

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE191203005V02

FCC REPORT

(Module contains - BLE)

Applicant: HelloFactory Inc.

Address of Applicant: 5th Fl., Nonhyun-ro 10-gil 12, Gangnam-gu, Seoul, Korea

06314

Equipment Under Test (EUT)

Product Name: HelloBell Service Bell

Model No.: HFB-C400

Trade mark: HelloBell

FCC ID: 2APBNHFB-C400

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 17 Dec., 2019

Date of Test: 17 Dec., to 02 Mar., 2020

Date of report issued: 02 Apr., 2020

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	27 Mar., 2020	Original
01	02 Apr., 2020	 Updated Applicant address and Manufacturer address on P.1,P.5 Updated product name on P.1,P.5
02	07 Apr., 2020	Update Section 6.7.2

Tested by:	1 lang	Date:	07 Apr., 2020
	Test Fngineer		

Reviewed by: Date: 07 Apr., 2020

Project Engineer

3 Contents

			Page
1	COV	/ER PAGE	1
2	VER	SION	2
3		ITENTS	
4	TES	T SUMMARY	4
5	GEN	IERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	
	5.3	TEST ENVIRONMENT AND TEST MODE	
	5.4	DESCRIPTION OF SUPPORT UNITS	6
	5.5	MEASUREMENT UNCERTAINTY	_
	5.6	ADDITIONS TO, DEVIATIONS, OR EXCLUSIONS FROM THE METHOD	
	5.7	LABORATORY FACILITY	
	5.8	LABORATORY LOCATION	
	5.9	TEST INSTRUMENTS LIST	7
6	TES	T RESULTS AND MEASUREMENT DATA	8
	6.1	ANTENNA REQUIREMENT:	8
	6.2	CONDUCTED EMISSION	
	6.3	CONDUCTED OUTPUT POWER	
	6.4	OCCUPY BANDWIDTH	
	6.5	POWER SPECTRAL DENSITY	
	6.6	BAND EDGE	
	6.6.1 6.6.2		
	6.7	SPURIOUS EMISSION	
	6.7.1		
	6.7.2		
7	TES	T SETUP PHOTO	25
_			
8	EUT	CONSTRUCTIONAL DETAILS	25

4 Test Summary

Test Items	Section in CFR 47	Result
Antenna requirement	15.203 & 15.247 (b)	Pass
AC Power Line Conducted Emission	15.207	N/A
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247 (d)	Pass
Spurious Emission	15.205 & 15.209	Pass

Remark:

1. Pass: The EUT complies with the essential requirements in the standard.

2. N/A: Not Applicable.

Test Method: ANSI C63.10-2013 KDB 558074 D01 15.247 Meas Guidance v05r02

5 General Information

5.1 Client Information

Applicant:	HelloFactory Inc.
Address:	5th Fl., Nonhyun-ro 10-gil 12, Gangnam-gu, Seoul, Korea 06314
Manufacturer:	HelloFactory Inc.
Address:	5th Fl., Nonhyun-ro 10-gil 12, Gangnam-gu, Seoul, Korea 06314
Factory:	Shenzhen Gelbert Technology Co., Ltd
Address:	No.5H13,5th floor, Shenhua Keji Industrial Park, Meihua Road, Futian District, Shenzhen

5.2 General Description of E.U.T.

Product Name:	HelloBell Service Bell
Model No.:	HFB-C400
Operation Frequency:	2402-2480 MHz
Channel numbers:	40
Channel separation:	2 MHz
Modulation technology:	GFSK
Data speed :	1Mbps
Antenna Type:	Internal Antenna
Antenna gain:	3.7 dBi
Power supply:	Ordinary acid zinc manganese battery DC 1.5V*2
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test. Channel No. 0, 20 & 39 were selected as Lowest, Middle and Highest channel.

5.3 Test environment and test mode

Operating Environment:	
Temperature:	24.0 °C
Humidity:	54 % RH
Atmospheric Pressure:	1010 mbar
Test mode:	
Transmitting mode	Keep the EUT in continuous transmitting with modulation (new battery is used during all test)

Report No: CCISE191203005V02

The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±1.60 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±3.12 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.32 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.38 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±3.36 dB (k=2)

5.6 Additions to, deviations, or exclusions from the method

No

5.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC - Designation No.: CN1211

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

• ISED - CAB identifier.: CN0021

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

• A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.8 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Page 6 of 25

5.9 Test Instruments list

Radiated Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020	
Loop Antenna	SCHWARZBECK	FMZB1519B	00044	03-18-2019	03-17-2020	
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-18-2019	03-17-2020	
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-18-2019	03-17-2020	
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-22-2017	06-21-2020	
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-18-2019	11-17-2020	
EMI Test Software	AUDIX	E3	\	Version: 6.110919b		
Pre-amplifier	HP	8447D	2944A09358	03-18-2019	03-17-2020	
Pre-amplifier	CD	PAP-1G18	11804	03-18-2019	03-17-2020	
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-18-2019	03-17-2020	
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-18-2019	11-17-2020	
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-18-2019	03-17-2020	
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-18-2019	03-17-2020	
Cable	MICRO-COAX	MFR64639	K10742-5	03-18-2019	03-17-2020	
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-18-2019	03-17-2020	
RF Switch Unit	MWRFTEST	MW200	N/A	N/A	N/A	
Test Software	MWRFTEST	MTS8200	Version: 2.0.0.0			

Conducted Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-18-2019	03-17-2020
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-18-2019	03-17-2020
LISN	CHASE	MN2050D	1447	03-18-2019	03-17-2020
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2017	07-20-2020
Cable	HP	10503A	N/A	03-18-2019	03-17-2020
EMI Test Software	AUDIX	E3	Version: 6.110919b		

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part 15 C Section 15.203 /247(b)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

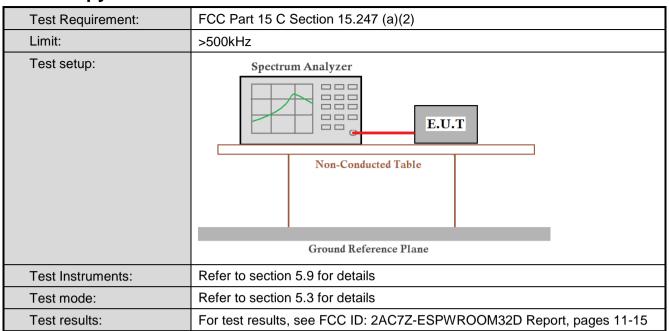
E.U.T Antenna:

The BLE antenna is an Internal antenna which cannot replace by end-user, the best case gain of the antenna is 3.7 dBi.

See page 6 of the FCC ID: 2AC7Z-ESPWROOM32D report

6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 15.207	7		
Test Frequency Range:	150 kHz to 30 MHz			
Class / Severity:	Class B			
Receiver setup:	RBW=9kHz, VBW=30kHz			
Limit:	Limit (dRu\/)			
	Frequency range (MHz)	Quasi-peak	Average	
	0.15-0.5			
	0.5-5 56 46			
	5-30	60	50	
	* Decreases with the logarithm	of the frequency.		
Test procedure:	 The E.U.T and simulators line impedance stabilization 500hm/50uH coupling implements of the peripheral devices at LISN that provides a 500th termination. (Please refer photographs). Both sides of A.C. line are interference. In order to fi positions of equipment ar according to ANSI C63.10 	on network (L.I.S.N.), who pedance for the measuring also connected to the nm/50uH coupling impedent to the block diagram of the checked for maximum and the maximum emission all of the interface cab	nich provides a sing equipment. main power through a lance with 50ohm the test setup and conducted on, the relative les must be changed	
Test setup:	LISN 40cm	Plane Slock LISN Filter Filter Slock Filter Slock Slo	– AC power	
	Remark E.U.T Remark E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Net Test table height=0.8m	EMI Receiver		
Test Instruments:	Refer to section 5.9 for details			
Test mode:	Refer to section 5.3 for details			



6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)							
Limit:	30dBm							
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table							
	Ground Reference Plane							
Test Instruments:	Refer to section 5.9 for details							
Test mode:	Refer to section 5.3 for details							
Test results:	See FCC ID: 2AC7Z-ESPWROOM32D report page 10 for Test Results							

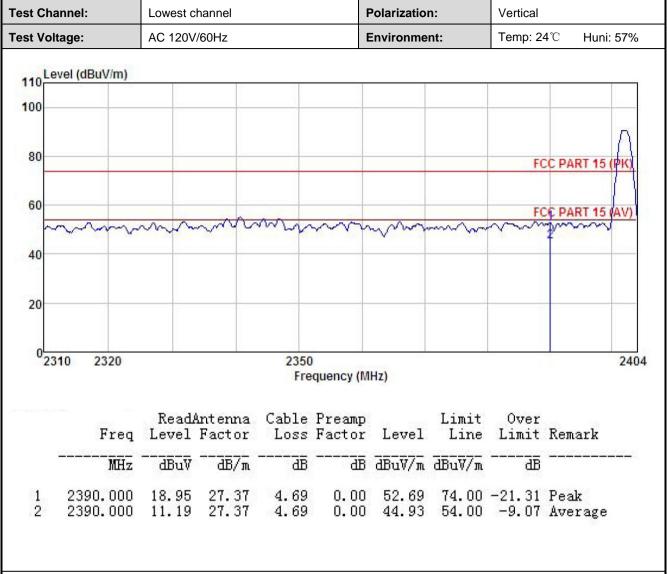
6.4 Occupy Bandwidth

6.5 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)
Limit:	8 dBm
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.9 for details
Test mode:	Refer to section 5.3 for details
Test results:	For test results, see FCC ID: 2AC7Z-ESPWROOM32D Report, pages 19-23

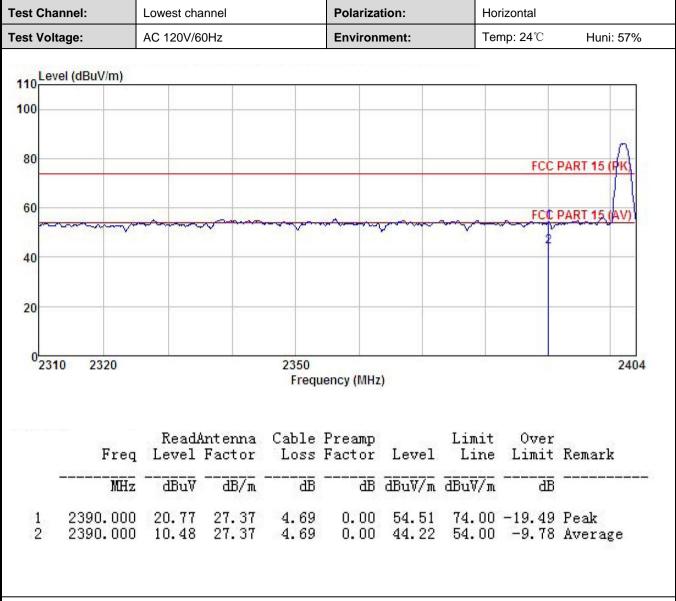
6.6 Band Edge

6.6.1 Conducted Emission Method


Test Requirement:	FCC Part 15 C Section 15.247 (d)								
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.								
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane								
Test Instruments:	Refer to section 5.9 for details								
Test mode:	Refer to section 5.3 for details								
Test results:	For test results, see FCC ID: 2AC7Z-ESPWROOM32D Report, pages 16-18								

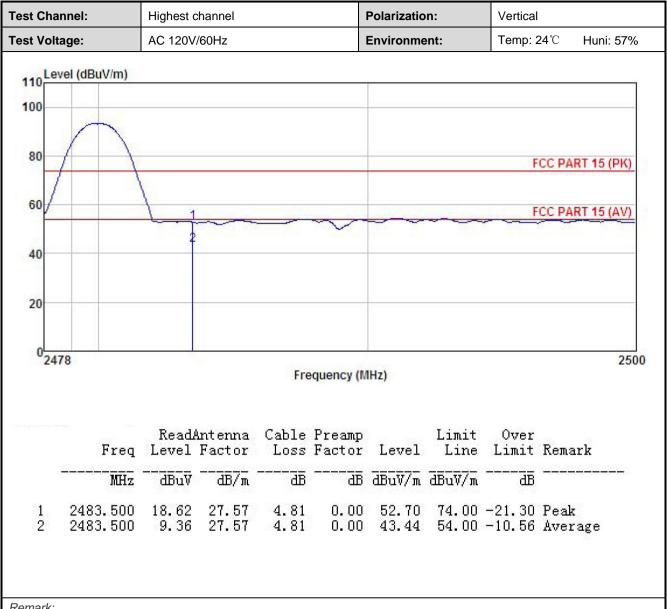
6.6.2 Radiated Emission Method

Test Requirement:		C Section 15.20)5 and 15.209				
Test Frequency Range:	2.3GHz to 2.5	GHz					
Test Distance:	3m						
Receiver setup:	Frequency	Detector	RBW	VBW	Remark		
receiver detap.	Above 1GHz	Peak	1MHz	3MHz	Peak Value		
	Above IGHZ	RMS	1MHz	3MHz	Average Value		
Limit:	Frequer	ncy Lir	mit (dBuV/m @3		Remark		
	Above 10	GHz	54.00		verage Value		
			74.00		Peak Value		
Test Procedure:	 The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet. 						
Test setup:	AE (T	Test Receiver	Hern Antenna Reference Plane Pre- Amplifier Control	Antenna Tower			
Test Instruments:	Refer to section	on 5.9 for detai	s				
Test mode:	Refer to section	on 5.3 for detai	s				
Test results:	pass						



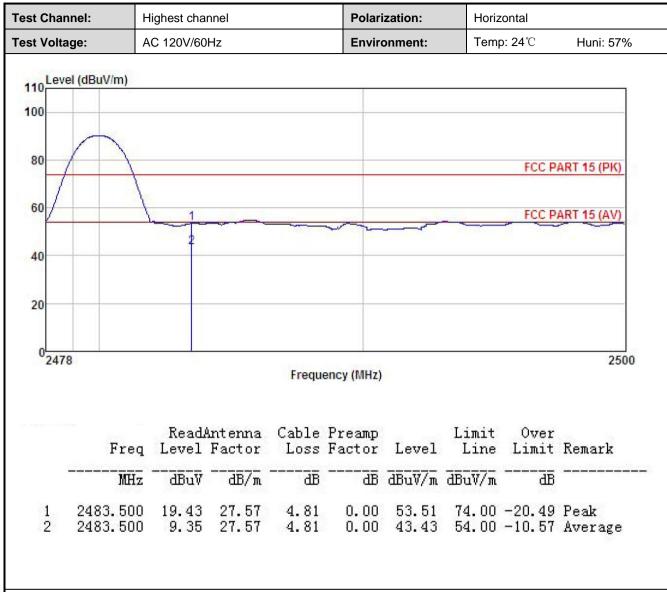
^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.



^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.



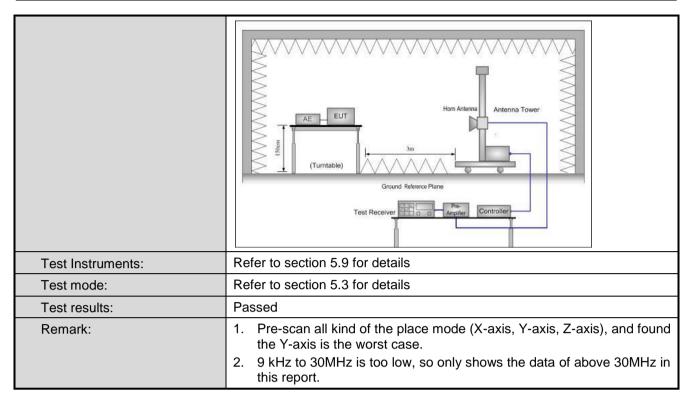
^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

The emission levels of other frequencies are very lower than the limit and not show in test report.

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7 Spurious Emission

6.7.1 Conducted Emission Method


Test Requirement:	FCC Part 15 C Section 15.247 (d)								
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.								
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane								
Test Instruments:	Refer to section 5.9 for details								
Test mode:	Refer to section 5.3 for details								
Test results:	For test results, see FCC ID: 2AC7Z-ESPWROOM32D Report, pages 26-31								

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C	Section 15.20	5 and 15.209			
Test Frequency Range:	9kHz to 25GHz					
Test Distance:	3m					
Receiver setup:	Frequency	Detector	RBW	VB	sW	Remark
. Kosomon Gotapi	30MHz-1GHz	Quasi-peak	120KHz	300KHz		Quasi-peak Value
	Al 4011-	Peak	1MHz	3MHz		Peak Value
	Above 1GHz	RMS	1MHz	3M	Hz	Average Value
Limit:	Frequency	/ L	mit (dBuV/m @	3m)		Remark
	30MHz-88M	Hz	40.0		C	Quasi-peak Value
	88MHz-216N	1Hz	43.5		C	Quasi-peak Value
	216MHz-960I	MHz	46.0		C	Quasi-peak Value
	960MHz-1G	Hz	54.0		C	Quasi-peak Value
	Above 1GH	17	54.0			Average Value
			74.0			Peak Value table 0.8m(below
	highest rad 2. The EUT antenna, we tower. 3. The antenna Both horized make the name of the end of the end of the emister should be end of the EUT have 10 dE	liation. was set 3 n which was mo na height is was I to determine ontal and very neasurement suspected er hen the ante I the rota table maximum rea eceiver syste Bandwidth wit sion level of the would be re margin wou	neters away unted on the paried from one the maximitical polarization, the Enna was tuned ding. It was turned ding. It was set the Maximum Hole EUT in periesting could liported. Other lid be re-tested	from the top of a ne met um valutions of EUT was do not be from 0 to Pealold Morak more stop wise the done be	ne intervariant of the areas arranged and the control of the areas arranged and the control of t	the position of the efference-receiving ble-height antenna four meters above the field strength. antenna are set to anged to its worst from 1 meter to 4 ees to 360 degrees tect Function and is 10 dB lower than and the peak values ssions that did not using peak, quasi-reported in a data
Test setup:	EUT	4m 4m 0.8m lm			Search Antenn Test ceiver —	1

500

Measurement Data (worst case):

50

Below 1GHz:

Product Name: HelloBell Service Bell				Product Model:			HFB-C400						
Гest By:	YT	YT				Test mode:			BLE Tx mode				
Test Frequency:	30	80 MHz ~ 1 GHz Polarization: Vertical											
Test Voltage:	DC	3.0V				Environm	ent:	Tei	mp: 24	1 ℃	Huni: 5	ni: 57%	
80 Level (dBuV	/m)											_	
70													
60									FC	C PAR	T 15.247		
50						- In-							
40													
30					3	mark har warmen		5	مهموا ميان	- And	port Purcha	**	
20				100	- 1 1 1 1		Water March	August Comment				-	

	Freq		Intenna Factor				Limit Line	Over Limit	Remark
<u></u> .	MHz	dBu₹		<u>d</u> B		$\overline{dB} \overline{uV/m}$	$\overline{dBuV/m}$	<u>ab</u>	
1	42.007	37.54	12.36	1.24	29.88	21.26	40.00	-18.74	QP
1 2 3	109.029	36.09	11.75			20.42	43.50	-23.08	QP
3	146.888	44.24	9.09	2.47	29.24	26.56	43.50	-16.94	QP
4	265.676	36.46	12.99	2.85	28.51	23.79	46.00	-22.21	QP
5 6	434.065	34.16	16.11	3.16	28.84	24.59	46.00	-21.41	QP
6	842.130	32.15	22.44	4.22	28.03	30.78	46.00	-15.22	QP

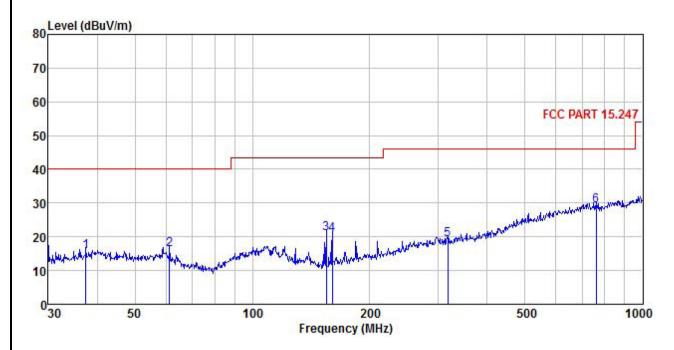
Frequency (MHz)

200

Remark

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

100


2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Project No.: CCISE1912030

1000

Product Name:	HelloBell Service Bell	Product Model:	HFB-C400
Test By:	YT	Test mode:	BLE Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Horizontal
Test Voltage:	DC 3.0V	Environment:	Temp: 24℃ Huni: 57%

Freq								Remark
MHz	—dBu√	<u>dB</u> /π		<u>ab</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>ab</u>	
37.416	32.67	11.80	1.14	29.92	15.69	40.00	-24.31	QP
61.346	33.62	10.93	1.38	29.77	16.16	40.00	-23.84	QP
154.821	38.51	9.10	2.55	29.18	20.98	43.50	-22.52	QP
160.346	37.87	9.29	2.59	29.13	20.62	43.50	-22.88	QP
316.589	30.59	13.95	2.99	28.49	19.04	46.00	-26.96	QP
760.704	32.58	20.83	4.36	28.42	29.35	46.00	-16.65	QP
	MHz 37.416 61.346 154.821 160.346 316.589	Freq Level MHz dBuV 37.416 32.67 61.346 33.62 154.821 38.51 160.346 37.87 316.589 30.59	Freq Level Factor MHz dBuV dB/m 37.416 32.67 11.80 61.346 33.62 10.93 154.821 38.51 9.10 160.346 37.87 9.29 316.589 30.59 13.95	Freq Level Factor Loss MHz dBuV dB/m dB 37.416 32.67 11.80 1.14 61.346 33.62 10.93 1.38 154.821 38.51 9.10 2.55 160.346 37.87 9.29 2.59 316.589 30.59 13.95 2.99	Freq Level Factor Loss Factor MHz dBuV dB/m dB dB 37.416 32.67 11.80 1.14 29.92 61.346 33.62 10.93 1.38 29.77 154.821 38.51 9.10 2.55 29.18 160.346 37.87 9.29 2.59 29.13 316.589 30.59 13.95 2.99 28.49	MHz dBuV dB/m dB dB dBuV/m 37.416 32.67 11.80 1.14 29.92 15.69 61.346 33.62 10.93 1.38 29.77 16.16 154.821 38.51 9.10 2.55 29.18 20.98 160.346 37.87 9.29 2.59 29.13 20.62 316.589 30.59 13.95 2.99 28.49 19.04	MHz dBuV dB/m dB dB dBuV/m dBuV/m dBuV/m 37.416 32.67 11.80 1.14 29.92 15.69 40.00 61.346 33.62 10.93 1.38 29.77 16.16 40.00 154.821 38.51 9.10 2.55 29.18 20.98 43.50 160.346 37.87 9.29 2.59 29.13 20.62 43.50 316.589 30.59 13.95 2.99 28.49 19.04 46.00	MHz dBuV dB/m dB dB dBuV/m dBuV/m dB dB dB dBuV/m dBuV/m dB dB dB dBuV/m dBuV/m dB dB dB dBuV/m dBuV/m dB dB dB dBuV/m dBuV/m dB dB

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Above 1GHz

	-												
	Test channel: Lowest channel												
Detector: Peak Value													
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization					
4804.00	50.52	30.85	6.80	41.81	46.36	74.00	-27.64	Vertical					
4804.00	49.63	30.85	6.80	41.81	45.47	74.00	-28.53	Horizontal					
			Dete	ctor: Avera	ge Value								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization					
4804.00	40.52	30.85	6.80	41.81	36.36	54.00	-17.64	Vertical					
4804.00	41.79	30.85	6.80	41.81	37.63	54.00	-16.37	Horizontal					
			Test ch	nannel: Midd	dle channel								
			De	tector: Peak	Value								
Frequency (MHz)	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit	Polarization					

	Test channel: Middle channel												
Detector: Peak Value													
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization					
4884.00	51.26	31.20	6.86	41.84	47.48	74.00	-26.52	Vertical					
4884.00	49.98	31.20	6.86	41.84	46.20	74.00	-27.80	Horizontal					
			Dete	ector: Avera	ge Value								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization					
4884.00	40.30	31.20	6.86	41.84	36.52	54.00	-17.48	Vertical					
4884.00	39.97	31.20	6.86	41.84	36.19	54.00	-17.81	Horizontal					

Test channel: Highest channel								
Detector: Peak Value								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	49.60	31.63	6.91	41.87	46.27	74.00	-27.73	Vertical
4960.00	50.71	31.63	6.91	41.87	47.38	74.00	-26.62	Horizontal
Detector: Average Value								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	39.62	31.63	6.91	41.87	36.29	54.00	-17.71	Vertical
4960.00	40.29	31.63	6.91	41.87	36.96	54.00	-17.04	Horizontal

Remark:

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

7 Test Setup Photo

8 EUT Constructional Details

Reference to the test report No.: CCISE191203001

----End of report-----