

EMF TEST REPORT

Test Report No. : OT-228-RWD-009

Reception No. : 2207002095

Applicant : CHIPSEN. Co., Ltd

Address : B1 C-17, 15, Gyeongin-ro 53-gil, Guro-gu, Seoul, South Korea

Manufacturer : CHIPSEN. Co., Ltd

Address : B1 C-17, 15, Gyeongin-ro 53-gil, Guro-gu, Seoul, South Korea

Type of Equipment : Wireless Communication Module

FCC ID. : 2APB6-BOT-CDA110

Model Name : BoT-cDA110

Multiple Model Name: BoT-cDA110SC, BoT-cDA110SU, BoT-cDA110DC, BoT-cDA110DU, BoT-

cDA110DS

Serial number : N/A

Total page of Report : 8 pages (including this page)

Date of Incoming : July 11, 2022

Date of issue : August 09, 2022

SUMMARY

The equipment complies with the regulation; FCC PART 15 SUBPART C Section 15.247

This test report only contains the result of a single test of the sample supplied for the examination.

It is not a generally valid assessment of the features of the respective products of the mass-production.

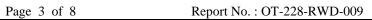
This report is not correlated with the "KS Q ISO/IEC 17025 and KOLAS accreditation" of Korean Laboratory Accreditation Scheme.

Tested by Soon-Ki, Choi / Engineer ONETECH Corp.

Reviewed by Tae-Ho, Kim / General Manager ONETECH Corp. Approved by Ki-Hong, Nam / General Manager ONETECH Corp.

Report No.: OT-228-RWD-009

It should not be reproduced except in full, without the written approval of ONETECH Corp.


OTC-TRF-RF-001(0)

CONTENTS

	PAGE
1. VERIFICATION OF COMPLIANCE	4
2. GENERAL INFORMATION	5
2.1 PRODUCT DESCRIPTION	5
2.2 ALTERNATIVE TYPE(S)/MODEL(S); ALSO COVERED BY THIS TEST REPORT	6
3. EUT MODIFICATIONS	6
4. MAXIMUM PERMISSIBLE EXPOSURE	7
4.1 RF Exposure Calculation	7
4.2 EUT DESCRIPTION	
4.3 CALCULATED MPE SAFE DISTANCE FOR BLUETOOTH	8
4.4 CALCULATED MPE SAFE DISTANCE FOR BLUETOOTH LE	8

Revision History

Rev. No.	Issue Report No. Issued Date		Revisions	Section Affected
0	OT-228-RWD-009 August 09, 2022		Initial Release	All

Report No.: OT-228-RWD-009

1. VERIFICATION OF COMPLIANCE

Applicant : CHIPSEN. Co., Ltd

Address : B1 C-17, 15, Gyeongin-ro 53-gil, Guro-gu, Seoul, South Korea

Contact Person: Young Min Park / Senior Engineer

Telephone No. : 070-8708-5990

FCC ID : 2APB6-BOT-CDA110

Model Name : BoT-cDA110

Brand Name : N/A Serial Number : N/A

Date : August 09, 2022

EQUIPMENT CLASS	DSS – PART 15 SPREAD SPECTRUM TRANSMITTER DTS – DIGITAL TRNSMISSION SYSTEM
E.U.T. DESCRIPTION	Wireless Communication Module
THIS REPORT CONCERNS	Original Grant
MEASUREMENT PROCEDURES	ANSI C63.10: 2020
TYPE OF EQUIPMENT TESTED	Pre-Production
KIND OF EQUIPMENT AUTHORIZATION REQUESTED	Certification
EQUIPMENT WILL BE OPERATED	FCC PART 15 SUBPART C Section 15.247
UNDER FCC RULES PART(S)	KDB 558074 D01 15.247 Meas Guidance v05r02
Modifications on the Equipment to Achieve Compliance	None
Final Test was Conducted On	3 m, Semi Anechoic Chamber

^{-.} The above equipment was tested by ONETECH Corp. for compliance with the requirement set forth in the FCC Rules and Regulations. This said equipment in the configuration described in this report, shows the maximum emission levels emanating from equipment are within the compliance requirements.

2. GENERAL INFORMATION

2.1 Product Description

The CHIPSEN. Co., Ltd, Model BoT-cDA110 (referred to as the EUT in this report) is a Wireless Communication Module. The product specification described herein was obtained from product data sheet or user's manual.

Device Type	Wireless Communication Module					
Temperature Range	-30 °C ~ 85 °C					
Operating Frequency	2 402 MHz ~ 2 48	2 402 MHz ~ 2 480 MHz				
		1 Mbps	5.09 dBm			
	Bluetooth	2 Mbps	2.04 dBm			
MAX. RF OUTPUT POWER		3 Mbps	-4.84 dBm			
	Bluetooth LE	1 Mbps	5.30 dBm			
		2 Mbps	5.32 dBm			
	Bluetooth	79 Channels				
Number of Channel	Bluetooth LE	40 Channels				
	Bluetooth	GFSK for 1 Mbps, π/4-DQPSK for 2 Mbps, 8-DPSK for 3				
Modulation Type		Mbps				
	Bluetooth LE	GFSK				
Antenna Type	Chip Antenna					
Antenna Gain	5.53 dBi					
List of each Osc. or crystal	24.741					
Freq.(Freq. >= 1 MHz)	24 MHz					
Rated Supply Voltage	DC 3.3 V					

Page 6 of 8 Report No.: OT-228-RWD-009

2.2 Alternative type(s)/model(s); also covered by this test report.

-. The following lists consist of the added model and their differences.

Model Name	Differences	Tested				
BoT-cDA110	Basic Model	Ø				
BoT-cDA110SC						
BoT-cDA110SU						
BoT-cDA110DC	This model is derived for Marketing purpose. It is identical to the basic model except for the model name.					
BoT-cDA110DU						
BoT-cDA110DS						

Note: 1. Applicant consigns only basic model to test. Therefore this test report just guarantees the units, which have been tested.

2. The Applicant/manufacturer is responsible for the compliance of all variants.

3. EUT MODIFICATIONS

-. None

Report No.: OT-228-RWD-009

4. MAXIMUM PERMISSIBLE EXPOSURE

4.1 RF Exposure Calculation

According to the FCC rule 1.1310 table 1B, the limit for the maximum permissible RF exposure for an uncontrolled environment are f/1500 mW/cm² for the frequency range between 300 MHz and 1 500 MHz and 1.0 mW/cm² for the frequency range between 1 500 MHz and 100 000 MHz.

The electric field generated for a 1 mW/cm² exposure is calculated as follows:

$$E = \sqrt{(30 * P * G)} / d$$
, and $S = E^2 / Z = E^2 / 377$, because 1 mW/cm² = 10 W/m²

Where

S = Power density in mW/cm², Z = Impedance of free space, 377 Ω

E = Electric filed strength in V/m, G = Numeric antenna gain, and d = distance in meter

Combing equations and rearranging the terms to express the distance as a function of the remaining variable

$$d = \sqrt{(30 * P * G) / (377 * 10 S)}$$

Changing to units of mW and cm, using P(mW) = P(W) / 1000, d(cm) = 0.01 * d(m)

$$d = 0.282 * \sqrt{(P * G) / S}$$

Where

d = distance in cm, P = Power in mW, G = Numeric antenna gain, and S = Power density in mW/cm²

4.2 EUT Description

Kind of EUT	Wireless Communication Module				
	☐ Portable (< 20 cm separation)				
Device Category	☐ Mobile (> 20 cm separation)				
	■ Others				
-	■ MPE				
Exposure	□ SAR				
Evaluation Applied	□ N/A				

Report No.: OT-228-RWD-009

4.3 Calculated MPE Safe Distance for Bluetooth

According to above equation, the following result was obtained.

Operating Freq. Band	Operating Mode	Target Power W/tolerance		une up wer	Anten	na Gain	Safe Distance	Power Density (mW/cm²)	Limit (mW/
(MHz)		(dBm)	(dBm)	(mW)	Log	Linear	(cm)	@ 20 cm Separation	cm²)
	1 Mbps	5.09 ± 1.0	6.09	4.06			1.07	0.002 9	1
2 402	2 Mbps	2.04 ± 1.0	3.04	2.01	5.53	3.57	0.76	0.001 4	1
~ 2 480	3 Mbps	-4.84 ± 1.0	-3.84	0.41			0.34	0.000 3	1

According to above table, for 2 402 ~ 2480 MHz Band(1 Mbps), safe distance,

$$D = 0.282 * \sqrt{(4.06 * 3.57)/1.00} = 1.07 \text{ cm}.$$

For getting power density at 20 cm separation in above table, following formula was used.

$$S = P * G / (4\pi * R^2) = 4.06 * 3.57 / (4 * \pi * 20^2) = 0.002 9$$

Where:

S = Power Density,

P = Power input to the external antenna (Output power from the EUT antenna port (dBm) – cable loss (dB)),

G = Gain of Transmit Antenna (linear gain), R = Distance from Transmitting Antenna

4.4 Calculated MPE Safe Distance for Bluetooth LE

According to above equation, the following result was obtained.

Operating Freq. Band	Operating Mode	Target Power W/tolerance	Max tune up						Antenna Gain		Safe Distance	Power Density (mW/cm²)	Limit (mW/
(MHz)	, ,	(dBm)	(dBm)	(mW)	Log	Linear	(cm)	@ 20 cm Separation	cm²)				
2 402	1 Mbps	5.30 ± 1.0	6.30	4.27	5 52	2.57	1.10	0.003 0	1				
~ 2 480	2 Mbps	5.32 ± 1.0	6.32	4.29	5.53	3.57	1.10	0.003 0	1				

According to above table, for 2 402 ~ 2480 MHz Band(1 Mbps), safe distance,

$$D = 0.282 * \sqrt{(4.27 * 3.57)/1.00} = 1.10 \text{ cm}.$$

For getting power density at 20 cm separation in above table, following formula was used.

$$S = P * G / (4\pi * R^2) = 4.27 * 3.57 / (4 * \pi * 20^2) = 0.003 0$$

Where:

S = Power Density,

P = Power input to the external antenna (Output power from the EUT antenna port (dBm) - cable loss (dB)),

G = Gain of Transmit Antenna (linear gain), R = Distance from Transmitting Antenna

It should not be reproduced except in full, without the written approval of ONETECH Corp.

OTC-TRF-RF-001(0)