

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE191203002V03

FCC REPORT (WIFI)

Applicant: HelloFactory Inc.

Address of Applicant: 5th Fl., Nonhyun-ro 10-gil 12, Gangnam-gu, Seoul, Korea 06314

Equipment Under Test (EUT)

Product Name: HelloBell Service Bell

Model No.: HFB-C400

Trade mark: HelloBell

FCC ID: 2APBNHFB-C400

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 17 Dec., 2019

Date of Test: 17 Dec., to 02 Mar., 2020

Date of report issued: 02 Apr., 2020

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	03 Mar., 2020	Original
01	26 Mar., 2020	Updated description of test results
02	02 Apr., 2020	 Updated Applicant address and Manufacturer address on P.1,P.5 Updated product name on P.1,P.5
03	07 Apr., 2020	Update Section 6.7.2

Tested by:	11 lang	Date:	02 Apr., 2020	
	Test Engineer			

Reviewed by:

Date: 02 Apr., 2020

Project Engineer

3 Contents

			Page
1	COVI	ER PAGE	1
2	VERS	SION	2
		TENTS	
3			_
4	TEST	SUMMARY	4
5	GEN	ERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
		GENERAL DESCRIPTION OF E.U.T	
		TEST ENVIRONMENT AND TEST MODE	
	5.4	DESCRIPTION OF SUPPORT UNITS	6
	5.5	MEASUREMENT UNCERTAINTY	6
	5.6	ADDITIONS TO, DEVIATIONS, OR EXCLUSIONS FROM THE METHOD	6
		LABORATORY FACILITY	
		LABORATORY LOCATION	
	5.9	Test Instruments list	7
6	TEST	RESULTS AND MEASUREMENT DATA	8
	6.1	ANTENNA REQUIREMENT	8
	6.2	CONDUCTED EMISSION	9
	6.3	CONDUCTED OUTPUT POWER	10
	6.4	OCCUPY BANDWIDTH	11
		Power Spectral Density	
		BAND EDGE	
	6.6.1	Conducted Emission Method	
	6.6.2	Radiated Emission Method	
		Spurious Emission	
	6.7.1	Conducted Emission Method	
	6.7.2	Radiated Emission Method	
7	TEST	SETUP PHOTO	40
Ω	FUT	CONSTRUCTIONAL DETAILS	40

4 Test Summary

Test Items	Section in CFR 47	Result
Antenna requirement	15.203 & 15.247 (b)	Pass
AC Power Line Conducted Emission	15.207	N/A
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247 (d)	Pass
Spurious Emission	15.205 & 15.209	Pass

Remark:

- 1. Pass: please refer to the FCC ID: 2AC7Z-ESPWROOM32D
- 2. N/A: Not Applicable.

Test Method:	ANSI C63.10-2013
rest wethou.	KDB 558074 D01 15.247 Meas Guidance v05r02

5 General Information

5.1 Client Information

Applicant:	HelloFactory Inc.	
Address:	5th Fl., Nonhyun-ro 10-gil 12, Gangnam-gu, Seoul, Korea 06314	
Manufacturer:	HelloFactory Inc.	
Address:	5th Fl., Nonhyun-ro 10-gil 12, Gangnam-gu, Seoul, Korea 06314	
Factory:	Shenzhen Gelbert Technology Co., Ltd	
Address:	No.5H13,5th floor, Shenhua Keji Industrial Park, Meihua Road, Futian District, Shenzhen	

5.2 General Description of E.U.T.

Product Name:	HelloBell Service Bell
Model No.:	HFB-C400
Operation Frequency:	2412MHz~2462MHz (802.11b/802.11g/802.11n(H20)) 2422MHz~2452MHz (802.11n(H40))
Channel numbers:	11 for 802.11b/802.11g/802.11(H20) 7 for 802.11n(H40)
Channel separation:	5MHz
Modulation technology: (IEEE 802.11b)	Direct Sequence Spread Spectrum (DSSS)
Modulation technology: (IEEE 802.11g/802.11n)	Orthogonal Frequency Division Multiplexing(OFDM)
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps
Data speed (IEEE 802.11g):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps, 54Mbps
Data speed (IEEE 802.11n):	Up to 150Mbps
Antenna Type:	Internal antenna
Antenna gain:	3.7dBi
Power supply:	Ordinary acid zinc manganese battery DC 1.5V*2
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

Operation Frequency each of channel for 802.11b/g/n(H20)							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

Note:

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

^{1.} For 802.11n-HT40 mode, the channel number is from 3 to 9;

^{2.} Channel 1, 6 & 11 selected for 802.11b/g/n-HT20 as Lowest, Middle and Highest channel. Channel 3, 6 & 9 selected for 802.11n-HT40 as Lowest, Middle and Highest channel, Channel.

5.3 Test environment and test mode

Operating Environment:	
Temperature:	24.0 °C
Humidity:	54 % RH
Atmospheric Pressure:	1010 mbar
Test mode:	
Transmitting mode	Keep the EUT in continuous transmitting with modulation (new battery is used during all test)

Report No: CCISE191203002V03

The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows: Duty cycle setting is 100% with maximum power.

Per-scan all kind of data rate, the follow list were the worst case.			
Mode Data rate			
802.11b 1Mbps			
802.11g 6Mbps			
802.11n(H20)	6.5Mbps		
802.11n(H40)	13.5Mbps		

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±1.60 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±3.12 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.32 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.38 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±3.36 dB (k=2)

5.6 Additions to, deviations, or exclusions from the method

No

5.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

• ISED - CAB identifier.: CN0021

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

• A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.8 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

5.9 Test Instruments list

Radiated Emission:							
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020		
Loop Antenna	SCHWARZBECK	FMZB1519B	00044	03-18-2019	03-17-2020		
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-18-2019	03-17-2020		
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-18-2019	03-17-2020		
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-22-2017	06-21-2020		
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-18-2019	11-17-2020		
EMI Test Software	AUDIX	E3	Version: 6.110919b		b		
Pre-amplifier	HP	8447D	2944A09358	03-18-2019	03-17-2020		
Pre-amplifier	CD	PAP-1G18	11804	03-18-2019	03-17-2020		
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-18-2019	03-17-2020		
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-18-2019	11-17-2020		
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-18-2019	03-17-2020		
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-18-2019	03-17-2020		
Cable	MICRO-COAX	MFR64639	K10742-5	03-18-2019	03-17-2020		
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-18-2019	03-17-2020		
RF Switch Unit	MWRFTEST	MW200	N/A	N/A	N/A		
Test Software	MWRFTEST	MTS8200	Version: 2.0.0.0				

Conducted Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-18-2019	03-17-2020
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-18-2019	03-17-2020
LISN	CHASE	MN2050D	1447	03-18-2019	03-17-2020
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2017	07-20-2020
Cable	HP	10503A	N/A	03-18-2019	03-17-2020
EMI Test Software	AUDIX	E3	,	Version: 6.110919)b

Report No: CCISE191203002V03

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement: FCC Part 15 C Section 15.203 /247(b)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

E.U.T Antenna:

The Wi-Fi antenna is an Internal antenna which cannot replace by end-user, the best case gain of the antenna is 3.7 dBi.

See page 6 of the FCC ID: 2AC7Z-ESPWROOM32D report

6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 15.207							
Test Frequency Range:	150 kHz to 30 MHz							
Class / Severity:	Class B							
Receiver setup:	RBW=9 kHz, VBW=30 kHz	RBW=9 kHz, VBW=30 kHz						
Limit:	Fraguency range (MHz)	Ereguency range (MHz) Limit (dBuV)						
	Frequency range (MHz) Quasi-peak Average							
	0.15-0.5	66 to 56*	56 to 46*					
	0.5-5	56	46					
	5-30	60	50					
	* Decreases with the logarit	hm of the frequency.						
Test procedure	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10(latest version) on conducted measurement. 							
Test setup:	LISN	st	er — AC power					
Test Instruments:	Refer to section 5.9 for deta	nils						
Test mode:	Refer to section 5.3 for deta	nils						
Test results:	N/A							

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)
Limit:	30dBm
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.9 for details
Test mode:	Refer to section 5.3 for details
Test results:	See FCC ID: 2AC7Z-ESPWROOM32D report page 10 for Test Results

6.4 Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)				
Limit:	>500kHz				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.9 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	For test results, see FCC ID: 2AC7Z-ESPWROOM32D Report, pages 10-15				

6.5 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)
Limit:	8dBm
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.9 for details
Test mode:	Refer to section 5.3 for details
Test results:	For test results, see FCC ID: 2AC7Z-ESPWROOM32D Report, pages 19-23

6.6 Band Edge

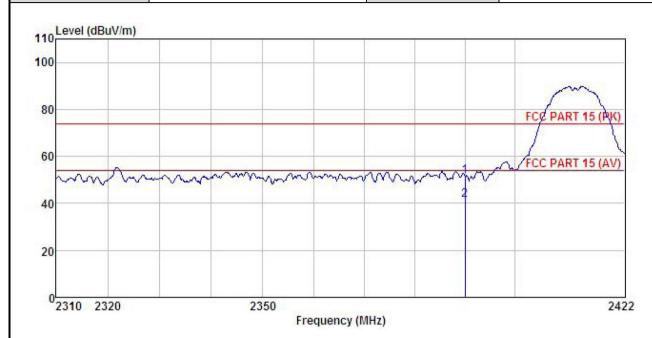
6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.9 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	For test results, see FCC ID: 2AC7Z-ESPWROOM32D Report, pages 16-18					

6.6.2 Radiated Emission Method

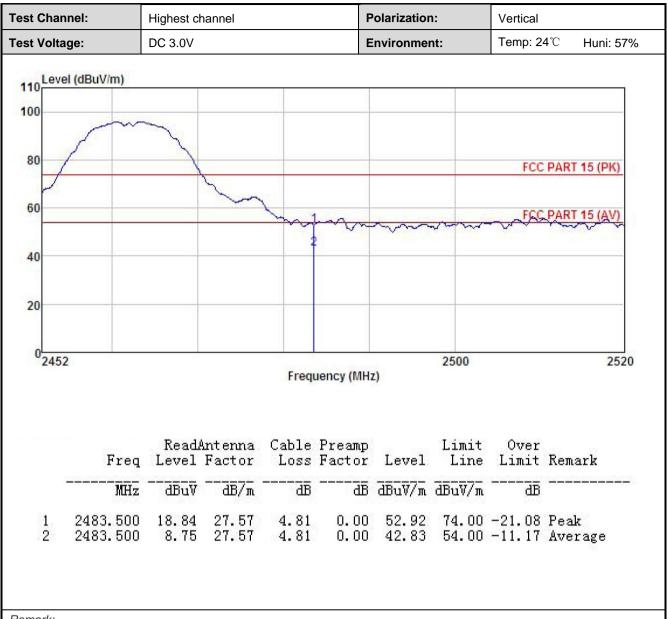
					1				
Test Requirement:	FCC Part 15 C Section 15.209 and 15.205								
Test Frequency Range:	2.3GHz to 2.5GHz								
Test Distance:	3m								
Receiver setup:	Frequency	Detector	RBW	VBW	Remark				
	Above 1GHz	Peak	1MHz	3MHz	Peak Value				
		RMS	1MHz	3MHz	Average Value				
Limit:	Frequency	<u>' Lir</u>	nit (dBuV/m @ 54.00		Remark				
	Above 1GH	z	74.00		verage Value Peak Value				
Test Procedure:	 The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. 								
	AE EUT Horn Anlenna Tower Ground Reference Plane Test Receiver Test Receiver								
Test Instruments:	Refer to section 5	.9 for details							
Test mode:	Refer to section 5	.3 for details							
Test results:	pass								

802.11b mode:

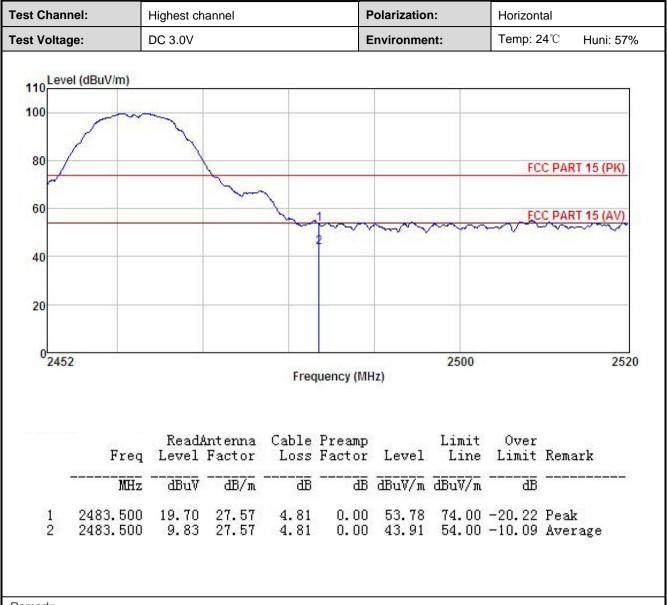

e: (dBuV/m)	DC 3.0V			E	nvironmen	t:	Temp: 24°	℃ Huni: 57%
(dBuV/m)				T Y				
							FQC	PART 15 (PK)
							1	1
	0 2		<u> </u>	0.00	D 4 0	0- 00 0	~ FCC	PART 15 (AV)
man	man	34.770	A www.	~~~~	- my War.	~1~	/	
2320		235		uency (MH	z)			2422
Freq	Read/ Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark
MHz	dBu₹	<u>dB</u> /π		<u>ab</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>ab</u>	
		27.37 27.37	4.69 4.69	0.00 0.00	50.71 41.57	74.00 54.00	-23.29 -12.43	Peak Average
	MHz 2390.000	2320 Read/ Freq Level MHz dBuV 2390.000 16.97	2320 235 ReadAntenna Freq Level Factor MHz dBuV dB/m 2390.000 16.97 27.37	ReadAntenna Cable Freq Level Factor Loss MHz dBuV dB/m dB 2390.000 16.97 27.37 4.69	2320 2350 Frequency (MH ReadAntenna Cable Preamp Freq Level Factor Loss Factor MHz dBuV dB/m dB dB 2390.000 16.97 27.37 4.69 0.00	2320 2350 Frequency (MHz) ReadAntenna Cable Preamp Freq Level Factor Loss Factor Level MHz dBuV dB/m dB dB dBuV/m 2390.000 16.97 27.37 4.69 0.00 50.71	2320 2350 Frequency (MHz) ReadAntenna Cable Preamp Limit Freq Level Factor Loss Factor Level Line MHz dBuV dB/m dB dB dBuV/m dBuV/m 2390.000 16.97 27.37 4.69 0.00 50.71 74.00	2320 2350 Frequency (MHz) Control of the contr

Remark

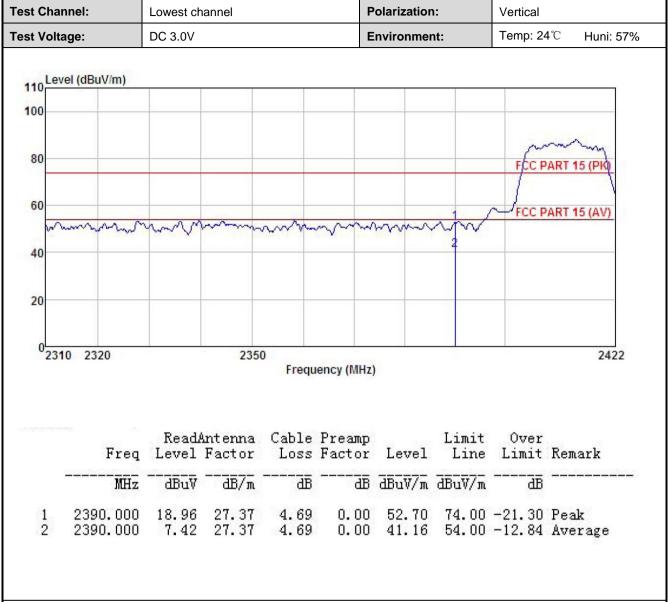
- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.


Product Name:	Wi-Fi Media Streaming Module	Product Model:	LS9-AC11DBT		
Test By:	Mike	Test mode:	802.11b Tx mode		
Test Channel:	Lowest channel	Polarization:	Horizontal		
Test Voltage:	DC 3.0V	Environment:	Temp: 24°C Huni: 57%		

	Freq	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark	
-	MHz	dBu∜	<u>dB</u> /m		<u>ab</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	dB		-
1 2	2390.000 2390.000									


- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

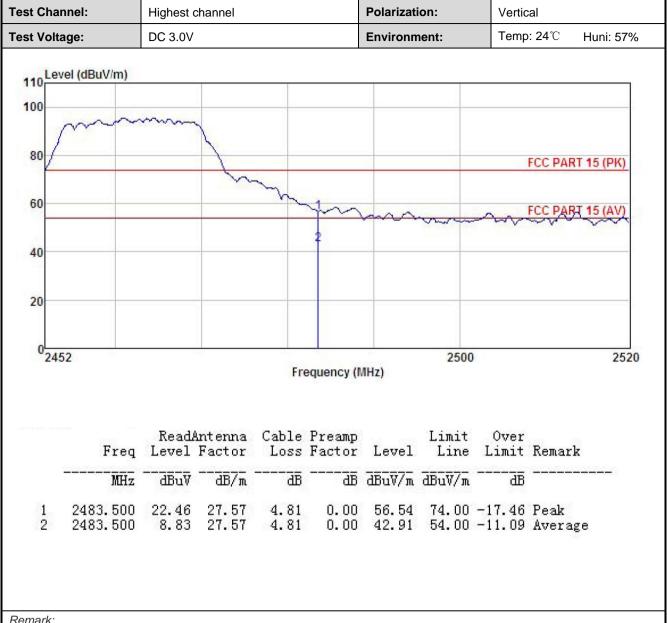
- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- The emission levels of other frequencies are very lower than the limit and not show in test report.



- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

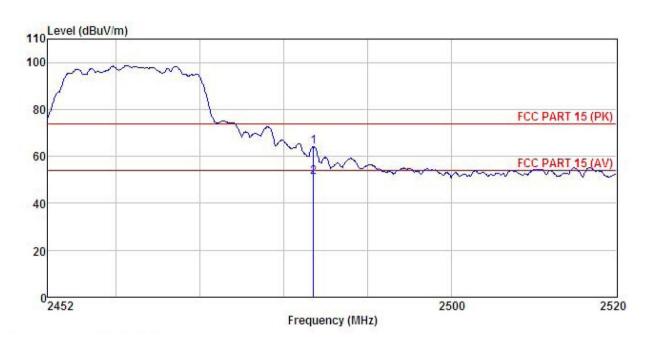
802.11g mode:

Remark:


- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

est Channel:		Lowest channel			Pol	Polarization:		Horizontal		
est Voltage) :	DC 3.0V			En	Environment: Temp: 24°C Hur			Huni: 57%	
110 Level	(dBuV/m)								1	
100									-	
								Non	my	
80							,	FCC PAR	RT 15 (PK)	
60							1 ~	FCC PAR	RT 15 (AV)	
~	maryon	man	mymmy	mm	man	mm	who we			
40										
20										
0 2310	2320	1	2350						2422	
				Freque	ncy (MHz)					
95-0-28-7-4-4-8	150									
	Freq	ReadA Level	ntenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark	
_	MHz	——dBuV	<u>dB</u> /m		<u>a</u> B	dBuV/m	dBu√/m	<u>d</u> B		
	2390.000	19.33	27.37	4.69				-20.93	Peak	
201		100000000000000000000000000000000000000		4 00	2 22					
1 2	2390.000	7.40	27.37	4.69	0.00	41.14	54.00	-12.00	Average	

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.



^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

The emission levels of other frequencies are very lower than the limit and not show in test report.

Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	DC 3.0V	Environment:	Temp: 24℃ Huni: 57%

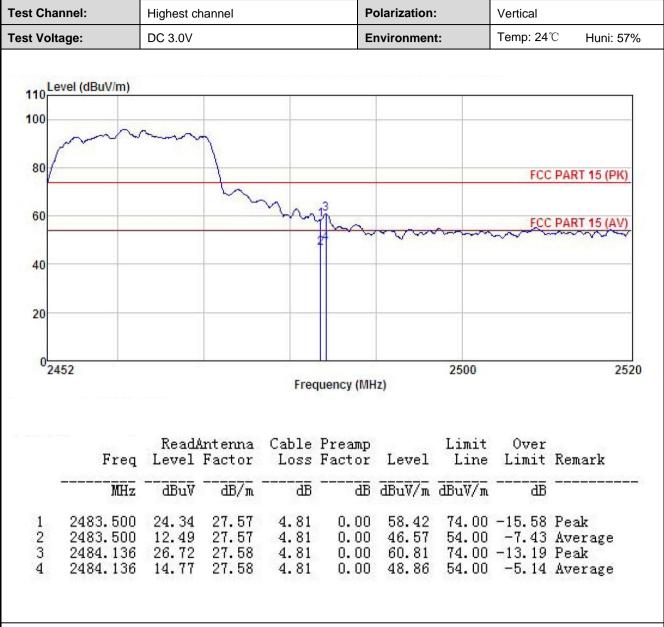
	Freq		Antenna Factor				Over Limit	
-	MHz	dBu∜	<u>dB</u> /m	<u>d</u> B	 $\overline{dBuV/m}$	$\overline{dBuV/m}$		
1 2	2483,500 2483,500							

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

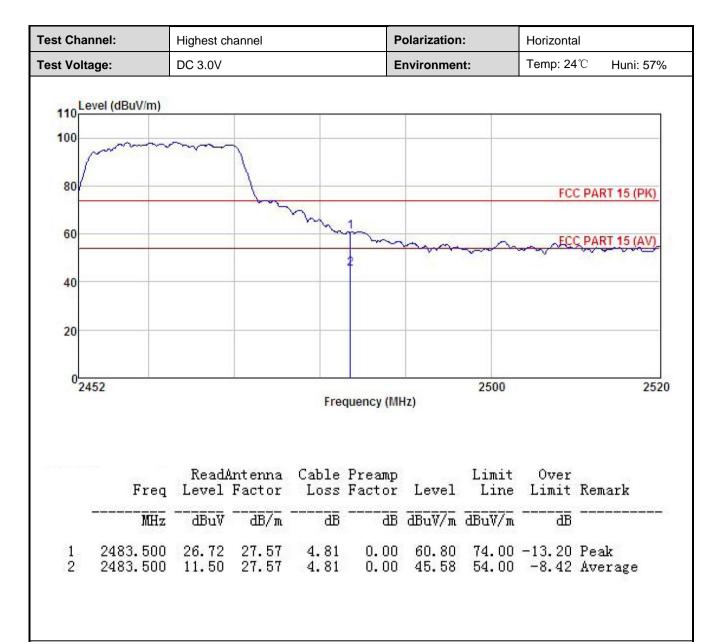

802.11n(HT20):

est Cha	nnel:	Lowest ch	nannel		P	olarization	n:	Vertical	
est Vol	tage:	DC 3.0V			E	invironmer	nt:	Temp: 24	°C Huni: 57%
110L	evel (dBuV/m)								
100									
								~~	mmy
80								FCC P	ART 15 (PK)
19									
60							1 1	FCC P.	ART 15 (AV)
~	mornin	many	myort	Varan	your	~~~~	~~~\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
40									
20									
20									
0_									
-2	310 2320		235		uency (MHz	2)			2422
		ReadA	int enna	Cable	Preamp	i lui mass	Limit	Over	
	Freq	ReadA Level	ntenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark
	Freq MHz	Level	ntenna Factor dB/m	Loss	Factor	Level	Line	Limit	Remark
1 2		Level —_dBuV	Factor	Loss dB	Factor dB	Level dBuV/m 54.24	Line dBuV/m 74.00	Limit	

Remark:


- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

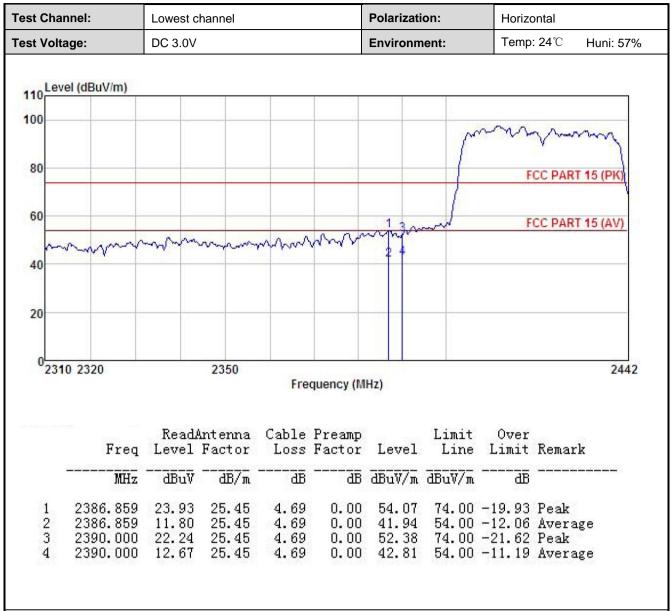
- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.



^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

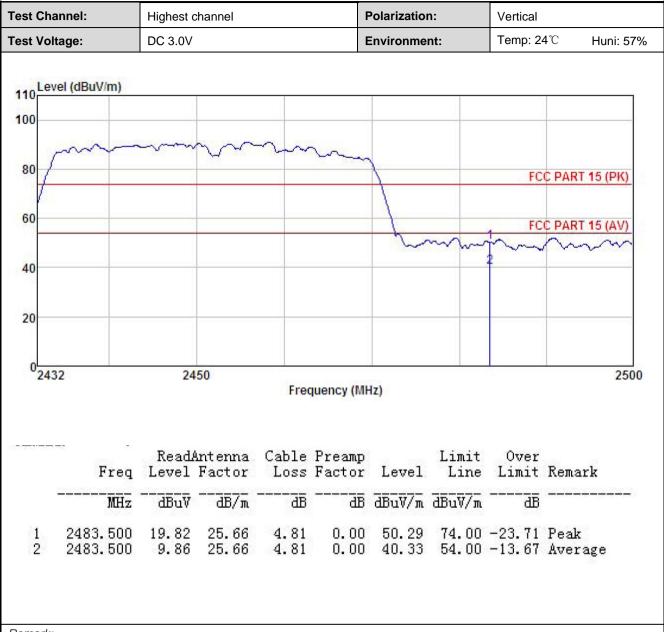
^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

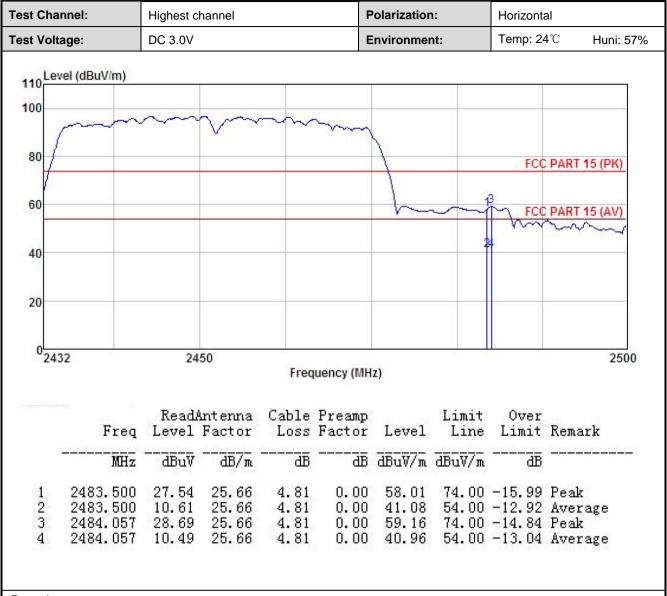

802.11n(HT40):

BuV/m)	DC 3.0V	mm	vw	En	vironment		W. W W.	PART 15 (PK)
BuV/m)		mm	~~~	www.			W. W W.	1
v		mm	~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-m		W. W W.	1
v-~~~		mm	~~~~	www.mov			W. W W.	1
v-~~~	~~~	mm	~~~~	mm			FCC F	PART 15 (AV)
v	Vanno	mm	man.	ary and a				
								-
20		2350	Frequ	uency (MHz)			2442
Freq								Remark
MHz	dBu√	dB/m		<u>ab</u>	$\overline{dBuV/m}$	dBuV/m	<u>d</u> B	
90.000 90.000	20.33 10.32	25.45 25.45	4.69 4.69	0.00 0.00	50.47 40.46	74.00 54.00	-23.53 -13.54	Peak Average
	MHz 0.000	Freq Level MHz dBuV 0.000 20.33	Freq Level Factor MHz dBuV dB/m 0.000 20.33 25.45	ReadAntenna Cable Freq Level Factor Loss MHz dBuV dB/m dB 0.000 20.33 25.45 4.69	ReadAntenna Cable Preamp Freq Level Factor Loss Factor MHz dBuV dB/m dB dB 0.000 20.33 25.45 4.69 0.00	MHz dBuV dB/m dB dBuV/m 0.000 20.33 25.45 4.69 0.00 50.47	ReadAntenna Cable Preamp Limit Freq Level Factor Loss Factor Level Line MHz dBuV dB/m dB dB dBuV/m dBuV/m 0.000 20.33 25.45 4.69 0.00 50.47 74.00	ReadAntenna Cable Preamp Limit Over Freq Level Factor Loss Factor Level Line Limit MHz dBuV dB/m dB dB dBuV/m dBuV/m dB 0.000 20.33 25.45 4.69 0.00 50.47 74.00 -23.53

Remark


- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.



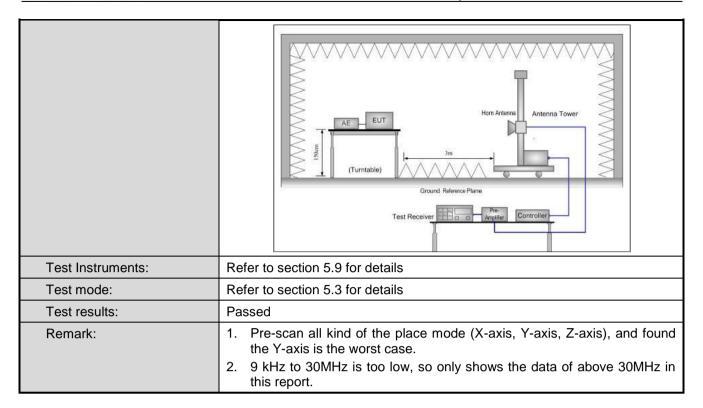
^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7 Spurious Emission

6.7.1 Conducted Emission Method


Test Requirement:	FCC Part 15 C Section 15.247 (d)
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
Test setup:	
	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.9 for details
Test mode:	Refer to section 5.3 for details
Test results:	For test results, see FCC ID: 2AC7Z-ESPWROOM32D Report, pages 26-31

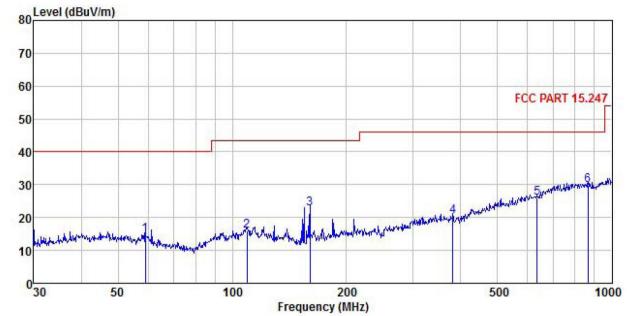
6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C Se	ection 15.20	09 an	d 15.205				
Test Frequency Range:	9kHz to 25GHz							
Test Distance:	3m							
Receiver setup:	Frequency	Detecto	or	RBW	V	BW	Remark	
reconver cotap.	30MHz-1GHz	Quasi-pe		120KHz		OKHz	Quasi-peak Value	
	Al 4011-	Peak			3MHz		Peak Value	
	Above 1GHz	RMS	IS 1MHz 3			MHz Average Value		
Limit:	Frequency		Limit	t (dBuV/m @3i	m)		Remark	
	30MHz-88MH	lz		40.0		Q	uasi-peak Value	
	88MHz-216MH			43.5			uasi-peak Value	
	216MHz-960M		46.0			Quasi-peak Value		
	960MHz-1GH	lz	54.0			Quasi-peak Value		
	Above 1GHz	,		54.0		,	Average Value	
	1. The EUT was			74.0			Peak Value	
	tower. 3. The antenna ground to det horizontal and measuremen 4. For each sus and then the and the rota to maximum reasonable. 5. The test-rece Specified Bar 6. If the emission limit specified the EUT wou	s set 3 met ch was mo height is v termine the d vertical p t. pected em antenna w table was t ading. siver syster ndwidth with on level of t d, then test ld be report	varied e max polarization was turned the Elting corted. (cre-tes	from one medimum value of the cations of the cation	eter to of the ante as arreses from ees to Dete Mode woed are ee emis	ariable- o four m ifield si nna are ranged m 1 me o 360 c ct Funce was 10 nd the p ssions sing pea	theight antenna neters above the trength. Both e set to make the to its worst case ter to 4 meters degrees to find the ction and dB lower than the peak values of that did not have ak, quasi-peak or	
Test setup:	Below 1GHz EUT Turm Table Ground I	0.8m	m lm			s		

Measurement Data (worst case):

Below 1GHz:

Product Na	ame:	HelloBell	Service Bell		Pi	roduct Mod	del:	HFB-C40	00	
Test By:		YT			Te	est mode:		Wi-Fi Tx	mode	
est Frequ	ency:	30 MHz ~	1 GHz		Po	olarization		Vertical		
Test Voltag	ge:	DC 3.0V			Eı	nvironmen	t:	Temp: 24	1°C H	uni: 57%
70 60 50 40 20	el (dBuV/m)	Inakarbaling	NAME OF THE PARTY		I Like Lynner	harrie horas	matheway makes in		CC PART 1	5.247
030	50		100		200 quency (M	70 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		500		1000
	Freq	Read/ Level	Intenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark	
-	MHz	—dBu∜	<u>dB</u> /m		<u>ab</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>		
1 2 3 4	42.007 109.029 146.888 265.676	39.54 36.09 45.24 36.46	12.36 11.75 9.09 12.99	1.24 2.04 2.47 2.85	29.88 29.46 29.24 28.51	23. 26 20. 42 27. 56 23. 79	43.50 43.50	-16.74 -23.08 -15.94 -22.21	QP QP QP QP	


Remark

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	HelloBell Service Bell	Product Model:	HFB-C400
Test By:	YT	Test mode:	Wi-Fi Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Horizontal
Test Voltage:	DC 3.0V	Environment:	Temp: 24℃ Huni: 57%
80 Level (dBuV/m)			

	Freq		Factor						
,	MHz	dBu∇	<u>dB</u> /π		<u>ab</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>ab</u>	
1	59.025	31.76	11.44	1.38	29.78	14.80	40.00	-25.20	QP
2	109.412	31.77	11.71	2.04	29.46	16.06	43.50	-27.44	QP
3 4 5	160.346	39.87	9.29	2.59	29.13	22.62	43.50	-20.88	QP
4	381.249	30.80	15.04	3.09	28.70	20.23	46.00	-25.77	QP
5	636.134	31.23	19.65	3.88	28.82	25.94	46.00	-20.06	QP
6	866.088	31.06	22.56	4.04	27.96	29.70	46.00	-16.30	QP

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Above 1GHz

Above 1GHz				902 11h				
			Took oh	802.11b				
				nannel: Lowe				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4824.00	49.15	30.94	6.81	41.82	45.08	74.00	-28.92	Vertical
4824.00	50.44	30.94	6.81	41.82	46.37	74.00	-27.63	Horizontal
			Dete	ector: Avera	ge Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4824.00	40.52	30.94	6.81	41.82	36.45	54.00	-17.55	Vertical
4824.00	42.78	30.94	6.81	41.82	38.71	54.00	-15.29	Horizontal
				nannel: Mido				
	Dand	A t			value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4874.00	50.52	31.20	6.85	41.84	46.73	74.00	-27.27	Vertical
4874.00	51.39	31.20	6.85	41.84	47.60	74.00	-26.40	Horizontal
			Dete	ector: Avera	ge Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4874.00	40.25	31.20	6.85	41.84	36.46	54.00	-17.54	Vertical
4874.00	41.19	31.20	6.85	41.84	37.40	54.00	-16.60	Horizontal
			Test ch	annel: High	est channel			
		ı	De	tector: Peal	Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4924.00	50.63	31.46	6.89	41.86	47.12	74.00	-26.88	Vertical
4924.00	49.75	31.46	6.89	41.86	46.24	74.00	-27.76	Horizontal
			Dete	ector: Avera	ge Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4924.00	40.42	31.46	6.89	41.86	36.91	54.00	-17.09	Vertical
4924.00	41.19	31.46	6.89	41.86	37.68	54.00	-16.32	Horizontal

Remark:

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

				802.11g				
			Test ch	nannel: Lowe	est channel			
			De	tector: Peal	k Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4824.00	50.23	30.94	6.81	41.82	46.16	74.00	-27.84	Vertical
4824.00	49.63	30.94	6.81	41.82	45.56	74.00	-28.44	Horizontal
			Dete	ector: Average	ge Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4824.00	40.52	30.94	6.81	41.82	36.45	54.00	-17.55	Vertical
4824.00	41.79	30.94	6.81	41.82	37.72	54.00	-16.28	Horizontal
			Test ch	nannel: Mido	lle channel			
				tector: Peak				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4874.00	50.63	31.20	6.85	41.84	46.84	74.00	-27.16	Vertical
4874.00	51.14	31.20	6.85	41.84	47.35	74.00	-26.65	Horizontal
			Dete	ector: Avera	ge Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4874.00	40.52	31.20	6.85	41.84	36.73	54.00	-17.27	Vertical
4874.00	41.78	31.20	6.85	41.84	37.99	54.00	-16.01	Horizontal
			Test ch	annel: High	est channel			
			De	tector: Peak	k Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4924.00	50.52	31.46	6.89	41.86	47.01	74.00	-26.99	Vertical
100105				I	I			

4924.00

Frequency

(MHz)

4924.00

4924.00

6.89

Cable

Loss

(dB)

6.89

6.89

41.86

Preamp

Factor

(dB)

41.86

41.86

Detector: Average Value

46.42

Level

(dBuV/m)

36.74

37.66

74.00

Limit Line

(dBuV/m)

54.00

54.00

-27.58

Over

Limit (dB)

-17.26

-16.34

31.46

Antenna

Factor

(dB/m)

31.46

31.46

49.93

Read

Level

(dBuV)

40.25

41.17

Project No.: CCISE1912030

Horizontal

Polarization

Vertical

Horizontal

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

				802.11n(HT	720)			
			Test ch	nannel: Low				
				tector: Peal				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4824.00	50.62	36.06	6.81	41.82	51.67	74.00	-22.33	Vertical
4824.00	51.74	36.06	6.81	41.82	52.79	74.00	-21.21	Horizontal
			Dete	ector: Avera	ge Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4824.00	40.52	36.06	6.81	41.82	41.57	54.00	-12.43	Vertical
4824.00	41.39	36.06	6.81	41.82	42.44	54.00	-11.56	Horizontal
				nannel: Mido				
				tector: Peal	k Value		I	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4874.00	51.52	36.32	6.85	41.84	52.85	74.00	-21.15	Vertical
4874.00	50.73	36.32	6.85	41.84	52.06	74.00	-21.94	Horizontal
			Dete	ector: Average	ge Value		<u>'</u>	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4874.00	40.52	36.32	6.85	41.84	41.85	54.00	-12.15	Vertical
4874.00	41.69	36.32	6.85	41.84	43.02	54.00	-10.98	Horizontal
			Test ch	annel: High	est channel			
		T		tector: Peal	Value		T	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4924.00	50.52	36.58	6.89	41.86	52.13	74.00	-21.87	Vertical
4924.00	49.73	36.58	6.89	41.86	51.34	74.00	-22.66	Horizontal
			Dete	ector: Avera	ge Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4924.00	40.52	36.58	6.89	41.86	42.13	54.00	-11.87	Vertical

4924.00

41.17

6.89

41.86

42.78

54.00

36.58

Project No.: CCISE1912030

Horizontal

-11.22

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

rization ertical izontal rization ertical izontal
ertical izontal rization
ertical izontal rization
rization
rization
rtical
rtical
700401
ZUIII
rization
rtical
izontal
rization
rtical
izontal
rization
rization
rtical
rtical

4904.00

41.77

6.87

41.85

43.24

54.00

-10.76

36.45

Project No.: CCISE1912030

Horizontal

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

7 Test Setup Photo

8 EUT Constructional Details

Reference to the test report No.: CCISE191203001

-----End of report-----