, the 50 Ω measuring port is terminated by a measuring instrument having 50 Ω input impedance. All other ports are terminated in 50 Ω loads.


Tabletop devices shall be placed on a platform of nominal size 1 m by 1.5 m, raised 80 cm above the reference ground plane. The vertical conducting plane or wall of an RF-shielded (screened) room shall be located 40 cm to the rear of the EUT. Floor-standing devices shall be placed either directly on the reference ground-plane or on insulating material as described in ANSI C63.4. All other surfaces of tabletop or floor-standing EUTs shall be at least 80 cm from any other grounded conducting surface, including the case or cases of one or more LISNs.


The bandwidth of the test receiver is set at 9 kHz.



8.4 Test Results of Power line conducted emission



Test Data:

ala.							
Frequency	Limit dBuV	Level dBuV	Delta dB	Reading dBuV	Factor dB	Detector	Phase
154.500kHz	65.8	56.7	-9.1	50.5	6.2	QP	L1
190.500kHz	64.0	53.0	-11.0	46.8	6.2	QP	L1
217.500kHz	62.9	52.7	-10.2	46.5	6.2	QP	L1
352.500kHz	58.9	51.4	-7.5	45.2	6.2	QP	L1
586.500kHz	56.0	49.4	-6.6	43.2	6.2	QP	L1
4.367MHz	56.0	50.2	-5.8	44.0	6.2	QP	L1
159.000kHz	65.5	57.0	-8.5	50.7	6.3	QP	N
213.000kHz	63.1	53.3	-9.8	47.0	6.3	QP	N
357.000kHz	58.8	50.5	-8.3	44.3	6.2	QP	N
474.000kHz	56.4	51.6	-4.9	45.3	6.3	QP	Ν
573.000kHz	56.0	49.4	-6.6	43.1	6.3	QP	Ν
631.500kHz	56.0	49.5	-6.5	43.2	6.3	QP	N
375.000kHz	48.4	42.0	-6.3	35.8	6.2	CAV	L1
433.500kHz	47.2	45.2	-2.0	39.0	6.2	CAV	L1
501.000kHz	46.0	43.1	-2.9	36.9	6.2	CAV	L1
3.638MHz	46.0	43.3	-2.7	37.1	6.2	CAV	L1
4.002MHz	46.0	43.3	-2.7	37.1	6.2	CAV	L1
4.610MHz	46.0	44.4	-1.6	38.1	6.3	CAV	L1
330.000kHz	49.5	47.5	-1.9	41.3	6.2	CAV	N
366.000kHz	48.6	41.5	-7.1	35.3	6.2	CAV	Ν
433.500kHz	47.2	46.4	-0.8	40.1	6.3	CAV	Ν
2.670MHz	46.0	42.4	-3.6	36.1	6.3	CAV	N
3.638MHz	46.0	42.7	-3.3	36.4	6.3	CAV	N
4.367MHz	46.0	42.7	-3.3	36.4	6.3	CAV	N
	Frequency 154.500kHz 190.500kHz 217.500kHz 352.500kHz 586.500kHz 4.367MHz 159.000kHz 213.000kHz 357.000kHz 474.000kHz 573.000kHz 431.500kHz 375.000kHz 433.500kHz 4.002MHz 4.610MHz 330.000kHz 433.500kHz 2.670MHz 2.670MHz 3.638MHz	Frequency Limit dBuV 154.500kHz 65.8 190.500kHz 64.0 217.500kHz 62.9 352.500kHz 58.9 586.500kHz 56.0 4.367MHz 56.0 159.000kHz 63.1 357.000kHz 58.8 474.000kHz 56.4 573.000kHz 56.0 631.500kHz 56.0 375.000kHz 48.4 433.500kHz 47.2 501.000kHz 46.0 3.638MHz 46.0 4.610MHz 46.0 330.000kHz 48.6 433.500kHz 48.6 433.500kHz 47.2 2.670MHz 46.0 3.638MHz 46.0 3.638MHz 46.0	Frequency Limit dBuV dBuV 154.500kHz 65.8 56.7 190.500kHz 64.0 53.0 217.500kHz 62.9 52.7 352.500kHz 58.9 51.4 586.500kHz 56.0 49.4 4.367MHz 56.0 50.2 159.000kHz 63.1 53.3 357.000kHz 58.8 50.5 474.000kHz 56.4 51.6 573.000kHz 56.0 49.4 631.500kHz 56.0 49.5 375.000kHz 48.4 42.0 433.500kHz 47.2 45.2 501.000kHz 46.0 43.1 3.638MHz 46.0 43.3 4.610MHz 46.0 44.4 330.000kHz 48.6 41.5 433.500kHz 47.2 46.4 2.670MHz 46.0 42.4 3.638MHz 46.0 42.4 3.638MHz 46.0 42.4 3.638MHz 46.0 42.4	Frequency Limit dBuV Level dBuV Delta dB 154.500kHz 65.8 56.7 -9.1 190.500kHz 64.0 53.0 -11.0 217.500kHz 62.9 52.7 -10.2 352.500kHz 58.9 51.4 -7.5 586.500kHz 56.0 49.4 -6.6 4.367MHz 56.0 50.2 -5.8 159.000kHz 65.5 57.0 -8.5 213.000kHz 63.1 53.3 -9.8 357.000kHz 58.8 50.5 -8.3 474.000kHz 56.4 51.6 -4.9 573.000kHz 56.0 49.4 -6.6 631.500kHz 56.0 49.4 -6.6 631.500kHz 46.0 49.5 -6.5 375.000kHz 48.4 42.0 -6.3 433.500kHz 47.2 45.2 -2.0 501.000kHz 46.0 43.3 -2.7 4.610MHz 46.0 43.3 -2.7 <td>Frequency Limit dBuV Level dBuV Delta dB uV Reading dBuV 154.500kHz 65.8 56.7 -9.1 50.5 190.500kHz 64.0 53.0 -11.0 46.8 217.500kHz 62.9 52.7 -10.2 46.5 352.500kHz 58.9 51.4 -7.5 45.2 586.500kHz 56.0 49.4 -6.6 43.2 4.367MHz 56.0 50.2 -5.8 44.0 159.000kHz 65.5 57.0 -8.5 50.7 213.000kHz 63.1 53.3 -9.8 47.0 357.000kHz 58.8 50.5 -8.3 44.3 474.000kHz 56.4 51.6 -4.9 45.3 573.000kHz 56.0 49.4 -6.6 43.1 631.500kHz 56.0 49.5 -6.5 43.2 375.000kHz 48.4 42.0 -6.3 35.8 433.500kHz 47.2 45.2 -2.0 39.0</td> <td>Frequency Limit dBuV Level dBuV Delta dB uV Reading dBuV Factor dB uV 154.500kHz 65.8 56.7 -9.1 50.5 6.2 190.500kHz 64.0 53.0 -11.0 46.8 6.2 217.500kHz 62.9 52.7 -10.2 46.5 6.2 352.500kHz 58.9 51.4 -7.5 45.2 6.2 586.500kHz 56.0 49.4 -6.6 43.2 6.2 4.367MHz 56.0 50.2 -5.8 44.0 6.2 159.000kHz 65.5 57.0 -8.5 50.7 6.3 213.000kHz 63.1 53.3 -9.8 47.0 6.3 357.000kHz 58.8 50.5 -8.3 44.3 6.2 474.000kHz 56.4 51.6 -4.9 45.3 6.3 573.000kHz 56.0 49.4 -6.6 43.1 6.3 375.000kHz 48.4 42.0 -6.3 35.8</td> <td>Frequency Limit dBuV Level dBuV dBuV Delta dB uV dB uV Reading dBuV dB uV Factor dB uV Detector dB uV 154.500kHz 65.8 56.7 -9.1 50.5 6.2 QP 190.500kHz 64.0 53.0 -11.0 46.8 6.2 QP 217.500kHz 62.9 52.7 -10.2 46.5 6.2 QP 352.500kHz 58.9 51.4 -7.5 45.2 6.2 QP 586.500kHz 56.0 49.4 -6.6 43.2 6.2 QP 4.367MHz 56.0 50.2 -5.8 44.0 6.2 QP 159.000kHz 65.5 57.0 -8.5 50.7 6.3 QP 213.000kHz 63.1 53.3 -9.8 47.0 6.3 QP 357.000kHz 58.8 50.5 -8.3 44.3 6.2 QP 474.000kHz 56.4 51.6 -4.9 45.3 6.3 QP 573.000kHz</td>	Frequency Limit dBuV Level dBuV Delta dB uV Reading dBuV 154.500kHz 65.8 56.7 -9.1 50.5 190.500kHz 64.0 53.0 -11.0 46.8 217.500kHz 62.9 52.7 -10.2 46.5 352.500kHz 58.9 51.4 -7.5 45.2 586.500kHz 56.0 49.4 -6.6 43.2 4.367MHz 56.0 50.2 -5.8 44.0 159.000kHz 65.5 57.0 -8.5 50.7 213.000kHz 63.1 53.3 -9.8 47.0 357.000kHz 58.8 50.5 -8.3 44.3 474.000kHz 56.4 51.6 -4.9 45.3 573.000kHz 56.0 49.4 -6.6 43.1 631.500kHz 56.0 49.5 -6.5 43.2 375.000kHz 48.4 42.0 -6.3 35.8 433.500kHz 47.2 45.2 -2.0 39.0	Frequency Limit dBuV Level dBuV Delta dB uV Reading dBuV Factor dB uV 154.500kHz 65.8 56.7 -9.1 50.5 6.2 190.500kHz 64.0 53.0 -11.0 46.8 6.2 217.500kHz 62.9 52.7 -10.2 46.5 6.2 352.500kHz 58.9 51.4 -7.5 45.2 6.2 586.500kHz 56.0 49.4 -6.6 43.2 6.2 4.367MHz 56.0 50.2 -5.8 44.0 6.2 159.000kHz 65.5 57.0 -8.5 50.7 6.3 213.000kHz 63.1 53.3 -9.8 47.0 6.3 357.000kHz 58.8 50.5 -8.3 44.3 6.2 474.000kHz 56.4 51.6 -4.9 45.3 6.3 573.000kHz 56.0 49.4 -6.6 43.1 6.3 375.000kHz 48.4 42.0 -6.3 35.8	Frequency Limit dBuV Level dBuV dBuV Delta dB uV dB uV Reading dBuV dB uV Factor dB uV Detector dB uV 154.500kHz 65.8 56.7 -9.1 50.5 6.2 QP 190.500kHz 64.0 53.0 -11.0 46.8 6.2 QP 217.500kHz 62.9 52.7 -10.2 46.5 6.2 QP 352.500kHz 58.9 51.4 -7.5 45.2 6.2 QP 586.500kHz 56.0 49.4 -6.6 43.2 6.2 QP 4.367MHz 56.0 50.2 -5.8 44.0 6.2 QP 159.000kHz 65.5 57.0 -8.5 50.7 6.3 QP 213.000kHz 63.1 53.3 -9.8 47.0 6.3 QP 357.000kHz 58.8 50.5 -8.3 44.3 6.2 QP 474.000kHz 56.4 51.6 -4.9 45.3 6.3 QP 573.000kHz

Remark: 1. Correct Factor = LISN Factor + Cable Loss, the value was added to Original Receiver Reading by the software automatically.

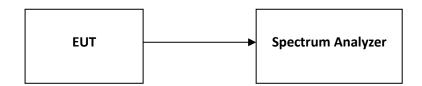
- 2. Level = Reading + Correct Factor
- 3. Delta= Level Limit
- 4. If the PK Corrected Reading is lower than AV limit, the AV test can be elided.

9 Occupied Bandwidth

Test result: Tested

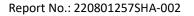
9.1 Limit

None


9.2 Measurement Procedure

The occupied bandwidth per RSS-Gen Issue 4 Clause 6.6 was measured using the Spectrum Analyzer.

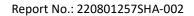
The span of the analyzer shall be set to capture all products of the modulation process, including the emission skirts.


The resolution bandwidth (RBW) shall be in the range of 1% to 5% of the occupied bandwidth (OBW) and video bandwidth (VBW) shall be approximately 3x RBW.

9.3 Test Configuration

9.4 The results of Occupied Bandwidth

Please refer to Appendix A


10 Antenna requirement

Requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

Result:

EUT uses permanently attached antenna to the intentional radiator, so it can comply with the provisions of this section.

Appendix A: Test results

Test results refer to Report_15.247-WIFI Appendix A
